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Abstract

Biclustering involves the simultaneous clustering of objects and their attributes, thus deĄn-

ing local models for the two-way relationship of objects and attributes. Just like clustering,

biclustering has a broad set of applications, ranging from an advanced support for recom-

mender systems of practical relevance to a decisive role in data mining techniques devoted

to gene expression data analysis. Initially, heuristics have been proposed to Ąnd biclusters,

and their main drawbacks are the possibility of losing some existing biclusters and the inca-

pability of maximizing the volume of the obtained biclusters. Recently efficient algorithms

were conceived to enumerate all the biclusters, particularly in numerical datasets, so that

they compose a complete set of maximal and non-redundant biclusters. However, the ability

to enumerate biclusters revealed a challenging scenario: in noisy datasets, each true bicluster

becomes highly fragmented and with a high degree of overlapping, thus preventing a direct

analysis of the obtained results. Fragmentation will happen no matter the boundary condi-

tion adopted to specify the internal coherence of the valid biclusters, though the degree of

fragmentation will be associated with the noise level. Aiming at reverting the fragmentation,

we propose here two approaches for properly aggregating a set of biclusters exhibiting a high

degree of overlapping: one based on single linkage and the other directly exploring the rate of

overlapping. A pruning step is then employed to Ąlter intruder objects and/or attributes that

were added as a side effect of aggregation. Both proposals were compared with each other

and also with the actual state-of-the-art in several experiments, including real and artiĄcial

datasets. The two newly-conceived aggregation mechanisms not only signiĄcantly reduced

the number of biclusters, essentially defragmenting true biclusters, but also consistently in-

creased the quality of the whole solution, measured in terms of Precision and Recall when

the composition of the dataset is known a priori.

Keywords: Biclustering; bicluster enumeration, bicluster aggregation, outlier removal, met-

rics for biclusters.
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Resumo

Biclusterização envolve a clusterização simultânea de objetos e seus atributos, deĄnindo mo-

delos locais de relacionamento entre os objetos e seus atributos. Assim como a clusterização, a

biclusterização tem uma vasta gama de aplicações, desde suporte a sistemas de recomendação,

até análise de dados de expressão gênica. Inicialmente, diversas heurísticas foram propostas

para encontrar biclusters numa base de dados numérica. No entanto, tais heurísticas apresen-

tam alguns inconvenientes, como não encontrar biclusters relevantes na base de dados e não

maximizar o volume dos biclusters encontrados. Algoritmos enumerativos são uma proposta

recente, especialmente no caso de bases numéricas, cuja solução é um conjunto de biclusters

maximais e não redundantes. Contudo, a habilidade de enumerar biclusters trouxe mais um

cenário desaĄador: em bases de dados ruidosas, cada bicluster original se fragmenta em vá-

rios outros biclusters com alto nível de sobreposição, o que impede uma análise direta dos

resultados obtidos. Essa fragmentação irá ocorrer independente da deĄnição escolhida de co-

erência interna no bicluster, sendo mais relacionada com o próprio nível de ruído. Buscando

reverter essa fragmentação, nesse trabalho propomos duas formas de agregação de biclusters

a partir de resultados que apresentem alto grau de sobreposição: uma baseada na clusteriza-

ção hierárquica com single linkage, e outra explorando diretamente a taxa de sobreposição

dos biclusters. Em seguida, um passo de poda é executado para remover objetos ou atributos

indesejados que podem ter sido incluídos como resultado da agregação. As duas propostas

foram comparadas entre si e com o estado da arte, em diversos experimentos, incluindo bases

de dados artiĄciais e reais. Essas duas novas formas de agregação não só reduziram signiĄca-

tivamente a quantidade de biclusters, essencialmente defragmentando os biclusters originais,

mas também aumentaram consistentemente a qualidade da solução, medida em termos de

precisão e recuperação, quando os biclusters são conhecidos previamente.

Palavras-chaves: Biclusterização, enumeração de biclusters, agregação de biclusters, remo-

ção de outliers, métricas para biclusters.
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1 Introduction

Data mining is a popular research Ąeld that aims to detect hidden patterns in datasets

and to extract knowledge of these analyses. Clustering is a data mining task that Ąnds groups

of highly correlated objects in a dataset. If two objects are in the same group, they are highly

correlated; but if they are in distinct groups, they should not be correlated. The applications of

clustering techniques are disseminated, varying from marketing purposes to outlier detection,

going through protein identiĄcation, among others. The reader may refer to Jain et al. (1999)

for a survey of clustering.

To be part of a cluster, an assumption is made: all attributes of the clustered objects

must show certain correlation. If the process do not Ąnd a global correlation, the objects will

not be part of the same cluster. This assumption is problematic for some applications and

specially for objects with many attributes. For example, in microarray gene expression data

analysis, it is very hard to Ąnd a global correlation between all the attributes. Usually, the

objects of this kind of dataset are genes, and the attributes are samples of experiments. A

cluster would represent a set of genes that exhibit a similar expression considering all the

samples. But the samples can refer to distinct subjects. For example, one sample can come

from a healthy tissue, another from a cancer tissue. If a gene is related to the manifestation

of that cancer, it will certainly be expressed differently in the two samples when compared

to a non-related gene. In this case, the clustering methods will not be able to Ąnd proper

groups in these datasets.

Biclustering is a set of clustering algorithms capable of Ąnding groups of objects

in a subset of attributes. In this case, the group of objects only makes sense considering

that speciĄc subset of attributes. This class of algorithms rapidly found application in gene

expression data analysis and several other Ąelds. As Ąnding all biclusters in a dataset is an

NP-hard problem, most of the algorithm proposals are heuristics, that may miss important

biclusters.

The enumeration of biclusters is something recent. Veroneze et al. (2014) proposed

a family of bicluster enumeration algorithms for real datasets, that we will explore in this

dissertation. In the literature, it is known that the presence of noise when enumerating a

dataset leads to a result with too many biclusters with high overlapping (ZHAO; ZAKI, 2005).

Even in small datasets, the quantity of enumerated biclusters can be enormous, leading to a

complex and timing consuming analysis, or even impracticable. In this case, the aggregation

plays a fundamental role in removing the unnecessary overlapping and simplifying the Ąnal
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biclusters of the solution.

An area of research similar to bicluster aggregation is the biclustering ensemble, which

is a combination of different results into a more robust Ąnal result. Ensemble is a common

practice in classiĄcation and regression tasks, and is gaining attention in clustering tasks.

The literature presents a variety of biclustering ensemble algorithms, but the aggregation

is a subtly different task, to be better explained along the text. Despite that difference,

we compared our proposals with the results produced by an ensemble algorithm, as well as

with the most similar approach to an aggregation algorithm that we were able to Ąnd in

the literature. After aggregating fragmented biclusters, an outlier removal step is conceived

to Ąlter out intruder objects and / or attributes that supposedly were incorporated in the

aggregated solution.

We will show that the aggregation of biclusters based on the high overlapping of the

enumerative solution, can lead to better results, severely reducing the quantity of biclusters.

This conclusion was obtained considering three artiĄcial datasets and two real datasets from

different backgrounds.

1.1 Main goal of the research

The goal of this research is to remove the redundancy and improve the quality of

a bicluster solution that presents a high degree of overlapping among its components. This

characteristic is easily found in enumerative solutions of biclustering.

1.2 Structure of the dissertation

This dissertation is divided into Ąve parts.

Part I - Main Concepts In this part we will explain the necessary background to support

our contribution. This part contains three chapters. The Ąrst chapter will discuss clus-

tering and biclustering methods. The second chapter will discuss the ensemble meth-

ods for biclustering, and we will highlight the difference between bicluster ensemble

and bicluster aggregation. The third chapter will discuss the metrics for biclustering

evaluation that best Ąt our needs.

Part II - Proposals In this part we will explain our contributions. We will start by explain-

ing our Ąrst contribution: an aggregation based on hierarchical clustering with single

linkage. After that, we will explain a second proposal: an aggregation based on the

overlapping between the biclusters. We will continue by explaining an outlier removal
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step that proved to be important on our contributions, and we will end this chapter by

giving an example of the entire aggregation procedure.

Part III - Discussion In this part we will explain how the experiments were planned and

delimited. We will also explain how the artiĄcial datasets were generated, discuss the

results of the experiments, and show how our proposal can be positioned in comparison

with the existent methods.

Part IV - Final considerations This chapter concludes this dissertation and outlines the

future work that can be done starting from the achieved contributions.
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2 Clustering and biclustering

In this chapter we will explain the limitations of clustering that motivated the devel-

opment of biclustering algorithms and how these algorithms look for patterns in a dataset.

2.1 Clustering

Clustering is a well-known data mining task, that groups objects from a dataset into

clusters. Ideally the similarity between objects on the same cluster is high, and the similarity

between objects from distinct clusters is low. The clustering usefulness led this problem to be

studied in many contexts and by researchers in many disciplines. Some important applications

for clustering are market research, astronomy, psychiatry, weather classiĄcation, archeology,

bioinformatics, among others (EVERITT et al., 2011). For a broad view of the area, we

recommend the surbvey by Jain et al. (1999).

2.2 Clustering with Single Linkage

Single linkage is a method of agglomerative hierarchical clustering. In this class of

methods, each object starts in its own cluster. The clusters are then sequentially combined

with the closest cluster speciĄed by a pre-deĄned distance, up to the point where all objects

belong to the same cluster.
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Figure 1 Ű Example of a dendrogram.
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It is common to represent the process of hierarchical clustering in a visual form using a

dendrogram, as in Figure 1. The leafs of the dendrogram represent the objects, each junction

represents a cluster and the height of a junction represents the distance between the two

combined clusters.

The term Şsingle linkageŤ refers to how the distance between the clusters will be

calculated (JAIN et al., 1999). In this case, the distance is measured by the closest elements

of the two groups in comparison.

A drawback of the hierarchical clustering is that the user must choose where to cut

the dendrogram. The cut determines how many clusters the solution will have. Usually the

height of the junctions is used to indicate a good cut: when the height of a junction is much

bigger than the height of the junctions below, it may be a good place to cut the dendrogram.

Another drawback of single linkage is what is known as the chaining effect. If the clusters are

connected by some elements, the process may not Ąnd useful clusters (JAIN et al., 1999).

2.3 Biclustering Motivation
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Figure 2 Ű Example of clustering considering objects composed of two attributes.

Figure 2 shows an example of clustering. We can see that the two groups are well-

deĄned in distinct areas of the feature space. However, even in this limited dimensionality, we

can verify one major limitation of clustering: the assumption of correlation in all attributes.

Note that Attribute 2 is not relevant for clustering group 2. We can see this problem in

a practical example. Table 1 shows a toy dataset, where the rows represent movies, the
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columns represent customers and the table Ąelds are evaluations that these customers gave

to the movies. The Ąrst four movies are from the category ŞdocumentaryŤ and the last four

are from the category ŞactionŤ. If we consider all attributes, we will not be able to Ąnd any

relevant group. But considering subsets of the attributes, we can easily Ąnd two distinct

groups. This example leads us to biclustering.

Table 1 Ű Example of biclusters in a movie evaluation dataset.

Maria João José SoĄa
Cosmos: A Space Time Odissey 5 5 2 5
Fed Up 5 4 1 5
Myth Busters 4 4 5 2
CatĄsh 5 5 5 1
X-men 2 5 4 5
Godzilla 4 1 5 4
Lone Survivor 2 1 5 5
Non-Stop 5 3 5 4

Biclustering is a set of clustering algorithms that simultaneously cluster the rows

(objects) and columns (attributes) of a dataset. In this case, biclustering does not require

correlation between all attributes, given that it Ąnds the most related set of attributes for

each set of objects. Hartigan (1972) proposed the Ąrst biclustering algorithm, and Cheng

& Church (2000) coined the term, applying their proposal to gene expression data. In fact,

biclustering is already considered a common technique to analyze gene expression data.

2.4 Problem formulation and definitions

Consider a dataset A ∈ R
𝑛×𝑚, with rows 𝑋 = ¶𝑥1, 𝑥2, . . . , 𝑥𝑛♢ and columns 𝑌 =

¶𝑦1, 𝑦2, . . . , 𝑦𝑚♢. We deĄne a bicluster 𝐵 by 𝐵 = (𝐵𝑟, 𝐵𝑐), where 𝐵𝑟 ⊖ 𝑋 and 𝐵𝑐 ⊖ 𝑌 , such

that the elements in the bicluster show a coherence pattern. A bicluster solution is a set of

biclusters represented by 𝐵̄ = ¶𝐵𝑖♢
𝑞
𝑖=1, where 𝑞 is the quantity of biclusters on the solution

set. A bicluster is maximal if and only if we can not include any other object / attribute

without violating the coherence threshold. The overlapping function between two biclusters

𝐵 and 𝐶 is deĄned as

𝑜𝑣(𝐵, 𝐶) =
♣𝐵𝑟 ∩ 𝐶𝑟 × 𝐵𝑐 ∩ 𝐶𝑐♣

𝑚𝑖𝑛(♣𝐵𝑟 × 𝐵𝑐♣, ♣𝐶𝑟 × 𝐶𝑐♣)
. (2.1)

Madeira & Oliveira (2004) categorized the types of biclusters according to their co-

herence patterns. In Figure 3 we show only the most important types of biclusters, that are

explained below.
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Jiong et al. (2003) proposed the FLOC (FLexible Overlapped biClustering), another

important heuristic. They based their algorithm on CC but avoiding the step of replacing

the values of the found bicluster with random numbers. Moreover, FLOC also identiĄes more

than one bicluster simultaneously.

The main limitation of these heuristics is that they are not able to guarantee Ąnding

all the biclusters. Also, the biclusters that are found may not be of maximal volume, in the

sense that some rows and columns may be missed.

For a comprehensive survey of bicluster algorithms, the reader may refer to Madeira

& Oliveira (2004) and Tanay et al. (2005).

2.6 Bicluster enumeration

The bicluster enumeration is accomplished by a class of biclustering algorithms that

performs an exhaustive search for all maximal biclusters in a dataset, given a desired coher-

ence pattern.

In the case of binary datasets, there are plenty of algorithms for enumerating all

maximal biclusters. Some examples are Makino & Uno (MAKINO; UNO, 2004) and In-

Close2 (SIMON, 2009). The enumeration of all maximal biclusters in an integer or real-

valued dataset is a much more challenging scenario, but we already have some proposals,

such as RIn-Close (VERONEZE et al., 2014), and RAP (PANDEY et al., 2009). In subspace

clustering, where biclustering is called clustering by pattern similarity, some algorithms have

an enumerative approach to mine coherent values biclusters (VERONEZE et al., 2014). As

an example we have pCluster, proposed by Wang et al. (2002). Some shortcomings of this

algorithm pointed by Veroneze et al. (2014) are: a) it does not Ąnd all biclusters; b) it Ąnds

biclusters that do not meet the user-deĄned measure of similarity.

An extension of pCluster is MaPle, proposed by the same authors (PEI et al., 2003).

In order to return just maximal biclusters, for each newly found bicluster MaPle looks at

all previously found biclusters, increasing the computational cost of this algorithm. Veroneze

et al. (2014) also pointed some scenarios where MaPle is not able to properly enumerate all

biclusters of a dataset. In other words, pCluster and MaPle are not enumerative, although it

was suggested by the authors.

Zhao & Zaki (2005) proposed MicroCluster. The algorithm starts by building a multi-

graph, then mines the maximal biclusters from this multigraph. Veroneze et al. (2014) pointed

that MicroCluster still miss some biclusters and thus is not enumerative. This algorithm has

an agglomerative step that will be used in this work and will be explained in more details
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later. The Ąrst proposal able to achieve the enumeration of coherent values biclusters in a

numerical dataset is the work of Veroneze et al. (2014). They proposed RIn-Close, a family

of algorithms that perform a complete, correct and non-redundant enumeration of biclusters.

By complete we mean that it returns all maximal biclusters present on the dataset; by correct

we expect that it returns only biclusters that attend the informed coherence pattern; and by

non-redundant we mean that it does not return the same bicluster more than once.

The parametrization of RIn-Close is also very important, as it is directly correlated

with the number of enumerated biclusters, and runtime. The authors draw attention to the

fact that even in a small dataset, depending on the parametrization, the algorithm may return

a large amount of biclusters. For more details about the actual state of research on bicluster

enumeration of several different types, the reader may refer to Veroneze et al. (2014).

In this work, we propose a way of aggregating biclusters from a biclustering result.

It is important that the obtained biclusters present high overlapping, as it is the case when

enumerating biclusters in noisy datasets. For this reason, in this work we will focus on enu-

merative results. We will use the RIn-Close family, as the other options present drawbacks

pointed here and by Veroneze et al. (2014).
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3 Ensemble and Aggregation

Ensemble is a common practice in supervised learning, which consists of combining the

results from several components into a single result of better performance and more robust

to noise (SHARKEY, 1996). According to Lima (2004), Şit is about getting a result, for a

classiĄcation / regression problem, from several results of multiple alternative solutions for

the same problem, called components of the ensembleŤ 1. It is important for the components

to show a good individual performance, and also diverge in the error (PERRONE; COOPER,

1993). In other words, the components should fail in distinct aspects of the problem, and

hopefully for distinct samples of the dataset. In this way, where a component has a bad

performance, other ones can perform better.

Recently the ensemble setting started to be extended to unsupervised learning, such

as clustering. The problem of cluster ensemble is more difficult than classiĄcation ensemble,

as the labels of the clusters are hypothetical and we have a correspondence problem. Besides

that, the quantity and the shape of the clustering solutions may vary, according to the

assumptions of the algorithms, and to the view that each component has of the dataset

(STREHL; GHOSH, 2002). From the motivations of cluster ensemble (GHOSH; ACHARYA,

2011; STREHL; GHOSH, 2002; STREHL et al., 2000; WANG et al., 2011), we highlight:

Knowledge reuse: It is possible that some clustering solutions are already available from

the dataset. Thus, we can use that information to inĆuence a new solution. Also, dis-

carding the previous knowledge can be wasteful.

Distributed computing: Some restrictions may rule the data, such as content privacy,

geographic, technical, or even contractual restrictions. Thus, we can deal with each

component independently and use the results to reach a consensus.

Content privacy: Some data may be protected by privacy restrictions or may belong to

different companies or government organs. Move that data may not be possible. Thus,

again, we can obtain each component independently and use the results to reach a

consensus.

Robustness: Combining solutions from different algorithms or data views contributes to

get a more robust result, as it does a better exploration of the hypothesis space (Note:

1 “Trata-se da obtenção de uma saída, para um problema de classificação, ou de regressão, a partir das
saídas individuais propostas por múltiplas soluções alternativas para o mesmo problema, denominadas
componentes do ensemble”.
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by hypothesis space we mean the space of all models that can be proposed to represent

the data).

For a comprehensive survey of cluster ensemble, the reader may refer to Vega-Pons &

Ruiz-Shulcloper (2011). In this survey, the authors categorized cluster ensemble algorithms

based on their consensus function, i.e. the function that combines the distinct results.

3.1 Bicluster ensemble

Since ensemble methods may promote the improvement of the performance of super-

vised classiĄcation and clustering, it is reasonable to think that they can also be extended

to tackle the biclustering problem (HANCZAR; NADIF, 2011b). In fact, many approaches

for biclustering ensemble already proposed in the literature, are based on the methods for

clustering ensemble.

Usually the process of getting an ensemble is the same: initially, we generate some

biclustering solutions, looking for diversity; then we use a consensus function to combine the

previous solutions into a single one. A selection step may also be included before combining

the candidate components. We will brieĆy describe the status of research on this topic.

Gullo et al. (2012) proposed an ensemble method in which they used distinct bicluster-

ing algorithms to generate diverse solutions, and modeled the consensus as a multiobjective

optimization problem. They also proposed a method to choose the most promising solution

on the Pareto front. The authors commented on the need to tune the parameters of the

solutions to get a good result, as simpler approaches led to comparable results.

Hanczar & Nadif (2011b) used the bagging technique to get the components and

combined the results using a Şmetacluster of biclustersŤ, based on Strehl & Ghosh (2002).

Although promising, one needs to pay attention to the runtime of this proposal.

Huang et al. (2012) proposed a scalable biclustering ensemble method. They used the

ITCC (Information-Theoretic Co-Clustering) algorithm to generate the components. The au-

thors implemented the algorithm in a distributed way using the Hadoop MapReduce frame-

work. They based the consensus on evidence accumulation (FRED; JAIN, 2005), and ana-

lyzed their algorithm on: text mining datasets, a comments authorship discovery task, and

a Brazilian Sign Language (LIBRAS2) dataset.

Hanczar & Nadif (2011a) published promising results of biclustering ensemble on

microarray gene expression data, improving the biological signiĄcance of the Ąnal result.

2 Linguagem Brasileira de Sinais
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They represented the biclusters in a binary matrix and then used a triclustering (HANCZAR;

NADIF, 2012) technique to get the consensus. We will use this algorithm in this dissertation,

as it was already applied to gene expression data analysis.

Aggarwal & Gupta (2013) divided the ensemble in two steps. The Ąrst is a label corre-

spondence problem, where each bicluster receives a label and they search for a correspondence

between the biclusters. The second is the consensus via optimization. The cost function con-

siders the dissimilarity between objects and attributes. A drawback of this method is the

assumption that all objects / attributes must be part of a bicluster, which may not be true

and can lead to poor results (PIO et al., 2013).

One major point in ensemble is that we want to combine the results reinforcing the

biclusters that seem to be important for several components, and discarding the ones that

may come from noise. If an area (set of objects and attributes) of the dataset is covered

just by one bicluster while the other covered areas have much more biclusters, the ensemble

should discard this bicluster, as it may be considered of low importance.

3.2 Bicluster aggregation

A major drawback of enumeration, particularly in the context of noisy datasets, is the

existence of a large number of biclusters, due to fragmentation of a much smaller number of

original biclusters, exempliĄed in Fig. 5, and veriĄed in one of our experiments. The noise is

responsible for fragmenting the original biclusters into many with high overlapping, so that

the aggregation of these biclusters is recommended (LIU et al., 2004; ZHAO; ZAKI, 2005).

This fragmentation leads to a challenging scenario for the analysis of the results, that can

become impractical even in small datasets.

The aggregation aims at recovering the true bicluster from its fragmented counter-

parts. Although this combination seems similar to bicluster ensemble, the problem is different.

While on ensemble tasks we discard biclusters that seem unimportant and combine the ones

that contribute most for the solution, in bicluster aggregation we never discard any bicluster.

We will explain some methods of bicluster aggregation already published in the liter-

ature.

3.2.1 MicroCluster aggregation

After the enumeration, Zhao & Zaki (2005) added two steps to their algorithm. These

steps have the task of deleting or merging biclusters that are not covering an area much

different from other biclusters. Consider two biclusters 𝐵 = (𝐵𝑟, 𝐵𝑐) and 𝐶 = (𝐶𝑟, 𝐶𝑐). We







20 Chapter 3. Ensemble and Aggregation

similar to the problem we are dealing. These algorithms will be better explored in Chapter

6, where they will be compared with our contributions.

To evaluate our results we will need metrics for biclusters evaluation. This is the

subject of the next chapter.
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4 Evaluation of Bicluster Results

The comparison of clustering solutions is well established in the clustering literature,

which comprehends several studies on the analysis of the properties of similarity measures for

comparing partitions. However, we cannot directly use those metrics to compare biclusters,

since a bicluster comprehends a tuple of two sets (rows and columns) (HORTA; CAMPELLO,

2014). Besides that, in this work we have two additional restrictions:

Overlapping: as two biclusters may overlap, the metric must consider this scenario.

Quantity of biclusters: as we will verify in the experiments, the enumeration usually re-

turns a quantity of biclusters that are far from the real quantity of biclusters. In this

case, we need a metric that does not consider the quantity of biclusters, but evaluates

how the biclusters include the proper elements (rows and columns). On the other hand,

to evaluate the results from aggregation we need a metric that considers the quantity

of biclusters, as we expect to achieve the right amount.

4.1 External metrics

Some metrics for evaluating a result consider only the data itself, without using ex-

ternal information. This is the characteristic of an internal metric. External metrics compare

the results with a reference solution. In this work we will use only external metrics, except

for the Gene Ontology Enrichment Analysis. For an extensive comparison of external metrics

for biclustering solutions, the reader may refer to (HORTA; CAMPELLO, 2014).

4.1.1 Pairwise Precision, Recall and F-score

Precision, Recall and F-score are often used on information retrieval for measuring

binary classiĄcation (SALTON, 1971; RIGSBERGEN, 1979). If we take pairs of elements,

we can extend these metrics to evaluate clustering / biclustering solutions. For each pair of

points that share at least one bicluster in the overlapping biclustering results, these measures

try to estimate whether the prediction of this pair as being in the same bicluster was correct

with respect to the underlying true categories in the dataset (BANERJEE et al., 2005). It is

important to highlight that these metrics do not consider the quantity of biclusters.
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Lets deĄne

𝑝𝑎𝑖𝑟𝑠(𝐵̄) =
𝑞

⋃︁

𝑖=1

¶((𝑔1, 𝑠1), (𝑔2, 𝑠2)) ♣ 𝑔1, 𝑔2 ∈ 𝐵𝑟
𝑖 ; 𝑠1, 𝑠2 ∈ 𝐵𝑐

𝑖 ; (𝑔1, 𝑠1) ̸= (𝑔2, 𝑠2)♢, (4.1)

as a function that returns a set with all pairs of elements of the biclusters of a solution

𝐵̄ = ¶𝐵𝑖♢
𝑞
𝑖=1, where 𝑞 is the quantity of biclusters on the solution set.

Lets consider 𝐵̄ as the proposed solution and 𝐶 as the reference solution. We will

deĄne the metrics Pairwise Precision - or just Precision, Pairwise Recall - or just Recall, and

F-score as follows:

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝐵̄, 𝐶) =
♣𝑝𝑎𝑖𝑟𝑠(𝐵̄) ∩ 𝑝𝑎𝑖𝑟𝑠(𝐶)♣

♣𝑝𝑎𝑖𝑟𝑠(𝐵̄)♣
. (4.2)

𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒𝑅𝑒𝑐𝑎𝑙𝑙(𝐵̄, 𝐶) =
♣𝑝𝑎𝑖𝑟𝑠(𝐵̄) ∩ 𝑝𝑎𝑖𝑟𝑠(𝐶)♣

♣𝑝𝑎𝑖𝑟𝑠(𝐶)♣
. (4.3)

𝐹 ⊗ 𝑠𝑐𝑜𝑟𝑒(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛, 𝑟𝑒𝑐𝑎𝑙𝑙) =
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
. (4.4)

It is important to discuss the behavior of these metrics. We can interpret the Pairwise

Precision, or just Precision for simplicity, as a percentage of true indications in a solution.

For example, if 30% of the elements that are part of a bicluster in a solution are not part

of any biclusters on the reference solution, the Precision will be impacted. An extreme case

is if a solution returns only one bicluster with one element (pair object / attribute). If this

object in fact belongs to a bicluster on the reference solution, then the Precision will be 1.

This solution is very precise, as all elements that it said to be part of a bicluster in fact are.

We can interpret the Pairwise Recall, or just Recall for simplicity, as the percentage

of elements that are truly part of a bicluster and the solution included in a bicluster. For

example, if a solution includes in their biclusters only 70% of the elements that are part

of a bicluster in the reference solution, then the Recall will be affected. An extreme case

happens if a solution includes all the dataset into one bicluster. In this case the Recall is

1, the maximum value. This solution was able to include in a bicluster every element that

should be part of a bicluster.

Precision is the fraction of retrieved pairs that are relevant; while Recall is the fraction

of relevant pairs that are retrieved. The F-score is the harmonic mean of the Precision and

the Recall. For more details about these metrics, the reader may refer to Menestrina et al.

(2009).
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4.1.2 Clustering error

Horta & Campello (2014) made an extensive analysis of several external metrics for

biclustering evaluation. One of these metrics was Clustering Error (CE), that considers the

quantity of biclusters in its evaluation.

Supposing that 𝐵̄ represents the proposed solution; ♣𝐵̄♣ = 𝑘; and 𝐶 represents the

reference solution; ♣𝐶♣ = 𝑞. We will deĄne the CE metric as follows:

𝐶𝐸(𝐵̄, 𝐶) =
𝑑𝑚𝑎𝑥

♣𝑈 ♣
, (4.5)

where 𝑑𝑚𝑎𝑥 =
√︁𝑚𝑖𝑛{𝑘,𝑞}

𝑖=1 ♣𝐵𝑟 × 𝐵𝑐 ∩ 𝐶𝑟 × 𝐶𝑐♣, where 𝑖 represents a map between the biclusters

of the proposed solution with the reference solution having maximum overlap; and ♣𝑈 ♣ =

♣
⎷𝑘

𝑖=1 𝐵𝑟
𝑖 × 𝐵𝑐

𝑖 ∪
⎷𝑞

𝑖=1 𝐶𝑟
𝑖 × 𝐶𝑐

𝑖 ♣ is the number of elements in the area covered by biclusters

of both the reference and the proposed solution. This metric severely penalizes a solution

with more biclusters than the reference, thus not recommended for evaluating enumerative

results.

4.1.3 Difference in Coverage

We propose the difference in coverage, that measures what the reference biclustering

solution covers and the found biclustering solution does not cover, and vice versa. This

metric gives an intuitive idea of how two solutions cover distinct areas of the dataset. Let

∪𝐵̄ =
⎷

𝐵𝑟
𝑖 × 𝐵𝑐

𝑖 be the usual union set of a biclustering solution 𝐵̄. Let 𝐵̄ and 𝐶 be the

found and the reference biclustering solution, respectively. Then the difference in coverage is

given by:

𝑑𝑖𝑓_𝑐𝑜𝑣(𝐵̄, 𝐶) =
♣ ∪𝐵̄ ⊗ ∪𝐶 ♣ + ♣ ∪𝐶 ⊗ ∪𝐵̄ ♣

𝑚 × 𝑛
. (4.6)

Figure 7 shows an example. Consider the red biclusters as the reference solution, and

the black biclusters as the proposed solution. The difference in coverage is the gray area. We

will use this measure to verify how different an aggregated solution is from the enumeration.

This metric is very similar to the pairwise deĄnitions of Precision and Recall, but

gives a more direct and intuitive idea of how the proposed solution differs from the original

solution.
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ZAKI, 2005; HANCZAR; NADIF, 2011b). Another drawback is that this analysis discard

the information of the attributes, using just the set of genes in its calculation.

We will use the Gene Ontolgoy Enrichment Analysis (GOEA) to verify the relevance

of the results in a gene expression dataset. Table 2 shows an example of a result from GOEA.

In this table, the GO term column represents an ontology term that the set of genes is

related to in the annotations. The column p-val Şis the probability or chance of seeing at

least x number of genes out of the total n genes in the list annotated to a particular GO

term, given the proportion of genes in the whole genome that are annotated to that GO

Term. That is, the GO terms shared by the genes in the userŠs list are compared to the

background distribution of annotation. The closer the p-value is to zero, the more signiĄcant

the particular GO term associated with the group of genes is (i.e. the less likely the observed

annotation of the particular GO term to a group of genes occurs by chance)Ť3. The column

counts shows how many times the gene set was related to that speciĄc annotation versus how

many times the gene set was related to other annotations. The column deĄnition is a brief

description of the GO term.

We have interest in the p-val column, that is somehow an indication of the biological

relevance of the gene set to the related GO Term, and may indicate the importance of the

bicluster. If this value is less than 0.05, the bicluster may be considered enriched and we have

a good indication that a further analysis of the gene set should be conducted.

3 http://geneontology.org/page/go-enrichment-analysis
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Table 2 Ű Enrichment analysis of the Ąrst bicluster from the aggregation by overlapping with
rate of 70%.

GO Term p-val counts deĄnition

GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural
and functional unit of all organisms. [GOC:jl]...

GO:0044444 0.00000011 19 / 608 Any constituent part of the cytoplasm, all of the con-
tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000350 19 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00010607 16 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate Ąlaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate Ąlaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...
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5 Proposals for aggregation

In this chapter, we will introduce our proposals for aggregating fragmented biclusters.

We already brieĆy introduced the clustering with single linkage method in section 2.2, and

the problem of bicluster aggregation in section 3.2. These concepts will be used now.

5.1 Aggregation with single linkage

Our proposal receives as input a bicluster solution 𝑆, from enumeration or from a

result presenting high overlapping among its components. With this solution, we transform

each bicluster into a binary vector representation as follows: Given the dimensions of the

dataset A ∈ R
𝑛×𝑚, each bicluster will be a binary vector x of length 𝑛 + 𝑚. For a bicluster

𝐵 transformed into the binary vector x, the Ąrst 𝑛 positions represent the rows of the dataset

A and their values are given by the function 1𝑅 ⊃ ¶0, 1♢ deĄned as:

1𝑅(𝑖) :=

∏︁

⨄︁

⎩

1 𝑖𝑓 𝑖 ∈ 𝐵𝑟,

0 𝑖𝑓 𝑖 /∈ 𝐵𝑟,
(5.1)

where 𝑖 is the index of the vector x. In other words, if the bicluster contains the 𝑖th row,

x𝑖 = 1, otherwise, x𝑖 = 0. The last 𝑚 positions represent the columns of the dataset A and

their values are given by the function 1𝐶 ⊃ ¶0, 1♢ deĄned as:

1𝐶(𝑖) :=

∏︁

⨄︁

⎩

1 𝑖𝑓 𝑖 ∈ 𝐵𝑐,

0 𝑖𝑓 𝑖 /∈ 𝐵𝑐.
(5.2)

In other words, if the bicluster contains the 𝑖th column, x𝑛+𝑖 = 1, otherwise, x𝑛+𝑖 = 0.

After this transformation, we use the Hamming distance, deĄned on the Eq. 5.3, to

apply the single linkage clustering on the existing biclusters.

𝑑𝑖𝑠𝑡(x, y) =
𝑛+𝑚
∑︁

𝑖=1

♣𝑥𝑖 ⊗ 𝑦𝑖♣. (5.3)

Notice that the Hamming distance on this transformation will just count how many

rows and columns are different on the two bicluster. In this case, a non-maximal bicluster

may be distant from the bicluster that covers its maximal area, thus impacting the quality

of the results of this method of aggregation. So, it is important to ensure the maximality of

the biclusters in the solution that will be aggregated by this method.
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We still have the task of cutting the dendrogram. This is a well studied task in the

clustering community and some guides are given in (SOKAL; ROHLF, 1962; RAND, 1971;

LANGFELDER et al., 2008). In this work we will choose the cut visually. Basically, when

the height of a junction is more pronounced than the heights of the junctions below it, we

consider it as a good cut, since the distance of the clusters being joined is higher.

After choosing a cut on the dendrogram, we aggregate all biclusters that belong to a

junction using the function aggreg, deĄned as:

𝑎𝑔𝑔𝑟𝑒𝑔(𝐵, 𝐶) = (𝐵𝑟 ∪ 𝐶𝑟, 𝐵𝑐 ∪ 𝐶𝑐), (5.4)

that is simply the union of rows / columns of the biclusters. Note that the aggreg function is

associative, as demonstrated below:

𝑎𝑔𝑟𝑒𝑔(𝐵, 𝑎𝑔𝑟𝑒𝑔(𝐶, 𝐷)) = 𝑎𝑔𝑟𝑒𝑔(𝐵, (𝐶𝑟 ∪ 𝐷𝑟, 𝐶𝑐 ∪ 𝐷𝑐))

= (𝐵𝑟 ∪ (𝐶𝑟 ∪ 𝐷𝑟), 𝐵𝑐 ∪ (𝐶𝑐 ∪ 𝐷𝑐))

= ((𝐵𝑟 ∪ 𝐶𝑟) ∪ 𝐷𝑟, (𝐵𝑐 ∪ 𝐶𝑐) ∪ 𝐷𝑐)

⊕ 𝑎𝑔𝑟𝑒𝑔(𝑎𝑔𝑟𝑒𝑔(𝐵, 𝐶), 𝐷)

Moreover, we want to highlight that the direct union of rows / columns may include

elements that shouldnŠt be part of a bicluster. In Section 5.3 we will present a way to remove

rows / columns that are interpreted as outliers.

5.2 Aggregation by overlapping

Considering that the biclusters we want to aggregate have high overlapping, it is

natural to aggregate x biclusters with an overlapping rate above a deĄned threshold. This

proposal is based on the aggregation by pairs: while having two biclusters with an overlapping

rate higher than a pre-determined threshold 𝑡ℎ, we remove them from the set of biclusters,

and include the result of the function aggreg, deĄned on Eq. 5.4, taking these two biclusters

as the arguments.

Figure 8 shows the aggregation of two biclusters. If the gray area is higher than the

threshold, we aggregate the two biclusters.

Let 𝐵, 𝐶, 𝐷, and 𝐸 be biclusters. Note that 𝑜𝑣(𝐷, 𝐸) ⊙ 𝑜𝑣(𝐵, 𝐸) and 𝑜𝑣(𝐷, 𝐸) ⊙

𝑜𝑣(𝐶, 𝐸) for 𝐷 = 𝑎𝑔𝑔𝑟𝑒𝑔(𝐵, 𝐶). So, for all biclusters 𝐸 where 𝑜𝑣(𝐵, 𝐸) ⊙ 𝑡ℎ or 𝑜𝑣(𝐶, 𝐸) ⊙ 𝑡ℎ,

𝑜𝑣(𝐷, 𝐸) ⊙ 𝑡ℎ. For this reason, the order of the aggregation does not interfere on the Ąnal

result. It is also important to note that the new bicluster 𝐷 can have 𝑜𝑣(𝐷, 𝐸) ⊙ 𝑡ℎ, for

some bicluster 𝐸 where 𝑜𝑣(𝐵, 𝐸) < 𝑡ℎ and 𝑜𝑣(𝐶, 𝐸) < 𝑡ℎ.
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described in Section 5.1.

𝐵 =[0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0]

𝐶 =[0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0]

𝐷 =[0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0]

𝑟𝑜𝑤𝑠 𝑐𝑜𝑙𝑢𝑚𝑛𝑠

With the proper representation of the biclusters, we can run the hierarchical clustering

with single linkage using these vectors as objects.
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(b) Example of a P matrix.

Figure 11a shows the dendrogram of this process. As this example is too small, the

height of the whole dendrogram represents a very short distance between the groups, and we

can cut it on the top, having just one cluster. The Figure 11b shows the P matrix for outlier

removal, that in this example will not Ąlter any element. Notice that with one cluster, we

have recovered the original bicluster.

The next part of this dissertation will explain the experiments that we run to test our

proposals of bicluster aggregation.



34



Part III

Results and Discussion





37

6 Results and Discussion

This chapter describes the methods and implementations used in the experiments

performed along the development of the research. Except when explicitly denoted, the author

implemented all the programs and scripts mentioned in this text. We will also present the

results and discussion.

6.1 Datasets

In our experiments we employed three artiĄcial datasets: art1, art2, and art3 ; and

two real datasets: GDS2587 and Food. We designed the artiĄcial datasets to present different

scenarios with increasing difficulty. We will use them to verify the impacts of noise, and to

compare the performance of several aggregation methods and outlier removal of elements in

the aggregation. The two real datasets are from different backgrounds. The Ąrst real dataset

is from microarray gene expression data, as it is a well known application of biclustering

methods. The second real dataset is about nutritional information, and it was used to evaluate

a well-known biclustering algorithm called Plaid Models (LAZZERONI; OWEN, 2000). We

will describe the details of each dataset in what follows.

6.1.1 Art1

This dataset has 1000 objects and 15 attributes. Each entry is a random integer,

drawn from a discrete uniform distribution on the set {1, 2, ..., 100}. Then we inserted 5

bicluster of coherent values, arbitrarily positioned and without overlapping. For each biclus-

ter, the quantity of objects was randomly drawn from the set ¶50, . . . , 60♢, and the quantity

of attributes was randomly drawn from the set ¶4, 5, 6, 7♢. To insert a bicluster, we Ąxed

the value of the Ąrst attribute and obtained the values of the other attributes by adding a

constant value to the Ąrst column. This constant value was randomly drawn from the set

¶⊗10, ⊗9, . . . , ⊗1, 1, . . . , 9, 10♢.

6.1.2 Art2

We generated this dataset by the same process of art1. The only difference is that 4 of

5 biclusters have some overlapping. Two biclusters have approximately 36% of overlapping,

other two biclusters have approximately 11% and the last bicluster has no overlap with others.

These percentages of overlapping were decided to have a controlled difficulty of the task.
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6.1.3 Art3

We generated this dataset by the same process of art1. The difference now is that it has

15 biclusters, with different levels of overlapping and some biclusters overlap with more than

one peer. The overlapping setup in this dataset is: 3 pairs of biclusters with approximately

15% of overlapping, a pair with 30%, a pair with 34%, a pair with 39%, a pair with 48% and

a pair with 60%. Again, these percentages of overlapping were decided to have a controlled

difficulty of the task.

6.1.4 Microarray Gene Expression GDS2587

GDS2587 1 is a microarray gene expression dataset. Each entry in the matrix is the log2

ratio of the expression. The log2 ratio is deĄned as log2(𝑇/𝑅), where 𝑇 is the gene expression

level in the testing sample and 𝑅 is the gene expression level in the reference sample. The data

was collected from the organism E. coli. We removed every gene with missing data in any

sample, and the data was normalized by mean centralization, as common in gene expression

data analysis (PRELIć et al., 2006). After this pre-processing step, the dataset contains 2792

genes and 7 samples. In this dataset we aim to validate our contribution when devoted to

the analysis of microarray gene expression data, as it is considered a relevant application of

biclustering methods.

6.1.5 Food

Food2 is a dataset with 961 objects, which represent different foods, and 7 attributes,

which represent nutritional information (grams of fat, calories of food energy, grams of car-

bohydrate, grams of protein, milligrams of cholesterol, grams of saturated fat, and the weight

in gram of the food). As the values of each attribute are in different ranges, we used the same

pre-processing as (VERONEZE et al., 2014), rescaling the attributes to the range [0, 1000].

In this dataset our goal is to illustrate the usefulness of bicluster aggregation in a different

scenario and to verify if the aggregation leaves uncovered areas that the enumeration has

covered at Ąrst.

6.2 Experiment 1: The impact of noise

In this experiment we will only use the artiĄcial datasets. Our goal is to verify the

impact of noise in the enumeration of biclusters. To this end, we will add a Gaussian noise

1 http://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS2587
2 http://www.ntwrks.com/chart1a.htm
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with Û = 0 and à ∈ ¶0, 0.01, . . . , 1♢, to each dataset, and run the RIn-Close algorithm. This

procedure will be repeated for 30 times and all reported values will be the average of these

executions. We set the RIn-Close parameters as follows:

Type of bicluster: as we know the type of the biclusters on the datasets, we set RIn-Close

to mine coherent values biclusters.

minRow: as we know the minimum possible size of the biclusters, we set minRow to 4.

minCol: as we know the minimum possible size of the biclusters, we set minCol to 50.

𝜖: We will test a sequence of crescent values for 𝜖 due to its importance for a good result. If

𝜖 is too small, we may miss important biclusters expressing more internal variance. If

𝜖 is too high, the biclusters may include unexpected objects and attributes.

Figure 11 shows the evolution of the quantity of enumerated biclusters, by the variance

of noise, for each value of 𝜖, for all artiĄcial datasets.

In all datasets, for each value of 𝜖, the behavior is the same: as the noise increases the

quantity of enumerated biclusters eventually starts to increase. In Figures 11a and 11b, we

know that the real quantity of biclusters is 5, but when the noise increases, the enumerated

quantity reaches approximately 800 biclusters, depending on the value of 𝜖. Notice that the

biclusters are distinct and no bicluster is contained in another one. In Figure 11c, we can see

that the quantity of biclusters reaches high values too. At some level of noise, the number of

biclusters starts to decrease to a point that the algorithm is not able to Ąnd any bicluster,

as there is no way to satisfy the coherence threshold. But, as we can see in Figure 11a, the

added noise was not enough to reach this point for dataset art1, which is the easiest one.

In Figure 12, we can see the quality of the enumeration without considering the

quantity of biclusters. Due to the effect of noise on the enumeration, if we use a metric that

considers the quantity of biclusters, we will not be able to verify the quality of the solution.

In this case, for this experiment we will report only the metrics Precision, Recall and F-score.

As we can see in Figure 12b, the noise has almost no interference in the Recall. It

means that this dataset has biclusters very well deĄned. Even with high degrees of noise they

are not missed. On the other hand, when the variance of the noise is too low, Figure 12a

shows that the enumerated biclusters contains more elements than expected. It is happening

because the parameter 𝜖 is high, allowing some elements to be part of the biclusters, even

without being part of the original solution. As the noise increases, less of these initial elements

are going to satisfy the 𝜖 restriction to be included in some bicluster. In this dataset, the
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Figure 11 Ű Quantity of biclusters by the variance of the Gaussian noise in the artiĄcial
datasets. Each curve is parameterized by 𝜖.

effect of the noise was not so severe on the Recall, given that it only started to decrease when

the variance of the noise was close to 1.

In dataset art2, the effects of the noise can be better observed. Figure 12d shows

that the noise starts to affect the solutions very early. When 𝜖 = 2, the Recall starts to

decrease very soon, when à ≡ 0.3. However, for more relaxed values of 𝜖, we can still see the

decrease on the Recall. Being the most difficult, dataset art3 is the most affected by noise.

Independently of the value of 𝜖, the RIn-Close can not Ąnd any bicluster after some levels of

variance in the noise. For example, when 𝜖 = 2, after à ≡ 0.4 the Precision gets undeĄned.

It happens because the denominator of Eq. 4.2 is not deĄned when the quantity of biclusters

is zero. In Figure 12f, we can see that the decline of the Recall starts when à ≡ 0.3 for 𝜖 = 2.

In this experiment we may conclude that the noise fragments the true biclusters into

many with high overlapping. This was observed in Liu et al. (2004), in Zhao & Zaki (2005),
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and in Gao & Akoglu (2014). Intuitively, it seems to be advantageous to explore this high

overlapping aiming at aggregating the enumerated biclusters, getting a result closer to the

ground truth. Now we will verify the effects of the aggregation on the artiĄcial datasets.
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Figure 12 Ű Precision and Recall for the solutions of RIn-Close, by the variance of the Gaus-
sian noise in the artiĄcial datasets. Each curve is parameterized by 𝜖.
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6.3 Experiment 2: The impact of aggregation

As we could see on the previous experiment, the enumeration is affected by the noise.

Not only the quantity of biclusters increases signiĄcantly, but also the quality of the solution

decreases.

In this experiment, our goal is to verify the impact of aggregation on the previous

results of RIn-Close. We will choose the results with the 𝜖 that led to a initial Precision closest

to 0.85. That gives us: art1 with 𝜖 = 6, art2 with 𝜖 = 4 and art3 with 𝜖 = 3. This value was

chosen because if the Precision is too low, it means that the 𝜖 value is allowing too many

undesired objects or attributes in the enumerated biclusters. In this case, the aggregation

may not improve the quality of the Ąnal results because their input is not of good quality. If

the Precision is too high, we will only be able to see improvements in the reduced quantity

of biclusters, but the aggregation may increase the Precision too.

This value was chosen because if the Precision is too low, the input of the aggre-

gation may be of poor quality. If the Precision is too high, we may not be able to see the

improvements on the quality on the Ąnal aggregated results.

We will consider the following algorithms (explained in Sections 3.1, 3.2.1, 5.1 and

5.2) here:

Triclustering We will set 𝑘 to the true number of biclusters. The authors supplied the code

for this algorithm.

MicroCluster To parameterize this algorithm, we will run a grid search with the values

in the set 0.15, 0.1, 0.05 for each of the two parameters, getting 9 results for each run.

Also, as the aggregation step of the algorithm is composed of two steps, merging and

deleting, we will run each experiment twice: with the merging step Ąrst (MD) and with

the deleting step Ąrst (DM). Unless we want to draw attention to some particular fact,

we will report only the best result. The authors supplied the code for this algorithm.

Single linkage We will cut the dendrogram with the proper quantity of biclusters: for art1

and art2, 5 biclusters; for art3, 15 biclusters. Again, there are several ways to choose

the cut, please see Section 5.1.

By overlapping We will test several values for the rate of overlapping.

After getting the results for all executions of the listed algorithms, we will choose the best

result from each one and compare them using the CE metric. We will also run a two-sided
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Wilcoxon Rank Sum Test at 5% signiĄcance level on the mean with the CE metric, to verify

if the results have signiĄcant difference between each other.

As we have a large quantity of results for this experiment, we will organize them by

dataset.

6.3.1 Results on art1
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Figure 13 Ű Results produced by RIn-Close on art1. The scale on the right refers to the
quantity of biclusters on the solution.

Figure 13 shows the results of RIn-Close when 𝜖 = 6.0. This is the result that we will

try to improve. We expect that the aggregation increases the Precision without decreasing

the Recall, while reaching the true number of biclusters.

Figure 14 shows the quality of the results of the aggregation with single linkage.

Despite the decrease in Precision, this is a good result because now we have only 5 biclusters.

So, the aggregation with single linkage was able to reduce the quantity of biclusters to the

right number, at the cost of the Precision. We may also pay attention to the fact that the

Recall remained in the maximum value until à ≡ 0.9. It means that the biclusters of the

aggregated solution are including more objects (attributes) than expected, which indicates

decrease in Precision; but are not missing any elements, thus keeping the Recall at high

values. In other words, every element that should be in a bicluster, in fact are, but elements

that should not be included, are also part of the biclusters. So, this method of aggregation

was not able to reach all of our goals, as the Precision is decreasing. However, the results

suggested that we can add a step of outlier removal to try to improve the Precision of the

Ąnal solution.
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Figure 14 Ű Aggregation with single linkage using Hamming distance on art1.

In Figure 15 we can see the results from the aggregation by overlapping with several

rates. The rates 60%, 65%, and 70% led to the same results and we will report just the latter

result. We can see that even when the rate of overlapping was 95%, the aggregation reached

the correct quantity of biclusters. But again the Precision decreased a little and the Recall

remained high. This is the same scenario of the aggregation with single linkage and we can

draw the same conclusions.

Figure 16 shows the results from the aggregation of MicroCluster algorithm when

Ö = Ò. The other results were omitted because they were not so different from the ones we

are showing. We start by focusing on the stability of the results. For example, comparing

Figures 16a and 16b, we can see that the latter showed more stability on the quantity of

biclusters, on the Precision and on the Recall. The difference on the Precision and Recall

metrics were not signiĄcant when changing the order of execution. But, as the quantity of

biclusters when the deleting step was executed Ąrst is closest to the real one, from now on,

for this dataset we will only consider the result when Ö = 0.15, Ò = 0.15 in that order of

operation. This aggregation decreased the Recall and increased the Precision, when compared

to the results of the enumeration. Different from the results from the aggregation with single

linkage or by overlapping, the results of MicroCluster are not including all objects (attributes)

that should be part of a bicluster.

In Figure 17 we see the Precision and Recall of the solution obtained by the triclus-

tering algorithm. We must remember that the parameter k is set to 5, which is the correct

number of biclusters in the dataset. We can see that the Precision is very high, indepen-

dently of the variance of noise, but the Recall decreased a lot. This fact indicates that the
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(b) 75%
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(c) 80%
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(d) 85%
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(e) 90%
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(f) 95%

Figure 15 Ű Results from the aggregation by overlapping on art1. The scale on the right refers
to the quantity of biclusters on the solution.
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(a) Merging Ąrst, Ö = 0.15, and Ò =
0.15.
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(b) Deleting Ąrst, Ö = 0.15, and Ò =
0.15.
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(c) Merging Ąrst, Ö = 0.1, and Ò = 0.1.
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(d) Deleting Ąrst, Ö = 0.1, and Ò = 0.1.
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(e) Merging Ąrst, Ö = 0.05, and Ò =
0.05.
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(f) Deleting Ąrst, Ö = 0.05, and Ò =
0.05.

Figure 16 Ű Results from the aggregation using MicroCluster on art1. The scale on the right
refers to the quantity of biclusters on the solution.
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Figure 17 Ű Aggregation with the triclustering algorithm on art1.

biclusters of this solution only contain elements that should be in a bicluster. However, it is

not including all objects (attributes) that it should, thus decreasing the Recall.

We will then compare the best results from each agglomeration, using the CE metric,

and verify if the results have signiĄcant difference between each other. They are: a) single

linkage; b) aggregation by overlapping with 70%; c) MicroCluster with Ö = Ò = 0.15, deleting

operation Ąrst; and d) triclustering.
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Figure 18 Ű CE of the best results of aggregation on art1.

Figure 18 shows the CE metric for the best solutions of each algorithm. We can see

that the aggregation with single linkage and by overlapping had the best results on this

metric, and they exhibit a similar pattern.
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Figure 19 Ű Two-sided Wilcoxon Rank Sum Test at 5% signiĄcance level on CE metric, on
art1.

Fig. 19 shows the statistical signiĄcance of the pairwise difference between the solu-

tions, using a Two-sided Wilcoxon Rank Sum Test. When a curve is below the 0.05 threshold,

it means that the two compared solutions do differ signiĄcantly. We can see that for all levels

of noise, just the solutions of single linkage and aggregation by overlapping did not show

statistical difference. For most levels of noise, the solutions of Triclustering and MicroCluster

also did not exhibit a signiĄcant difference.
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6.3.2 Results on art2
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Figure 20 Ű Results produced by RIn-Close on art2. The scale on the right refers to the
quantity of biclusters on the solution.

In Figure 20, we can see the results of RIn-Close when 𝜖 = 4. In this dataset, the

impact of noise starts earlier than on dataset art1. We can see that there is a high decrease

on the Recall, simultaneously with an increase on the quantity of biclusters, when à ≡ 0.55.

This may seem a little contradictory, as we have more biclusters, with a penalized Recall.
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Figure 21 Ű Aggregation with single linkage using Hamming distance on art2.

Figure 21 shows the quality of the results of the aggregation with single linkage.

Despite the impacts of noise happening earlier in this dataset, the scenario here is pretty

much the same of art1 : Precision decreases a little and Recall remains high. It indicates
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that some intruder elements may be Ąltered from the biclusters of this solution. This will be

veriĄed on experiment 3.

In Figure 22, we can see the results of aggregation by overlapping. When the rate

of overlapping was 60% and 65% the results were identical, and very similar to these from

70%. So, we will show only the results when the rate of overlapping is greater or equal to

70%. But again, the scenario is very similar to the one obtained with single linkage. We can

see that the aggregation was able to get the true number of biclusters when the noise was

not so high, independently of the rate of aggregation. This also indicates the high degree of

overlapping of the enumerated biclusters, even when the rate was 95% the aggregation was

able to get the correct quantity. In Figures 22c, 22d, 22e, and 22f, we can see that when

à ≡ 0.6 the quantity of biclusters starts to increase. If we compare this result with the one

presented in Figure 21, we can see that we have practically the same Precision and Recall,

but the aggregation with single linkage has the correct number of biclusters for all variance

of the noise, which is an advantage.

Figure 23 shows the results after the aggregation with MicroCluster. In this dataset,

the MicroCluster aggregation got better results when compared to the ones obtained in art1.

In all conĄgurations, we can see that the Precision is higher than the one of RIn-Close, but

the Recall decreased a little. Considering the quantity of biclusters, we can see that when the

deleting operation came Ąrst, the aggregation reached a quantity closer to the true number

of biclusters.

Figure 24 shows the quality of the results of the aggregation using the triclustering

algorithm. Again, the Precision is high and the Recall decreased considerably, what indicates

that the biclusters of this solution are very conservative with their elements. In other words,

the objects (attributes) that are in any bicluster of this solution should really be part of that

bicluster. But this result is too conservative, not including a good percentage of the elements

that should be part of a bicluster.

Now we will compare the best results from each agglomeration, using the CE metric

and verify if the results have a signiĄcant difference among each other. They are: a) single

linkage; b) aggregation by overlapping with 75%; c) MicroCluster with Ö = Ò = 0.15, deleting

operation Ąrst; and d) triclustering.

Figure 25 shows the CE metric for the best solutions of each algorithm. We can see

that the aggregation with single linkage and by overlapping had the best results on this

metric, and they exhibit a similar pattern again.

Fig. 26 shows the signiĄcance pairwise difference of the results on art2. We can see

that for most levels of noise, only the comparisons between aggregation by overlapping versus
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(c) 80%
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(f) 95%

Figure 22 Ű Results from the aggregation by overlapping on art2. The scale on the right refers
to the quantity of biclusters on the solution.
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(a) Merging Ąrst, Ö = 0.15, and Ò =
0.15.
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(b) Deleting Ąrst, Ö = 0.15, and Ò =
0.15.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

ε =4

 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

Precision

Recall

F−score

Qtd

(c) Merging Ąrst, Ö = 0.1, and Ò = 0.1.
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(d) Deleting Ąrst, Ö = 0.1, and Ò = 0.1.
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(e) Merging Ąrst, Ö = 0.05, and Ò =
0.05.
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(f) Deleting Ąrst, Ö = 0.05, and Ò =
0.05.

Figure 23 Ű Results from the aggregation using MicroCluster on art2. The scale on the right
refers to the quantity of biclusters on the solution.
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Figure 24 Ű Aggregation with the triclustering algorithm on art2.
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Figure 25 Ű CE of the best results of aggregation on art2.
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Figure 26 Ű Two-sided Wilcoxon Rank Sum Test at 5% signiĄcance level on CE metric, on
art2.

single linkage, and MicroCluster versus Triclustering, exhibit signiĄcant difference.
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6.3.3 Results on art3
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Figure 27 Ű Results produced by RIn-Close on art3. The scale on the right refers to the
quantity of biclusters on the solution.

Figure 27 shows the results of RIn-Close when 𝜖 = 3. The effects of the noise here

are more severe than on the other datasets. When à ≡ 0.4, the Precision already starts to

decrease. This is the result that we will try to improve and we must remember that this is

the most challenging among the artiĄcial datasets.
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Figure 28 Ű Aggregation with single linkage using Hamming distance on art3.

Figure 28 is showing the quality of the aggregation with single linkage. We can see a

little decrease on the Precision but the Recall still high at the beginning. The scenario seems
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to be very similar to the one provided by the other datasets, and if we consider that this

dataset is the most challenging, we can realize the positive effect promoted by aggregation.

Figure 29 shows the results obtained on the aggregation by overlapping. On the other

datasets, we reported only the results when the rate of aggregation was greater than or equal

to 70%. Thus we will follow the same procedure for this dataset. When the rate of overlapping

was less than or equal to 90%, and the noise was not high enough (à < 0.3), the aggregation

returned on average 13 biclusters, that is less than the true number of biclusters. However, as

this dataset has a pair of biclusters that have 60% of overlapping, probably these biclusters

are being merged on the Ąnal solution. In Figure 29f, we can see the details of the solution

when the rate of overlapping was 95%. We can see that the Precision of this result is a little

higher than the one for the other rates. But up to à ≡ 0.3, the mean quantity of bicluster is

17, which is higher than the true number of biclusters. We can compare the Precision of these

results with the Precision of the aggregation with single linkage, presented in Figure 28. The

latter has the proper number of biclusters in its solution and has very similar Precision and

Recall when compared to the former.

Figure 30 shows the results when the aggregation was performed by the MicroCluster

algorithm. We can see that when the deleting operation was executed Ąrst, the Ąnal number

of biclusters were more stable and the Precision was a little higher. We can also see that

these results did not show a visual difference in both Precision and Recall.

As presented in Figure 31, the aggregation with the triclustering algorithm could not

get a good result when compared to the alternatives previously exposed, even with 𝑘 being

set to the true number of biclusters in the dataset.

We will then compare the best results from each agglomeration using the CE metric,

and verify if the results have signiĄcant difference among each other. They are: a) single

linkage; b) aggregation by overlapping with 75%; c) MicroCluster with Ö = Ò = 0.15, deleting

operation Ąrst; and d) triclustering.

Figure 32 shows the CE metric for the best solutions of each algorithm. We can

see that, except for triclustering, all the other results are similar, and the aggregation by

overlapping seems to be the most stable of the comparison.

Fig. 33 shows the signiĄcance comparison for each algorithm. As we can see, most of

the results did not show signiĄcant difference between them, except when the level of noise

assumed high values. But in this case, where the noise is high and the quality of the solutions

is poor, this indication of difference is not relevant.

In this experiment, we could see that the aggregation in fact was able to get much

less biclusters with a comparable or better quality. We could notice that our proposals can
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(f) 95%

Figure 29 Ű Results from the aggregation by overlapping on art3. The scale on the right refers
to the quantity of biclusters on the solution.
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(a) Merging Ąrst, Ö = 0.15, and Ò =
0.15.
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(b) Deleting Ąrst, Ö = 0.15, and Ò =
0.15.
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(c) Merging Ąrst, Ö = 0.1, and Ò = 0.1.
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(d) Deleting Ąrst, Ö = 0.1, and Ò = 0.1.
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(e) Merging Ąrst, Ö = 0.05, and Ò =
0.05.
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(f) Deleting Ąrst, Ö = 0.05, and Ò =
0.05.

Figure 30 Ű Results from the aggregation using MicroCluster on art3. The scale on the right
refers to the quantity of biclusters on the solution.
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Figure 31 Ű Aggregation with the triclustering algorithm on art3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σ

ε =3

 

 

MicroCluster

Single Linkage

By Overlapping

Triclustering

Figure 32 Ű CE of the best results of aggregation on art3.
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Figure 33 Ű Two-sided Wilcoxon Rank Sum Test at 5% signiĄcance level on CE metric, on
art3.

get better results if we add a step of outlier removal on the Ąnal results. This will be tested

on the next experiment.
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6.4 Experiment 3: The impact of outlier removal on aggregation

In the previous experiment, both the aggregation with single linkage and the aggre-

gation by overlapping presented a high rate of Recall and the Precision was not as high. It

indicates that the biclusters were bigger than they should be. In other words, the aggregation

was forcing the biclusters to include more objects and / or attributes, because its unique op-

eration was the union of objects and attributes. The quality of the result could be improved

if these elements, that should not be included in any bicluster, were removed in the Ąnal

result.

This third experiment intends to verify the impact of outlier removal after the aggre-

gation of the enumerated results considering our proposals. The method of outlier removal

was explained in Section 5.3. After getting the results of the outlier removal step on our

proposals, we will again compare them with the results from the other algorithms of the

experiment 2, using the CE metric. We will also run a two-sided Wilcoxon Rank Sum Test

at 5% signiĄcance level on the mean of the CE metric, to verify if the results have signiĄcant

difference among each other. We will again group the results by dataset.

6.4.1 Results on art1
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(b) After outlier removal

Figure 34 Ű Aggregation with single linkage using Hamming distance on art1, before and
after outlier removal and as a function of the noise standard deviation.

Figure 34b shows the quality of the aggregation with single linkage after outlier re-

moval, while Figure 34a is a repetition of Figure 14, for the ease of the comparison. We can
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see that for this dataset, the result is close to the maximum achievable performance. The

noise only starts to impact when à ⊙ 0.8. The method of outlier removal was able to remove

only the objects and / or attributes that should in fact be removed from the biclusters.

Figure 35 shows the quality of the aggregation by overlapping after outlier removal.

We can see that, regardless of the chosen rate of overlapping, all results were again close to

the maximum achievable performance.

We will then compare the best results from each aggregation procedure using the CE

metric, and verify if the results have signiĄcant pairwise difference. As for this dataset our

proposals exhibit high performance, we will choose the same results that we have chosen on

the previous experiment, except that now we will use the results after outlier removal. The

comparison will include the following contenders: a) single linkage after outlier removal;

b) aggregation by overlapping with rate of 70% after outlier removal; c) MicroCluster with

Ö = Ò = 0.15, deleting operation Ąrst; and d) triclustering.

In Figure 36 we can see that our proposals exhibit a performance even better than

that produced without outlier removal, being both again very similar among each other. In

fact, they did not show statistical difference in any level of noise, as we can see on Fig. 37.
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Figure 35 Ű Results from the aggregation by overlapping on art1, after outlier removal, and
as a function of the noise standard deviation. The scale on the right refers to the
quantity of biclusters on the solution.
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Figure 36 Ű CE of the best results of aggregation on art1.
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Figure 37 Ű Two-sided Wilcoxon Rank Sum Test at 5% signiĄcance level on CE metric, on
art1.
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6.4.2 Results on art2

In the previous subsection, we could realize that the outlier removal was very efficient

for dataset art1. For dataset art2 we will follow the same protocol.
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Figure 38 Ű Aggregation with single linkage using Hamming distance on art2, before and
after outlier removal, and as a function of the noise standard deviation.

Figure 38a shows the quality of the aggregation with single linkage after outlier re-

moval, while Figure 38b is a repetition of Figure 21, for the ease of the comparison. We can

see that the step of removing outliers was able to increase the Precision of the result without

decreasing the Recall. It makes this result better and concordant with our goal: increasing

the Precision without decreasing the Recall, with the proper number of biclusters.

The Precision is also close to 1, but not so close to the maximum achievable perfor-

mance as it was for art1. We interpreted this result as an indication that the outlier removal

could be more aggressive, removing more elements than it is currently removing. It would

increase the Precision even more. So we modiĄed the outlier removal method as follows:

instead of marking for removal the elements that were below the mean minus on standard

deviation, we supplied a percentile and all elements below that percentile should be marked

for removal. Assuming a normal distribution, the mean minus one standard deviation is

equivalent to ⊗1 z-score, that in percentile is approximately to 15.8655. Figure 39 shows the

quality of the aggregation with single linkage and several values for outlier removal based

on percentile. Comparing the Precision (Figure 39a) and Recall (Figure 39b), we can see a

trade-off. For example, when the value of the percentile was 6 we got the worst Precision and

the best Recall. It indicates that when the value of the percentile is lower than the equivalent
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(b) Recall

Figure 39 Ű Aggregation with single linkage and outlier removal, and as a function of the
noise standard deviation. Each curve is parameterized by the percentile.

to one standard deviation (thus reducing the action of outlier removal), we are removing

fewer elements, decreasing the Precision. On the other hand, when the value of the percentile

was 24 we got the best Precision and the worst Recall. It indicates that when the value of

the percentile is higher than the equivalent to one standard deviation (thus increasing the

action of outlier removal), we are removing more elements, including the ones that should be

removed (increasing the Precision) and the ones that should not (decreasing the Recall). We

can also see in Figure 39a that the Precision increases a little more between the values 12

and 15. The decrease on Recall for the same values is not so great. This may indicate that

15 is a good choice for the percentile, which is very close to the equivalent to one standard

deviation, that we were using before.

Figure 40 presents the results of the aggregation by overlapping after outlier removal.

We can see that the different rates did not change too much the number of Ąnal biclusters,

and did not lead to signiĄcant differences between the rates of Precision and Recall. However,

when the rate was 70% (Figure 40a) the quantity of biclusters were a little more stable than

for the other rates. We were also able to improve the Precision without decreasing the Recall,

reaching our goal with the aggregation of this dataset.

We will then compare the best results from each aggregation procedure using the

CE metric, and verify if the results have a signiĄcant pairwise difference. We will choose the

same results that we have chosen on the previous experiment, except that now we will use the

results after outlier removal. The comparison will include the following contenders: a) single

linkage after outlier removal; b) aggregation by overlapping with rate of 75% after outlier
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Figure 40 Ű Results from the aggregation by overlapping on art2, after outlier removal, and
as a function of the noise standard deviation. The scale on the right refers to the
quantity of biclusters on the solution.
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removal; c) MicroCluster with Ö = Ò = 0.15, deleting operation Ąrst; and d) triclustering.
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Figure 41 Ű CE of the best results of aggregation on art2.

Figure 41 shows behavior of the CE metric for the best solutions of each algorithm.

We can see that the aggregation with single linkage and by overlapping produced the best

results on this metric, and they seem very related again.
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Figure 42 Ű Two-sided Wilcoxon Rank Sum Test at 5% signiĄcance level on CE metric, on
art2.

Aggregation by single linkage and by overlapping did not show statistical difference

for most levels of noise, as we can see on Table 42. As the results from MicroCluster and
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triclustering are the same of the experiment 2, they also did not show signiĄcant pairwise

difference for most levels of noise.

6.4.3 Results on art3
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Figure 43 Ű Aggregation with single linkage using Hamming distance on art3, before and
after outlier removal, and as a function of the noise standard deviation.

Figure 43a shows the quality of the aggregation with single linkage after outlier re-

moval, while Figure 43b is a repetition of Figure 28, for the ease of the comparison. We can

see that the Recall decreased a little and the Precision did not increase. This indicates that

the outlier removal step in this solution did not remove elements that should be removed

(Precision did not increase), but instead it removed a few elements that should not be re-

moved (decrease on Recall). So, for this dataset the outlier removal step did not improve the

quality of the solution, promoting instead a small decrease in the Recall.

Figure 44 presents results of the aggregation by overlapping, after the outlier removal

step. When comparing with Figure 29, we can see that the Precision increased a little, and

the Recall decreased.

For this dataset, the step of outlier removal was not able to improve the Ąnal result.

We believe that this is due to the design of the dataset, where a single bicluster overlaps more

than 60% of its area with another two. However, this step is still important, as it has the

potential to remove objects and / or attributes that should not be included on the solution,
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Figure 44 Ű Results from the aggregation by overlapping on art3, after outlier removal, and
as a function of the noise standard deviation. The scale on the right refers to the
quantity of biclusters on the solution.
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and when the method was not able to do so, it did not impair Precision or Recall in a relevant

way.

We will then compare the best results from each aggregation procedure, using the

CE metric, and verify if the results have signiĄcant pairwise difference. They are: a) single

linkage after outlier removal; b) aggregation by overlapping with rate of 75% after outlier

removal; c) MicroCluster with Ö = Ò = 0.15, deleting operation Ąrst; and d) triclustering.
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Figure 45 Ű CE of the best results of aggregation on art3.

Figure 45 shows the CE metric for the best solutions of each algorithm. We can see

that, except for triclustering, all the other results showed similar results, with MicroCluster

having the highest CE when à ⊘ 0.4, but aggregation with single linkage and by overlapping

having the highest CE when 0.4 < à ⊘ 0.55.

Fig. 46 shows the pairwise signiĄcance comparison. As we can see, except from the

comparisons between Triclustering versus Single Linkage; and Triclustering versus aggrega-

tion by overlapping; none of the results showed a signiĄcant pairwise difference pattern for

most of the levels of noise. In other words, the difference is not stable. As all methods are

somehow based on the overlapping between the biclusters, this similarity reinforces the belief

that this dataset is the most challenging among the artiĄcial datasets considered here.

The Ąrst three experiments already presented were useful to show that the bicluster

aggregation not just reduces the quantity of biclusters, but may also increase the quality of

the Ąnal result. Now we will verify the beneĄts of the aggregation on real datasets.
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Figure 46 Ű Two-sided Wilcoxon Rank Sum Test at 5% signiĄcance level on CE metric, on
art3.

6.5 Experiment 4: Application to gene expression data

This experiment compares the solutions of the aggregation algorithms on the GDS2587

dataset, which comes from gene expression data. We will run the RIn-Close algorithm with

several values for 𝜖 and compare the Ąnal solutions of each aggregation algorithm.

In this experiment we will run the RIn-Close to enumerate the biclusters of the

GDS2587 dataset. After that, we will compare the agglomerative algorithms. The parametriza-

tion of the agglomeration algorithms will follow the same methods of the Experiment 2, and

for the triclustering algorithm, we will use the results from the aggregation by overlapping to

choose 𝑘. We will compare the results with the gene ontology enrichment analysis. Moreover,

we will describe some of the enriched biclusters. As explained in Section 4.2.1, this analysis

is common for gene expression data.

Table 3 Ű Quantity of biclusters enumerated with the RIn-Close algorithm on the GDS2587
dataset.

𝜖 Qtd. of biclusters

2.8 23
2.9 2825
3.0 19649

Table 3 shows the quantity of biclusters enumerated for 3 values of 𝜖. When 𝜖 < 2.8, no

biclusters were found, and due to memory limits, we decided that the quantity of biclusters
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when 𝜖 = 3 is sufficiently large for aggregation.
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Figure 47 Ű Dendrograms of the aggregation with single linkage, on the GDS2587 dataset.

Figure 47 shows the dendrograms of the aggregation with single linkage, for each value

of 𝜖. We can see in Figure 47a that the cut is very straightforward, having 2 very distinct

groups. In Figure 47b the cut is also easy, having 4 clear groups of objects. In Figure 47c, we

may cut the dendrogram in 5 groups.

Table 4 Ű Quantity of biclusters for the aggregation by overlapping on the GDS dataset.

Rate Qtd (𝜖 = 2.8) Qtd (𝜖 = 2.9) Qtd (𝜖 = 3)

60 % 2 4 5
65 % 2 4 5
70 % 2 4 5
75 % 2 4 5
80 % 2 4 5
85 % 2 4 8
90 % 2 5 10
95 % 2 9 22

Table 4 shows the quantity of biclusters after the aggregation by overlapping. The

results here seem to agree with the solution obtained by the aggregation with single linkage.

When 𝜖 = 2.8, all rates led to 2 biclusters. When 𝜖 = 2.9 the majority of the rates indicated

4 biclusters, the same reasonable cut of the dendrogram. And when 𝜖 = 3, the majority

of the rates indicated 5 biclusters, that also agrees with the cut of the dendrogram of the

aggregation with single linkage. As both solutions are based on the level of overlapping, it

seems intuitive that they would reach similar solutions.

Table 5 shows the quantity of biclusters that had objects and / or attributes removed

after the outlier removal step. We can see that, when 𝜖 = 3, the aggregation did not include

outliers when the rate was less then or equal to 80%, which indicates that the fragmentation of

the biclusters in these settings did not include outliers, only fragmenting inside the bicluster.
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Table 5 Ű Number of biclusters that changed after the outlier removal step.

Rate Qtd (𝜖 = 2.8) Qtd (𝜖 = 2.9) Qtd (𝜖 = 3)

60 % 1 of 2 1 of 4 0 of 5
65 % 1 of 2 1 of 4 0 of 5
70 % 1 of 2 1 of 4 0 of 5
75 % 1 of 2 1 of 4 0 of 5
80 % 1 of 2 1 of 4 0 of 5
85 % 1 of 2 1 of 4 2 of 8
90 % 1 of 2 2 of 5 2 of 10
95 % 1 of 2 4 of 9 3 of 22

We also compared the coverage of each rate of the aggregation by overlapping, and

they were always the same, independently of the quantity of Ąnal biclusters. For example,

when 𝜖 = 2.9, both the rates 60% and 95% covered the same area of the dataset.

Table 6 Ű Quantity of biclusters for the aggregation with MicroCluster on the GDS dataset.

Order Ö Ò Qtd 𝜖 = 2.8 Qtd 𝜖 = 2.9 Qtd 𝜖 = 3

DM 0.15 0.15 2 3 7
DM 0.15 0.1 2 5 8
DM 0.15 0.05 2 5 11
DM 0.1 0.15 2 3 7
DM 0.1 0.1 2 5 8
DM 0.1 0.05 2 5 11
DM 0.05 0.15 2 3 7
DM 0.05 0.1 2 5 8
DM 0.05 0.05 2 5 11
MD 0.15 0.15 2 3 7
MD 0.15 0.1 2 5 8
MD 0.15 0.05 2 5 11
MD 0.1 0.15 2 3 7
MD 0.1 0.1 2 5 8
MD 0.1 0.05 2 5 11
MD 0.05 0.15 2 3 7
MD 0.05 0.1 2 5 8
MD 0.05 0.05 2 5 11

Table 6 shows the quantity of biclusters obtained by the aggregation with Micro-

Cluster. When 𝜖 = 2.8, the solution of MicroCluster agrees with the aggregation with single

linkage and by overlapping. The 2 found biclusters were exactly the same, independently of

the parametrization. When 𝜖 = 2.9, we can see that only the parameter Ò interfered on the
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quantity of biclusters. Despite that, the Ąnal biclusters were again the same. When 𝜖 = 3,

for each value of Ò we have a quantity of biclusters that are identical again.

The triclustering algorithm was conĄgured to Ąnd 2 biclusters when 𝜖 = 2.8, 4 when

𝜖 = 2.9 and 5 when 𝜖 = 3.

As all different methods agreed on the Ąnal quantity of biclusters, we are left with

the GOEA to see the quality of the results.

6.5.1 Gene Ontology Enrichment Analysis

As explained in Section 4.2.1, GOEA is a common analysis for groups of genes obtained

by clustering or biclustering in gene expression data.

When 𝜖 = 2.8, except from triclustering, all the algorithms returned only enriched

biclusters. In fact, the four main enriched terms were always the same, sometimes on different

orders but with very close p-values. Only the Ąrst bicluster from the triclustering algorithm

was enriched.

Table 7 shows the main enriched terms of the Ąrst bicluster from the aggregation by

overlapping with a rate of 70%, after outlier removal, when 𝜖 = 2.8.

Table 8 shows the main enriched terms of the Ąrst bicluster from the aggregation with

MicroCluster, when 𝜖 = 2.8.

Table 9 shows the main enriched terms of the Ąrst bicluster from the aggregation with

triclustering when 𝜖 = 2.8.

When 𝜖 = 2.9, all algorithms returned only enriched biclusters, including tricluster-

ing. When 𝜖 = 3, all algorithms, except for triclustering, returned only enriched biclusters.

triclustering returned 4 from 5 enriched biclusters.

In this experiment, we could see that the aggregation was able to signiĄcantly reduce

the quantity of biclusters, and recovered enriched biclusters.

6.6 Experiment 5: Application to Food dataset

As we have seen in the previous experiment, our proposals for aggregation got only

enriched biclusters for the gene expression dataset. In this experiment we will verify how

the aggregation changes the coverage of the dataset when compared to the enumeration,

considering another real dataset. As the aggregation will severely reduce the quantity of Ąnal

biclusters, it is important to see if it will leave uncovered areas that were previously covered.
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Table 7 Ű Enrichment analysis of the Ąrst bicluster from the aggregation by overlapping with
rate of 70%.

GO Term p-val counts deĄnition

GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural
and functional unit of all organisms. [GOC:jl]...

GO:0044444 0.00000011 19 / 608 Any constituent part of the cytoplasm, all of the con-
tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000350 19 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00010607 16 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate Ąlaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate Ąlaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...

If this happens, it means that the aggregation may be eliminating objects and / or attributes

that can be important for some applications.

In this experiment we will run the RIn-Close algorithm and aggregate the enumerated

biclusters of the Food dataset. We will then compare the Ąnal solutions to see the differences

between the results of each agglomerative algorithm. As the true biclusters of this dataset

are unknown, we will compare how the aggregation differs from the enumeration in terms

of coverage of the dataset. In the comparison, we will report our proposals after the outlier

removal step.

However, this concern can be more or less relevant depending on the application. Our

proposals may increase the coverage, as their basic operator is the union of sets. Even after

the outlier removal step, we can end covering more area than the enumerative solution.

We replicated the experiment from Veroneze et al. (2014) on this dataset and we

will use 𝜖 = 1.25 as recommended on that work. In Table 10 we can see the quantity of
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Table 8 Ű Enrichment analysis of the Ąrst bicluster from the aggregation with MicroCluster.

GO Term p-val counts deĄnition

GO:0044464 0.00000000 39 / 774 Any constituent part of a cell, the basic structural
and functional unit of all organisms. [GOC:jl]...

GO:0044444 0.00000011 18 / 608 Any constituent part of the cytoplasm, all of the con-
tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000350 18 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00010607 15 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate Ąlaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate Ąlaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...

enumerated biclusters for several values of 𝜖, and for 𝜖 = 1.25 we have 8676.

Figure 48 shows the dendrogram of the aggregation with single linkage for the FOOD

dataset, when 𝜖 = 1.25. We can see that the cuts between 2 and 7 are quite acceptable. In

fact, cutting in two groups seems the best option, but 2 may be considered a small quantity

of biclusters. As from 4 to 5 the height is more pronounced, for the comparison it seems

acceptable to cut the dendrogram on 4 biclusters.

Table 11 shows the quantity of Ąnal biclusters for the aggregation by overlapping,

for several rates. When the rate of overlapping was ⊘ 80%, we found always the same 4

biclusters. As for the next rate the quantity of Ąnal biclusters is much bigger, we will use the

solution from the rate 80% for the comparison.

Table 12 shows the quantity of biclusters from the aggregation with MicroCluster. We

can see that when the deleting operation came Ąrst, the procedure was not able to properly

aggregate the biclusters. It is important to highlight that this behavior is the opposite of
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Table 9 Ű Enrichment analysis of the Ąrst bicluster from the aggregation with triclustering.

GO Term p-val counts deĄnition

GO:0044464 0.00000000 38 / 774 Any constituent part of a cell, the basic structural
and functional unit of all organisms. [GOC:jl]...

GO:0044444 0.00000017 18 / 608 Any constituent part of the cytoplasm, all of the con-
tents of a cell excluding the plasma membrane and
nucleus, but including other subcellular structures.
[GOC:jl]...

GO:0044424 0.00000488 18 / 578 Any constituent part of the living contents of a cell;
the matter contained within (but not including) the
plasma membrane, usually taken to exclude large
vacuoles and masses of secretory or ingested mate-
rial. In eukaryotes it includes the nucleus and cyto-
plasm. [GOC:jl]...

GO:0098593 0.00011049 15 / 492 A cup shaped specialization of the cytoskeleton that
forms a thin layer located just below the apical mass
of mature mucin secretory granules in the cytoplasm
of goblet cells of the intestinal epithelium. It con-
sists of an orderly network of intermediate Ąlaments
and microtubules. Microtubules are arranged verti-
cally, like barrel staves, along the inner aspect of the
theta. Intermediate Ąlaments form two networks: an
inner, basketlike network and an outer series of cir-
cumferential bundles resembling the hoops of a bar-
rel. [PMID:6541604]...

what happened with the artiĄcial datasets. There, when the deleting operation came Ąrst

the results were more effective. When the merging operation came Ąrst, the aggregation was

able to reach 13 to 27 biclusters, depending on the Ò parameter. As on the artiĄcial datasets

the best parameters were Ö = Ò = 0.15, for the comparison we will use this parameterization

with the merging operation occurring Ąrst.

For the triclustering algorithm we set 𝑘 = 4, using insider information from the

aggregation by overlapping.

6.6.1 Comparison of the coverage

Table 13 shows the pairwise comparison of coverage of the chosen solutions and the

enumerated solution from RIn-Close. We can see that the triclustering algorithm produces

the most distinct solution when compared with the enumerated solution obtained with RIn-

Close. The difference in coverage of the solutions was ≡ 61.33%. The solutions from the

aggregation by overlapping and with single linkage were not so close as on the artiĄcial
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Table 10 Ű Quantity of biclusters enumerated with the RIn-Close algorithm on the FOOD
dataset.

𝜖 Qtd

0 29
0.25 390
0.5 1752
0.75 2946
1 6603
1.25 8676
1.5 13915
1.75 15767
2 23906
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Figure 48 Ű Dendrogram for the aggregation with single linkage when 𝜖 = 1.25, on the Food
dataset.

datasets, showing a difference in coverage of ≡ 12.50%.

At the end, the closest solution to the RIn-Close results was the aggregation by

overlapping Ąltered, with a difference in coverage of 9.1%. If we consider that this solution

reduced the quantity of biclusters from 8676 to 4 biclusters, the difference in coverage of only

9.1% seems very promising.
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Table 11 Ű Quantity of biclusters for the aggregation by overlapping, for several rates.

Rate Qtd

60 % 4
65 % 4
70 % 4
75 % 4
80 % 4
85 % 40
90 % 65
95 % 368

Table 12 Ű Quantity of biclusters for the aggregation with MicroCluster.

Order Ö Ò Qtd

DM 0.15 0.15 809
DM 0.15 0.1 810
DM 0.15 0.05 818
DM 0.1 0.15 545
DM 0.1 0.1 550
DM 0.1 0.05 555
DM 0.05 0.15 553
DM 0.05 0.1 557
DM 0.05 0.05 564
MD 0.15 0.15 13
MD 0.15 0.1 17
MD 0.15 0.05 27
MD 0.1 0.15 14
MD 0.1 0.1 17
MD 0.1 0.05 27
MD 0.05 0.15 14
MD 0.05 0.1 17
MD 0.05 0.05 27

6.7 Further analysis

The experiments presented in this chapter indicate that the aggregation can improve

the quality while removing redundancy caused by the noise on enumerative algorithms. How-

ever, some aspects of the analysis drew our attention while performing the experiments.

Although these details are not part of any experiment, we draw some conclusions of practical

interest from this analysis.

The Ąrst aspect is associated with the following question: how does the quantity of
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Table 13 Ű Pairwise comparison of difference in coverage among the solutions of aggregation
and RIn-Close, on FOOD dataset.

Single Linkage MicroCluster Triclustering RIn-Close
By Ov. 12.50% 35.50% 70.31% 9.1%
Single Linkage - 46.60% 81.51% 20.17%
MicroCluster - - 45.73% 27.38%
Triclustering - - - 61.33%

biclusters increase on the aggregation, while they explode on the enumeration? We decided

to verify this behavior on the real datasets.
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Figure 49 Ű Comparison of quantity of biclusters as a function of 𝜖, of the aggregation by
overlapping with rate = 80% and of RIn-Close, on the Food dataset.

Figure 49 shows the comparison of the quantity of biclusters, varying the 𝜖 parameter

on the GDS2587 dataset. The comparison is just on the RIn-Close results versus the aggrega-

tion by overlapping with rate = 80%. We can see that while the quantity of biclusters found

by RIn-Close increases exponentially, the aggregation seems to produce a stable quantity of

biclusters, that we expect to be close to the true value.

Figure 50 shows the same analysis, but for the FOOD dataset. We decided to show

several rates of overlapping now, and we can see that the behavior of the aggregation is the

same, independently of the rate used. All rates of aggregation showed a stable quantity of

biclusters that do not exhibit an apparent increase.

Another aspect that drew our attention was: is the aggregation by overlapping robust

to the values of 𝜖? Obviously we expected that, independently of 𝜖, the bigger the rate, the
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Figure 50 Ű Comparison of quantity of biclusters as a function of 𝜖, of the aggregation by
overlapping with several rates and of RIn-Close, on the Food dataset.

more biclusters we would have, as we are making it more difficult to aggregate when we

expect 95% of overlapping, for example. But does 𝜖 change that behavior? We run for more

values of 𝜖 on the FOOD dataset, and the obtained results are presented in Figure 51.
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Figure 51 Ű Quantity of biclusters as a function of the rate of aggregation by overlapping, on
the Food dataset. Each curve is parameterized by the value of 𝜖.

Figure 51 shows the quantity of bicluster by the rate of aggregation, for several values

of 𝜖. We can see that, when 𝜖 = 0, the quantity of biclusters remains stable, while when 𝜖 ⊙ 0.5
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the quantity of biclusters increases exponentially when we increase the rate of aggregation.

It shows that the rate of overlapping and the value of 𝜖 are somehow related to the Ąnal

quantity of biclusters, when the rate is greater than 80%. If 𝜖 assumes high values and the

rate is equal to or greater then 80%, the aggregation may end up with too much biclusters.

But even with high values of 𝜖, if the rate of overlapping is low (between 60% and 80%), we

are able to get fewer biclusters.



Part IV

Final Considerations
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7 Conclusions and future work

In this chapter, we present our concluding remarks. We review the problem of bicluster

aggregation and the motivation for this work and also review the settings of the experiments.

After that we highlight the main conclusions that can be derived from the results of the

experiments. Finally, we indicate potential next steps of the research.

7.1 Concluding remarks

Hartigan (1972) proposed one of the earliest biclustering algorithms, the block clus-

tering. From there, the area drew the attention of many communities, becoming an important

non-supervised analysis. The term ŞbiclusteringŤ was Ąrst used by Cheng & Church (2000)

in their seminal work on gene expression data analysis, one of the major applications of

biclustering techniques.

Since Ąnding all biclusters in a data set is an NP-hard problem �it is equivalent to

enumerating all bicliques in a bipartite graph �, the majority of the biclustering algorithms

are heuristics, that usually miss important biclusters (VERONEZE et al., 2014). Even with

this drawback, the usefulness of this task is unquestionable, given the amount of applications

and proposed heuristics. In the literature, we can Ąnd applications in gene expression data

analysis, recommendation systems and marketing (MADEIRA; OLIVEIRA, 2004).

With the development of several algorithms, it was noticed that the inherent noise

of the data fragments the original biclusters into many with high overlapping. This frag-

mentation heavily inĆuenced the outcome of the recent enumerative algorithms, leading to a

large quantity of highly overlapped biclusters. Also, the high overlapping of the enumerated

biclusters leads to a redundant result, which also increases the complexity of the analysis.

At Ąrst, the problem of aggregation is very similar to bicluster ensemble. Ensemble is

a common practice in supervised learning (and is gaining attention in unsupervised learning),

where we combine the outcome of several results into a single one that is more robust to noise

interferences. Ideally, we obtain different results from different algorithms, or by distinct views

of the dataset, which increases the diversity of the results. This diversity is directly related

to the robustness of the Ąnal combination of the distinct results. Bicluster ensemble is very

similar. First we obtain several different results, then we combine them to get a single one.

But the aggregation poses different challenges. The differences between bicluster ensemble

and bicluster aggregation are:
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Source of results In the ensemble setup we need diversity of the input results. In aggre-

gation we can work just with results that show a high degree of overlapping among

their components, which are generally of low diversity. This is common in bicluster

enumeration.

Importance of a single bicluster If an area of the dataset is covered just by one bicluster,

the ensemble should consider this bicluster insigniĄcant, as it was not encountered by

any other solutions. The aggregation does not eliminate biclusters.

We focused on the aggregation of biclusters from enumeration, and we proposed two ap-

proaches. The Ąrst one transforms each bicluster into a binary vector. After that we apply

the single linkage hierarchical clustering using the Hamming distance. After cutting the den-

drogram, we aggregate the biclusters of the same partitions by uniting the rows and columns

of each one. This approach has the drawback of having one parameter that is the number of

Ąnal biclusters. However, the dendrogram can be helpful in this task and there already are

several methods for properly deĄning the cut location.

The other approach is based on the overlapping between two biclusters. The method

can be summarized as: while having two biclusters with an overlapping area larger than

a pre-deĄned threshold, aggregate them. Again, the aggregation is the union of rows and

columns of the involved biclusters.

The aggregation not only severely reduced the Ąnal quantity of biclusters, but ended

up impacting a little the Precision of the Ąnal biclusters. The way that we perform the

aggregation explains this behavior. By just uniting the rows and columns of the involved

biclusters, we may end up including intruder rows or columns that should not be included.

This requires a step of outlier removal. To this end, we provided a method to remove possible

outlier elements from the biclusters of the Ąnal result. This method showed to be robust,

improving the quality of the solution.

We compared the performance of our proposals against the most similar proposal

in the literature, which is the last step of the MicroCluster algorithm. We also included in

the comparison an algorithm of bicluster ensemble, which is the triclustering algorithm. We

executed 5 experiments to verify distinct hypotheses.

The Ąrst experiment aimed at viewing the effects of the noise fragmenting the original

biclusters. We only used artiĄcial datasets. Using the RIn-Close algorithm, we could verify

the fragmentation of the original biclusters into many with high overlapping. As the variance

of the noise increases, we could see that: the quantity of biclusters increases reaching a high

value and then goes down to zero; the Precision starts low and also increases; and when we
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have enough noise, the Recall decreases.

On the second experiment we tested several approaches of aggregation, including our

proposals. We were able to reach the true number of biclusters without decreasing the Recall,

but decreasing a little the Precision. Despite that, our proposals had a nice performance,

getting the best results when compared with the MicroCluster and the triclustering algorithm

on the datasets art1 and art2. The art3 dataset showed to be the most challenging one. Our

two proposals had very similar results, and when we run the Wilcoxon Rank Sum Test, they

did not show signiĄcant difference. On this experiment we could also see that the aggregation

in fact is able to get much less biclusters with a comparable or even better quality results

when compared with the enumeration. The main challenge is to parameterize the algorithms.

The deleting step of the MicroCluster algorithm acts as an outlier removal, and our proposals

did not exclude bad objects and attributes from the biclusters. Our proposals could beneĄt

from a step of outlier removal, which is the subject of experiment 3.

On the third experiment, we added the step of outlier removal to the aggregation

with single linkage and by overlapping. These proposals achieved a high performance score

on the art1 dataset, and were able to increase the Precision on the art2 dataset. On the art3

dataset, the outlier removal was not able to increase the Precision and in fact decreased a

little the Recall. But we could conclude that this step is very important to avoid biclusters

with objects and attributes that should not be part of any bicluster.

The purpose of the fourth experiment was to verify if the aggregation could get en-

riched biclusters of a gene expression dataset. For different values of 𝜖 on the RIn-Close

algorithm, we could see that the different methods of aggregation reached very similar re-

sults. The main challenge of the aggregation with single linkage is to decide where to cut

the dendrogram, but as we could see, on this dataset this task was very easy. Likewise, it

was easy to identify a good rate of overlapping, as the results of several rates were identical.

Except for the triclustering, all aggregations returned only enriched biclusters.

And Ąnally, we applied the aggregation methods to the FOOD dataset and analyzed

how the aggregation changed the covered area when compared to the enumeration. Triclus-

tering led to the most different result, and the aggregation by overlapping covered an area

very similar to the area covered by the enumeration.

We could see that while the quantity of biclusters increases exponentially on the

enumeration, the aggregation can keep a stable quantity of biclusters, independently of the

value of 𝜖. We could also see that the value of 𝜖 changes the behavior of the aggregation by

overlapping when the rate is high. For values greater than 80%, some values of 𝜖 led to a high

quantity of biclusters. It indicates that the rate of overlapping must be reasonable, given that
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high values cannot guide to an effective aggregation.

We can conclude that the aggregation is suitable and can be indicated when enumer-

ating all biclusters from a dataset. The aggregation will not only signiĄcantly reduce the

quantity of biclusters, but tends to improve the quality of the Ąnal result. A post-processing

step for outlier removal brings additional robustness to the methodology.

7.2 Future Work

As a further step of the research, we need to compare the time / memory complexity of

the proposals, and explore recommendations for the parameterization (cut on the dendrogram

and rate of overlapping). The chaining effect on single linkage hierarchical clustering using

Hamming distances should be more explored to verify its impacts in the aggregation. Another

further step is to test our proposals in biclustering heuristics results.

We can also adapt our proposals to work on an ensemble conĄguration, and extend

this work to deal with time series biclusters, which require contiguous attributes.
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