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Abstract

Segmentation of the hippocampus in magnetic resonance imaging (MRI) is of fundamental

importance for the diagnosis, treatment and investigation of neuropsychiatric disorders.

Automatic segmentation is an active research Ąeld, with many traditional atlas-based

works and, recently, deep learning based methods. This thesis examines the state-of-the-

art in automated hippocampal segmentation with Deep Learning and proposes a method

for automatic segmentation that contains recent advances in this Ąeld of research. A pub-

lic study on AlzheimerŠs disease called HarP with manual hippocampal annotations is

used for validation during the development of the methodology. Additionally, a hypoth-

esis is raised that current state-of-the-art methods are not ready to deal with cases of

hippocampus resection due to the treatment of epilepsy.

The methodology, called Extended 2D Consensus Hippocampus Segmentation, is justi-

Ąed in theory and later validated in experiments. A consensus of 2D CNNs based on a

modiĄcation of the UNet architecture assesses all three orthogonal orientations of the in-

put volume. This consensus is followed by post-processing using 3D labeling. Traditional

design choices inspired by literature are used, such as data augmentation and transfer

learning with encoder weight initialization. The now traditional UNet CNN architecture

is modiĄed, resulting in better performance. In addition, the RADAM optimizer and

Boundary Loss, recently proposed in the literature, are implemented and show superior

performance when compared to other traditional options.

The performance of E2DHipseg is analyzed together with other recent methods of Deep

Learning in two domains: the HarP benchmark and an internal epilepsy data set, called

HCUnicamp. HCUnicamp differs signiĄcantly from examinations of healthy individuals

with AlzheimerŠs, due to the presence of patients that undergone hippocampal resection

surgery. E2DHipseg outperforms other methods in the literature in the AlzheimerŠs and

Epilepsy test data sets, with the code and binary executable available online. However,

no method achieves good performance in cases of hippocampus resection. As a Ąnal ex-

periment, E2DHipseg is trained on the epilepsy data, resulting in improved results.

Keywords: deep learning; hippocampus (brain); AlzheimerŠs disease; epilepsy



Resumo

A segmentação do hipocampo em ressonância magnética (RM) é de fundamental impor-

tância para o diagnóstico, tratamento e investigação de distúrbios neuropsiquiátricos. A

segmentação automática é um campo de pesquisa ativo, com muitos métodos tradicionais

baseados em atlas e modelos utilizando-se de aprendizado profundo sendo recentemente

propostos. Esta tese examina o estado da arte na segmentação automatizada de hipo-

campo com Aprendizado Profundo e propõe um método para segmentação automática

que contém recentes avanços deste campo de pesquisa. Um estudo público sobre a do-

ença de Alzheimer chamado HarP com anotações do hipocampo é usado para validação

durante o desenvolvimento da metodologia. Paralelamente, é levantada uma hipótese de

que os métodos atuais não são ideais para casos de ressecção do hipocampo devido ao

tratamento da epilepsia.

A metodologia, denominada Extended 2D Consensus Hippocampus Segmentation, é jus-

tiĄcada em teoria e posteriormente validada em experimentos. Um consenso de CNNs

2D baseadas numa modiĄcação da arquitetura U-Net avalia todas as três orientações

ortogonais do volume de entrada. Esse consenso é seguido por um pós-processamento

usando rotulagem 3D. Escolhas tradicionais de design inspiradas na literatura são usa-

das em seu desenvolvimento, como aumento de dados e transferência de aprendizado

com pré-inicialização dos pesos do codiĄcador. A tradicional arquitetura de CNNs UNet

é modiĄcada, resultando em melhor desempenho. Além disso, o otimizador RADAM e

a Boundary Loss, recentemente propostos na literatura, são implementados e mostram

desempenho superior quando comparados a outras opções tradicionais.

O desempenho do E2DHipseg é analisado juntamente com outros métodos recentes de

Aprendizado Profundo em dois domínios: o benchmark HarP e um conjunto de dados

interno de epilepsia, chamado HCUnicamp. O HCUnicamp difere signiĄcativamente dos

exames de indivíduos saudáveis e com Alzheimer, devido à presença de pacientes sub-

metidos à cirurgia de ressecção do hipocampo. O E2DHipseg supera outros métodos da

literatura nos conjuntos de dados de teste de Alzheimer e Epilepsia, com o código e o

executável binário disponíveis on-line. No entanto, nenhum método alcança bom desem-

penho nos casos de ressecção do hipocampo. Como um experimento Ąnal, E2DHipseg é

treinado nos dados de epilepsia, o que resulta em melhora dos resultados.

Palavras-chaves: aprendizado profundo; hipocampo (cérebro); Alzheimer, doença; epi-

lepsia
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(a) sagittal (b) coronal (c) axial

Figure 2 Ű Sample slices of an MRI volume, in every orthogonal orientation. In yellow,
manual hippocampus annotationŠs borders.

1.1 The Hippocampus

Humans and other mammals have two hippocampi, one in each side of the brain

(Figure 2). As a part of the limbic system, it has an important role in the consolidation

of information from short-term to long-term memory and spatial memory. Anatomically,

it consists of gray matter tissue elevating from the Ćoor of each lateral ventricle to the

temporal horn, only being visible through dissection (ANDERSEN, 2007). There is not

a full consensus of which neighbouring tissues are part of its deĄnition, with variations

among publications in this topic (MARTIN, 2003; AMARAL; LAVENEX, 2007).

The hippocampus is one of the Ąrst brain regions to suffer damage in AlzheimerŠs

disease and other forms of dementia. The atrophies in the Hippocampus due to Alzheimer

can be visualized with MRI scans. These atrophies can vary in severity according to which

stage of AlzheimerŠs the patient is in (PETERSEN et al., 2010).

The hippocampus can also be affected by medial temporal lobe epilepsy (TLE).

TLE is a disorder of the nervous system that can cause unprovoked seizures in the temporal

lobe, lasting one to two minutes (DISORDERS et al., 2015). While treatment can be done

with anticonvulsants, in some cases resection of one of the hippocampi may be the only

effective option to avoid complications (GHIZONI et al., 2015).

1.2 Motivation

Manual segmentation of the Hippocampus can take hours. Existing automated

commercial methods such as FreeSurfer (FISCHL, 2012) can take a whole day to seg-

ment a volume. Our work is inspired by the need to reduce the computational time of

automatic hippocampus segmentation, while at the same time achieving better perfor-

mance than traditional methods. This thesis uses a rising approach in the literature,

namely, Fully Convolutional Neural Networks (FCNNs). Recently, some works have used
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CNNs with promising runtime, in the order of seconds, and accuracy in the high 80s

Dice (WACHINGER et al., 2018; THYREAU et al., 2018; XIE; GILLIES, 2018; CHEN et

al., 2017). Current literature supports that there is space for development of continuously

better Deep Learning based methods. With that in mind, this thesis aims to deliver a

deep learning based method focused on high Dice and low runtimes.

Additionally, while conducting research on Epilepsy and methods for hippocam-

pus segmentation, another subject got the authorŠs attention. Many of those methods,

including the proposed method, focus on training and evaluating on healthy scans, or pa-

tients of AlzheimerŠs disease, due to that being what is publicly available. With that

in mind, this thesis also includes a dataset from a different domain in testing. This

in-house dataset, named HCUnicamp, contains scans from epilepsy patients pre and

post hippocampus removal surgery, with very different atrophies to that found in public

AlzheimerŠs data or healthy subjects.

Another motivation of this work is to provide an easy to use hippocampus seg-

mentation method, given many other works publish results but do not provide easy to

use tools for physicians or researchers. Open science has been very important to the fast

development of Deep Learning methods, and making the results of this thesis public and

reusable is important to encourage extensions and improvements in future work (NOSEK

et al., 2015).

1.3 Objectives

The thesis has the following main objectives:

• Combine CNN architecture ideas from the literature and novel ideas into a state-

of-the-art hippocampus segmentation method. The method should be fast, with

runtime in the order of seconds.

• Test the methodŠs performance alongside others in the literature in public bench-

marks and in a challenging epilepsy dataset.

• Make the method available for external use, without dependencies on multiple li-

braries and with a simple user interface.

1.4 Contributions

This thesis proposes a hippocampus segmentation method consisting of evaluat-

ing the consensus of volumes generated by three separate U-Net like (RONNEBERGER et

al., 2015) 2D CNNs. ModiĄcations on the base U-Net architeture are performed and stud-

ied, such as encoders weight initialization with ImageNet VGG11 weights (SIMONYAN;



Chapter 1. Introduction 20

ZISSERMAN, 2014), applying residual connections from ResNet (HE et al., 2016) to con-

volutional block and others. Each 2D network is trained on each brain orientation; sagital,

coronal and axial. Traditional 3D labeling post-processing for false positive removal is im-

plemented. Several studies in hyperparameterŠs deĄnitions such as soft targets, custom

losses and training were performed, with some success and failure cases.

An interesting characteristic of this project is the use of an inhouse 3T epilepsy

dataset, containing manually annotated MRI scans with surgically removed hippocampus,

a big difference to the data used in most similar research. Public data from AlzheimerŠs

disease studies in the form of the HarP dataset is also used in this thesis, allowing for

comparisons with other methods.

In addition, the method runs with a low memory footprint and seconds of runtime

in a common computer, with ease of use features for doctors and researchers. Finally,

the method is validated in HCUnicamp and HarP, including comparisons with other

methods. The method presented on this thesis reachs state-of-the-art performance on

HarP and beats other recent Deep Learning based hippocampus segmentation methods

in HCUnicamp. Code is open source and weights are available for the community in

<github.com/MICLab-Unicamp/e2dhipseg>, alongside a binary release for ease of use.

1.5 Outline of the Thesis

This thesis is organized as follows: Chapter 2 presents a literature review of the

Deep Learning in Medical Imaging Ąeld and recent Deep Learning based hippocampus

segmentation methods. More details to the involved data and implementation means are

in Chapter 3. A detailed description of our hippocampus segmentation methodology is in

Chapter 4. Chapter 5 has experimental results from our methodology development and

qualitative and quantitative comparisons with other methods in HarP and HCUnicamp,

while Chapter 6 has extended discussion of those results and conclusion.
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2 Literature Review

This chapter presents a brief introduction to Deep Learning, its application to

medical imaging segmentation and, more speciĄcally, hippocampus segmentation.

2.1 Deep Learning

Nowadays, deep learning is taking the computer vision world by storm, to the

point of being called a "revolution" (BENGIO et al., 2015). Deep learning is a form of

representational learning using very large neural networks, being used in various learning

environments, from face identiĄcation (SUN et al., 2014) to social media big data (LEVI;

HASSNER, 2015). Usually, deep learning algorithms have a cascade of nonlinear process-

ing units starting from raw data, generating many layers of representation from low to

high levels of abstraction, and use some form of optimization for training (LECUN et al.,

2015).

One example of Deep Learning implementation is Convolutional Neural Networks

(CNN). Starting from raw data (such as pixels from an image), CNNs apply various

non-linear convolutions and pooling stages connected by weights to extract the most

relevant features of the image for the intended application, through optimization of a

target function. This eliminates the need for manual feature extraction (KRIZHEVSKY

et al., 2012). In a classiĄcation case, those convolutional features are then fed to densely

connected layers that compute the Ąnal answer. The concept of CNNs has existed for a

long time, but only recently the proliferation of large datasets and GPU computational

power has allowed for better than traditional machine learning performance when using

CNNs. CNN based approaches have been achieving state-of-the-art in most computer

vision applications.

In segmentation applications, instead of fully connected classiĄcation outputs,

upsampling or transposed convolutions can bring the abstract representation back to an

output layer of similar spatial resolution to the input (RONNEBERGER et al., 2015).

This output is usually in the form of sigmoid activations or softmax outputs, representing

segmentation masks or more abstract concepts such as attention (OKTAY et al., 2018).

Due to not having a fully connected layer and being composed mainly of convolutions,

these are sometimes called Fully Convolutional Neural Networks (FCNNs).
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Figure 3 Ű U-Net, a Fully Convolutional Neural Network architecture, originally de-
veloped for biomedical imaging segmentation. Reproduced from (RON-
NEBERGER et al., 2015).

2.2 Medical Imaging Segmentation with Deep Learning

Automatic image segmentation is widely researched in the medical imaging Ąeld.

Volumetry and shape of organs is of interest to medical research and automated meth-

ods can help when analysing a large amount of data, where manual labelling would be

too time consuming. In many recent publications, general semantic segmentation FCNN

architectures are modiĄed and applied to the medical imaging segmentation Ąeld, with

great success (KAMNITSAS et al., 2017).

One of the most common approaches to medical imaging segmentation is the

adaptation of the famous U-Net CNN architecture (Figure 3). The U-Net seems to fa-

cilitate learning for relatively smaller datasets (RONNEBERGER et al., 2015), which is

commonly the case in the medical imaging segmentation. It has applications from cell

counting (FALK et al., 2019) to brain structure segmentation (MEHTA; SIVASWAMY,

2017), pancreas segmentation (OKTAY et al., 2018), brain tumor segmentation and clas-

siĄcation (ISENSEE et al., 2017) and hippocampus segmentation (CARMO et al., 2019a).

Most of these works add something to the original architecture in attempts to improve

it, but the basic concept of encoder-decoder with concatenation of features remains the

same.

Other successful FCNN architectures exist and are also applied to the Ąeld, such

as DeepLab and SegNet (Figure 4). Although they are different in comparison to the

U-Net, the encoder-decoder concept is still present. An example is DeepLab being applied

alongside a Long-Short Term Memory Recurrent Neural Network (SUNDERMEYER et
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ever they can take more than 8 hours in a single volume. Lately, a more time efficient

approach appeared in the literature, namely the use of such atlases as training volumes for

CNNs. Deep Learning methods can achieve similar or better overlap metrics while predict-

ing results in a matter of seconds per volume (CHEN et al., 2017; XIE; GILLIES, 2018;

WACHINGER et al., 2018; THYREAU et al., 2018; ROY et al., 2019; ATALOGLOU et

al., 2019; DINSDALE et al., 2019).

Recent literature in hippocampus segmentation with Deep Learning is exploring

different architectures, loss functions and overall methodologies for the task. One approach

that seems to be common to most works is using a combination of 2D or 3D CNNs, and

patches as inputs in the training phase. A diagram of the works discussed here and their

relationships is in Figure 5. Note that some works focus on hippocampus segmentation,

while others are devoted to segmentation of multiple neuroanatomy. Segmentation perfor-

mance is often measured with Dice, an overlap metric (SUDRE et al., 2017). Following,

a brief summary of each of those works, in chronological order.

Neuroanatomy
Segmentation

Hippocampus
Segmentation

Wachinger Et al.
(DeepNAT)2018

Roy Et al.
(QuickNAT)2019

Ronnenberger 
Et al. (UNet)

2015

Thyreau Et al. 
2018

Ataloglou Et al. 
2019

Xie Et al. 
 2018

Chen Et al. 
2017

Figure 5 Ű Papers discussed in this brief literature review. Arrows indicate closely related
works.

Chen et al. (CHEN et al., 2017) reports 0.9 Dice (SUDRE et al., 2017) in 10-fold

110 ADNI (PETERSEN et al., 2010) volumes with a novel CNN input idea. Instead of

using only the triplanes as patches, it also cuts the volume in six more diagonal orienta-

tions. This approach results in 9 planes, that are fed to 9 small modiĄed U-Net (RON-

NEBERGER et al., 2015) CNNs. The ensemble of these U-Nets constructs the Ąnal result.
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(XIE; GILLIES, 2018) trains a voxel-wise classiĄcation method using triplanar

patches crossing the target voxel. They merge features from all patches into a Deep Neural

Network with a fully connected classiĄer alongside standard use of ReLU activations

and softmax (KRIZHEVSKY et al., 2012). The training patches come only from the

approximate central area where the hippocampus is usually located, balancing labels for

1:1 foreground and background target voxels. Voxel classiĄcation methods tend to be

faster than multi-atlas methods, but still slower than FCNNs.

DeepNat (WACHINGER et al., 2018) achieves segmentation of 25 structures with

a 3D CNN architecture. With a hierarchical approach, a 3D CNN separates foreground

from background and another 3D CNN segments the 25 sub-cortical structures on the

foreground. Alongside a proposal of a novel parametrization method replacing coordinate

augmentation, DeepNat uses 3D Conditional Random Fields as post-processing. The ar-

chitecture is a voxelwise classiĄcation, taking into account the classiĄcation of neighbor

voxels. This workŠs results mainly focuses on the Multi-atlas Labeling Challenge dataset,

with around 0.86 Dice in hippocampus segmentation.

Hippodeep (THYREAU et al., 2018) uses CNNs trained in a region of interest

(ROI). However, where this thesis applies one CNN for each plane of view, Thyreau et al.

uses a single CNN, starting with a planar analysis followed by layers of 3D convolutions

and shortcut connections. This study used more than 2000 patients, augmented to around

10000 volumes. Initially the model is trained with FreeSurfer segmentations, and later

Ąne tuned using volumes which the author had access to manual segmentations, the

gold standard. ThyreauŠs method requires MNI152 registration of input data, which adds

around a minute of computation time, but the model is generally faster than multi-

atlas or voxel-wise classiĄcation, achieving generalization in different datasets, as veriĄed

in (NOGOVITSYN et al., 2019).

Quicknat (ROY et al., 2019) and AtalaglouŠs method (ATALOGLOU et al., 2019)

are simultaneous, independent works, that used a similar idea to this thesis, namely the

use of the consensus of a CNN per orthogonal view of the MRI volume.

QuickNat achieves faster segmentations than DeepNat by using a multiple CNN

approach instead of voxel-wise classiĄcation. Its methodology follows a consensus of

multiple 2D U-Net like architectures specialized in each slice orientation. The use of

FreeSurfer (FISCHL, 2012) masks over hundreds of public data to generate silver stan-

dard annotations allows for much more data than usually available for medical imaging.

Later, after the network already knows to localize the structures, it is Ąne-tuned to more

precise gold standard labels. Inputs for this method need to conform to the FreeSurfer

format.

Ataloglou et al. recently displayed another case of fusion of multiple CNN out-

puts, specialized into axial, coronal and sagittal orientations, into a Ąnal hippocampus
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segmentation. They used U-Net like CNNs specialized in each orientation, followed by

error correction CNNs, and a Ąnal average fusion of the results. They went against a

common approach in training U-Nets of using patches during data augmentation, in-

stead using cropped slices. This raises concerns about overĄtting to the used dataset,

HarP (BOCCARDI et al., 2015), supported by the need of Ąne-tuning to generalize to

a different dataset. Inputs for this method need to conform, manually, to a speciĄc ori-

entation, alongside going through a pre-processing pipeline with brain extraction and

non-parametric non-uniform intensity normalisation (N3).

Dinsdale et al. (DINSDALE et al., 2019) mixes knowledge from multi-atlas works

with Deep Learning, by using a 3D U-Net CNN to predict a deformation Ąeld from an

initial binary sphere to the segmentation of the hippocampus, achieving around 0.86 DICE

on Harp. Trying an auxiliary classiĄcation task did not improve segmentation results.

It is known that Deep Learning approaches require a large amount of training

data, something that is not commonly available specially with Medical Imaging. Com-

monly used forms of increasing the quantity of data in the literature include using 2D

CNNs over regions (patches) of slices, with some form of patch selection strategy. The

U-Net (RONNEBERGER et al., 2015) FCNN architecture has shown potential to learn

from relatively small amounts of data with their decoding, encoding and concatenation

schemes, even working when used with 3D convolutions directly in a 3D volume (ISENSEE

et al., 2017).

Looking at these recent works, one can conĄrm the segmentation potential of the

U-Net architecture, including the idea of an ensemble of 2D U-Nets instead of using a

single 3D one, as an author work with colleagues (CARMO et al., 2019b), some simulta-

neous recent work (ROY et al., 2019; ATALOGLOU et al., 2019), or even works in other

segmentation problems (LUCENA et al., 2018) presented. In this thesis, some of those

methods were locally reproduced for comparison purposes in our Ąnal tests, namely (ROY

et al., 2019; THYREAU et al., 2018), including a 3D architecture test from (ISENSEE et

al., 2017).
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3 Materials

In this chapter, the involved datasets are presented in more detail. Also, imple-

mentation details are disclaimed.

3.1 Data

This thesis uses two different datasets: one collected locally for an epilepsy study,

named HCUnicamp; and a public one from the ADNI AlzheimerŠs study, HarP (BOC-

CARDI et al., 2015). HarP is commonly used in the literature as a hippocampus segmen-

tation benchmark. The main difference between the datasets is, the lack of one of the

hippocampi in 70% of the epilepsy scans from HCUnicamp, due to surgical intervention,

detailed in (GHIZONI et al., 2015). Meanwhile, HarP has presence of atrophies due to

AlzheimerŠs disease. Both datasets have control subjects. Both datasets also have scans

from control groups.

Some initial experiments were performed with MNI152 (BRETT et al., 2001) reg-

istered volumes from HCUnicamp and volbrain (MANJÓN; COUPÉ, 2016) silver stan-

dard masks. Our method needs input data to be in the MNI152 head orientation. In most

experiments, data from those datasets is in native space and is not registered besides

orientation correction. Due to that, when predicting in external volumes, an orientation

correction by rigid registration is provided as an option, to avoid orientation mismatch

problems.

3.1.1 HarP

HarP (BOCCARDI et al., 2015) is a widely used benchmark dataset in the hip-

pocampus segmentation literature. The full HarP release contains 135 T1-weighted MRI

volumes. HarP uses data from the AlzheimerŠs Disease Neuroimaging Initiative (ADNI)

database (<adni.loni.usc.edu>). The ADNI was launched in 2003 as a public-private

partnership, led by Principal Investigator Michael W. Weiner, MD. The primary goal

of ADNI has been to test whether serial magnetic resonance imaging (MRI), positron

emission tomography (PET), other biological markers, and clinical and neuropsychologi-

cal assessment can be combined to measure the progression of mild cognitive impairment

(MCI) and early AlzheimerŠs disease (AD). AlzheimerŠs disease classes are balanced with

equal occurrence of CN, MCI and AD cases (PETERSEN et al., 2010). The original vol-

umes were minmax intensity normalized between 0 and 1, and no volumes were removed.

When using this dataset for training, hold-out was employed with 70% training, 10%
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3.1.3 MNI-HCUnicamp

MNI152 space registered volumes of HCUnicamp with volbrain hippocampus an-

notations (MANJÓN; COUPÉ, 2016) were used in early experiments. After conformity

pre-processings, the scans look quite different to the native ones and more normalized

(Figure 9). Hold-out was employed with 80% of the data for training, 10% validation and

10% testing sets.

Figure 9 Ű Sagittal slice from MNI-HCUnicamp, with FreeSurfer segmentations borders
as targets, in yellow.

3.2 Implementation Details

This work implements all discussed methodology and data usage in a Python 3.6

environment running in Ubuntu 18.04. Deep Learning tasks are performed using the Py-

Torch 1.x library. Other computer vision and machine learning tasks involved the sporadic

use of other scientiĄc libraries such as SciPy, scikit-image, scikit-learn, OpenCV, Numpy

and matplotlib. NiBabel was used to handle MRI data. The ITKSnap tool (YUSHKE-

VICH et al., 2006) was used for producing 3D and multi-view visualizations. Additional

software was used when running other methods from the literature.

The hardware used included a E3-1220 v3 CPU, NVIDIA Titan X 12GB GPU

and 32 GB of RAM.

For the use of this code by other researchers, a simple GUI and CLI were im-

plemented in the public release of this thesis code, with easy to follow instructions

(<github.com/MICLab-Unicamp/e2dhipseg>). A binary release version is also included.
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included. Experimental results will be presented in chapter 5, deĄning the Ąnal parameters

of the methodology.

Neighbour Patch
Center Patch

Neighbour Patch

3x64x64
Extended 2D Input Patch Output Architecure

Diagram

x Conv 3x3 y

y Conv 3x3 y

Batch Norm, ReLU

Batch Norm, ReLU

Residual Connection
x Conv 1x1 y

x Conv Block y

x: number of input channels
y: number of output channels
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Figure 11 Ű Final architecture of each modiĄed U-Net in Ągure 10. Of note in comparison
to the original U-Net is the use of BatchNorm, residual connections in each
convolutional block and the 3 channel neighbour patches input. Padding is
also used after convolutions. In this work, the output might use a Softmax or
the depicted Sigmoid layer. Spatial resolution changes are noted near to max
pools or transposed convolutions.

4.1 U-Net architecture

The basic structure of each of the three networks depicted in Figure 10 is inspired

by the 2D U-Net FCNN architecture (RONNEBERGER et al., 2015). Note that in this

work, 2D network refers to the input being 2D for the sake of visualization (as in a slice

of a brain or a photo of an object), but considering the usage of channels and batches,

the input will be technically 4D. In the same vein, a 3D network would process batches

of volumes with possibly multiple channels, and the input would be 5D. The same idea is

used when referring to 2D or 3D convolutions.

The U-Net architecture presents a U-shaped pattern where a step down is a series

of two convolutional layers followed by a downsampling layer and a step up consists in a
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series of two convolutional layers followed by upsampling. Connections are made between

the downsample and upsample path at each scale, with concatenation of weights. Note that

these downsample and upsample paths are also called encoder and decoder, respectively,

in the literature, but they are not the same as encoders in e.g: auto encoders (BALDI,

2012). In this thesis some modiĄcations based on other successful works were applied

to the architecture (Figure 11). Those modiĄcations include: instead of one single 2D

patch as input, two neighbour patches are concatenated leaving the patch corresponding

to the target mask in the center (PEREIRA et al., 2019). Residual connections based on

ResNet (HE et al., 2016) between the input and output of the double convolutional block

were added, as 1x1 2D convolutions to account for different number of channels. Batch

normalization was added to each convolution inside the convolutional block, to accelerate

convergence and facilitate learning (IOFFE; SZEGEDY, 2015). Also, all convolutions use

padding to keep spatial dimensions and have no bias.

4.1.1 Residual Connections

Residual or shortcut connections have been shown to improve convergence and

performance of CNNs (HE et al., 2016). Either in the form of direct connections propa-

gating past results to the next convolution input, by adding values, or in the form of 1x1

convolutions, to deal with different number of channels. An argument to its effectiveness

is that the residual connections offer a way for a simpler propagation of values without

any signiĄcant transformation. This is not a trivial task when the network consists of mul-

tiple non linear transformations, in the form of convolutions with non linear activations

followed by max pooling.

In this work, residual connections were implemented in the form of an 1x1 convo-

lution, adding the input of the Ąrst 3x3 convolution to the result of the batch normalization

of the second 3x3 convolution in a convolutional block (Conv Block in Figure 11).

4.1.2 Weight Initialization, Bias and Batch-normalization

It has been shown that weight initialization is crucial in proper convergence of

CNNs (KUMAR, 2017). In computer vision related tasks, having pre-initialized weights

that already recognize basic image pattern recognition features such as border direc-

tions, frequencies and textures can be helpful. This work uses VGG11 (SIMONYAN;

ZISSERMAN, 2014) weights, pre-trained on ImageNet, in the encoder part of the U-Net

architecture, as in (IGLOVIKOV; SHVETS, 2018). Using initial layers of a pre-trained

ResNet34 (HE et al., 2016) as an encoder, or using Kaiming Uniform initialization (HE

et al., 2015) were also attempted.
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formation adjacent to the region of interest, hence the name for the method, Extended

2D Consensus Hippocampus Segmentation (E2DHipseg). This methodological choice is

also inspired by how physicians compare neighbor slices in multiview visualization, when

deciding if a voxel is part of the analyzed structure or not.

4.3 Data Augmentation

Deep Learning algorithms usually require a big and varied dataset to achieve

generalization (SHIN et al., 2016). Manual segmentation by experts is used as a gold

standard, but is often not enough for the training of Deep Networks. Data augmentation

is used to try and improve our dataset variance and avoid overĄtting, an excessive bias

to the training data. Without augmentation, this method could overĄt to MRI machine

parameters such as magnetic Ąeld intensity, Ąeld of view and so on, or overĄt to any bias

present in the training dataset in hippocampus shape and size. All augmentations perform

a random small modiĄcation to the selected patches, according to pre-deĄned parameters.

Patches are augmented on runtime, not as pre-processing. A variety of combinations of

data transformations were tested in this thesis for data augmentation purposes.

Let a patch 𝑃 (𝑐, 𝑥, 𝑦) be a selected E2D patch, with {𝑐 ∈ 𝑍 : 0 ≤ 𝑐 < 3} and

𝑇 (𝑥, 𝑦) be the respective target. 𝑥 and 𝑦 represent rows and columns respectively. Since

transformations to patches are applied to all 𝑐 E2D channels, for the sake of simplicity,

patches will be represented as 𝑃 (𝑥, 𝑦). Additionally, the omission of (𝑥, 𝑦) denotes an ele-

ment wise operation and 𝑃 [𝐶] denotes an element wise operation applied when condition

𝐶 is true. After all transformations are applied, as a Ąnal step, values above 1 or below

0 are clipped, following 𝑃 [𝑃 > 1] = 1 and 𝑃 [𝑃 < 0] = 0. Following, a more detailed

description of each transformation employed for data augmentation, with visualizations

in Figure 15.

4.3.1 Intensity Transformation

There is a difference on voxel intensity on different scans, coming from different

MR machines and conĄgurations. Addition of intensity transformed data attempts to

simulate this variation in voxel intensity.

This transformation takes as an argument a value 𝑎 ∈ [0, 1], to deĄne the range

of intensity modiĄcation. Let â(−𝑎, 𝑎) be a uniform distribution with values in the range

[−𝑎, 𝑎], the intensity transformation applies to a patch 𝑃 as:

𝑃 = 𝑃 + 𝑖 (4.1)

Where 𝑖 ∈ â(−𝑎, 𝑎) is a constant for every pixel.
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4.3.2 Rotation and Scale

The reason to use data augmentation with addition of rotated and scaled data

is an attempt to simulate small rotations and differences on size of the hippocampus,

among different subjects. This also includes small head orientation rotations due to subject

position on the MR scanner.

This transformation could also be called an Affine Transformation. In a similar

fashion to the intensity transform, given an input argument 𝑏, let â(−𝑏, 𝑏) be a uniform

distribution with values in the range [−𝑏, 𝑏], the patch 𝑃 is rotated by 𝑟 ∈ â(−𝑏, 𝑏) or

scaled by a factor of 𝑠 ∈ â(−𝑏, 𝑏), both in the 𝑥 and 𝑦 axis. With 𝑃 ′ being the transformed

patch, pixel relocation could be expressed by the Affine Transformation 𝑃 ′ = 𝐴𝑃 + 𝑐 ,

with the augmented matrix 𝐴 taking the form of:

𝐴 =

⋃︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑠 cos 𝑟 − sin 𝑟 0

sin 𝑟 𝑠 cos 𝑟 0

0 0 1

⋂︀

⎥

⎥

⎥

⋀︀

(4.2)

The same operation is performed on the correspondent target 𝑇 , using the same

𝑟 and 𝑠. Intensity interpolation in patches is bicubic, while targets use nearest neighbor

interpolation, to not generate intensity values different from 0 or 1. When the scale op-

erations results in a zommed out patch, new pixels are Ąlled with a symmetric strategy,

mirroring the same pixels already present in the border.

4.3.3 Flips

Flips add additional synthetic data, exploring the horizontal symmetry of the

hippocampus. The use of vertical Ćips would be useful in the sense of being able to

recognize scans where the head is rotated, useful if global rotation invariance is intended

for the model.

Consider 𝑃ℎ(𝑥, 𝑦) the result of a horizontal Ćip. Let 𝑋 and 𝑌 represent the

maximum number of rows and columns, respectively, in a patch. 𝑃ℎ(𝑥, 𝑦) can be expressed

as:

𝑃ℎ(𝑥, 𝑦) = 𝑃 (𝑥, 𝑌 − 𝑦) (4.3)

In a similar fashion, a vertical Ćip 𝑃𝑣(𝑥, 𝑦) can be expressed as:

𝑃𝑣(𝑥, 𝑦) = 𝑃 (𝑋 − 𝑥, 𝑦) (4.4)
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4.3.4 Gaussian Noise

1.5T MR acquisitions generally appear more noisy and lower quality than 3T,

although 3T images present more high frequency noise (SOHER et al., 2007). Data aug-

mentation with Gaussian Noise addition is an attempt to simulate the presence of lower

quality scans, and make the networks more immune to noise.

Given a patch shape of 𝑋 rows and 𝑌 columns, a noise matrix 𝑀 corresponding

to the same shape is generated, with all values 𝑧 randomly selected from a Gaussian

distribution 𝐺, with the following probability-density function (CHEN, 2015):

𝐺(𝑧) =
1

à
√

2Þ
𝑒⊗

(z−µ)2

2σ2 (4.5)

With mean Û, variance 𝑣, and standard deviation à =
√

𝑣. The noisy patch 𝑃𝑛

is then generated following:

𝑃𝑛(𝑥, 𝑦) = 𝑃 (𝑥, 𝑦) + 𝑀(𝑥, 𝑦) (4.6)

4.3.5 Soft Target

Inter-rater variability is a important problem in segmentation applications. Dis-

agreement between experts is common, specially in more complex structures such as the

Hippocampus. Machine learning models learn the segmentation strategy of the rater who

produced the ground-truth data, which might not agree with a different protocol present

in, e.g. a different dataset (SOUZA et al., 2018).

Segmentation masks are usually represented by binary masks. To express the

uncertainty around the binary masksŠs border, this thesis proposes a transformation to

the target mask, called soft target. The intention is to have a soft slope around the

segmentation border. Instead of an abrupt change from 0 to 1, pixels approaching the

border from the outside increase from 0 to 0.5 in the border, and from 0.5 to 1.0 from the

border towards the center of the mask. To be able to determine the distances to the border,

a 𝐿1 distance transform is used. The 𝐿1 distance from point 𝑃1(𝑥1, 𝑦1) to 𝑃2(𝑥2, 𝑦2) can

be deĄned as 𝐿1 = |𝑥1 − 𝑥2| + |𝑦1 − 𝑦2|. Assume the operator 𝐷 outputs the L1 distance

map from every pixel with value 0 to the nearest pixel with value 1. Therefore, the soft

target 𝑇𝑠 can be deĄned as:

𝑇𝑠 = 𝑆(Ú(𝐷(1 − 𝑇 ) − 𝐷(𝑇 ))) (4.7)

𝑆(𝑥) =
1

1 + 𝑒⊗x
(4.8)
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𝑀c(𝑥, 𝑦, 𝑍) = 𝑁c(𝐼(𝑥, 𝑦, 𝑍)). Note that 𝑀c is still not a binary mask, and consists of

Softmax or Sigmoid activations between 0 and 1. The Ąnal binary hippocampus mask 𝑀

is only produced after the consensus and post-processing phase.

4.5 Loss Functions

A loss function when training a neural network is a function that penalizes the

model for outputs that do not conform to the training set. It plays an important role in

the optimization process, being what guides the steps taken by the optimizer (BENGIO

et al., 2015). In all described loss functions, consider 𝑜i ∈ 𝑂 the output elements and

𝑡i ∈ 𝑇 the target elements, for 𝑁 pixels in 2D or voxels in 3D. Note that, when training,

the batch can be composed of many patches. In that case, loss for that batch is calculated

as the mean of the loss for each patch. Following are descriptions of loss functions used

on this thesis.

4.5.1 MSE and BCE

When using a sigmoid output activation, Binary Cross Entropy (BCE), Mean

Square Error (MSE) and Dice Loss are examples of commonly used functions in the

literature.

MSE measures the average error between the output and the target by summing

element-wise square of the differences between both.

𝑀𝑆𝐸 =
√︁

N

i
((𝑜i − 𝑡i)2)

𝑁
(4.10)

BCE is a special case of the Cross Entropy (BENGIO et al., 2015), where the

target is binary, and can be expressed as a single activation from 0 to 1, as in the sigmoid

activation. BCE is calculated with:

𝐵𝐶𝐸 =
√︁

N

i
(𝑡i log 𝑜i + (1 − 𝑡i) log (1 − 𝑜i))

𝑁
(4.11)

4.5.2 Dice and Dice Loss

Dice (SUDRE et al., 2017) is an overlap metric widely used in the evaluation

of segmentation applications. Segmentation performance in this thesis is evaluated with

Dice, by comparisons with the manual gold standard ground truth. Dice can be deĄned

as:

𝐷𝑖𝑐𝑒 = 2
√︁

N

i
𝑝i𝑡i

√︁

N

i
𝑝2

i +
√︁

N

i
𝑡2
i

(4.12)
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Where 𝑝 and 𝑡 are binary voxels from the prediction and target volume. To use

Dice as a loss function, one can simply optimize 𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1−𝐷𝑖𝑐𝑒, therefore optimizing

a segmentation overlap metric.

𝐷𝑖𝑐𝑒𝐿𝑜𝑠𝑠 = 1 − 2
√︁

N

i
𝑜i𝑡i

√︁

N

i
𝑜2

i +
√︁

N

i
𝑡2
i

(4.13)

Here, the binary 𝑝 is replaced by the probabilistic sigmoid output of the network,

𝑜. DiceLoss works over probabilistic values from the output, while the metric uses strictly

0 and 1 binary values. This allows for optimization of a probabilistic output from the

network, helping in early convergence and smoothness while training. When used as a

Loss function in this work, 𝑂 and 𝑇 are 2D.

4.5.3 GDL and Boundary Loss

To take into account background information, a Softmax of two-channels repre-

senting background and foreground is used as an output (Figure 17). However, in many

segmentation applications, there is an unbalance between foreground and background la-

bels, requiring some form of weighting to the less represented label. One recently proposed

function that satisĄes that requirement is the Generalized Dice Loss (GDL) (SUDRE et

al., 2017).
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Figure 17 Ű A visual representation of (a) background target in channel 0 and (b) fore-
ground target in channel 1, in a Softmax target. 1 is white and 0 is black.
Note that summing both channels would sum to 1 in every pixel.

GDL weights the loss value by the presence of a given label in the target, giving

more importance to less present labels. This solves a class imbalance problem that would

emerge when using Dice Loss while including background as a class. Let 𝑡c represents

channel 𝑐 in a 𝑇 (𝑐, 𝑥, 𝑦) softmax target. Considering 𝑤c the inverse contribution of channel
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𝑐 in the evaluated slice or volume, deĄned by 𝑤c = 1/(
√︁

N

i
𝑡ci)2, GDL is deĄned by, for

the two channel case:

𝐺𝐷𝐿 = 1 − 2
√︁

1

c=0
𝑤c

√︁

N

i
𝑡ci𝑜ci

√︁

1

c=0
𝑤c

√︁

N

i
𝑡ci + 𝑜ci

(4.14)

In this case, 𝑜c is channel 𝑐 of the softmax output, where 𝑜0 would be in practice

the output softmax probabilities for the background and 𝑜1 the foreground (hippocampus)

channel.

In 2019 an improvement to GDL was proposed in the form of the Boundary

Loss (KERVADEC et al., 2019). KervadecŠs work suggests that a loss functions that

takes into account boundary information can improve results, specially for unbalanced

datasets. Boundary Loss improves GDL by considering it a "regional" loss, and adding a

second term, named Surface loss. In theory, the surface loss represents the sum of normal

distances between the target border and prediction border. However, in a differentiable

approximation, the surface loss 𝐿S is deĄned by the sum over channels 𝑐 of the element-

wise multiplication between: 𝐷c

Si
, the Euclidian distance map of the target in channel 𝑐;

and 𝑆c

F i
, the softmax probabilistic output in channel 𝑐.

𝐿S =
1

∑︁

c=0

N
∑︁

i

𝐷Sci𝑆F ci (4.15)

Foreground Target

Prediction

Target Distance Map

Surface Loss

Figure 18 Ű Simulated Surface Loss, only in the foreground channel. The targetŠs dis-
tance map is element-wise multiplied by the corresponding channel in the
prediction, in this case, the foreground. Yellow corresponds to high values
and purple low values. Notice the output loss has high values where the pre-
diction distances itself from the target.
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In the practical implementation, the Surface Loss has as inputs the distance maps

to the target, and the corresponding softmax predictions. An illustration of this process in

a simulated target, only in the foreground channel, is displayed in Figure 18. Notice that

this does not gives weight to the overall area of the target, only to the distance between

target and output borders. Consider the case that the prediction is completely inside the

target but smaller (undersegmentation). The resulting value from the sum of the Surface

Loss would still be higher than a perfectly aligned case, due to the negative values from

the distance map when inside the target.

Finally, for the Ąnal Boundary Loss equation, it is necessary to balance the con-

tribution of both components with a weight, deĄned as Ð in the following Boundary Loss

(BDL) equation:

𝐵𝐷𝐿 = Ð 𝐺𝐷𝐿 + (1 − Ð) 𝐿S (4.16)

Where 𝐺𝐷𝐿 is the regional component of the loss function, and 𝐿S is the Surface

Loss. The weight factor Ð changes from epoch to epoch. The weight given to the regional

loss is shifted to the surface loss, with Ð varying from 1 in the Ąrst epoch to 0 in the last

epoch. The intention is to Ąrst optimize the localization and area of the target, and in

later epochs, optimize the border distances with the Surface Loss. This thesis follows the

original implementation in (KERVADEC et al., 2019), where more detail can be found

on the deduction of 𝐿S.

4.6 Training Methodology

Each network (Figure 10) is trained separately from the other networks, but using

exactly the same hyperparameters. Input batches while training are constructed with a

Ąxed number of patches on the corresponding orientation. An epoch corresponds to the

network seeing a single patch from every slice in the training set. The maximum number

of epochs a training process is allowed to go is also Ąxed.

Neural network training performs adjustments to weights 𝑤 present in the net-

work, which in the case of a CNN are convolutional kernel values. These weights are

changed based on values returned by the loss functions, that measures how "wrong" an

output is in relation to a target, which is assumed to be the expected output. The gra-

dient Ów of a weight represents the change in loss caused by a change in the weights, in

other words, a derivation, and guides the training process in the direction of minimizing

the loss. In this thesis, the gradient for each weight was calculated using backpropagation

in the form of PyTorchŠs Autograd (PASZKE et al., 2017). The optimization process is

controlled by an optimizer, and three were used on this thesis: Stochastic gradient descent

(SGD), Adaptative momentum estimation (ADAM) and RectiĄed ADAM (RADAM).







Chapter 4. Method 47

if only one is present (Figure 20). This post processing is performed after the average

consensus of all networks and threshold application.

4.8 3D U-Nets and 3D fine tuning

For the sake of comparison, a 3D U-Net architecture from the literature was

trained in our data (ISENSEE et al., 2017). Training of a fully 3D deep network is more

computationally intensive and convergence is harder due to the addition of a whole other

dimension. The network was trained with batches of MRI volumes as input, and cor-

responding 3D masks as targets. The output also goes through the 3D Labeling post

processing to remove small false positive volumes.

Sagittal Modified
UNet 

Coronal Modified
UNet 

Axial Modified
UNet 

Activation 
Consensus is also an Input

to the 3D UNet

Final Segmentation3D Labeling 
post-processing

3D UNet

Trained with 
original 3D input and target

Figure 21 Ű A 3D U-Net added to the original methodology, as a Ąne-tuning step after
building the consensus.

Also, experiments where performed on including the same 3D U-Net architecture

as a Ąne tuning phase of this method. In this case, the 3D network is trained with the

consensus activation mask generated by the previous method (Figure 21), before post pro-

cessing, and the original image, in separate channels, forming a 4D input. Post processing

is applied to the output of the 3D Fine tuning network.
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5 Results

Many experiments were performed to validate the various ideas described in the

previous Chapter. Dice in the test set after training of all involved networks is the eval-

uation metric used to deĄne what is the better result. Dice is calculated considering the

output volume from our full methodology and the target volumetric hippocampus mask,

except for the Ąrst Early Experiment (Table 1). Many hyperparameters need to be tuned,

including the choice of Loss function, optimizer, learning rate, augmentation strategy, ar-

chitecture modiĄcations and so on. The HarP dataset was used in most later experiments,

while MNI-HCUnicamp was used in part of the early experiments.

After deĄning the best hyperparameters, the Ąnal methodology is put to the

test against other methods from the literature, in the public HarP test set and on the

whole HCUnicamp dataset. Qualitative and quantitative results are presented. Note that

HCUnicamp was reserved as a Ąnal test set and was not involved on hyperparameters

deĄnition.

Finally, as a Ąnal experiment, adaptation to the HCUnicamp dataset was at-

tempted, using a hold-out approach. The Ąnal methodology is trained and tested in dif-

ferent parts of the HCUnicamp, in some cases including the HarP dataset, to verify the

generalization capabilities of this methodology.

5.1 Methodology Development

In this section, results in many hyperparameter modiĄcations over the method-

ology are reported, leading to a Ąnal Ąxed method. Those choices include: optimizer of

choice and related parameters; loss function; data augmentation strategies; consensus and

post-processing parameters and so on. Whenever a hyperparameter is being experimented

on, all other parameters are Ąxed, unless otherwise speciĄed.

5.1.1 Early Experiments

Orientation DICE Loss (Dice) BCE (Dice) MSE (Dice)

Sagittal 0.9474 0.9293 0.8991
Coronal 0.9406 0.9145 0.8787
Axial 0.9412 0.9111 0.8080

Table 1 Ű Initial experiments with loss. Validation Dice is reported for the U-Net output
slice, with MNI-HCUnicamp as a dataset.





Chapter 5. Results 50

Test Dice Residual Connections Extended 2D ResNet34 Weights VGG11 Weights

0.9333 - - - -
0.9482 - - -
0.9553 - -
0.9584 -
0.9630 -

Table 2 Ű Showing the improvements on MNI-HCUnicampŠs test set, volumetric Dice after
including our changes to the U-Net base architecture of each network, and
performing consensus. 322 input patchs were used.
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Figure 23 Ű (a) Grid search for the optimal learning rate in MNI-HCUnicamp (blue) and
HarP (red). Training accuracy curves for (b) baseline U-Net architecture (c)
modiĄed U-Net Architecture in MNI-HCUnicamp, with both used the same
training hyperparameters and 322 patch size.

Now, to select the best initial learning rate for SGD, in MNI-HCUnicamp, a grid-

search was performed, Ąxing it at 0.005 for this speciĄc data. At this point, training in the

public HarP dataset was included in the methodŠs development, with another grid-search

performed to conĄrm the optimal learning rate for SGD (Figure 23). 0.9 momentum is

still used. Although higher learning rates such as 0.05 returned slightly better results in

the test set, that high learning rate often led to unstable networks and divergence in some

cases (Figure 24). Hence, this work sets in 0.005 for SGDŠs initial learning rate.

Description MNI-HCUnicamp (Dice) HarP (Dice)

Center 128x128 crop 0.9485 -
Random 16x16 patch, 80% positive 20% negative 0.8676 -
Random 32x32 patch , 50% positive 50% negative 0.9178 -
Random 32x32 patch, 80% positive 20% negative 0.9482 -

Random 32x32 E2D patch, 80% positive 20% negative 0.9630 0.8546
Random 64x64 E2D patch, 80% positive 20% negative 0.9719 0.8748

Table 3 Ű Different ways used to perform patch selection, and early experiments results.
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Figure 24 Ű (a) 0.005 initial learning rate for SGD in HarP provided more stable training
than (b) 0.05 and other higher learning rates, even with slightly lesser Dice.

In Table 3, some options for patch selection used in this thesis are listed and

tested. Changes between each option are on the size of the patches and the balance

between positive and negative patches. For 162, one less U-Net layer was used, with 3

Max Pool/Transposed Convolutions instead of 4. Smaller patches resulted in less stable

training. 80/20% balance between positive and negative patches, respectively, resulted in

better convergence and less false positives than a 50/50% balance. With 642 presenting

better results in both datasets, it was Ąxed as the patch selection strategy from here for-

ward. The use of random patches with neighbour slices (E2D) instead of center crop 1282

slices also reduced overĄtting, while increasing the number of false positive activations.

However, these false positives are handled by the 3D labeling post processing.

After noticing the volbrain silver standard masks presented in MNI-HCUnicamp

were easy to learn from, and not completely representative of the problem at hand, ex-

periments migrated to mainly using HarP as the training, validation and testing dataset.

ModiĄcations over the network architecture were also tested in HarP, including the addi-

tion of Batch Normalization (Figure 25). Not using batch normalization led to divergence

in many cases.

5.1.2 Hyperparameter Experiments

Some of the most relevant hyperparameters experiments test results are show-

cased in this section, in a hold-out approach to HarP. While training on HarP with an

80% holdout training set, an epoch consisted of going through around 5000 sagittal, 4000

coronal and 3000 axial random patches extracted from slices with presence of hippocam-

pus, depending on which network is being trained, with a batch size of 200. The max
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Figure 25 Ű Dice during training and validation in HarP, for (a) Base U-Net architecture
(b) Our modiĄed architecture. Both used the same training hyperparameters,
with 322 patch size.

Aug. Chance (%) Description

1 100% Intensity transformation with 𝑎 = 0.05.
2 100% Intensity transformation with 𝑎 = 0.10.
3 20% Rotation and scale with 𝑏 = 10.
4 20% Rotation and scale with 𝑏 = 20.
5 20% Horizontal Ćip.
6 20% Gaussian noise with Û = 0 and 𝑣 = 0.0002.
7 20% Soft Target with Ú = 1.0
8 100% Soft Target with Ú = 1.5
9 20% Random Horizontal and/or Vertical Ćip.

Table 4 Ű Description of speciĄc transformation parameters used in hyperparameter ex-
periments, with the % chance of application after patch selection and parame-
ters description. Refer to Section 4.3 for more detailed descriptions.

number of Epochs allowed is 1000, with a patience early stopping of no validation im-

provement of 200 epochs. Weights are only saved for the best validation Dice.

A variety of combinations of transformations were tested for data augmentation

purposes. In this section, a set of augmentations applied to a patch will be represented as

𝑥, 𝑦, 𝑧..., with 𝑥, 𝑦, 𝑧 referring to the Aug. number in Table 4, in the order of application.

If the transformation has a Chance lower than 100%, its application can be skipped. As

an example, intensity modiĄcation followed by horizontal Ćips could be represented as

(1, 5), however, since 5 has a application chance of 20%, there is a 80% chance that the

horizontal Ćip will not be applied. − refers to using the output of the random E2D patch

selection, with no additional augmentation.

From all the results found during the development of this work, it is notable that
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Optimizer Loss Augs. HarP (Dice)

SGD Dice Loss - 0.8760
SGD Dice Loss 2, 4, 6 0.8748
SGD Dice Loss 2, 4, 5, 6 0.8546

ADAM Dice Loss - 0.8829
ADAM Dice Loss 2 0.8820
ADAM Dice Loss 4 0.8827
ADAM Dice Loss 6 0.8832
ADAM Dice Loss 7 0.8675
ADAM Dice Loss 8 0.8801
ADAM GDL - 0.8830
ADAM GDL 1, 3, 6 0.8862
ADAM Boundary - 0.9068

RADAM Boundary 1, 3, 6 0.9117
RADAM Boundary 1, 3, 6, 9 0.9127
RADAM Boundary - 0.9133

Table 5 Ű Augs. refers to what data augmentation transformations were used, from Ta-
ble 4. The bolded results represents the Ąnal models used in the next section.
All tests in this table use 642 E2D patches and the modiĄed U-Net architecture.

the random patches made the most impact in avoiding overĄtting. Data augmentation

techniques besides the random patch extraction only impacted overlap results in HarP

slightly, in some cases even making results slightly worse in testing (Table 5). This was

also veriĄed using different optimizers and loss functions. Note that the Soft Target trans-

formation did not result in improvements, and was not used in the Ąnal method. Data

augmentationŠs most relevant impact was avoiding early stopping due to no validation

improvements. This would lead to unstable networks in some cases. An example of an

unstable network can be seen in Figure 22(b), where the axial CNN is performing under

the other CNNs, causing more variance in the results. Using Horizontal and Vertical Ćips

(Aug. 9) consisted of an attempt to achieve global rotation invariance, while testing with

artiĄcially rotated volumes and an orientation detector. However, global rotation invari-

ance was not achieved. Thus, the requirement for a speciĄc orientation for the head in the

input volume is still maintained. This can be easily achieved with an automatic MNI152

registration as a pre-processing step, which is provided as an option in this method.

While using only one channel sigmoid activations as an output, recall that early

experiments deĄned Dice Loss as the best convergence and results, beating MSE and BCE

(Table 1). Using a softmax output and GDL gave similar results to Dice Loss. However,

implementation of the recent Boundary Loss resulted in better test Dice, under the same

hyperparameters (Table 5). Attempts at changing the GDL term on Boundary Loss to

DICE Loss did not return any improvements. Additionally, changing the way the weight

Ð is changed over the training epochs also did not return better results than the original
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due to improved training stability and results (Figure 26). Although RADAM is robust

to initial LR variance, a study comparing RADAM with 10⊗2 to 10⊗4 led to the choice

of 10⊗3 as the initial LR. Some experiments were performed on learning rate scheduling.

Between multiplying by 0.1 after 125, 250 or 500 epochs, or multiplying by 0.9 after every

100 epochs. The Ąnal choice in scheduling is multiplication by 0.1 after 250 epochs, its

impact showcased in Figure 26(c).

For the experiments in the next section, both results in bold in Table 5 were

used as representation of the best method, representing using augmentation or not using

augmentation.

Thus, the Ąnal methodology uses RADAM as optimizer, with Boundary Loss,

0.001 initial LR, multiplied by 0.1 after 250 epochs, with 200 epochs of patience and a

maximum of 1000 epochs. The modiĄed U-Net architecture is employed, with the addition

of residual connections, batch normalization, E2D 642 random input patches and VGG11

encoder weights.

Of notice is the improved stability of the Ąnal method (Figure 26(d)) in com-

parison to the early experiments (Figure 22(b)), showcased by the boxplots comparing

individual networks to the consensus.

5.1.3 3D Unet and 3D Fine-tuning

For comparisonŠs sake, this work also experiments with an off-the-shelf 3D U-

Net architecture, from Isensee et al. (ISENSEE et al., 2017), originally a Brain Tumor

segmentation work. ADAM is used as an optimizer for DICE Loss, with 0.001 initial

learning rate and HarP 160x160x160 center crops as input. SGD when used had 0.05

initial learning rate. Training of a 3D architecture requires much more memory due to the

use of 4D kernels, (3D kernels with many channels). Hence, the batch size was limited to

2 volumes. Training had a maximum number of epochs of 200, with a patience of 20.

Method Optimizer Augs. HarP (Dice)

3D U-Net SGD - 0.8493
3D U-Net ADAM 2, 6 0.8596

E2D Consensus with 3D Fine tuning ADAM 2, 6 0.8748
E2D Consensus with 3D Fine tuning RADAM 2, 6 0.9077

Table 6 Ű Results from experiments with 3D architectures were not superior to the initial
E2D Consensus methodology.

Using a fourth 3D U-Net as a consensus generator/error correction phase (Fig-

ure 21), the 3D Ąne tuning, returned better results than just training the 3D network

alone. However, results are similar to the original methodology without the 3D U-Net

(Table 6). Once again, the RADAM optimizer performs better than ADAM and SGD.
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Due to the overhead introduced by involving the 3D architecture, the Ąnal methodology

continues to be the E2D Consensus without 3D networks.

5.2 Quantitative Results

In this section, we report quantitative results of our Ąnal method and others from

the literature in both HarP and HCUnicamp. The 3D U-Net experiment is also included

in this comparison.

For the evaluation with the QuickNat (ROY et al., 2019) method, a public imple-

mentation from the author was used, where volumes and target needed to be conformed

to its required format, causing interpolation. As far as we know, the method does not

have a way to return its predictions on the volumeŠs original space. DICE was calculated

with the masks on the conformed space. Note that QuickNat performs segmentation of

multiple brain structures, not only the Hippocampus. For Hippodeep (THYREAU et al.,

2018), a public implementation made available by the author was also used. For more

details, recall that QuickNat and Hippodeep were discussed in Chapter 2.

5.2.1 HarP Results

Deep Learning Methods HarP (DICE)

3D U-Net (ISENSEE et al., 2017) 0.86
Hippodeep (THYREAU et al., 2018) 0.85

QuickNat (ROY et al., 2019) 0.80
(ATALOGLOU et al., 2019) 0.90*

E2DHipseg (this work) 0.90*

Label Fusion/Atlas-based Methods

FreeSurfer v6.0 (FISCHL, 2012) 0.70
(CHINCARINI et al., 2016) 0.85
(PLATERO; TOBAR, 2017) 0.85

Table 7 Ű Reported testing results for HarP. This work is named E2DHipseg. Results with
* were calculated following a 5-fold cross validation.

The best hold-out mean Dice is 0.9133. When using a hold-out approach in a

relatively small dataset such as HarP, the model can be overĄtting to better results in

that speciĄc test set. With that in mind, we also report results with cross validation.

5-fold training and testing is used, where all three networks are trained and tested with

each fold. With 5-fold our model achieved 0.90 ± 0.01 Dice. Results reported by other

works are present in Table 7. Our methodology has similar top performance to Atalaglou
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et al. recent, simultaneous work (ATALOGLOU et al., 2019). Interestingly, the initial

methodology of both methods is similar, in the use of multiple 2D CNNs.

5.2.2 HCUnicamp Test

HCUnicamp (Controls)

Method Both (Dice) Left (Dice) Right (Dice) Precision Recall

3D U-Net (ISENSEE et al., 2017) 0.80 ± 0.04 0.81 ± 0.04 0.78 ± 0.04 0.76 ± 0.10 0.85 ± 0.06
Hippodeep (THYREAU et al., 2018) 0.80 ± 0.05 0.81 ± 0.05 0.80 ± 0.05 0.72 ± 0.10 0.92 ± 0.04

QuickNat (ROY et al., 2019) 0.80 ± 0.05 0.80 ± 0.05 0.79 ± 0.05 0.71 ± 0.11 0.92 ± 0.04
E2DHipseg without Aug. 0.82 ± 0.03 0.83 ± 0.03 0.82 ± 0.03 0.78 ± 0.10 0.88 ± 0.06

E2DHipseg with Aug. 0.82 ± 0.03 0.83 ± 0.03 0.82 ± 0.04 0.78 ± 0.10 0.89 ± 0.06

HCUnicamp (Patients)

3D U-Net (ISENSEE et al., 2017) 0.74 ± 0.08 0.48 ± 0.39 0.56 ± 0.36 0.66 ± 0.12 0.87 ± 0.07
Hippodeep (THYREAU et al., 2018) 0.74 ± 0.08 0.48 ± 0.39 0.57 ± 0.37 0.63 ± 0.12 0.91 ± 0.06

QuickNat (ROY et al., 2019) 0.71 ± 0.08 0.47 ± 0.38 0.56 ± 0.36 0.59 ± 0.12 0.92 ± 0.06
E2DHipseg without Aug. 0.77 ± 0.07 0.49 ± 0.40 0.58 ± 0.37 0.69 ± 0.11 0.88 ± 0.07

E2DHipseg with Aug. 0.76 ± 0.07 0.50 ± 0.40 0.58 ± 0.37 0.68 ± 0.11 0.89 ± 0.07

Table 8 Ű Locally executed testing results for HCUnicamp. All 190 volumes from the
dataset are included, and no model saw it on training. The 3D U-Net here is
using the same weights from table 7. Note that QuickNat performs whole brain
multitask segmentation, not only hippocampus.

The HCUnicamp dataset was kept untouched during the thesis, for this Ąnal

experiment. Without involvement in our methodŠs hyperparameter optimization, its now

used as a Ąnal test dataset, including other methods from the literature in the test.

As described previously, the HCUnicamp dataset has lack of one of the hippocampi in

many of itŠs scans (see Figure 7). Table 8 has mean and standard deviation Dice for all

HCUnicamp volumes, using both masks, or only one the left or right mask, with multiple

methods. Şwith Aug.Ť refers to the use of augmentations 1, 3, 6 in training. We also report

Precision and Recall, per voxel classiĄcation, where positives are hippocampus voxels and

negatives are non hippocampus voxels. Precision is deĄned by 𝑇𝑃/(𝑇𝑃 +𝐹𝑃 ) and Recall

is deĄned by 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁), where TP is true positives, FP are false positives and FN

are false negatives. All tests were run locally. Unfortunately, we were not able to reproduce

Atalaglou et al.Šs method for local testing.

Our method performed better than other recent methods on the literature in

the HCUnicamp dataset, even though HCUnicamp is not involved on our methodology

development. However, no method was able to achieve more than 0.8 mean Dice in epilepsy

patients. The high number of false positives due to hippocampus removal is notable by

the low left and right DICE, and low precision. The impact of additional augmentations

was not statistically signiĄcant in the epilepsy domain.

Our method takes around 15 seconds on a mid-range GPU and 3 minutes on a

consumer CPU to run, per volume (Table 9). As other Deep Learning methods, E2DHipseg
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Hippocampus Segmentation Method Approximate Runtime Speed (s/volume)

FreeSurfer v6.0 (FISCHL, 2012) 28800
3D U-Net (ISENSEE et al., 2017) 5

(PLATERO; TOBAR, 2017) 1020*
Hippodeep (THYREAU et al., 2018) 60

QuickNat (ROY et al., 2019) 20
(ATALOGLOU et al., 2019) 15*

E2DHipseg 15
E2DHipseg (with orientation correction) 75

Table 9 Ű Comparison of runtime speed, in seconds per input volume, between recent
hippocampus segmentation methods. E2DHipseg runs faster if orientation cor-
rection of the input with MNI152 pre-registration is not needed. *Reported
times are from local testing in the same computer, using a GPU, except for
Ataloglou and PlateroŠs works, which are reported on the respective papers.

is many times faster than Atlas Based methods. Although the 3D-U-Net approach is heavy

in terms of training difficulty, its inference speed due to most of the processing occurring

in the GPU is notable.

All the code used on its development is available in <github.com/dscarmo/

e2dhipseg>, with instructions for how to run it in an input volume. A free executable

version for medical research use, without environment setup requirements, is available on

the repository. Due to the need for correct head orientation, there is an option to use

MNI152 registration when predicting in a given volume, to avoid problems with different

head orientations (in a similar way to Hippodeep). Even when performing registration,

the output mask will be back in the input volumeŠs space, using the inverse transform.

E2DHipseg does not require additional pre-processing. A GPU is recommended for faster

prediction but not necessary.

5.2.3 Adaptation to HCUnicamp

After seeing the poor results of all methods in the hippocampus resection cases,

additional experiments were performed involving HCUnicamp data in training, to try and

learn to recognize the resection.

The experiments involved making a hold-out separation of HCUnicamp. In the

previous experiment, all volumes were involved in the testing. In this one, hold-out is

performed with balance between control and patients. Note that these results are not

directly comparable with the previous results on HCUnicamp, since the whole dataset

was included in Table 8Šs tests. To avoid confusion, the hold-out training/testing dataset

will be refered to as HCUnicamp-H. Experiments were also performed including only

control volumes or only patient volumes, with the same hold-out approach (Table 10).

Results improve when training on HCUnicamp-H, but the high standard deviation still
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shows that the method is failing to recognize resections.

Trained on Both (Dice) Left (Dice) Right (Dice)

Patients 0.84 ± 0.04 0.60 ± 0.41 0.56 ± 0.42
Controls and Patients 0.86 ± 0.05 0.71 ± 0.36 0.74 ± 0.34

Controls 0.90 ± 0.01 0.89 ± 0.02 0.90 ± 0.01

Table 10 Ű E2DHipseg with networks trained in HCUnicamp-H. Test results for training
in all volumes, only patients or only controls, using hold-out for testing. Results
are in the respective test sets.

Another experiment attempts to generalize to both datasetsŠs patients and con-

trols, at the same time (Table 11). Training is performed concatenating the HarP and

HCUnicamp-H datasets. The datasets where mixed together with a 70% training, 10%

validation and 20% testing hold-out. The presence of patients and controls is balanced

between the sets. Also displayed is performance from testing in a different domain while

training in other.

Trained on Tested on Both (Dice) Left (Dice) Right (Dice)

Harp HCUnicamp-H 0.79 ± 0.07 0.65 ± 0.33 0.68 ± 0.31
HCUnicamp-H HarP 0.50 ± 0.29 0.50 ± 0.31 0.50 ± 0.29

Harp + HCUnicamp-H HarP 0.89 ± 0.01 0.89 ± 0.01 0.89 ± 0.02
Harp + HCUnicamp-H HCUnicamp-H 0.85 ± 0.04 0.69 ± 0.35 0.73 ± 0.33

Table 11 Ű This table compares the generalization potential when training in one datasetŠs
training set and testing in the otherŠs separated test set. As expected betters
results are achieved when involving both domains in training.

Although the model was able to achieve good overall Dice in both HarP and

HCUnicamp-H when involving both in training, Dice standard deviation only in the left

or right hippocampus still shows signals of problems when dealing with hippocampus

resection. When training only in HCUnicamp-H and testing in Harp, in many cases the

method predicted a resection was present, specially in darker scans, when it wasnŠt, re-

sulting in high false negatives and very low mean Dice of around 0.5.

5.3 Qualitative Results

This section explores 2D and 3D visualizations of results from the presented

method, E2DHipseg, and others.
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(a) (b)

Figure 29 Ű Multiview and 3D render of a (a) Subject A (HCUnicamp patient) and (b)
Subject B (HCUnicamp control). Results are from E2DHipseg. Prediction in
green, target in red and overlap in blue.

(a) (b)

Figure 30 Ű Multiview and 3D render of (a) Subject A and (b) Subject B. Results are
from Hippodeep. Prediction in green, target in red and overlap in blue.
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(a) (b)

Figure 31 Ű Multiview and 3D render of (a) Subject A and (b) Subject B. Results are from
Quicknat. Differences in contrast and orientation are from the conformity
processing required by Quicknat. Prediction in green, target in red and overlap
in blue.

(a) (b)

Figure 32 Ű Multiview and 3D render of (a) Subject A and (b) Subject C, a AlzheimerŠs
Disease case from HarP. Results are from E2DHipseg trained in both HCU-
nicamp (hold-out) and HarP. Prediction in green, target in red and overlap
in blue.
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6 Discussion and Conclusion

This chapter presents extended discussions of the previously presented results

and concluding thoughts on this work.

6.1 Discussion

E2DHipseg uses a modiĄed version of the now traditional U-Net architecture.

Small modiĄcations to the architecture can be advantageous, as showed in this work.

Additionally, two recent publications in the Ąeld helped deĄne E2DHipseg as a competitive

method with the state-of-the-art in the HarP dataset, achieving over 0.90 Dice. Those were

the use of the new RADAM optimizer and the Boundary Loss. This shows that the Ąeld is

still open to advancements in optimizers, loss functions and network architecture. However

they are not guaranteed to return better results in other datasets. Each case requires an

speciĄc study to verify if a modiĄed architecture, RADAM or Boundary Loss will make a

difference in relation to the base U-Net, the ADAM optimizer, GDL, or even other choices

of loss, optimizers and hyperparameters in general.

It is noticeable that this work stopped using the MNI-HCUnicamp dataset after

early experiments. The silver standard volbrain masks present on it where not helping

with better performance on the public HarP benchmark, using gold standard annotations.

The fact that patches are randomly selected and augmented in runtime means

they are mostly not repeated in different epochs. This is different to making a large

dataset of pre-processed patches with augmentation. We believe this random variation

during training is very important to ensure the network keeps seeing different data in

different epochs, improving generalization and avoiding overĄtting. The patch selection

alone was enough to provide lengthy training without overĄtting, and additional data

augmentations did not make much difference in Ąnal results. The random patch selection

in runtime is similar to the Dropout technique (SRIVASTAVA et al., 2014), in that it will

not use all data available in the dataset in every epoch. Better yet, even with all the data

randomness, re-runs of the same experiment resulted mostly in the same Ąnal results,

within 0.01 mean Dice of each other.

One of the Ąrst questions raised when using an ensemble of networks is if the

ensemble brings advantages in comparison to using only one, well trained network. It was

observed that most of the false positives some of the networks produce are eliminated by

the averaging of activations. Also, in some cases, one of the networks fails and the other

two "save" the result. All of this is visible looking at Figure 26(d), and the smaller variance

of the consensus result. Post-processing phases are sometimes avoided when using CNNs,
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but this work shows that tradittional post-processing is still relevant even with most

works focusing on end-to-end Deep Learning approaches. Thresholding and 3D connected

volumes labeling post processing allows the methodology to focus on good segmentation

on the hippocampus area, without worrying with small false positives in other areas of

the brain.

As visible on the results of multiple methods, Dice in the HCUnicamp dataset

is not on the same level as what is seen on the public benchmark. Most methods have

false positives on the removed hippocampus area, in a similar fashion to what is displayed

in Figure 28(b). The fact that QuickNat and Hippodeep have separate outputs for left

and right hippocampus does not seen to be enough to solve this problem. We believe

the high false positive rate is due to textures similar to the hippocampus, present in the

hippocampus area, after its removal. This observation called for conĄrmation with our

medical sciences partners, if the hippocampus was really completely removed, which they

conĄrmed. Although E2DHipseg got better performance than the other tested methods,

QuickNat has better Recall. The recall metric is heavily connected to being able to rec-

ognize what is not the hippocampus (low false negatives). QuickNatŠs higher recall makes

sense with its ability to recognize other structures on the brain. Its multitask approach

seems to help with correctly identifying negatives in ambiguous cases.

Final results report attempts to adapt the methodology to HCUnicamp-H vol-

umes, and test the generalization capabilities of the methodology. Training in HCUnicamp-

H improves results, but the high standard deviation and mistakes on hippocampus resec-

tions is still present. A similar story is seen while analysing results from concatenating the

HarP and HCUnicamp-H dataset in training. The method is able to achieve good overall

Dice in both HarP and HCUnicamp-H, of 0.89 and 0.85, but analysing the structures sep-

arately shows the high standard deviation on missed resections. In cases of false positives

in resections, the left or right Dice will be 0, pulling the mean Dice down drastically. This

is conĄrmed in the qualitative results and does not happen when training and testing

in HCUnicamp-H controls or Harp, as showcased by the similar, low standard deviation

between overall Dice and left/right Dice.

6.2 Conclusion

This master thesis presents a deep learning based hippocampus segmentation

method including consensus of multiple U-Net based CNNs and traditional post-processing,

successfully using a new optimizer and loss function from the literature. The goal was to

surpass the performance of traditional hippocampus segmentation methods and be com-

petitive with the current, rapidly evolving, state-of-the-art of the Ąeld. Additionally, the

hypothesis was raised that current automatic hippocampus segmentation methods would
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not have the same performance on our in-house epilepsy dataset, HC-Unicamp, with some

cases of hippocampus resection.

Quantitative and qualitative results show that E2DHipseg beats traditional meth-

ods in performance and speed. Competitive performance of the proposed method is ob-

served in relation to state-of-the-art deep learning based hippocampus segmentation meth-

ods, in the public HarP benchmark. However, all methods failed to correctly take into ac-

count hippocampus resection, present in the HCUnicamp dataset. This raises the concern

that current automatic hippocampus segmentation methods are not ready to these out-

liers. Even with poor performance when resections were present, E2DHipseg still showed

superior metrics than other methods on HCUnicamp, without involvement of it in the

methodologyŠs development. The Ąnal experiment shows that results are improved when

training on HCUnicamp data, but there is possibility of improvement when dealing with

resection, with changes in the methodology.

6.3 Future Work

Future research plans include a better study of CNN adaptation to abnormalities

such as hippocampus resection, with, as an example, a resection detection phase. More

exploration of 3D networks and different architectures (CHEN et al., 2018) is another

future path. This method could be expanded for segmentation of other brain structures,

or even multiple structures at the same time. Future research plans also include the use

of attention masks (OKTAY et al., 2018), and involvement of multimodal data such T2,

T2-Ćair, DTI and so on.

6.4 Publications

The following works were prepared during the development of this thesis:

6.4.1 Journal Submission

A summarized version of this thesis was submitted to the Journal of Neuroscience

Methods, titled Hippocampus Segmentation on Epilepsy and AlzheimerŠs Disease Stud-

ies with Multiple Convolutional Neural Networks, and is currently on the revision stage.

This is the Ąrst manuscript that includes mention to HCUnicamp and the manual anno-

tations of epilepsy data, and it showcases the difficulty of state-of-the-art hippocampus

segmentation methods with the resections.
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6.4.2 Full Paper

The modiĄed U-Net architecture from this thesisŠs methodology was used in col-

laboration with Gustavo Pinheiro to test the usage of DTI data in brain structure seg-

mentation. The resulting paper is titled Convolutional Neural Network on DTI data for

Sub-cortical Brain Structure Segmentation (PINHEIRO et al., 2019), published in the

International Workshop on Computational Diffusion MRI from the 22nd International

Conference on Medical Image Computing and Computer Assisted Intervention (MIC-

CAI), in Shenzhen, China.

6.4.3 Short Papers

A 3 page short paper titled Extended 2D Consensus Hippocampus Segmenta-

tion (CARMO et al., 2019a) was presented as a poster at the International Conference

on Medical Imaging with Deep Learning (MIDL) in London, July 2019. This publication

detailed an earlier version of the proposed methodology tested in HarP.

Another short paper titled, in portuguese, Segmentação do Hipocampo com Múlti-

plas Redes Neurais Convolucionais 2D Estendido, was published and presented for a local

audience of the EADCA Workshop from UNICAMPŠs School of Electrical and Computer

Engineering, on November 2019, also summarizing the Ąndings of this thesis up until

HarP experiments.

6.4.4 Abstracts

An abstract on the preliminary results of this work named Deep Volumetric

Consensus Hippocampus Segmentation was selected for an oral presentation in the 6th

BRAINN congress, at UNICAMP, on April 2019, displaying initial results of the consensus

methodology.

Initial Ąndings using 2D slices and one single U-Net architecture were published

as an abstract, titled Deep hippocampus segmentation with 2D U-Nets over coronal view,

at the São Paulo-Alberta Brainhack workshop, at UNICAMP, on October 2018.
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