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Resumo

Esta tese de doutorado propõe três contribuições principais no contexto de controle e fil-

tragem com ganhos robustos e escalonados de sistemas lineares discretos com parâmetros

variantes no tempo (do inglês, Linear Parameter Varying – LPV), usando técnicas de

projeto baseadas em desigualdades matriciais lineares (do inglês, Linear Matrix Inequa-

lities – LMIs). A primeira consiste em um tratamento especial dos parâmetros variantes

no tempo com dinâmica conhecida (tais como, funções exponenciais, trigonométricas ou

periódicas). Basicamente, a taxa de variação dos parâmetros é totalmente explorada no

projeto, levando a condições de síntese melhores que as baseadas em taxas de variação

ilimitadas ou com limitantes finitos. Como aplicação, a abordagem é empregada em um

problema de sistema controlado por rede baseado em taxas de amostragem variantes no

tempo. A segunda contribuição é uma nova estratégia para aprimorar o desempenho asso-

ciado ao projeto de controladores e filtros escalonados explorando, sempre que disponíveis,

informações estatísticas dos parâmetros variantes no tempo. A novidade da técnica é pro-

jetar controladores e filtros tratando, de maneira independente, a estabilidade robusta

(assegurada em todo o domínio) e a otimização de desempenho (que prioriza regiões de

maior probabilidade de ocorrência). A principal motivação desse tópico é o problema de

projeto escalonado sujeito a medições inexatas, particularmente quando os valores dos

parâmetros escalonados são obtidos por identificação. Como contribuições complementa-

res no tema, uma nova condição de projeto de filtro H2 e um procedimento sistemático e

generalista para modelar incertezas aditivas afetando os parâmetros escalonados são pro-

postos. Finalmente, o problema de projeto de controladores por realimentação estática

de saída por meio do enriquecimento da dinâmica para sistemas LPV e sistemas lineares

sujeitos a saltos markovianos com cadeias de Markov não-homogêneas é investigado. Um

método de solução expresso em termos de um procedimento iterativo localmente con-

vergente baseado em LMIs é proposto, tendo como principal novidade técnica o fato de

que o controlador é tratado como uma variável de otimização do problema, permitindo a

imposição de restrições de estrutura (como descentralização) e de magnitude no ganho de

controle sem introduzir nenhum conservadorismo adicional. Os benefícios e vantagens das

técnicas propostas são ilustrados por meio de vários experimentos numéricos, incluindo

comparações com outros métodos da literatura.

Palavras-chaves: Sistemas Lineares com Parâmetros Variantes no Tempo, Sistemas Dis-

cretos no Tempo; Desigualdades Matriciais Lineares; Medições Inexatas; Controladores

com Memória; Ganho Escalonado; Ganho Robusto; Controle por Realimentação de Esta-

dos; Controle por Realimentação Estática de Saída; Filtragem.



Abstract

This PhD thesis proposes three main contributions in the context of control and filtering

with robust and gain-scheduled gains of linear parameter varying (LPV) discrete-time

systems using linear matrix inequalities (LMIs) based techniques. The first one relies on a

special treatment of time-varying parameters with known dynamics (such as, exponential,

trigonometric or periodic functions). Basically, the rate of variation of the parameters is

fully explored, leading to improved synthesis conditions when compared to the ones based

on unlimited or bounded rates of variation. As application, the approach is employed in a

networked control system problem based on time-varying sampling rate. The second con-

tribution is a new strategy to improve performance in gain-scheduled control and filtering

exploiting, whenever available, statistical information of the time-varying parameters. The

novelty of the technique is to design controllers or filters treating robust stability (assured

in all the domain) independently of performance optimization (which prioritizes regions

with higher probability of ocurrence). The main motivation of this topic is the problem of

gain-scheduled design subject to inexact measurements, particularly when the values of

the scheduling parameters are obtained by identification. As complementary contributions

in this topic, a new H2 filtering design condition and a systematic and general procedure

to model additive uncertainty affecting the scheduling parameters are proposed. Finally,

the problem of designing static output-feedback controllers by means of the enrichment of

the system dynamics for LPV systems and non-homogeneous Markov jump linear systems

(MJLS) is investigated. For this purpose, the past values of the measured outputs are in-

cluded in the control law. A solution method expressed in terms of a locally convergent

iterative procedure based on LMIs is proposed, having as main technical novelty the fact

that the controller is treated as an optimization variable of the problem, allowing the

imposition of magnitude and structural (as decentralization) constraints on the control

gain without introducing additional conservativeness. The benefits and advantages of the

proposed techniques are illustrated by means of several numerical experiments, including

comparisons with methods from the literature.

Keywords: Linear Parameter-varying Systems; Discrete-time Systems; Linear Matrix

Inequalities; Inexact measurements; Memory Controllers; Gain-scheduled; Robust Gain;

State-feedback Control; Static-Output Feddback Control; Filtering.
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1 Introduction

There exists a class of models versatile enough to appropriately represent non-

linear systems in terms of a family of linear models, linear dynamics affected by time-

varying parameters and time-varying systems obtained by mathematical models or identi-

fication strategies (DE CAIGNY et al., 2009), known in the literature as linear parameter-

varying (LPV) systems (HOFFMANN; WERNER, 2015; KVIESKA et al., 2009; MO-

HAMMADPOUR; SCHERER, 2012; DE OLIVEIRA et al., 2002). The LPV framework

has been investigated for more than two decades in control theory literature, and the

main reason for this fact is certainly the wide range of applicability in industrial, biologic,

economic and many others engineering problems (HOFFMANN; WERNER, 2015; MO-

HAMMADPOUR; SCHERER, 2012). LPV models are mainly characterized by the affine

dependence of the state-space matrices on bounded time-varying parameters, which can

have limited or unlimited rates of variation. If the time-varying parameters only assume

non-negative values and have unit sum, one has a special class of LPV systems, known as

polytopic LPV systems. Concerning the synthesis of filters and controllers for LPV sys-

tems, generally associated to the optimization of performance criteria, such as the Mean

Square Error (MSE), energy-to-peak gain, or the H2 and H∞ norms, two main strategies

arise. The first aims to design controllers and filters with robust (parameter-independent)

gains, that is, the control law or the filter do not require a real-time update. This can

be considered the simplest design in terms of computational resources but, on the other

hand, tends to provide more conservative results. In contrast, the second strategy is based

on synthesis conditions where the controller and filter matrices are scheduled by the time-

varying parameters. Known as gain-scheduled (SHAMMA; ATHANS, 1991; APKARIAN

et al., 2000; LEITH; LEITHEAD, 2000; RUGH; SHAMMA, 2000; KVIESKA et al., 2009;

DE ARAÚJO et al., 2015; BANDEIRA et al., 2018), this technique clearly demands a

more involved implementation since the time-varying parameters need to be available

online to update the gains but, as benefit, improved performance is possible, in general

being at least no more conservative when compared to the robust paradigm (BARBOSA

et al., 2002; DE SOUZA et al., 2006; DE SOUZA; TROFINO, 2006; DE SOUZA et al.,

2007; DE CAIGNY et al., 2010; DE CAIGNY et al., 2012; LACERDA et al., 2016; ROSA

et al., 2018).

Among the numerical tools developed for synthesis of filters and controllers

for LPV systems, the methods based on Linear Matrix Inequality (LMI) optimization

have received the greatest attention (APKARIAN et al., 1995; APKARIAN; GAHINET,

1995; APKARIAN; ADAMS, 1998; HOFFMANN; WERNER, 2015). The first researches

addressing analysis or control of LPV systems by means of LMI techniques employed
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quadratic stability-based approaches, where the Lyapunov matrix is constant (parameter-

independent), leading to sufficient conditions for stability analysis and control that, in

general, provide conservative results. The main reason for this fact is that, even if the

time-varying parameters have bounded rates of variation, the conditions cannot take into

account the bounds and the worst case scenario, that is, arbitrarily fast variations, is

considered (KAMINER et al., 1993; PERES et al., 1994; MONTAGNER et al., 2005b).

Next, still regarding LPV systems with arbitrarily fast time-varying parameters, control

design was investigated employing polytopic or piecewise-constant structures for the Lya-

punov matrix (DAAFOUZ; BERNUSSOU, 2001; LEITE; PERES, 2004; MONTAGNER

et al., 2005a). Although those results are still only sufficient, they contain the quadratic

stability as a particular case, providing less conservative evaluations. More recently, it has

been proved that the asymptotic stability of discrete-time LPV systems with arbitrary

rate of variation can be characterized by an increasing set of LMI conditions described

in terms of path-dependent Lyapunov functions (LEE; DULLERUD, 2006; LEE, 2006),

generalizing constant (quadratic stability) and affine parameter-dependent Lyapunov ma-

trices (DAAFOUZ; BERNUSSOU, 2001). On the other hand, concerning the rate of vari-

ation of the time-varying parameters, the first improvement was to consider a bound on

the rate of variation whenever it is available. Since this situation commonly appears in

real world applications (AMATO; MATTEI, 2001), this more accurate modeling was em-

ployed in several publications (BARBOSA et al., 2002; AMATO et al., 2005; DE SOUZA

et al., 2006; DE SOUZA et al., 2007; OLIVEIRA; PERES, 2009; DE CAIGNY et al.,

2010; DE CAIGNY et al., 2012; BORGES et al., 2010a; BORGES et al., 2010b; LAC-

ERDA et al., 2016; MOZELLI; ADRIANO, 2019) to solve control or filtering problems

using parameter-dependent Lyapunov functions. However, polytopic and affine LPV mod-

els have a common drawback even when taking into account that the parameters have

bounded rates of variation: always contain the time-invariant situation (frozen parame-

ters) as a particular case. As a consequence, the models require the closed-loop dynamic

matrix (for both control or filtering) to be stable for all the fixed values of the parameters

inside the uncertain domain (GEROMEL; COLANERI, 2006; OLIVEIRA et al., 2009).

This feature can be quite conservative, for instance, when the parameters vary in time

according with a known function, as exponential, trigonometric and periodic functions.

Concerning gain-scheduled design, a possible better performance when com-

pared with the robust scenario comes with a price: an accurate real-time reading of the

time-varying parameters. Such feature constitutes a strong requirement that may be un-

feasible due to physical reasons or due to high cost for implementing sensors. Regarding

the case where the on-line measurement is not an option and estimation is the only feasible

strategy to obtain the values of the time-varying parameters, two important challenges

can be recognized. The first one corresponds to the restrictions imposed by the computa-

tional cost associated with the identification process, since the parameter-dependent filter
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or controller demands a real-time update. In this sense, high performance algorithms as

neural networks and genetic algorithms may be unfeasible depending on the sampling

data frequency required by the process. The second one is associated to the inherent

measurement or identification errors not taken into account by the classical design tech-

niques of parameter-dependent filters and controllers for LPV systems (BORGES et al.,

2008; GAO et al., 2005; GAO; LI, 2014). Although such simplification provides an easier

modeling and, as a consequence, less complex design procedures, discrepancies between

the real and the measured or estimated parameters can carry the LPV system out of

its operating range, implying loss of performance or, in the worst case scenario, instabil-

ity. However, advances addressing this later issue have been achieved with the approach

called control or filtering subject to inexact measurements, where the scheduling param-

eters are assumed to be contaminated by additive and multiplicative noise (DAAFOUZ

et al., 2008; SATO, 2010; SATO; PEAUCELLE, 2013; AGULHARI et al., 2013). Incor-

porating these uncertainties in the design procedure provides theoretical guarantees of

stability and performance. On the other hand, the more complex modeling rises as the

main drawback, implying basically in two negative consequences. As a rule of thumb in

stability analysis and control design for uncertain systems, more parameters imply in more

conservative results when applying relaxations to solve the problems (in general stated in

terms of infinite-dimensional optimization problems). Moreover, the computational bur-

den rapidly becomes prohibitive, limiting the approach to treat one or two scheduling

parameters. In this sense, two relevant issues have not been sufficiently explored in the

literature of gain-scheduled design subject to inexact parameters so far. The first one is if

the theoretical guarantees provided by the more complex modeling can result in a level of

conservativeness such that the robust filtering or control (where the time-varying param-

eters are not required) still is a better option. The second one occurs when the error (of

measuring or estimation) contaminating the scheduling parameters is modeled as an ad-

ditive bounded noise where statistical information is available. Clearly, if this information

is taken into account in the synthesis conditions, improved results can be expected.

Finally, besides the influence of time-varying parameters in the system dynam-

ics, in terms of practical applications, another important feature to be considered is an ade-

quate modeling of abrupt changes in dynamics or operation points and information packet

loss, which are recurring issues in networked control systems (NCS) (HESPANHA et al.,

2007) in the context of LPV systems. A class of systems that allows to simultaneously

model stochastic and time-varying dynamics corresponds to Markov Jump Linear Sys-

tems (MJLS) (COSTA et al., 2005) with non-homogeneous Markov chains (ABERKANE,

2011b; ABERKANE, 2011a; ABERKANE, 2013). This class can be employed to repre-

sent, for instance, MJLS with time-varying probabilities (PALMA et al., 2018d) or loss

of the scheduling time-varying parameters (PALMA et al., 2018b).
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1.1 Investigated Topics

Motivated by the potential of LPV systems in practical applications, this thesis

investigates three methodologies to obtain less conservative solutions in control and filter

design for linear systems affected by time-varying parameters, listed as follows: i) LPV

systems affected by time-varying parameters whose variation in time is a known function

that can be obtained as solution of a linear difference equation with constant coefficients;

ii) LPV systems where statistical information about the time-varying parameters is avail-

able; iii) Memory control of LPV and Non-homogeneous MJLS systems.

Each one of these topics is motivated by practical problems, such as: NCS with

time-varying sampling rates; gain-scheduled design using estimated time-varying param-

eters obtained by real-time identification algorithms; low probability rate of successful

transmission of information packages associated with lower energy consumption and con-

gestion in semi-reliable communication networks.

The following subsections provide a more detailed description of the investi-

gated topics.

1.1.1 Approach to handle time-varying parameters based on the solution of

difference equations

Certainly the main advantage of the methods from the literature that handle

time-varying parameters in terms of polytopic or affine LPV models (parameters lying in

hyperretangles) is the possibility of employing LMIs (convex optimization) to test robust

stability and, in many situations, design controllers and filters. However, as mentioned

before, polytopic and affine LPV models can be conservative when the parameters vary

in time according with a known function, as exponential, trigonometric and periodic

functions. In these situations the LPV models only take into account the minimum and

maximum values of the parameters and variation rates. As a consequence, a family of

functions (possibly infinity) is considered by the LPV model and the particular features

of the original function are not fully taken into account. An alternative to avoid the con-

servative LPV modeling in continuous-time domain was proposed in Geromel e Colaneri

(2006) (see also Oliveira et al. (2009) for a broader discussion), where time-varying param-

eters (generically expressed in terms of complex exponentials) are written as a solution of

a linear differential equation, providing an explicit formula for their variation rate.

The first chapter of this PhD thesis aims to improve the approach from Geromel

e Colaneri (2006) and to develop a new technique, similar to the continuous-time case,

to deal with discrete-time parameters that can be obtained from the solution of a linear

difference equation. The improvement relies on the design of the state-space system to

model the time-varying parameters, more general and simpler than Geromel e Colaneri
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(2006) and Oliveira et al. (2009). The method is then generalized to cope with multiple

parameters and periodic signals by means of Fourier series. As main motivation, the

proposed modeling can be used in many problems, such as control and filtering of discrete-

time LPV systems and also in the NCS context, particularly in the case of time-varying

sampling time (BORGES et al., 2010b).

1.1.2 Gain-Scheduling Filter and control design under uncertain parameter

The second chapter of this thesis handles the problem of control and filter

design of LPV systems using estimated parameters, whose synthesis technique fits in

the area known as gain-scheduled subject to inexact parameters, where traditionally the

noise affecting the scheduling parameters is incorporated in the LPV model as additional

arbitrarily fast time-varying parameters.

As investigated in the conference paper Palma et al. (2018c), when the schedul-

ing parameters are obtained by an identification procedure, the estimation error can be

modeled as an additive bounded noise. In this case the additive noise can be considered as

a random time-varying parameter with a known probability distribution function (PDF).

Clearly, if the PDF information is taken into account in the synthesis conditions, im-

proved results can be obtained. Moreover, other types of time-varying parameters, where

a PDF in general is available, can be found in important problems from control theory:

in design techniques dealing with time-delay (BRIAT et al., 2008; ALABDULMOHSIN

et al., 2014; SERPEN; GAO, 2014; BRUNO; MANUEL, 2017; KHEIRANDISH et al.,

2017; SEURET; GOUAISBAUT, 2018), that occurs, for instance, when transmitting

packets through digital networks; in NCS (HESPANHA et al., 2007) and sampled-data

systems (NAGHSHTABRIZI et al., 2008), where the sampling period depends on the

possibility of access of the communication channel, for instance, in wireless networks with

high concurrency where the access channel is by TDMA based MAC protocol (ZAREEI et

al., 2018; KABARA; CALLE, 2012; TEIMOURI; AHMADIYAN, 2018; HOLLINGER et

al., 2011); in non-homogeneous MJLS (ABERKANE, 2011b; ABERKANE, 2011a), where

the time-varying transition probabilities are associated to packet loss due to channel noise

or distance between source and sink (PALMA et al., 2018d; ABERKANE, 2013). Note

that, in all those examples, the time-varying parameters usually depend on a probability

function.

The main contribution of Chapter 3 is the proposition of a design procedure

(state-feedback control and full-order filtering with an H2 performance criterion) capa-

ble to deal with three kinds of time-varying parameters: arbitrarily fast; limited rate of

variation; and random but with a known PDF. To handle the latter, the PDF is taken

into account using a heuristic, which basically optimizes the performance only in a certain

range of values of the parameters (called sub-domain) where the probability of occurrence
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is higher. As a consequence, not only the guaranteed costs, but the actual worst case

H2 norm of the closed-loop system is improved. Two additional technical contributions

are presented in Chapter 3: i) Unlike all the approaches found in the literature dealing

with additive uncertainty affecting the scheduling parameters, a generic and systematic

procedure to deal with an arbitrary number of scheduling parameters for both polytopic

and affine uncertainty is proposed in this thesis, considering arbitrarily fast or bounded

rates of variations. Explicit formulas and an efficient algorithm are employed to consider

the saturation effect of the noise parameters over the scheduling parameters without con-

servatism; ii) As a contribution in the context of H2 full-order LPV filtering, a new design

condition based on LMIs and scalar search is proposed. The condition is only sufficient

but it can be shown that a known condition from the literature can be obtained as a

particular case.

1.1.3 LMI-based solution for memory static control of LPV system

Seeking to improve performance in robust control and filtering design prob-

lems, one among many strategies in the literature is the artificial enrichment of the system

dynamics by introducing past values of the states or outputs in the control law or in the dy-

namics of the filter. This technique has been used in filtering and control of time-invariant

uncertain systems (LEE et al., 2009; LEE et al., 2014; LEE et al., 2015; FREZZATTO

et al., 2015; LEE et al., 2015; LEE et al., 2016; ROMÃO et al., 2017; FREZZATTO et

al., 2018; FREZZATTO et al., 2019). Basically applying the Lyapunov stability theory

to an augmented system where the past information (states or outputs) is considered. In

general, as the number of past information increases, the possibilities of providing better

stabilization and performance (e.g., in terms of H2 and H∞ norms) augment.

In this sense, the enrichment of the system dynamics allied with the robust

design arises as an appealing alternative to provide control laws that produce better

performance, with applications in fields like engineering, mechanics, mathematics and

economy (MOHAMMADPOUR; SCHERER, 2012), basically, the only price to be paid

is a larger buffer for storage of past information.

Note that control design with enrichment of system dynamics can admit fea-

sible solutions when the traditional techniques fail. Particularly in the NCS context, such

feature allows to employ less reliable communication networks (lower successful trans-

mission probabilities) implying energy and resources saving and minimizing the network

traffic (DURAN-FAUNDEZ et al., 2018; PALMA et al., 2017; PALMA et al., 2018a).

Although there are several works in the context of design of memory filters and

memory control laws, Chapter 4 of this thesis aims to meet the demand of research in the

field of synthesis of memory control laws applied to LPV, MJLS and non-homogeneous

MJLS (NHMJLS) cases, which, to the best of the author’s knowledge, have not been in-
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vestigated in the literature so far. Additionally, there are few approaches in the literature

that handle static output-feedback problem for systems where all matrices are affected by

uncertainties. In this context, the main challenge is that the strategies used to formulate

synthesis conditions in terms of LMIs in the case of time-invariant parameters, as congru-

ence transformations and the concept of eigenvalues, are not useful to deal with systems

affected by time-varying parameters, as LPV or NHMJLS systems.
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2 A less conservative approach to handle dis-

crete time-varying parameters in linear sys-

tems with applications in NCS

2.1 Introduction

This chapter presents a new modeling for time-varying parameters that can

be obtained as solutions of difference equations. Among the signals that can be treated

using this approach, one can cite: i) discrete-time exponential functions that can be used

to describe, for instance, discretized systems found in NCS framework and heat transfer

functions; ii) trigonometric functions such as cosine and sine, whose combination can de-

scribe the elliptical movement of a satellite around a celestial orb or the route of unmanned

vehicles in a close circuit in industries, mineral exploration, among others; iii) any peri-

odic function, which, in general, can be exactly described by Fourier series in discrete-time

systems, being expressed as a sum of complex exponential terms. The main advantages

of the modeling based on difference equations are: i) to provide solutions when meth-

ods that require stability for all the fixed values of the parameters inside the uncertain

domain (pointwise stability) fail; ii) to yield less conservative results (in terms of better

performance indexes and larger range of feasibility) when compared with other condi-

tions available in the literature; iii) lower computation cost, comparable with the simpler

but more conservative approaches (based on arbitrary variation) and more numerically

efficient than the less conservative approaches (based on bounded rates of variations).

Numerical comparisons with the standard polytopic modeling (bounded and unbounded

rates of variation) in the context of H∞ state-feedback control and H∞ full order filtering

of LPV systems are presented to illustrate the mentioned advantages.

Finally, a practical application of the proposed modeling in a current active

topic of research in the NCS context is discussed in details. The proposed method can

handle NCS with time-varying sampling time (BORGES et al., 2010b), where the sam-

pling period evolves according with a function that model the following behavior: to avoid

an open loop control operation caused, for instance, by a network collapse (due to net-

work congestion, buffer overflow, etc) and, at the same time, to minimize the load (packet

flow per unit of time), the initial sampling rate starts from a maximum value and, as

the network corrects its problems (reconfiguring itself to reduce the load), the sampling

rate gradually converges to a minimum value (approaching a continuous-time representa-

tion). The same technique can be used to represent the case of NCS where the network

starts from an initial setting that allows a great data flow (due to the low occupation
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of communication channel, the sampling frequency can be maximum) and as other de-

vices access the network (increasing the flow of signals), the network status gradually

converges to a saving work mode (where the sampling period is maximum). This behavior

is illustrated by means of an experiment where a DC servo motor is controlled through a

communication network.

2.2 Motivation

Consider the following discrete-time linear system affected by a time-varying

parameter θ(k)

x(k + 1)=




0 1

0.5 ρθ(k)





︸ ︷︷ ︸

A(θ(k))

x(k), k ≥ 0, θ(k) = λk, λ < 1, ρ ∈ R+. (2.1)

It is well known that Schur stability of the dynamic matrix A(θ(k)) for fixed values of k is

neither necessary nor sufficient to guarantee the robust stability of the LPV system (2.1)

(trajectories x(k) converging to the origin as k tends to infinity). Using the Lyapunov

stability theory, it is possible to formulate robust stability tests using a polytopic modeling

for the dynamic matrix A(θ(k)). Actually, considering that 0 ≤ θ(k) ≤ 1 for all k ≥ 0,

one can apply the change of variables

α1(k) = θ(k), α2(k) = 1 − α1(k), α(k) = [α1(k) α2(k)]′ ∈ Λ2 (2.2)

where

ΛN ,

{

ξ ∈ RN :
N∑

i=1

ξi = 1, ξi ≥ 0, i = 1, . . . , N

}

is the unit simplex of dimension N . Performing the change of variables in A(θ(k)) and

applying a homogenization procedure, the dynamic matrix, also known as a polytopic

time-varying matrix, can be rewritten in the form

A(α(k)) = α1(k)




0 1

0.5 0





︸ ︷︷ ︸

A1

+α2(k)




0 1

0.5 ρ





︸ ︷︷ ︸

A2

, α(k) ∈ Λ2,

where A1 and A2 are the vertex matrices. A simple approach to test the robust stability

of matrix A(α(k)) is to apply the well known quadratic stability test, that is, to search for

a positive definite symmetric matrix P such that

A(α(k))′PA(α(k)) − P < 0, ∀α(k) ∈ Λ2. (2.3)

Dropping the time-dependence of α(k) (since α(k) ∈ Λ2, ∀k ≥ 0) and exploiting the fact

A(α)′PA(α) ≤
∑2

i=1 αiA
′
iPAi (convexity property), the parameter-dependent inequality
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(2.3) can be numerically tested in terms of a finite set of LMIs by solving

A′
iPAi − P < 0, i = 1, 2, P > 0 (2.4)

Note that these LMIs can only be fulfilled if the vertex matrices Ai are Schur (eigenvalues

strictly inside the unit circle). In other words, the polytopic modeling requires the Schur

stability as a necessary condition, being an important source of conservativeness of the

approach when θ(k) has a known dynamics. Lyapunov matrices depending on α(k) can

be used to reduce the conservativeness. In this case, the robust stability can be checked

by searching for a positive definite symmetric matrix P (α(k)) such that



P (α(k)) A(α(k))′P (α(k + 1))

⋆ P (α(k + 1))



 > 0. (2.5)

Adopting the polytopic time-varying Lyapunov matrix: P (α(k)) = α1(k)P1 +α2(k)P2 and

considering the rate of variation of α(k) as arbitrary, i.e. α(k + 1) = β(k) ∈ Λ2, then a

finite set of LMIs that guarantees the feasibility of (2.5) (as well that P (α(k)) is positive

definite) is (DAAFOUZ; BERNUSSOU, 2001)



Pi A′

iPj

⋆ Pj



 > 0, i, j = 1, 2. (2.6)

Although the LMI conditions given in (2.6) are less conservative than quadratic stability,

the stability of the vertices (when i = j) remains necessary (possibly a source of conser-

vatism). Besides, to consider that the time-varying parameters are arbitrarily fast is not

a realistic assumption. In fact, the parameter θ(k) = λk in (2.1) cannot vary instanta-

neously from one to zero in one instant of time. One option to improve the modeling is

to explore the definition of θ(k) and consider that ∆α(k) = α(k + 1) − α(k) is bounded.

In this case,

∆(α1(k)) = λk+1 − λk = λk(λ− 1) ⇒ (λ− 1) ≤ ∆(α1(k)) ≤ 0

and accordingly

∆(α2(k)) = 1 − λk+1 − 1 + λk = λk(1 − λ) ⇒ 0 ≤ ∆(α2(k)) ≤ (1 − λ).

The feasible region for the pairs (α1(k),∆α1(k)) and (α2(k),∆α2(k)) is depicted in Fig. 1

and the feasible region for the vector [α1(k) α2(k) ∆α1(k) ∆α2(k)]′ is given by the polytope










α1(k)

α2(k)

∆α1(k)

∆α2(k)











∈ co

















0

1

0

0











,











1

0

λ− 1

1 − λ











,











1 − λ

λ

λ− 1

1 − λ











,











1

0

0

0

















,

where co{} stands for convex hull. The convex combination of the four vertices provides
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Figure 1 – Feasible region for any (α1(k),∆α1(k)) and (α2(k),∆α2(k)) pairs of time-
varying parameters, obeying α1(k), α2(k) ∈ [0, 1], ∆α1(k) ∈ [(λ − 1), 0],
∆α2(k) ∈ [0, (1 − λ)], α1(k) + ∆α1(k) ∈ [0, 1], α2(k) + ∆α2(k) ∈ [0, 1].

an explicit formula to convert the parameters α1(k), α2(k), ∆α1(k) and ∆α2(k) in terms

of a new parameter (OLIVEIRA; PERES, 2009; DE CAIGNY et al., 2010), say γ(k),

given by










α1(k)

α2(k)

∆α1(k)

∆α2(k)











= γ1(k)











0

1

0

0











+ γ2(k)











1

0

λ− 1

1 − λ











+ γ3(k)











1 − λ

λ

λ− 1

1 − λ











+ γ4(k)











1

0

0

0











.

After converting A(α(k)) to A(γ(k)), P (α(k)) to P (γ(k)) and P (α(k + 1)) to P+(γ(k)),

the following robust LMI can be solved to check the robust stability



P (γ(k)) A(γ(k))′P+(γ(k))

⋆ P+(γ(k))



 > 0, ∀γ(k) ∈ Λ4 (2.7)

Unfortunately, matrix A(γ(k)) is given by (the dependence on k is omitted below)

A(γ) = γ1




0 1

0.5 ρ



+ γ2




0 1

0.5 0



+ γ3




0 1

0.5 ρλ



+ γ4




0 1

0.5 ρ





and the first and fourth vertices of A(γ) are equal to the second vertex of A(α). Conse-

quently, both matrices A(α) and A(γ) can only be Schur stable if ρ < 0.5 (implying that

the maximum eigenvalue of A2 is lower than one). Thus, neither of the LMI conditions

presented previously can assure the robust stability of the system if ρ ≥ 0.5. The reason

for this fact is that the polytopic modeling considering both behaviors (arbitrary and

bounded rates of variation), always contain the time-invariant situation as a particular

case, that is, α(k + 1) = α(k) = α. A solution to surpass such limitation is presented in

next section.
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2.3 Main Contribution: More accurate modeling of time-varying

parameters

The purpose of this section is to propose a less conservative approach to deal

with time-varying parameters that can be expressed as complex exponentials, that is,

solutions of the difference equation α(k+1) = Hα(k), being the continuous-time counter-

part of the method investigated in Geromel e Colaneri (2006) and Oliveira et al. (2009).

There are three motivations to perform this investigation: i) to guarantee the stability of

the time-varying system without requiring Schur stability for each point (frozen values of

k) inside the uncertain domain; ii) to propose a new approach, different from the one pre-

sented in Geromel e Colaneri (2006) and Oliveira et al. (2009), to obtain matrix H , that

is easier to construct and also to generalize to cope with multiple parameters and periodic

signals (such as square, sawtooth or periodic triangular waves) or even aperiodic signals

(such as trigonometric waves with irrational frequencies) using the Fourier series; iii) to

use the new approach to address NCS problems, particularly in the case of time-varying

sampling interval.

2.3.1 Exponential time-varying parameters (θ(k) = λk)

Consider the following linear difference equation

θ(k + 1) − λθ(k) = 0, θ(0) = 1 (2.8)

whose solution θ(k) = λk is precisely the time-varying parameter appearing in (2.1).

Besides, the difference equation provides an explicit formula for the time variation of

θ(k), that is, θ(k + 1) = λθ(k). Let matrix A(θ(k)) in (2.1) be written in the form

A(θ(k)) = A0 + θ(k)A1 =




0 1

0.5 0



+ θ(k)




0 0

0 ρ





and consider the affine Lyapunov matrix P (θ(k)) = P0 + θ(k)P1 and the robust stability

condition 


P (θ(k)) A(θ(k))′P (θ(k + 1))

⋆ P (θ(k + 1))



 > 0.

Replacing the definitions of A(θ(k)) and P (θ(k)), one has



P0 + θ(k)P1 (A0 + θ(k)A1)′(P0 + θ(k + 1)P1)

⋆ P0 + θ(k + 1)P1



 > 0

Using the expression for θ(k + 1) given in (2.8), one has



P0 + θ(k)P1 (A0 + θ(k)A1)′(P0 + λθ(k)P1)

⋆ P0 + λθ(k)P1



 > 0
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After dropping the time-dependence of θ(k), two main possibilities arise to check the

positivity of the resulting quadratic polynomial matrix inequality in terms of convex op-

timization based on semidefinite programming (SDP). Dealing with θ as an interval pa-

rameter, Sum-of-Squares or Gram matrix relaxations could be applied (PARRILO, 2003;

CHESI, 2005), resulting in a set of SDP constraints. On the other hand, employing the

change of variables (2.2) to lift the uncertainty to Λ2, it is possible to apply the exten-

sively used “coefficient check” relaxation, also known as Pólya’s relaxation (SCHERER,

2005; OLIVEIRA; PERES, 2007), providing a finite set of LMIs. The latter strategy,

that presents a good trade-off between accuracy and numerical complexity (OLIVEIRA;

PERES, 2007) can be automatically performed by the Robust LMI Parser (ROLMIP)

(AGULHARI et al., 2019), that was specially created to deal with this type of relaxation.

Note that the proposed stability test is based on a Lyapunov matrix with affine depen-

dence on θ. Higher degrees can improve the accuracy of the results (at the price of a larger

computational effort) and the generalization for a Lyapunov matrix with polynomial de-

pendence of arbitrary degree g on θ(k) is given by

Pg(θ(k)) =
g
∑

i=0

θ(k)iPi (2.9)

with its unit shift given by

Pg(θ(k + 1)) =
g
∑

i=0

λiθ(k)iPi.

2.3.1.1 Numerical experiment

The aim of this example is to find the maximum value of ρ (ρmax) for a fixed

λ ∈ [0.05 1] such that the robust stability of system (2.1) can be guaranteed by a

polynomial Lyapunov matrix given in (2.9) with g = 1, . . . , 3. The results are depicted in

Fig. 2. Note that as λ → 1, the maximum value of ρ converges to 0.5 for all degrees. This

is expected since in this case the parameter λk converges to a time-invariant parameter

λ = 1. In this case, the Schur stability of matrix A(θ(k)) is, actually, necessary. On

the other hand, smaller values of λ provide larger stability margins in terms of ρ that

cannot be certificated by the classical polytopic modeling (as discussed in the previous

section, neither of the LMI conditions (2.5) and (2.7) can assure the robust stability for

ρ ≥ 0.5). The parser ROLMIP, that works jointly with Yalmip (LÖFBERG, 2004), has

been employed to extract the LMIs from the polynomial positivity tests (degree g + 1),

and the SDP solver SeDuMi (STURM, 1999) was used to solve the LMIs.

2.3.2 Generalizations and guidelines

In this section it is discussed how to generalize the new modeling in terms of

treating more than one parameter and also the procedure to obtain the finite dimensional
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Figure 2 – Maximum value of ρ for a given λ ∈ [0.05 1] such that the robust stability of
system (2.1) can be certified by a polynomial Lyapunov matrix (2.9) of degree
g = 1, . . . , 3.

tests systematically.

Consider system (2.1) again but with θ(k) = cos(ωk). This time-varying pa-

rameter1 can be obtained as the solution of the following difference equation

θ(k + 2) − 2 cos(ω)θ(k + 1) + θ(k) = 0, θ(0) = 1, θ(1) = cos(ω). (2.10)

In the general case, that is, considering other sets of initial conditions (there are many),

cos(ωk) is given as a linear combination of θ(k) and θ(k+ 1) (the two linear independent

signals necessary to create a base to the space of solutions). Thus, a Lyapunov matrix

with affine dependence on the time-varying parameters has the structure

P (θ(k), θ(k + 1)) = P0 + θ(k)P1 + θ(k + 1)P2 (2.11)

At this point θ(k) and θ(k + 1) are treated as distinct parameters lying in the intervals

θ(k) , θ1(k) ∈ [−1 1], θ(k + 1) , θ2(k) = cos(ω(k + 1)) ∈ [−1 1]

and using the difference equation given in (2.10), the unit time-shift of these new param-

eters is given in the form



θ1(k + 1)

θ2(k + 1)



 =




0 1

−1 2 cos(ω)





︸ ︷︷ ︸

H




θ1(k)

θ2(k)



 (2.12)

1 Periodic if ω/2π is rational.
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In this new notation the Lyapunov matrix and its unit shift are given by P (θ1(k), θ2(k)) =

P0 + θ1(k)P1 + θ2(k)P2 and P (θ1(k + 1), θ2(k + 1)) , P+(θ1(k), θ2(k)) where

P+(θ1(k), θ2(k)) =P0 + θ1(k + 1)P1 + θ2(k + 1)P2

=P0 + θ2(k)P1 + (2 cos(ω)θ2(k) − θ1(k))P2

=P0 + θ1(k)(−P2) + θ2(k)(P1 + 2 cos(ω)P2)

and the robust LMI to certificate the robust stability is




P (θ1(k), θ2(k)) A(θ1(k), θ2(k))′P+(θ1(k), θ2(k))

⋆ P+(θ1(k), θ2(k))



 > 0,

∀(θ1(k), θ2(k)) ∈ [−1 1] × [−1 1] , [−1 1]2 (2.13)

Consider a slightly modified system (2.1) given by

x(k + 1) =




0 1

φ(k) ρθ(k)





︸ ︷︷ ︸

A(θ(k),φ(k))

x(k), ∀k ≥ 0, (2.14)

with θ(k) = cos(ωk), φ(k) = sin(ωk), ρ ∈ R+. The simplest way to treat the new time-

varying parameter (φ(k)) is to consider the same difference equation given in (2.10) but

with a different initial condition, that is,

φ(k + 2) − 2 cos(ωk)φ(k + 1) + φ(k) = 0, φ(0) = 0, φ(1) = sin(ω). (2.15)

Including affine terms associated to φ(k) and φ(k+1) in the Lyapunov matrix and applying

the same procedure used to treat θ(k), the resulting robust LMI to be solved (omitting

the dependence on k and replacing the dependence on k + 1 by a superscript +) is



P (θ1, θ2, φ1, φ2) A(θ1, θ2, φ1, φ2)′P+(θ1, θ2, φ1, φ2)

⋆ P+(θ1, θ2, φ1, φ2)



 > 0, ∀(θ1, θ2, φ1, φ2) ∈ [−1 1]4.

A different (and clever) possibility is to express sin(ωk) in terms of a linear combination

of θ(k) and θ(k + 1) in (2.10). After some trigonometric manipulations2

sin(ωk) = cot(ω)θ(k) − csc(ω)θ(k + 1).

With this option there are only two parameters, θ(k) and θ(k+1), requiring a less complex

condition similar to (2.13) to be solved. The rule of thumb is to express the maximum

number of parameters as the solution of the same difference equation.

Another important aspect to be discussed is more involved combinations of

time-varying parameters as products and powers. Note that, using the proposed mod-

eling, this issue is, ultimately, just a matter of dealing with higher degree polynomials.
2 csc(ω) and cot(ω) stand for cosecant and cotangent trigonometric functions, respectively.
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For instance, consider the time-varying parameter ψ(k) = sin(ω1k) cos(ω2k)2. Using the

material presented so far, this parameter can be expressed as ψ(k) = φ(k)θ(k)2 with the

formulas to obtain θ(k+ 2) and φ(k+ 2) in terms of θ(k+ 1), θ(k) and φ(k+ 1) and φ(k)

given in (2.10) and (2.15), respectively. If ω2 = ω1, then

ψ(k) = (cot(ω1)θ(k) − csc(ω1)θ(k + 1)) θ(k)2 = cot(ω1)θ(k)3 − csc(ω1)θ(k)2θ(k + 1)

Once all the time-varying parameters were properly modeled following the presented

guidelines, the next step is to define the structure of the Lyapunov matrix, that in this

chapter is considered as polynomial of arbitrary degree g on θ, more precisely

P (θ(k)) =
∑

h1+···+hm≤g

θh1

1 (k) · · · θhm

m (k)Ph (2.16)

where θ(k) = [θ1(k), . . . , θm(k)]′ is a vector ofm time-varying parameters, h = [h1, . . . , hm]′

is a vector with nonnegative integers and the sum produces all monomials up to degree

g. For instance, considering m = 3 and g = 2 one has θ(k) = [θ1(k) θ2(k) θ3(k)]′,

P (θ(k)) = P[0,0,0] + θ1(k)P[1,0,0] + θ2(k)P[0,1,0] + θ3(k)P[0,0,1]

+θ1(k)θ2(k)P[1,1,0] + θ1(k)θ3(k)P[1,0,1] + θ2(k)θ3(k)P[0,1,1]

+θ2
1(k)P[2,0,0] + θ2

2(k)P[0,2,0] + θ2
3(k)P[0,0,2].

To deal with matrix polynomial positivity tests, associated to the robust sta-

bility problem or the synthesis problems presented in next sections, in the case of multiple

parameters, the change of variables (2.2) can be applied in each parameter θi, i = 1, . . . , m,

giving rise to parameters lying in the Cartesian product of m simplexes (named multi-

simplex (OLIVEIRA et al., 2008)). The advantage of this change of domain is that Pólya’s

relaxations can be used and all the trick polynomial manipulations are performed auto-

matically by parser ROLMIP.

Regarding the continuous-time counterpart of the results presented in this

chapter, firstly investigated in Geromel e Colaneri (2006) and Oliveira et al. (2009), note

that the proposed approach is much easier to be applied since, differently from Geromel e

Colaneri (2006) and Oliveira et al. (2009), the difference equation (the differential equa-

tion in Geromel e Colaneri (2006) and Oliveira et al. (2009)) does not need to produce

parameters lying into the unit simplex. This requirement makes the problem of deter-

mining matrix H in (2.12) much more challenging, specially when dealing with multiple

and discrete-time parameters. Although not discussed here, an extension of the proposed

modeling to cope with continuous-time parameters can be viewed as an improvement

with respect to Geromel e Colaneri (2006) and Oliveira et al. (2009). Finally, note that,

ultimately, the proposed approach also deals with parameters in simplexes, but in this

case only to check the positivity of the polynomial matrix inequalities.
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2.3.2.1 Numerical experiment

Consider system (2.1) with θ(k) = cos(ωk). The aim is to analyze the stability

margins in terms of the maximum value of ρ (ρmax) for ω ∈ [0 2π], using polynomial

Lyapunov matrices as in (2.16) of degrees g = 1, . . . , 3. The results are shown in Fig. 3. As

in the experiment given in Section 2.3.1.1, higher degrees for the Lyapunov matrix provide

better results at the price of a larger computational effort. Regarding the maximum values

of ρ, the best results were achieved around ω ≈ π. If a classic polytopic modeling is applied,

no feasible solution can be obtained for ρ ≥ 0.5.
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Figure 3 – Maximum value of ρ for a given λ ∈ [0.0 2π] such that the robust stability of
system (2.1) with θ(k) = cos(ωk) can be certified by a polynomial Lyapunov
matrix of degree g = 1, . . . , 3.

2.3.3 Periodic time-varying parameters

So far the proposed modeling is only capable to deal with time-varying param-

eters obtained as solutions of linear difference equations. However, recall that any discrete-

time periodic signal can be precisely decomposed in terms of a discrete-time Fourier series,

expressed as a sum of complex exponentials. Clearly, the proposed methodology can be

applied to each complex exponential of the series and the price to be paid is a numer-

ical complexity proportional to the number of terms. As an example, consider a classic

time-varying signal, the square wave (sw(k)), depicted in Fig. 4 with period N = 6.

This signal can be represented as

sw(k) =
1
2

+
1
3

cos(
πk

3
) +

780
1351

sin(
πk

3
) +

1
6

cos(πk)
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Figure 4 – Discrete-time square wave of period N = 6.

and, using the proposed modeling, one possible solution is

sw(k) =
1
2

+
1
3
θ1(k) +

780
1351

(cot(
π

3
)θ1(k) + csc(

π

3
)θ2(k)) +

1
6
θ3(k)

with 









θ1(k + 1)

θ2(k + 1)

θ3(k + 1)

θ4(k + 1)











=











0 1 0 0

−1 2 cos(π
3
) 0 0

0 0 0 1

0 0 −1 2 cos(π)





















θ1(k)

θ2(k)

θ3(k)

θ4(k)











. (2.17)

2.3.3.1 Numerical Results

The numerical experiment of previous section is revisited, but this time with

θ(k) being the square wave depicted in Fig. 4. The maximum value of ρ (ρmax) such that

the system is robustly stable as well the numerical complexity associated are shown in

Table 1 assuming polynomial Lyapunov matrices of degrees g = 1, . . . , 3. Considering the

less conservative result (g = 3), note that during three instants of time, the dynamic

matrix assumes the value

Asw(k)=1 =




0 1

0.5 0.773





whose eigenvalues have modulus |λ1| = 0.4193, |λ2| = 1.1923. That is, the matrix is not

Schur stable, but still the trajectories of the state converge to the origin as k tends to

infinity. Observe that this analysis could not be done with the standard techniques from

the literature based on polytopic LPV modeling, because they cannot assure the robust
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Table 1 – Maximum values of ρ and numerical complexity (V is the number of scalar
variables and L is the number of LMI rows) in the robust stability analysis
of system (2.1) with θ(k) being the square wave depicted in Figure 4, using
polynomial Lyapunov matrices of degrees g = 1, . . . , 3..

g ρmax V L Time (s)
1 0.499 15 324 0.30
2 0.638 45 1024 1.38
3 0.773 105 2500 4.64

stability if any time-invariant matrix belonging to the uncertain domain is not Schur

stable.

It is also important to mention that when dealing with periodic time-varying

parameters, the dynamic matrix can be viewed as a periodic time-varying matrix and,

in this case, necessary and sufficient LMI conditions can be applied to test robust sta-

bility (BOLZERN; COLANERI, 1988; FARGES et al., 2007). In this context the Fourier

series approach can be viewed only as an alternative, probably not competitive since it is

only sufficient. As an illustration of this fact, the periodic Lyapunov lemma (see, for in-

stance, de Souza e Trofino (2000, Eq. (4))) is applied to A(θ(k)) given in (2.1) considering

θ(k) = cos(πk) and θ(k) = sw(k) and the value of ρ is maximized such that the resulting

periodic system is assymptotically stable. In this first case ρmax = 1.5 has been obtained,

being 6.84% better when compared to the value provided by the proposed method using

g = 3. In the square wave case ρmax = 1.23 has been achieved (59.12% better than the

proposed technique with g = 3). Nevertheless, the proposed technique can still be useful

when dealing, for instance, with periodic and aperiodic signals simultaneously. In the next

two sections the proposed modeling is evaluated in synthesis problems, like H∞ filtering

and H∞ state-feedback control.

2.4 H∞ filter design

Consider the discrete-time LPV system Gf , described by the following state-

space representation

Gf =







x(k + 1) = A(θ(k))x(k) + E(θ(k))w(k),

y(k) = Cy(θ(k))x(k) + Ey(θ(k))w(k),

z(k) = Cz(θ(k))x(k) + Ez(θ(k))w(k),

(2.18)

where x(k) ∈ Rnx , w(k) ∈ Rnw , z(k) ∈ Rnz , y(k) ∈ Rny , respectively denote the state,

noise input, estimated output and measured output vectors. The state-space matrices

depend on a vector of time-varying parameters θ(k) = [θ1(k), . . . , θN (k)]′ that belongs to

a compact convex set (as the unit simplex or the hypercube) for all k ≥ 0. The aim is to
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design a full-order parameter-dependent filter given by

F =







xf (k + 1) = Af (θ(k))xf(k) +Bf(θ(k))y(k),

zf (k) = Cf(θ(k))xf (k) +Df (θ(k))y(k),
(2.19)

where xf (k) ∈ Rnx , zf (k) ∈ Rnz respectively correspond to the filter state and estimated

output vectors. The estimation error is defined by e(k) = z(k) − zf(k), and its dynamics

is represented by the set of equations below, by connecting the filter (2.19) to the system

(2.18), obtaining the augmented system

Gaug =







x̂(k + 1) = Â(θ(k))x̂(k) + B̂(θ(k))w(k),

e(k) = Ĉ(θ(k))x̂(k) + D̂(θ(k))w(k),
(2.20)

where x̂(k) = [x(k)′ xf (k)′]′ ∈ R2nx , with matrices given by

Â(θ(k)) =




A(θ(k)) 0

Bf(θ(k))Cy(θ(k)) Af(θ(k))



 , B̂(θ(k)) =




E(θ(k))

Bf(θ(k))Ey(θ(k))



 ,

Ĉ(θ(k)) =
[

Cz(θ(k)) −Df(θ(k))Cy(θ(k)) −Cf (θ(k))
]

, (2.21)

D̂(θ(k)) =
[

Ez(θ(k)) −Df(θ(k))Ey(θ(k))
]

.

As performance criterion, the filter is synthesized such that the error dynamics e(k) is

asymptotically stable and the H∞ performance from the disturbance input w(k) to the

estimation error is minimized.

The concepts of H∞ performance analysis for discrete-time LPV systems can

be found in De Caigny et al. (2010) and De Caigny et al. (2012). The matrices of filter

(2.19) can be synthesized by solving a set of parameter-dependent LMI conditions as the

ones presented in Theorem 2.1.

Theorem 2.1. If there exist symmetric positive definite matrices W11(θ(k)) and W22(θ(k)),

matrices W12(θ(k)), K11(θ(k)), K21(θ(k)), K̄(θ(k)), H(θ(k)), Z(θ(k)), Cf(θ(k)) and

Df(θ(k)), with compatible dimensions, that satisfy the parameter-dependent LMI condi-

tion


































−W11(θ(k)) ⋆ ⋆ ⋆ ⋆ ⋆

−W12(θ(k))′ −W22(θ(k)) ⋆ ⋆ ⋆ ⋆



K11(θ(k))A(θ(k))

+Z(θ(k))Cy(θ(k))



 H(θ(k))








W11(θ(k + 1))

−K11(θ(k))

−K11(θ(k))′








⋆ ⋆ ⋆




K21(θ(k))A(θ(k))

+Z(θ(k))Cy(θ(k))



 H(θ(k))








W12(θ(k + 1))′

−K̄(θ(k))

−K21(θ(k))











W22(θ(k + 1))

−K̄(θ(k)) − K̄(θ(k))′



 ⋆ ⋆

0 0




E(θ(k))′K11(θ(k))′

+Ey(θ(k))′Z(θ(k)))′








E(θ(k))′K21(θ(k))′

+Ey(θ(k))′Z(θ(k))′



 −γ2I ⋆




Cz(θ(k))

−Df (θ(k))Cy(θ(k))



 −Cf(θ(k)) 0 0




Ez(θ(k))

−Df (θ(k))Ey(θ(k)))



 −I



































< 0

(2.22)
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for all (θ(k), θ(k+1)) lying in the uncertain domain, then Af(θ(k)) = K̄(θ(k))−1H(θ(k)),

Bf(θ(k)) = K̄(θ(k))−1Z(θ(k)), Cf (θ(k)), and Df(θ(k)) are the filter matrices in (2.19)

that assure a guaranteed cost γ for the H∞ performance of system (2.20).

Proof. Considering the matrices in (2.21), pre- and post-multiplying (2.22), respectively,

by

B =








I2nx
Â(θ(k))′ 0 0

0 B̂(θ(k))′ Inw
0

0 0 0 Inz








and its transpose, one obtains a condition equivalent to the bounded real lemma given

in De Caigny et al. (2010), De Caigny et al. (2012) and de Souza et al. (2006) for the

augmented discrete-time LPV system (2.20).

2.4.1 Numerical results

In order to evaluate the performance of the H∞ filters designed using the new

modeling proposed in the Section 2.3 and to compare with classical polytopic approaches

based on LMIs, a numerical example is proposed. The system matrices are given by

Cz = I, Ez = 0, E = [0 2]′,

A(θ(k)) =




0 1

0.5θ1(k) ρθ2(k)



 ,
Cy(θ(k)) =

[

0 (1 − ρθ2(k))
]

,

Ey(θ(k)) = 1 − 2θ2(k).
(2.23)

where 0 ≤ θ1(k) ≤ 1 and −1 ≤ θ2(k) ≤ 1 are the time-varying parameters with ρ ≥ 0. To

design a full-order filter (2.19) for system (2.18), a necessary condition is that A(θ(k)) is

robustly stable, otherwise the dynamics of the estimation error is unstable. Note that, as

discussed in Section 2.2, for ρ > 0.5 the spectral radius of A(θ(k)) is greater than one in

some instants of time and, by using the classical polytopic approaches, it is not possible to

assure the robust stability of (2.18) and, consequently, the synthesis of a full-order filter

is impracticable. On the other hand, the proposed modeling arises as an alternative to

obtain feasible solutions.

To explore the design of both gain-scheduled and robust H∞ full-order filters,

two cases of time-varying parameters are investigated:

• Case 1: θ1(k) is considered as a discrete-time exponential function (θ1(k) = λk),

while θ2(k) is a cosine wave (θ2(k) = cos(ωk));

• Case 2: θ1(k) is considered constant (θ1(k) = 1k = 1), while θ2(k) is a cosine wave

(θ2(k) = cos(ωk)).

In the filter design, the Lyapunov matrixW (θ(k)) and the extra-decision variablesK11(θ(k)),

K21(θ(k)) of condition (2.22) are described in terms of the polynomial structure (2.16)
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with degree g ≥ 1. The robust filter is obtained using degree zero (gF = 0) and the gain-

scheduled filter is obtained with gF = g in the filter recovery variables (K̄(θ(k)), H(θ(k)),

Z(θ(k)), Cf(θ(k)), and Df(θ(k))) following the structure in (2.16).
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Figure 5 – H∞ guaranteed costs (γ) computed with Theorem 2.1 for the design of (a)
Robust and (b) Gain-scheduled filters for system (2.23) Case 1 (θ1(k) = 0.1k

and θ2(k) = cos(k)) versus ρ > 0; and for the design of (c) Robust and (d) Gain-
scheduled filters for system (2.23) Case 2 (θ1(k) = 1k = 1 and θ2(k) = cos(ωk))
versus ω ∈ [0, 2π] using AV (dash-dotted lines), LV (dashed lines), and DE
(solid lines) approaches with degree g (between parentheses).

For Case 1, the H∞ guaranteed cost is calculated as a function of ρ using

Theorem 2.1 considering λ = 0.1 and ω = 1. The proposed approach based on difference

equations (DE) is compared to the classical polytopic design with arbitrary variation

(AV ) or limited variation (LV ) for both time-varying parameters (θ1(k), θ2(k)). Figs. 5a

and 5b show the H∞ guaranteed costs (γ) computed for the synthesis of, respectively,

robust (gF = 0) and gain-scheduled (gF = g) filters with Theorem 2.1 versus ρ > 0. Note

that, among the three tested techniques, DE clearly provides the lowest guaranteed costs

(γ), and the wider range of feasibility (greatest values for ρ) that can be further improved

with the increase of g. Also observe that, differently from the proposed method, the

performance indexes associated with LV and AV approaches are not noticeably improved
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Table 2 – Computational cost in terms of the scalar variables (V ) and the LMI rows (L)
for the synthesis of robust (gF = 0, g = 1) and gain-scheduled (gF = g = 1)
filters for system (2.23) considering Cases 1 and 2 and using AV , LV and DE
approaches.

Robust Gain-scheduled
AV LV DE AV LV DE

C
a
se

1 V 55 55 65 103 103 137
L 176 264 88 396 2310 297

C
a
se

2 V 45 45 55 69 69 103
L 44 66 44 66 231 99

with the augmentation of g. Concerning the computational effort, Table 2 shows that, to

obtain results close to the ones provided by the AV modeling, the LV approach employs

a greater number of LMI rows (L), and both require the same number of scalar decision

variables (V ). On the other hand, considering the decision variables with the same degrees

(g = 1), the proposed technique is more efficient than AV and LV when using a solver

that penalizes more the number of LMI rows and provides less conservative results (Fig. 5)

than both methods at the cost of a slightly larger number of scalar variables.

For Case 2, the H∞ guaranteed cost is calculated as a function of ω using

Theorem 2.1 considering λ = 1 and fixing parameter ρ = 0.3. Figs. 5c and 5d show the

values of γ computed for the synthesis of, respectively, robust (gF = 0) and gain-scheduled

(gF = g) filters with Theorem 2.1 employing Lyapunov matrices and extra-decision vari-

ables of degree g versus the frequency ω ∈ [0, 2π]. As in Case 1, the performance indexes

associated with LV and AV approaches are not noticeably improved with the augmen-

tation of g. On the other hand, in the gain-scheduled case, the increase of g provides an

improvement in the three tested techniques. Furthermore, the slower is the time-varying

parameter (ω ≈ 0 or 2π) better LV approach performs, while for fast variations (ω ≈ π)

LV tends to provide the same results obtained by AV modeling. Nevertheless, in general,

the DE approach presents the best results in terms of H∞ guaranteed costs. It is impor-

tant emphasize that, even employing a greater computational effort, in the robust case

the LV approach obtains results similar to the ones provided by the AV modeling (see

Table 2). Also observe that the proposed technique is capable to provide less conservative

results using less LMI rows than LV approach.

2.5 H∞ state-feedback design

Consider the discrete-time LPV system G, described by the following state-

space difference equations:
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G =







x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k) + E(θ(k))w(k),

z(k) = Cz(θ(k))x(k) +Dz(θ(k))u(k) + Ez(θ(k))w(k),
(2.24)

where x(k) ∈ Rnx , u(k) ∈ Rnu , w(k) ∈ Rnw , z(k) ∈ Rnz , respectively denote the state,

control input, noise input, and controlled output vectors. The state-space matrices de-

pend on a vector of time-varying parameters θ(k) = [θ1(k), . . . , θN (k)]′ that belongs to a

compact convex set (as the unit simplex or the hypercube) for all k ≥ 0. The aim is to

design a state-feedback control law u(k) = K(θ(k))x(k) such that closed-loop system

Gcl =







x(k + 1) = Acl(θ(k))x(k) +Bcl(θ(k))w(k),

z(k) = Ccl(θ(k))x(k) +Dcl(θ(k))w(k)
(2.25)

with
Acl(θ(k)) = A(θ(k)) +B(θ(k))K(θ(k)), Bcl(θ(k)) = E(θ(k)),

Ccl(θ(k)) = Cz(θ(k)) +Dz(θ(k))K(θ(k)), Dcl(θ(k)) = Ez(θ(k)),

is asymptotically stable and the H∞ performance from the disturbance input w(k) to

the controlled output z(k) is minimized. The state-feedback controller K(θ(k)) can be

synthesized by solving a set of parameter-dependent LMI conditions, as the ones presented

in Theorem 2.2.

Theorem 2.2. If there exist a symmetric positive definite matrix P (θ(k)), matrices

G(θ(k)) and Y (θ(k)) of compatible dimensions that satisfy the parameter-dependent LMI

condition










P (θ(k)) −G(θ(k)) −G(θ(k))′ ⋆ ⋆ ⋆

0 −γ2I ⋆ ⋆

A(θ(k))G(θ(k)) +B(θ(k))Y (θ(k)) E(θ(k)) −P (θ(k + 1)) ⋆

Cz(θ(k))G(θ(k)) +Dz(θ(k))Y (θ(k)) Ez(θ(k)) 0 −I











< 0 (2.26)

for all (θ(k), θ(k + 1)) lying in the uncertain domain, then K(θ(k)) = Y (θ(k))G(θ(k))−1

is a gain-scheduled state-feedback controller that stabilizes system (2.24) and γ is an

H∞ guaranteed cost for the closed-loop system (2.25).

Proof. Similar to the proof of Theorem 5 from De Caigny et al. (2010).

2.5.1 Numerical results

The purpose of this section is to illustrate how the new time-varying parameter

modeling affects the problem of H∞ state feedback control. Consider system (2.24) with

system matrices given by

A(θ(k)) =




0 1

0.5θ1(k) ρθ2(k)



 , B(θ(k)) =
[

0 (1 − ρθ2(k))
]′
,
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Dz(θ(k)) = 0.5 + 2θ2(k), Cz =
[

0 4
]

, E =
[

0 0.5
]′
, Ez = 0.1. (2.27)

where 0 ≤ θ1(k) ≤ 1 and −1 ≤ θ2(k) ≤ 1 are the time-varying parameters and ρ ≥ 0.

Recall that the polytopic approach only assures robust closed-loop stability when all the

points inside the uncertain domain are individually stable. Knowing that, if ρ > 1, matrix

B(θ(k)) in (2.27) contains the open-loop (B(θ(k)) = [0 0]′) as a particular case and matrix

A(θ(k)) in (2.27) contains unstable eigenvalues for fixed values of θ(k), the proposed

modeling arises as an alternative to obtain feasible solutions since it is not possible to

design a stabilizing controller for system (2.24) by using conventional approaches.

Following the same lines of Section 2.4.1, to explore the design of both gain-

scheduled and robust H∞ state-feedback controllers, two cases of time-varying parameters

are investigated

• Case 1: θ1(k) is considered the triangle wave (tw(k)) with N = 6 depicted in Fig. 6,

while θ2(k) = cos(ωk);

• Case 2: θ1(k) = 1 and θ2(k) = cos(ωk).

The Lyapunov matrix P (θ(k)) in condition (2.26) is described in terms of the polynomial

structure (2.16) with degree g ≥ 1. A robust controller is obtained using degree zero

(gκ = 0) and gain-scheduled controllers are obtained with gκ = g in variables G(θ(k)) and

Y (θ(k)), following the structure given in (2.16).

0

0.5

1

-15 -10 -5 0 5 10 15

k

tw(k)

Figure 6 – Discrete-time triangle wave tw(k) of period N = 6.

The triangle wave can be represented by

tw(k) =
1
2

−
4
9

cos(
πk

3
) −

1
18

cos(πk)

and, employing the proposed DE modeling, one possible solution is

tw(k) =
1
2

−
4
9
φ1(k) −

1
18
φ3

with φ1(k) = cos(πk
3

), φ2(k) = φ1(k + 1), φ3(k) = cos(πk), and φ4(k) = φ3(k + 1)

following the same structure of (2.17). For Case 1 the H∞ guaranteed cost is calculated

by Theorem 2.2 as a function of ρ and fixing ω = 1. The DE approach is compared with
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Figure 7 – H∞ guaranteed costs (γ) computed with Theorem 2.2 for the design of (a)
Robust and (b) Gain-scheduled controllers for system (2.27) Case 1 (θ1(k) =
tw(k) and θ2(k) = cos(k)) versus ρ > 0; and for the design of (c) Robust
and (d) Gain-scheduled controllers for system (2.27) Case 2 (θ1(k) = 1 and
θ2(k) = cos(ωk)) versus ω ∈ [0, 2π] using AV (dash-dotted lines), LV (dashed
lines), and DE (solid lines) approaches with degree g (between parentheses).

AV and LV methods applied to both time-varying parameters (θ1(k), θ2(k)). Figs. 7a and

7b show the H∞ guaranteed costs (γ) computed for the synthesis of, respectively, robust

(gκ = 0) and gain-scheduled (gκ = g) controllers with Theorem 2.2 versus parameter

ρ > 0. Note that, among the three tested techniques, DE clearly provides the lowest

guaranteed costs (γ) that can be further improved with the increase of g. It is important

to emphasize that DE approach also allows to find feasible solutions for a wider range

of ρ, meaning that it can synthesize robust or gain-scheduled state-feedback controllers

when the other methods fail.

For Case 2, the H∞ guaranteed costs are calculated as a function of ω using
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Table 3 – Computational cost in terms of the number of the scalar variables (V ) and
LMI rows (L) for the synthesis of robust (gκ = 0, g = 1) and gain-scheduled
(gκ = g = 1) state-feedback controllers for system (2.27) considering Cases 1
and 2 and using AV , LV and DE approaches.

Robust Gain-scheduled
AV LV DE AV LV DE

C
a
se

1 V 16 16 28 28 28 64
L 96 216 384 216 2646 4374

C
a
se

2 V 13 13 16 19 19 28
L 24 36 24 36 126 54

Theorem 2.2 for a fixed parameter ρ = 0.5. Figs. 5c and 5d show the values of γ computed

for the synthesis of, respectively, robust (gκ = 0) and gain-scheduled (gF = g) gains with

Theorem 2.2 employing Lyapunov matrices of degree g versus the frequency ω ∈ [0, 2π].

Note that, for slow variations (ω ≈ 0 or 2π) the LV approach presents good performance

levels, while for fast variations (ω ≈ π) LV tends to provide the same results obtained by

AV modeling, as expected. Nevertheless, in general, the DE approach presents the best

results in terms of H∞ guaranteed costs. Observe that, both DE and LV approaches are

benefited by the increase of degree g, with clearer evidence for LV in the case of robust

gains.

Concerning the computational effort, Table 3 shows that, to obtain less con-

servative results than the ones provided by the AV modeling, the LV approach employs a

greater number of LMI rows (L), both techniques use the same number of scalar decision

variables (V ), and DE requires more variables and LMI rows to provide the best results

(with less LMI rows than LV in Case 2).

2.6 Application in networked control systems

Consider a continuous-time plant represented by

ẋ(t) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.28)

that must be digitally controlled through a network. Sampling with a period T (k) ≥ 0,

it is possible to obtain a discrete-time model (ÅSTRÖM; WITTENMARK, 1984), for

k ≥ 0 ∈ N, x(0) = 0, and u(υ) = 0, υ ∈ {−T (0), 0}

x(k + 1) = Ad(T (k))x(k) +Bd(T (k))u(k) + Edw(k),

y(k) = Cd(T (k))x(k) +Dd(T (k))u(k) + Fdw(k).
(2.29)

where w(k) ∈ Rnw belongs to ℓ2[0,∞) and it is used to model noises in the process.

Assuming that matrices Ed and Fd are known in discrete-time domain, matrices Ad(T (k)),
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Bd(T (k)), Cd, and Dd can be computed by

Ad(T (k)) = exp (AT (k)) , Cd = C, Dd = D,Bd(T (k)) =
∫ T (k)

0
exp (As)) dsB, (2.30)

where A, B, C, and D are the matrices of system (2.28).

As discussed in Montestruque e Antsaklis (2004), Velasco et al. (2005), and

Borges et al. (2010b), the values of the sampling period may change during operation by

different reasons, for example, dynamic bandwidth allocation and scheduling decisions.

By considering the sampling period as a time-varying parameter, it is possible to reduce

the flow of information by unit of time between sensor and actuator. In a hypothetical

particular NCS scenario, consider that, due to network congestion, buffer overflow, etc.,

to avoid a network collapse and, consequently, open loop control and, at the same time,

aiming to minimize the load (packet flow per unit of time), the initial sampling frequency

starts from a maximum value (i.e., sampling period minimum) and, as the network corrects

its problems (reconfiguring itself to reduce the load), the sampling frequency gradually

converges to a minimum value (i.e., the time between samples is maximum). In this

context, the sampling rate is time-varying and can be described by the following function

T (k) = Tend − (Tend − Tini)σk, 0 < σ < 1, k ∈ N+ (2.31)

where Tini and Tend represent, respectively, the initial and final sampling times. The

main difficulty in computing the matrices in (2.29) is to solve the exponential terms

of (2.30), which need to be computed for all T (k) satisfying (2.31). An alternative that

has already been investigated in Borges et al. (2010b) is to use the Cayley-Hamilton

Theorem (ANTSAKLIS; MICHEL, 2006), implying that Ad(T (k)) and Bd(T (k)) can be

rewritten as

Ad(T (k)) = exp(AT (k)) =
n−1∑

i=0

ρi(k)Ai, (2.32)

Bd(T (k)) =
∫ T (k)

0
exp(As)dsB =

∫ T (k)

0

n−1∑

i=0

ρi(s)Aids B, (2.33)

=
n−1∑

i=0

(
∫ T (k)

0
ρi(s)ds

)

AiB (2.34)

=
n−1∑

i=0

ηi(k)AiB (2.35)

where ηi(k) =
∫ T (k)

0 ρi(s)ds. The coefficients ρi(k) and ηi(k) can be determined by solving

a set of linear equations defined in terms of the eigenvalues λj , j = 1, . . . , n, of matrix A.

For instance, for a matrix with n distinct and non-null eigenvalues, one has

exp(λjT (k)) =
n−1∑

i=0

ρi(k)λi
j, j = 1, . . . , n,
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and
∫ T (k)

0
exp(λjs)ds =

1
λj

(exp(λjT (k)) − 1) =
n−1∑

i=0

ηi(k)λi
j, j = 1, . . . , n,

Then, following the lines of Borges et al. (2010b), the discrete-time matrices

are given by

Ad(T (k)) =
n−1∑

i=0

ρi(k)Ai =
n∑

i=1

θi(k)Ωi, Bd(T (k)) =
n−1∑

i=0

ηi(k)AiB = Ψ0 +
n∑

i=1

θi(k)Ψi

(2.36)

where coefficients θi ≤ θi(k) ≤ θi represent the normal modes (exp(λiT (k))) of A with

known bounds given by θi = min {exp(λT (k))} and θi = max {exp(λT (k))}. Additionally,

matrices Ωi ∈ Rn×n and Ψi ∈ Rn×p are determined collecting the terms of equation (2.36).

The main limitation of the method proposed in Borges et al. (2010b) is that

when using a distinct parameter to represent each exponential, that is, θj(k) = exp(λjT (k)),

one loses the intrinsic relationship between parameters θi(k) and θj(k) for λi 6= λj. This

relation is due to their common dependence on parameter T (k). As consequence, neglect-

ing this common dependence certainly produces an uncertain domain greater than the

necessary one (overbound), increasing the conservativeness of the modeling.

To take into account the common relation of the parameters with the sampling

rate, it is necessary to write an expression for the discrete-time matrices such that the

dependence on T (k) or k is explicit. One strategy is to rewrite the normal modes of the

system in terms of a Taylor series, that is,

exp(λiT (k)) =
∞∑

j=0

(λiT (k))j

j!
(2.37)

= 1 + λiT (k) +
λ2

i

2!
T (k)2 + . . .+

λℓ
i

ℓ!
T (k)ℓ + δℓ

i (k) (2.38)

=
ℓ∑

j=0

λj
i

j!
T (k)j + δℓ

i (k) (2.39)

where δℓ
i (k) represents the bounds of the Taylor series expansion residue of degree ℓ of

the normal mode exp(λiT (k)), such that it can be computed by

δℓ
i (k) = exp(λiT (k)) −

ℓ∑

j=0

λj
iT (k)j

j!
. (2.40)

Observe that, if the maximum and minimum bounds of the sampling rate are known

(T (k) ∈ [Tmin, Tmax]), the bounds of δℓ
i (k) can also be exactly computed, such that δℓ

i (k) ∈

[δℓ
imin

, δℓ
imax

]. In this sense, knowing that aij = λj
i/j!, the matrices of the discrete-time

system can be rewritten in terms of parameters ϕ(k) = T (k) and δℓ
i (k) as

Ad(ϕ(k)) =
n∑

i=1

Ωi





ℓ∑

j=0

(

aijϕ(k)j
)

+ δℓ
i (k)



 ,

Bd(ϕ(k)) = Ψ0 +
n∑

i=1

Ψi





ℓ∑

j=0

(

aijϕ(k)j
)

+ δℓ
i (k)



 .

(2.41)
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It may seem counterproductive to rewrite (2.36) as (2.41) because the number of time-

varying parameters augments from n (θi(k), i = 1, . . . , n) to n + 1 (δℓ
i (k), i = 1, . . . , n

and ϕ(k) = T (k)). However, a first alternative, more conservative but less computational

expensive is to use a single time-varying parameter δ̄ℓ(k) to represent the Taylor series

expansion residues (δℓ
i (k), i = 1, . . . , n,) such that

δ̄ℓ(k) ∈ [min
i

{δℓ
imin

(k)}, max
i

{δℓ
imax

(k)}]′, (2.42)

reducing the number of time-varying parameters from n+1 in (2.41) to two, regardless the

order of the system. Furthermore, observe that δℓ
i (k) → 0 with the increase of the degree

ℓ of Taylor series expansion and, for degrees ℓ large enough, the expansion residue can be

neglected (see Fig. 8). In this case, a second alternative for ℓ sufficiently large, is to consider

a discrete-time representation with a single time-varying parameter (ϕ(k) = T (k)) given

by

Ad(ϕ(k)) =
n∑

i=1

Ωi

ℓ∑

j=0

aijϕ(k)j , Bd(ϕ(k)) = Ψ0 +
n∑

i=1

Ψi

ℓ∑

j=0

aijϕ(k)j. (2.43)
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Figure 8 – Assuming λ = 1 and a time-varying sampling time described by (2.31) with
Tini = 0.1, Tend = 0.5 and σ = 0.9: (a) Comparison of exp(λT (k)) with the
Taylor series expansion of degree ℓ; (b) residue (δℓ(k)) of the Taylor series
expansion of degree ℓ.

Additionally, following the methodology proposed in this chapter, if the func-

tion that governs the time variation of the parameter (for instance, T (k) given in (2.31))

is known and can be obtained as solution of a difference equation (in this case as (2.8)),
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this information can be used to obtain a less conservative modeling in terms of the time

instants k. Rewriting (2.39) with T (k) given by (2.31), one obtains

exp(λiT (k)) =
ℓ∑

j=0

λj
i

j!

(

Tend − (Tend − Tiniσ
k)
)j

+ δℓ
i (k)

=

(

1 + λiTend +
λ2

i

2
T 2

end + · · · +
λℓ

i

ℓ!
T ℓ

end

)

+ · · · + (−1)j (Tend − Tini)
j

j!

ℓ∑

m=j

λm
i

T
(m−j)
end

(m− j)!
σjk

+ · · · + (−1)ℓ (Tend − Tini)
ℓ

ℓ!
λℓ

iσ
ℓk + δℓ

i (k)

=
ℓ∑

j=0

aijϕ(k)j + δℓ
i (k) (2.44)

with δℓ
i (k) given by (2.40), ϕ(k) = σk such that 0 ≤ ϕ(k) ≤ 1, ϕ(k + 1) = σϕ(k) and

aij = (−1)j (Tend − Tini)
j

j!

ℓ∑

m=j

λm
i

T
(m−j)
end

(m− j)!
. (2.45)

Note that with this new modeling, the discrete-time matrices can also be written as

in (2.41) (considering the expansion residues δℓ
i associated with each eigenvalue or the

maximum expansion residue δ̄ℓ
i ) or (2.43) (neglecting the expansion residue).

2.6.1 Application example

Consider a simplified model of an armature voltage-controlled DC servo motor

consisting of a stationary field and a rotating armature and load as described in Borges

et al. (2010b) and illustrated in Fig. 9.

+

+ +

+ea em

ef

Ra

Rf

La

Lf

ia

if

J

b

Φ

Figure 9 – DC servo motor presented in Borges et al. (2010b).

The aim of this example is to design an H∞ state-feedback controller (robust

or scheduled) for the speed of the shaft assuming that all information is sent through a

communication network. The dynamics of the DC servo motor can be described by the

following continuous-time state-space representation



Φ̈

ς̈a



 =




− b

J
KT

J

−KΦ

La
−Ra

La








Φ̇

ς̇a



+




0
1

La



 ea(t) (2.46)
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Table 4 – Definition of the parameters of the DC servo motor.

Φ shaft position

ςa armature current

ea externally applied armature voltage

Ra resistance of the armature winding 1 Ω
La armature winding inductance 0.5 H
b viscous damping due to bearing friction 0.1 Nms
J moment of inertia of the armature and load 0.01kgm2/s2

em voltage induced by the rotating armature winding KΦΦ̇
T motor torque KT ia

where KΦ = KT = 0.01Nm/Amp and the other parameters are given in the Table 4.

Replacing the values of the parameters one has

A =




−10 1

−0.02 −2



 , B =




0

2



 .

Although system (2.46) is already stable (eigenvalues λ1 = −9.9975 and λ2 = −2.0025),

Theorem 2.2 is applied aiming to provide a state-feedback controller that guarantees

robustness against not modeled l2[0, 1) perturbations by minimizing the H∞ performance

of the closed-loop system with a time-varying sampling rate T (k).

The first step is to determine the matrix coefficients using the Cayley-Hamilton

theorem to obtain a discrete-time representation of the system. To compute Ωi and Ψi

of (2.36), first it is necessary to calculate ρ0(k), ρ1(k) by solving the linear system of

equations (all the numbers were truncated with 4 decimal digits)



λ0

1 λ1
1

λ0
2 λ1

2








ρ0(k)

ρ1(k)



 =




exp(λ1T (k))

exp(λ2T (k))



 (2.47)




ρ0(k)

ρ1(k)



 =




1 λ1

1 λ2





−1 


exp(λ1T (k))

exp(λ2T (k))



 =




−0.2505 exp(λ1T (k)) + 1.2505 exp(λ2T (k))

−0.1251 exp(λ1T (k)) + 0.1251 exp(λ2T (k))





(2.48)

then

exp(AT (k)) = ρ0(k)A0 + ρ1(k)A1 = ρ0(k)I + ρ1(k)A = Ω1 exp(λ1T (k)) + Ω2 exp(λ2T (k))

with

Ω1 =




1.0003 −0.1251

0.0025 −0.0003



 , Ω2 =




−0.0003 0.1251

−0.0025 1.0003



 .

On the other hand, η0(k), η1(k) can be obtained by solving the linear system of equations



λ0

1 λ1
1

λ0
2 λ1

2








η0(k)

η1(k)



 =





∫ T (k)
0 exp(λ1T (k))ds
∫ T (k)

0 exp(λ2T (k))ds








η0(k)

η1(k)



 =




1 λ1

1 λ2





−1 



1
λ1

(exp(λ1T (k)) − 1)
1

λ2

(exp(λ2T (k)) − 1)



 =



0.0251 exp(λ1T (k)) − 0.6245 exp(λ2T (k)) + 0.5994

0.0125 exp(λ1T (k)) − 0.0625 exp(λ2T (k)) + 0.0500




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then
∫ T (k)

0
exp(As)dsB = η0(k)A0B + η1(k)AB = Ψ0 + Ψ1 exp(λ1T (k)) + Ψ2 exp(λ2T (k))

with

Ψ0 =




0.0999

0.9990



 , Ψ1 =




0.0250

6 × 10−6



 , Ψ2 =




−0.1249

−0.9991



 .

Assuming that the time-varying sampling rate is described by (2.31) with

Tini = 0.001 s and Tend = 0.099 s one has that, by the modeling (2.36) with θi =

exp(λiT (k)), the time-varying coefficients belong to the following intervals

θ1(k) ∈ [0.3717, 0.9901], θ2(k) ∈ [0.8202, 0.9980], (2.49)

yielding a polytopic representation of four vertices by combining the extremes of θ1(k)

and θ2(k).

In order to use the modeling (2.41), it is also necessary to calculate the bounds

for parameters δi(k), as done in Table 5. Observe that starting from ℓ = 4, the bounds

can be neglected, that is, model (2.43) can be used instead of (2.41) without harming the

controller design.

Table 5 – Maximum and minimum bounds (respectively, δimax
and δimin

) for parameters
δi(k) that represent the residue of the Taylor series expansion degree ℓ.

ℓ 1 2 3 4

δimax

1 0.3614 −1.66 × 10−7 0.0332 −8.31 × 10−13

2 0.0184 −1.34 × 10−9 6.19 × 10−5 −2.22 × 10−16

δimin

1 4.98 × 10−5 −0.1284 4.15 × 10−10 −0.0068
2 2.00 × 10−6 −0.0012 6.70 × 10−13 −2.47 × 10−6

Taking into account all the previous assumptions, the purpose is to design

robust H∞ state-feedback controllers considering equation (2.29) with

Ed =
[

0.1 0
]′
, Cd =

[

1 0
]

, Dd = 0, Fd = 1, (2.50)

and admitting the following distinct modeling approaches:

• Case 1: as suggested in Borges et al. (2010b), parameter θi(k) = exp(λiT (k)), i =

1, 2, is considered to vary arbitrarily fast between the interval defined in (2.49), Ad

and Bd given by (2.36);

• Case 2: parameter ϕ(k) = T (k) is considered to vary arbitrarily fast between 0.01 s

and 0.099 s and matrices Ad and Bd given by

(a) model (2.41) and δℓ
i (k) replaced by δ̄ℓ(k) in (2.42);

(b) model (2.43) (neglecting the expansion residue);
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• Case 3: it is assumed that T (k) is described by (2.31), the time-varying parameter

ϕ(k) = σk is a solution of a difference equation, and matrices Ad and Bd are given

by

(a) model (2.41) with δℓ
i (k) given in (2.40);

(b) model (2.41) with δ̄ℓ(k) given in (2.42);

(c) model (2.43).

Concerning the design of a robust state-feedback controller for Case 1, the guaranteed

cost is independent from the degree of Taylor series expansion and from the function that

governs the evolution of the sampling time, since T (k) ∈ [0.001, 0.099]s. Therefore, con-

sidering Theorem 2.2 with a Lyapunov matrix with g = 1, one obtains an H∞ guaranteed

cost of γ = 10.9571 (optimization problem involving 19 scalar variables and 104 LMI

rows).

By using the approach of Case 2 with discrete-time matrices Ad and Bd given

by model (2.41) with δ̄ℓ(k) or (2.43), it is expected that the H∞ guaranteed cost (γ) be

lower than the one obtained for Case 1 (because solutions are being sought in a reduced

parametric space) and that γ is improved with the increase of the Taylor series expansion

degrees (because, as shown in Table 5 and Figure 8, the expansion is more accurate with

higher degrees). Furthermore, since model (2.43) neglects the expansion residue, it is

expected that the H∞ guaranteed costs for Case 2(b) be lower and less computationally

complex than Case 2(a). However, although Case 2(b) is not sufficient to assure the

closed-loop stability, it must converge to the same result obtained by Case 2(a) as the

residue decreases. Table 6 summarizes the results obtained by Theorem 2.2 with Lyapunov

matrices of degree one for approaches of Case 2.

Table 6 – H∞ guaranteed costs (γ), number of scalar variables (V ) and LMI rows (L)
computed by Theorem 2.2 with g = 1, gK = 0 for Case 2 (a) and (b) with
Taylor series expansion of degree ℓ.

ℓ 1 2 3 4 5

(a)
γ – 8.3658 6.9433 7.0843 6.7617
V 19 19 19 19 19
L 104 152 200 248 296

(b)
γ 7.9979 7.1873 6.7997 6.7755 6.7614
V 13 13 13 13 13
L 28 40 52 64 76

Finally, using the approach of Case 3, both the degree ℓ of Taylor series ex-

pansion and the function that governs the variation of the sampling period between its

minimum and maximum values are relevant, therefore the H∞ guaranteed costs are pre-

sented in Fig. 10 in terms of the value of σ ∈ [0, 1] in (2.31). Observe that, although



Chapter 2. A less conservative approach to handle discrete time-varying parameters in linear systems

with applications in NCS 53

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

10

20

30

40

50

60

70

80

(2.43)g=1

(2.43)g=2

(2.43)g=3

(2.41)g=1

(2.41)g=2

(2.41)g=3

σ

γ

(a) ℓ = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

3

3.5

4

4.5

(2.43)g=1

(2.43)g=2

(2.43)g=3

(2.41)g=1

(2.41)g=2

(2.41)g=3

σ

γ

(b) ℓ = 2.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

1

1.5

2

2.5

3

3.5

4

(2.43)g=1

(2.43)g=2

(2.43)g=3

(2.41)g=1

(2.41)g=2

(2.41)g=3

σ

γ

(c) ℓ = 5.

Figure 10 – H∞ guaranteed costs computed by Theorem 2.2 with Lyapunov matrix of
degree g for approach of Case 3 with Taylor series expansion of degree ℓ and
matrices Ad and Bd given by (2.41) and (2.43).

for degrees ℓ sufficiently large, the uncertainties δi(k) can be neglected, only when they

are considered it is possible to provide a theoretical certificate of stability. The graph-

ics depicted in Figure 10 show that the difference between models from Case 3 (a) and

Case 3 (c) reduces with the increase of ℓ. Besides, it is possible to note that, the greater

the degree g of Lyapunov matrix, the less relevant is the expansion error and the better

is the result (in terms of γ).

Regarding the computational cost presented in Table 7, by using model (2.43)

(neglecting the Taylor series expansion residue, Case 3 (c)), less scalar variables and LMI

rows are required when compared with any other tested method. Nevertheless, if the

model (2.41) is employed (Case 3 (a)), at first, the number of time-varying parameters is

the highest among all the proposed approaches, implying a large computational cost. To

provide stability assurance but reducing the computational cost, an intermediate model
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Table 7 – Number of scalar variables (V ) and LMI rows (L) to compute the H∞ state-
feedback controllers using Theorem 2.2 with degree g for the Lyapunov matrix
for Case 3 (a), (b) and (c) with Taylor series expansion of degree ℓ.

ℓ 1 2 3 4 5
g 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3

(a)
V 25 34 43 25 34 43 25 34 43 25 34 43 25 34 43
L 224 1566 6400 320 1566 6400 416 2052 6400 512 2538 7936 608 3024 9472

(b)
V 19 25 31 19 25 31 19 25 31 19 25 31 19 25 31
L 64 198 448 88 198 448 112 252 448 136 306 544 160 360 640

(c)
V 13 16 19 13 16 19 13 16 19 13 16 19 13 16 19
L 20 30 40 26 30 40 32 36 40 38 42 46 44 48 52

(Case 3 (b)) is also presented in Table 7. Note that the computational effort is similar to

Case 2 (a) (see Tables 6 and 7) but the H∞ guaranteed costs are much lower (Fig. 10).

Fig. 10 also shows that, with the increase of ℓ or g, the H∞ guaranteed costs are reduced

(at the price of increasing the number of variables and LMI rows, as indicated by Table 7).

To conclude, some numerical comparisons were made and it was observed that

the best result of Case 2 (a) (for ℓ = 5) is 38.29% better than the result obtained

using Case 1. Additionally, using the same degree for the Lyapunov matrix (g = 1) and

for the Taylor series expansion (ℓ = 5), independently from the time-varying parameter

modeling used (Ad and Bd given by (2.43) or (2.41)), even the worst result obtained

for Case 3 (σ = 0.95) is about 43.92% better than the guaranteed cost obtained for

Case 2. Additionally, in practice, to assure the stability of the closed-loop networked

control system for a sampling period up to 0.099 s instead of fixed in 0.001 s allows to

save network resources since it requires only 1% of the communication channel in terms

of amount of information packets transmitted by unit of time. Finally, considering the

case of T (k) arbitrary, where the DE modeling cannot be applied, note that the proposed

discretized model (2.41) can be seen as a more flexible and accurate alternative when

compared to other methods based on the computation of matrix exponential (BORGES

et al., 2010b; BRAGA et al., 2014; GEROMEL; SOUZA, 2015).

2.7 Partial Conclusion

This chapter presented a new method to model time-varying parameters that

can provide less conservative stability analysis and synthesis conditions based on LMIs,

allowing to provide stability certificates, stabilizing controllers or filters for LPV systems

when the polytopic approaches based on LMIs (considering arbitrary or bounded rate of

variation) fail. The reason for this fact is that the dynamic matrix (or the augmented

dynamic matrix in filtering or closed-loop dynamic matrix in control) does not need to be

Schur for all time instants. The numerical examples also show that, in control and filter

design, the H∞ guaranteed costs obtained by the proposed technique are much better than
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the ones provided by the traditional approaches, and the computational cost is commonly

similar to the methods based on arbitrary variation (which present the lowest numerical

complexity and higher conservatism) and much lower than the procedures based on limited

rate of variation.

Finally, it was investigated a practical example based on NCS, where some

phenomena common to communication networks (such as, failures, congestion and buffer

overflow) were modeled with time-varying sampling rate according to an exponential func-

tion. Based on the proposed modeling, and using Cayley-Hamilton theorem and Taylor

series expansion, it was possible to design a state-feedback controller associated with lower

guaranteed costs and less variables and LMI rows than a specialized method from the lit-

erature. The proposed approach can be further extended in future works to handle, for

instance, time-varying probabilities in non-homogeneous Markov jump linear systems.
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3 H2 control and filtering of discrete-time

LPV systems exploring statistical informa-

tion of the time-varying parameters

3.1 Introduction

This chapter introduces a new strategy to improve performance in gain-scheduled

control and filtering for LPV systems exploiting statistical information about the time-

varying parameters whenever available. The motivation of the techniques proposed in this

chapter comes precisely from the area known as gain-scheduled subject to inexact param-

eters (DAAFOUZ et al., 2008), where the noise affecting the scheduling parameters is

usually included in the LPV model as an additive uncertainty that varies arbitrarily fast

in time. This modeling can be adopted, for instance, when the scheduling parameters

are obtained by an identification procedure and the estimation error is considered as a

random time-varying parameter with a known PDF. To take into account the PDF infor-

mation about the additive noise (or any other type of time-varying parameter) in order to

improve the synthesis results, the technique proposed in this chapter, named sub-domain

optimization heuristic (SDOH), presents as main novelty the design of controllers or fil-

ters treating robust stability independently of performance. The performance (measured

in terms of the H2 norm) is, therefore, optimized only in a sub-domain of the time-varying

parameters, where a higher frequency of occurrence is expected, while the robust stability

is certificated for the whole domain.

As additional contribution of this chapter in the context of inexact measure-

ments, a more complete modeling for the additive uncertainty is given, generalizing pre-

vious results from the literature for two types of uncertainties: polytopic and affine. It

is also important to mention that a new design condition for H2 full-order LPV filtering

is proposed. Although the condition is only sufficient, it can be shown that it includes

a known condition from the literature as particular case. All the synthesis conditions

(handling H2 state-feedback control or H2 full-order filtering) presented in this chapter

are given in terms of parameter-dependent LMIs, avoiding the introduction of trick no-

tations to deal with polynomial inequalities. Alternatively, Chapter 3 also discusses in

details how to obtain the programmable set of LMIs, basically fixing the optimization

variables as polynomials of arbitrary degree and applying polynomial relaxations using

a software. Several numerical examples are provided to illustrate the advantages of the

proposed methodology when compared with previous techniques.

This chapter is organized as follows: Section 3.2 presents the necessary no-
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tations and definitions; Section 3.3 introduces the LPV model and the concept of sub-

domain, a key ingredient for the main achievements of the chapter; In Section 3.4 a

new condition to compute a bound to the H2 norm using the concept of sub-domain is

presented; Section 3.5 presents a generic procedure to model the additive uncertainty. Sec-

tion 3.6 investigates the problem of H2 state-feedback control, presenting two numerical

examples. The proposed heuristic is extended to deal with H2 full-order filtering in Sec-

tion 3.7, with two numerical examples. Finally, some conclusions are drawn in Section 3.8.

3.2 Notations and Definitions for SDOH

Let B ∈ Rm×2 be a matrix with the following property: Bi1 < Bi2, i = 1, . . . , m.

Consider the following definition for a hyperrectangle

∆m(B) ,

{

(ξ1, . . . , ξm) ∈ Rm : Bi1 ≤ ξi ≤ Bi2, i = 1, . . . , m

}

. (3.1)

Note that the elements of B define the bounds for the intervals of ξi, i = 1, . . . , m. The

unit simplex of dimension N is given by

ΛN ,

{

ξ ∈ RN :
N∑

i=1

ξi = 1, ξi ≥ 0, i = 1, . . . , N

}

. (3.2)

3.3 System description

Consider the following LPV discrete-time system

G =







x(k + 1) = A(θ(k))x(k) +B(θ(k))u(k) + E(θ(k))w(k)

z(k) = Cz(θ(k))x(k) +Dz(θ(k))u(k) + Ez(θ(k))w(k)

y(k) = Cy(θ(k))x(k) + Ey(θ(k))w(k), k ≥ 0

(3.3)

where x(k) ∈ Rnx , u(k) ∈ Rnu , w(k) ∈ Rnw , z(k) ∈ Rnz and y(k) ∈ Rny , respectively

denote the state, control input, external disturbance, controlled or estimated output and

the measured output vectors. In this chapter, two different structures for the state-space

matrices are considered:

X(θ(k)) = X0 +
m∑

i=1

θi(k)Xi, θ(k) ∈ ∆m(B) (3.4)

known as affine uncertainty (B ∈ Rm×2 is given) and

X(θ(k)) =
N∑

i=1

θi(k)Xi, θ(k) ∈ ΛN (3.5)

known as polytopic uncertainty, where X(θ(k)) represents any matrix of system (3.3).

These two types of uncertainties are the most used in the LPV literature dealing with
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the same problems investigated in this chapter. θ(k) is a vector of bounded time-varying

parameters lying in a hyperrectangle (∆m(B)) or in the unit simplex (ΛN) for all k ≥ 0.

Moreover, to increase the generality of the approach, the rate of variation of parameters

θi(k), whenever available, is modeled in the form

Bi1 − Bi12 ≤ bi ≤ θi(k + 1) − θi(k) ≤ bi ≤ Bi2 − Bi1, affine uncertainty (3.6)

0 ≤ bi ≤ θi(k + 1) − θi(k) ≤ bi ≤ 1, polytopic uncertainty (3.7)

If bi and bi assume their extreme values, then the parameter is considered to vary arbi-

trarily fast.

Next section presents an important concept for the purposes of the main

achievements of this chapter.

3.3.1 Sub-domain

Considering that additional information about the behavior of θ(k) is avail-

able, for instance, a PDF, it is important to define a systematic procedure to create

a sub-domain inside the original domain (the hyperrectangle or the unit simplex). For

this purpose, consider that the sub-domain is defined in terms of a bounded polyhedron

(polytope)

Sr(H) ,

{

ζ ∈ Rq : ζ =
r∑

i=1

ξih
i, ξ ∈ Λr

}

, H =
[

h1 · · ·hr
]

∈ Rq×r

where hi are the vertices of the polytope. As illustrative examples, consider the following

domains ∆2([1 2]′ ⊗ [−1 1]) and Λ3, their associated sub-domains

S4(Ha),Ha =




0 0.5 0 −0.5

1 0 −1 0



 , S3(Hb),Hb =
1
10








5 4 2

3 0 4

2 6 4








respectively, whose geometric representations are depicted in Fig. 11. Since both the

domains (∆m(B) and ΛN) and sub-domains are convex, the relation Sr(H) ⊂ ∆m(B) holds

if and only if hi ∈ ∆m(B), i = 1, . . . , r. Similarly Sr(H) ⊂ ΛN ⇔ hi ∈ ΛN , i = 1, . . . , r.

An important feature of the definition of the sub-domain Sr(H) is an implicit

linear transformation that can be used to consider the original matrices only in points

lying inside the sub-domain. For instance, consider (the dependence on k is omitted)

A(θ) = θ1A1 + θ2A2 + θ3A3, θ ∈ Λ3 and the sub-domain S3(Hb) previously defined. In this

case, any point (θ1, θ2, θ3) lying in the sub-domain S3(Hb), can be written as







θ1

θ2

θ3








= ξ1








0.5

0.3

0.2








+ ξ2








0.4

0

0.6








+ ξ3








0.2

0.4

0.4








=








0.5 0.4 0.2

0.3 0 0.4

0.2 0.6 0.4















ξ1

ξ2

ξ3







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Figure 11 – Convex sub-domains inside a hyperrectangle of dimension two and a unit
simplex of dimension three.

Thus, it is immediate to obtain a representation of A(θ) with θ ∈ S3(Hb), that is,

A(θ) = A(ξ) = (0.5ξ1 + 0.4ξ2 + 0.2ξ3)A1 + (0.3ξ1 + 0ξ2 + 0.4ξ3)A2 + (0.2ξ1 + 0.6ξ2 + 0.4ξ3)A3

= (0.5A1 + 0.3A2 + 0.2A3)ξ1 + (0.4A1 + 0.6A3)ξ2 + (0.2A1 + 0.6A2 + 0.4A3)ξ3

= Â1ξ1 + Â2ξ2 + Â3ξ3, (ξ1, ξ2, ξ3) ∈ Λ3

3.4 Robust Performance in Sub-domains

In this section a new strategy to access robust performance of the LPV system

(3.3) exploiting the concept of sub-domain is proposed. Next theorem presents a set of

parameter-dependent LMI conditions to assure robust stability in the whole domain and

to compute an H2 guaranteed cost only inside the union of a set of pre-specified sub-

domains.

Theorem 3.1. Consider system (3.3) with θ(k) ∈ ∆m(B) and a set of sub-domains

Sri
(Hi), i = 1, . . . , s where B and Hi are given matrices. For a given positive scalar ρ, if

there exist parameter-dependent symmetric positive definite matrices P (θ(k)), Psi
(θ(k))

and Wi(θ(k)), and matrices G(θ(k)) and Gsi
(θ(k)), i = 1, . . . , s, such that




P (θ(k + 1)) ⋆

A(θ(k))G(θ(k)) P (θ(k)) −G(θ(k)) −G(θ(k))′



 > 0 (3.8)

holds for all (θ(k), θ(k + 1)) ∈ ∆m(B) × ∆m(B), and for i = 1, . . . , s







Ps(ξ(k + 1)) ⋆ ⋆

A(ξ(k))Gs(ξ(k)) Ps(ξ(k)) −Gs(ξ(k)) −Gs(ξ(k))′ ⋆

B(ξ(k)) 0 I







> 0, (3.9)
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


W (ξ(k)) −Ez(ξ(k))Ez(ξ(k))′ ⋆

Cz(ξ(k))Gs(ξ(k)) Gs(ξ(k)) +Gs(ξ(k))′ − Ps(ξ(k))



 > 0, (3.10)

Tr (W (ξ(k))) < ρ2 (3.11)

hold for all (ξ(k), ξ(k + 1)) ∈ Λri
× Λri

, where θ(k) = Hiξ(k), then the system is robustly

stable for all θ(k) ∈ ∆m(B) and ρ is an H2 guaranteed cost valid only inside the union of

sub-domains Sri
, i = 1, . . . , s.

Proof. Similar to the proof of Theorem 6 from De Caigny et al. (2010), with adaptations to

cope with sub-domains in inequalities (3.9)-(3.11), responsible for the H2 performance

The conditions of Theorem 3.1 are the extension of Theorem 6 from De Caigny

et al. (2010) to deal with H2 performance only in a prespecified region of the original do-

main. All matrices depending on ξ(k) or ξ(k+1) in Theorem 3.1 are readily obtained from

the corresponding matrices depending on θ(k) or θ(k+1) through the linear transformation

θ(k) = Hiξ(k), as explained in the previous section. Note that inequality (3.8) guarantees

the robust stability for the whole domain, and the other inequalities assure the guaranteed

cost only in the considered sub-domains. The extension of Theorem 3.1 to deal with the

unit simplex as main domain is immediate and is not presented (just replace ∆m(B) by

ΛN). Regarding the numerical implementation, note that all inequalities in Theorem 3.1

are parameter-dependent LMI conditions, which are infinite dimensional problems. The

procedure to obtain a programmable set of LMIs is explained in Section 3.6.1.

The purpose of Theorem 3.1 is to treat time-varying parameters for which

not only the bounds are known (possibly the rates of variation), but also some statistical

information in terms of a PDF. As a consequence, it is possible to exploit the fact that the

parameters lie in a sub-domain (or multiples sub-domains) most of the time. As a practical

example, consider the problem of gain-scheduled control or filtering, where the designer

has access to statistical information assuring that in most of the time the estimation

or measurement corresponds to the actual value of the scheduling parameter, indicating

that the probability distribution of the error is concentrated around zero. This problem

is formally introduced in next section.

3.5 LPV filtering and control with contaminated scheduling pa-

rameters

In the context of designing gain-scheduled filters and controllers subject to

inexact measurements or inaccurate estimates, the scheduling parameters are assumed to

be contaminated by additive and/or multiplicative noises (DAAFOUZ et al., 2008; SATO,
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2010; SATO, 2015a; SATO, 2015b; SATO; PEAUCELLE, 2013; AGULHARI et al., 2013;

LACERDA et al., 2016; SADEGHZADEH, 2018; PALMA et al., 2018c). As a matter

of fact, if the effect of the noise is not taken into account during the design phase, the

performance associated to the controllers and filters scheduled in terms of those inaccurate

parameters can lead the closed-loop system (or augmented system in filtering) out of its

operating range, implying loss of performance or, in the worst case scenario, instability.

The design procedures for gain-scheduled filters and controllers investigated in

this chapter assume that the time-varying parameter θ(k) is known by means of real-time

measurements or estimations obtained through an identification technique. It is important

to emphasize that both strategies are associated to inherent measurement or identification

errors, which are not taken into account by the classical gain-scheduled design methods for

LPV systems. The measured or estimated value of the time-varying parameter, denoted

by θ̃(k), is modelled in the form

θ̃i(k) = θi(k) + δi(k), (3.12)

where

δi ≤ δi(k) ≤ δi, δi > δi, 0 ∈ [δi, δi] (3.13)

is the additive uncertainty representing the error arising in the identification, instrumen-

tation faults or other issues. In order to avoid introducing extra conservativeness in the

analysis, the physical bounds of θ(k) must be respected, i.e.,

Bi1 ≤ θi(k) + δi(k) ≤ Bi2, affine uncertainty (3.14)

0 ≤ θi(k) + δi(k) ≤ 1, polytopic uncertainty (3.15)

As a consequence, the feasible region of pairs (θi(k), δi(k)) is not necessarily [Bi1,Bi2] ×

[δi, δi] since some points inside this region (rectangle) do not fulfill (3.14) (the same ap-

plies to the polytopic uncertainty). In other words, the saturation effect produced by

δi(k) over θi(k) is not taken into account. Some previous techniques from the literature

provided the shape of the true feasible region in some particular cases (SATO, 2011; LAC-

ERDA et al., 2013; LACERDA et al., 2016). One of the contributions of this chapter is

to provide a systematic procedure to deal with the more general case for both affine and

polytopic uncertainties and also including the bounded rates of variation given in (3.6)

and (3.7). For instance, consider affine uncertainty and the constraints Bi1 ≤ θi(k) ≤ Bi2,

(3.13) and (3.14). Since all constraints are linear, it is possible to rewrite them in the

form Ax ≤ b where x =
[

θ1(k) · · · θm(k) δ1(k) · · · δm(k)
]′

and A and b are known

matrix and vector. The set {x : Ax ≤ b} defines a bounded polyhedron, whose ver-

tices can be systematically obtained by means of a vertex enumeration algorithm (AVIS;

FUKUDA, 1992), which is an efficient technique (polynomial complexity) based on linear

programming methods. The definitions of A and b for affine and polytopic uncertainties,
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considering arbitrarily fast or bounded rates of variation are given in the Section 3.9. This

is an important contribution of the chapter, mainly for software development. Since it is

not useful to consider bounded rates of variation for the additive uncertainty in the prob-

lems investigated in this chapter (parameter with random behavior), only the arbitrarily

fast case is considered for δ(k). However, the approach could handle the bounded case

immediately, merely including additional linear constraints in the problem. Regarding

the multiplicative uncertainty considered in some previous papers, note that the vertex

enumeration algorithm, unfortunately, cannot be applied, since nonlinear constraints are

needed to define the feasible region.

Although the proposed modeling for the additive uncertainty provides the

exact region where the parameters θ(k) and δ(k) can assume values, the number of vertices

of the feasible region grows very rapidly with the increase of N or m (more accentuated

in the polytopic case). One possibility to alleviate this issue is, for instance, to disregard

the constraints (3.14) or (3.15), that is, to consider that the pairs (θi(k), δi(k)) lie in

the rectangle (overbounded region). On the other hand, conservativeness is introduced

in the analysis, as discussed in details in the paper Palma et al. (2018c) and in the

second numerical example of the next section. As a result, the user must trade-off the

need for accuracy and the computational complexity. Next section presents state-feedback

synthesis conditions exploiting the concept of sub-domain and Section 3.6.2 presents a

numerical example exploiting the proposed strategy to deal with additive uncertainty.

3.6 H2 State-Feedback Design

Motivated by the problem discussed in the previous section, the problem of

H2 gain-scheduled state-feedback control subject to inexact measurements is investigated.

Consider system (3.3) with Cy(θ(k)) = I, Ey(θ(k)) = 0, and a gain-scheduled control law

u(k) = K(θ̃(k))x(k) where θ̃(k) represents time-varying parameters θ(k) contaminated

by additive noise parameters δ(k) as in (3.12). The aim is to asymptotically stabilize the

system for the whole domain of (θ(k), δ(k)) and to minimize an H2 guaranteed cost from

the disturbance input w(k) to the controlled output z(k) only in a sub-domain (or set of

sub-domains) of (θ(k), δ(k)), exploiting some PDF associated to δ(k).

Theorem 3.2. Let the augmented vector Θ(k) = (θ(k)′, δ(k)′)′ and the linear transfor-

mation θ̃(k) = ([1, 1] ⊗ Im)Θ(k) be given. Consider system (3.3) with Θ(k) ∈ ∆2m(B) and

a set of sub-domains Sri
(Hi), i = 1, . . . , s, where B and Hi are given matrices. For a given

positive scalar ρ, if there exist symmetric positive definite parameter-dependent matrices

P (Θ(k)), Psi
(Θ(k)) and Wi(Θ(k)), and matrices G(θ̃(k)) and Y (θ̃(k)), i = 1, . . . , s, such
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that



P (Θ(k + 1)) ⋆

A(θ(k))G(Θ(k)) +B(θ(k))Y (θ̃(k)) P (Θ(k)) −G(θ̃(k)) −G(θ̃(k))′



 > 0 (3.16)

holds for all (Θ(k),Θ(k + 1)) ∈ ∆2m(B) × ∆2m(B), and for i = 1, . . . , s







Psi
(ξ(k + 1)) ⋆ ⋆

A(ξ(k))G(ξ(k)) +B(ξ(k))Y (ξ(k)) Psi
(ξ(k)) −G(ξ(k)) −G(ξ(k))′ ⋆

E(ξ(k)) 0 I







> 0, (3.17)




Wi(ξ(k)) − Ez(ξ(k))Ez(ξ(k))′ ⋆

Cz(ξ(k))G(ξ(k)) +Du(ξ(k))Y (ξ(k)) −Psi
(ξ(k)) +G(ξ(k)) +G(ξ(k))′



 > 0, (3.18)

Tr (Wi(ξ(k))) < ρ2 (3.19)

hold for all (ξ(k), ξ(k + 1)) ∈ Λri
× Λri

, where Θ(k) = Hiξ(k), i = 1, . . . , s, then

K(θ̃(k)) = Y (θ̃(k))G(θ̃(k))−1 is a gain-scheduled state-feedback gain that asymptotically

stabilizes system (3.3) for all Θ(k) ∈ ∆2m(B) and ρ is an H2 guaranteed cost valid only

inside the union of sub-domains Sri
(Hi), i = 1, . . . , s.

Proof. Follows immediately from the conditions of Theorem 3.1 considering A(θ(k)) =

A(θ(k)) + B(θ(k))K(θ̃(k)), Cz(θ(k)) = Cz(θ(k)) + Du(θ(k))K(θ̃(k)) and the change of

variable Y (θ̃(k)) = K(θ̃(k))G(θ̃(k)).

The conditions of Theorem 3.2 were specially produced to deal with the addi-

tive uncertainty. To handle other problems where a PDF is available for θ(k), just consider

Θ(k) = θ(k) = θ̃(k). If the time-varying parameters θ(k) cannot be estimated or mea-

sured, a robust control gain is still viable, just fixing matrices Y (θ(k)) and G(θ(k)) as

parameter-independent. Note that even in this case the heuristic based on sub-domains

can be applied whenever a PDF is available. From this point, the proposed heuristic is

called Sub-Domain Optimization Heuristic (SDOH).

3.6.1 Numerical implementation

All conditions proposed in this chapter have been given in terms of parameter-

dependent LMIs to keep the notation as simple as possible, making a clean presentation.

On the other hand, parameter-dependent LMIs cannot be numerically tested (infinite

dimensional optimization problem). However, as already routine in the literature, relax-

ations based on a finite set of LMIs, also known as LMI relaxations, can be obtained by

imposing polynomial structures (arbitrary degree) for the optimization variables (BLI-

MAN, 2004; BLIMAN et al., 2006) and applying well established positivity tests for the

resulting polynomial matrix inequalities (OLIVEIRA; PERES, 2007). Besides, such proce-
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dure is already performed by software, for instance, by the Robust LMI Parser (ROLMIP)

(AGULHARI et al., 2019), that works jointly with Yalmip (LÖFBERG, 2004).

Regarding the definition of variables depending on θ̃(k) in Theorem 3.2, note

that, ultimately, these variables depends on θ(k) and δ(k) using the informed linear trans-

formation. The polynomial degrees of the optimization variables associated to each θi(k)

and δi(k) could be different, but in the numerical examples presented in this chapter, all

degrees have been considered the same. Particularly with respect to variables G(θ̃) and

Y (θ̃), the degrees are all zero when a robust gain (parameter-independent) is desired.

3.6.2 H2 State-Feedback Design Examples

In this section, two case studies are investigated for H2 state-feedback control

design. The first one is concerned with the evaluation of the actual worst case H2 closed-

loop norm (obtained via Monte Carlo (MC) simulation) associated with two distinct

robust H2 state-feedback controllers: the classical one and the one synthesized using the

SDOH technique, that is, optimizing the time-response using statistical information about

the time-varying parameter. The second case study aims to evaluate the H2 guaranteed

cost of the closed-loop system with a gain-scheduled controller subject to additive noise

and to compare the methods of H2 control synthesis associated to two distinct parametric

models: i) the saturation effect of δ(k) on θ(k) is disregarded (classical modeling); ii) the

saturation effect is taken into account using the proposed modeling (by means of (3.14)).

3.6.2.1 Example of H2 state-feedback control using the SDOH

The purpose of this example is to illustrate the use of the SDOH methodol-

ogy in robust (parameter-independent) control design when the PDF distribution of the

time-varying parameter is known. For this purpose, consider system (3.3) with polytopic

uncertainty where Cy(θ(k)) = I, Ey(θ(k)) = 0, and the other state-space matrices with

vertices given by




A1 A2 B1 B2 E1 E2

Cz1 Cz2 Dz1 Dz2 Ez1 Ez2



 =

















0 1 0 0 1 0 0 0 0 3 0.3 0 0 0

0 0 1 0 0 1 0 3 0 0 0 1 0 −2

−1.7 0.15 6.2 2.7 −0.3 0 1 1 1 1 1 0 5 0

1 0 0 1 0 0 0, 3 0 0 0 0 0 0 0

0 1 0 0 1 0 0 −2 0 −2 0 0 0 0

0 0 1 0 0 1 0.5 0 0.5 0 0 0 0 0

















,

(3.20)

An important observation is that the dynamic matrix θ1(k)A1+θ2(k)A2 is not Schur stable

for all θ(k) ∈ Λ2. Suppose that the time-varying parameters θ1(k) and θ2(k) are random

variables with normal distribution with mean γ and standard deviation σ, denoted by

µ(γ, σ) (discrete-time uncorrelated random variables). Two scenarios are evaluated. In

the first one, θ1(k) = µ(0.5, σ) ∈ [0, 1]. The histogram of θ1(k) is presented in Fig. 13a for

σ = 0.15. In the second scenario, parameter θ1(k) = {1−µ(1, σ)} such that µ(1, σ) ∈ [0, 1]
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is an asymmetric random variable centered on θ1(k) = 1 and standard deviation given by

σ and the histogram is presented in Fig. 13e for σ = 0.25. In both cases θ2(k) = 1 −θ1(k),

since the state-space matrices are polytopic, meaning that θ(k) = (θ1(k), θ2(k)) belongs

to the unit simplex Λ2.

The classical robust controller is obtained using the conditions of Theorem 3.2

considering only one sub-domain, equal to the main domain, i.e., S2 = Λ2 (in this case

only (3.17), (3.18) and (3.19) are solved). With respect to the polynomial degrees of

the decision variables, matrices G(·) and Y (·) are set to degree zero and the Lyapunov

matrix Ps1
(Θ) and matrix M1(Θ) are set to degree three. The synthesized gain is given

by (truncated with 4 decimal digits)

Kr =




−0.6520 0.8173 −2.9060

1.6225 −0.1693 −2.2685





Observe that, in this situation, the synthesis procedure does not consider the informa-

tion about the temporal behavior of the time-varying parameters (only their bounds).

To obtain a robust controller with improved performance, the propose heuristic can be

employed to explore the statistical information about the time-varying parameters that

is available, basically optimizing the H2 cost in a sub-domain constructed according to

the probability distribution of the parameters. In this example, the task of selecting the

sub-domain systematically employs first and second order statistics (respectively, mean

and standard deviation), such that the sub-domain Sr(H) always represents a region de-

fined in terms of the mean and the standard deviation, as illustrated in Fig. 12 for generic

values of γ and σ. Note that when dealing with two parameters lying in the unit simplex,

only one pair (γ, σ) is enough to specify the sub-domain, since θ2 = 1 − θ1.

1

1

θ1

θ2

(γ, σ)γ + σ

γ + σ

γ − σ

γ − σ

γ

γ

Figure 12 – Domain Λ2 with sub-domain given by S(H) with H = [h1 h2], h1 = [γ −
σ, γ + σ]′ and h2 = [γ + σ, γ − σ]′.

Also observe that in Case 1 (θ1(k) = µ(0.5, σ)), independently from the value

of the standard deviation σ, the mean of θ1(k) is always the same (0.5) because θ(k) is
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a random variable with symmetric distribution. On the other hand, in Case 2 (θ1(k) =

{1−µ(1, σ)}), the variable θ1(k) has asymmetric distribution, therefore, the mean depends

on the standard deviation σ. Employing Theorem 3.2 with the same polynomial degrees

for the decision variables and using appropriate sub-domains to handle Cases 1 and 2, the

following robust gains are obtained respectively

Ks =




−0.4730 0.7814 −3.1657

1.4591 −0.1500 −2.0566



 , Ka =




−0.3652 0.7878 −3.3314

1.5193 −0.1428 −2.1498





Although numerically different, the three gains are capable to stabilize the closed-loop

system in the whole domain Λ2. However, the most important feature to be analyzed is

the close-loop performance provided by the controllers. In terms of guaranteed costs, it

is expected that Ks and Ka yield lower values but, ultimately, the interest is the actual

H2 norm of the closed-loop system. Knowing that a reasonably accurate estimate for this

value can be obtained via MC simulation, consider the results of Fig. 13b, 13c, 13f and

13g, which present the mean and the associated standard deviation of1 z(k)′z(k), where

z(k) is the controlled output of the closed-loop system, for each choice of controller (Kr,

Ks, or Ka) versus time (k). Those results where obtained using 105 MC realizations and

a time-window of k = 150 samples.

Considering Case 1, where the time-varying parameter has symmetric distribu-

tion and standard deviation σ = 0.15 (Fig. 13a), the value of the actual H2 norm obtained

through MC simulation of the closed-loop system using the classical robust controller Kr

(Fig. 13b) is H2= 25.2901. On the other hand, using the gain Ks synthesized using the

proposed heuristic method (Fig. 13c), one obtains H2= 21.6094, which implies in a reduc-

tion of 14.55% when compared with the classical design (Kr). Regarding Case 2, where

the time-varying parameter has asymmetric distribution and standard deviation σ = 0.25

(Fig. 13e), the value of the actual worst case H2 norm computed using the classical ro-

bust controller Kr (Fig. 13f) is H2= 22.8117, while employing gain Ka designed using

the proposed heuristic method (Fig. 13f), that takes into account the region of greater

probability distribution of the parameter, the H2 norm is 17.6364, which represents an

improvement of 22.68% when compared with the classical design. Furthermore, note that

the standard deviation (dashed line in Fig. 13b, 13c, 13f, 13g), whose value is inversely

proportional to the confidence interval of the project, is noticeably higher when using the

classical gain (Kr) than with the employment of SDOH robust controllers (Ks or Ka),

representing another advantage of the proposed approach.

For the purpose of exposing the general benefits of using the proposed tech-

nique, Fig. 13d and 13h show the percentage improvement of the H2 norm obtained by

MC simulation as a function of σ ∈ [0.05, 0.5]:

H2(σ)% =
H2(Kr) − H2(K•)

H2(Kr)
× 100, (3.21)

1 The square of H2 norm is the area under the curve described by z(k)′z(k).
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Figure 13 – Graphs of Example 3.6.2.1: Histogram of the random time-varying parameter
(a) θ1(k) = µ(0.5, 0.15) and (e) θ1(k) = 1 − µ(1, 0.25); Mean and standard
deviation of z(k)′z(k) ×k obtained through MC simulation of the closed-loop
system with (b) θ1(k) = µ(0.5, 0.15) and gain Kr, (c) θ1(k) = µ(0.5, 0.15) and
gain Ks, (f) θ1(k) = 1 −µ(1, 0.25) and gain Kr, (g) θ1(k) = 1 −µ(1, 0.25) and
gainKa; Percentage improvement of the H2 norm (H2(σ)%) of the closed-loop
system with (d) Ks and (h) Ka when compared with Kr versus σ.

where K• can be replaced by Ks or Ka. The range of the standard deviation σ of the

distribution of θ1(k) was chosen [0.05, 0.5] because for values lower than 0.05 the behavior

of the parameter is approximately time-invariant, and for values greater than 0.5 the

distribution of θ1(k) tends to a uniform distribution, that is, the frequency of occurrence of

θ1(k) is approximately the same for the whole domain, meaning that the heuristic method

recovers the classical approach. In Case 1 (symmetric distribution) the H2 norm computed

by MC simulation is between 9.86% to 16.46% lower using the heuristic than using the

classical design method. The improvement is more pronounced in Case 2 (asymmetric

distribution) where the H2 norm is about 15.82% to 51.64% better by using the heuristic

technique.

3.6.2.2 Comparisons with other sub-domains for the heuristics

The aim of this example is to compare the performance of the proposed SDOH

formulation with other design methods that, in principle, could also employ statistical

information of the parameter in different ways. For this purpose, consider Case 2 of

the previous example (Subsection 3.6.2.1), where the time-varying parameter (θ1(k) =

{1 − µ(1, σ)}) has an asymmetric distribution centered in γ = 1 with σ = 0.3. The

value of the actual worst case H2 closed-loop norm associated with each controller is
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computed through MC simulation with 104 realizations of k = 250 samples and are

depicted in Fig. 14. The following design methods are evaluated: (a) A robust SDOH

controller considering the sub-domain defined in Fig. 12; (b) Classical robust controller;

(c) Optimal controller considering (3.20) as a precisely known LTI system with a fixed

operation point corresponding to the value of the parameter θ1(k) of maximum frequency

(θ1(k) = 1); (d) A robust controller designed considering only the sub-domain (solving

only LMIs (3.17), (3.18) and (3.19) of Theorem 3.2), disregarding the robust stability

requirement for the whole domain (as required by the proposed SDOH formulation); (e)

A robust controller assuring stability for the entire domain but optimizing a bound to the

H2 norm in a single point corresponding to the value of the parameter θ1(k) of maximum

frequency (θ1(k) = 1); (f) The previous case considering the mean value of the parameter,

that is, θ1(k) = 0.7611.
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Figure 14 – Mean (blue) and standard deviation (dashed green) of z(k)′z(k) ×k obtained
through MC simulation of the closed-loop system of Example 3.6.2.2 with
(a) SDOH formulation; (b) Classical robust controller; (c) Optimal controller
for θ1(k) of maximum frequency; (d) Robust controller designed for the sub-
domain disregarding the stability guarantee for all domain; Robust controller
assuring the stability for all domain but optimizing the H2 cost in a single
operation point (e) maximum frequency and (f) expected value.

Observe that the methods (b), (c), (e) and (f) (whose results are respectively

presented in Figs. 14b, 14c, 14e, and 14f) are simpler than the proposed one (method

(a) associated with Fig. 14a) because they do not require the concept of sub-domain

(Subsection 3.3.1). Additionally, although the approach (d) (whose results are depicted in

Fig. 14d) employs the sub-domain notion, it presents the same disadvantage as technique

(c): it does not guarantee stability for all the parametric domain. This feature is more
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evident in Fig. 14c, revealing that the system in closed-loop with the optimal controller

provided by method (c) is unstable. Furthermore, despite Fig. 14d does not represent an

unstable case, it illustrates an equally bad case where the standard deviation is almost

5 times greater and the H2 norm is 25.00% higher than those obtained by the SDOH

technique (a). Note that, even optimizing the guaranteed cost in the sub-domain, the

method (d) provides an actual worst case H2 norm of 24.5460, as bad as the classical robust

case (b), whose value is H2= 24.8760, being 26.88% bigger than the SDOH technique

(H2= 19.6037). Finally, even though approaches (e) and (f) assure stability for all the

parametric domain and use the statistical information of the probability distribution of

the parameter in some way, a loss of performance is obtained: H2= 20.9387 for case

(e) and H2= 20.5434 for technique (f), respectively 6.81% and 4.69% worst than the

SDOH method. Note that, to optimize the H2 guaranteed cost in a single operation point

(maximum frequency or expected value, as done by (e) and (f) and shown in Figs. 14e and

14f) can provide results associated with higher standard deviations than the one yielded

when optimizing the performance criterion in a sub-domain (as done by the proposed

SDOH method (a)).

3.6.2.3 H2 state-feedback control design using the accurate modeling of the additive noise

This example aims to illustrate that an accurate modeling of the additive

uncertainty can improve the design of the stabilizing controller, allowing to obtain lower

estimates for the closed-loop H2 guaranteed cost and also to provide feasible solutions

when other methods fail. First the model disregards (3.14), that is, the effect of δ(k)

over θ(k), providing a more conservative representation but with a less complex model.

In the second case (3.14) is taken into account, representing precisely the feasible region

of the pair (θ(k), δ(k)) but requiring a more complex model and, consequently, a higher

computational cost. The concept of sub-domain is not used in this example and the

conditions of Theorem 3.2 are solved considering only (3.17), (3.18) and (3.19).

Consider system (3.3) with polytopic uncertainty and the problem of state-

feedback control (Cy(θ(k)) = I, Ey(θ(k)) = 0) with the coefficients of the state-space

matrices given by




A1 A2 B1 B2 E1 E2

Cz1 Cz2 Dz1 Dz2 Dz1 Dz2



 =








0 1 0 0 0 0 0 0

0.5 0 0 1 1 −1 1 1

0 4 0 0 0.5 2 0.5 2








(3.22)

with the time-varying parameters (θ1(k), θ2(k)) ∈ Λ2. At least for optimization variables

(Ps1
(Θ(k)) and W1(Θ(k)) up to degree 3, Theorem 3.2 is not capable to provide a robust

(G(·) and Y (·) of degree zero) state-feedback control law for this example. Possibly this

system can only be stabilized by a gain-scheduled control law and, if a real-time iden-

tification procedure is applied, the existence of an additive noise error inherent to the
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estimation process must be taken into account. In this example, the additive uncertainty

is investigated considering −δ̄ ≤ δi(k) ≤ δ̄, δ̄ ∈ [0, 0.12], i = 1, 2.

The consideration of the saturation effect of δ1(k) over θ1(k) produces a six-

vertex polytope, depicted by the light-grey area in Fig. 15 when δ̄ = 0.12. Disregarding

the saturation, the feasible region comprises the light-grey area plus the dark-grey area,

yielding a four-vertex polytope (rectangle). Note that the rectangle model tends to be

more and more conservative as the value δ̄ increases and the contrary also holds (less and

less conservative as δ̄ → 0). The experiment relies on computing gain-scheduled gains

0 0.2 0.4 0.6 0.8 1

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

θ1

δ1

Figure 15 – Feasible region of the pair (θ1, δ1) where (θ1, θ2) ∈ Λ2 and −0.12 ≤ δi ≤ 0.12,
i = 1, 2, considering (light-grey) and not considering (light-grey plus dark-
grey) (3.15). A similar region is obtained for the pair (θ2, δ2).

considering both models, analyzing the trade-off between conservativeness in terms of

H2 guaranteed costs and the computational burden. The conditions of Theorem 3.2 are

employed considering degree one for all optimization variables (no improvements were ob-

served for higher degrees). The H2 guaranteed costs associated to the designed controllers

are shown in Fig. 16 as a function of δ̄ ∈ [0, 0.12].

Observe that, when no additive uncertainty is considered (δ̄ = 0), both models

are associated with the same H2 guaranteed cost ρ = 72.1971. Regarding only the sta-

bilization problem, note that the four-vertex model can be stabilized using Theorem 3.2

only if δ̄ ∈ [0, 0.0780]. On the other hand, the six-vertex model can be stabilized through

Theorem 3.2 for ¯δ(k) ∈ [0, 0.1140], which represents an increase around 69.42% in the

feasibility region. It is important to emphasize that a control design associated to a wider

range of additive noise (6% of the fluctuation of the time-varying parameter against 4.1%

when employing the conservative model) allows the use of less accurate estimation al-

gorithms or measurement sensors, which usually imply faster parameter estimation or

hardware of lower costs in practical implementations.
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Figure 16 – H2 guaranteed costs (ρ) obtained by Theorem 3.2 as a function of δ̄ ∈ [0, 0.12] considering
the conservative model (4 vertices – green) and the accurate model of the additive uncertainty
(6 vertices – blue).

In terms of guaranteed costs, the six-vertex model always provides less con-

servative results, with a more pronounced improvement for larger values of δ̄ (note that

the H2 guaranteed cost axis of the graph depicted in Fig. 16 is in logarithmic scale). For

instance, assuming δ̄ = 0.07, the H2 guaranteed cost is about 3 times lower by using the

six-vertex model (µ = 308.9 for the four-vertex model and µ = 103.8 for the six-vertex

model).

To conclude the analysis, it is necessary to evaluate the computational com-

plexity demanded by the models. The conditions of Theorem 2 using degree g = 3 in all

optimization variables required V = 317 decision variables and L = 2336 LMI rows for the

four-vertex model and V = 3317 and L = 28336 for the six-vertex model. As expected,

less conservative results come with a price, that is, a more complex optimization problem.

3.7 H2 Full-Order Filter Design

Consider the gain-scheduled full-order filter

F =







xf (k + 1) = Af(θ̃(k))x(k) +Bf(θ̃(k))y(k),

zf (k) = Cf(θ̃(k))x(k) +Df(θ̃(k))y(k),
(3.23)

where xf (k) ∈ Rnx , zf (k) ∈ Rnz respectively denote the filter state and the estimated

output vectors. As in the state-feedback case, the matrices of the filter are scheduled

by time-varying parameters contaminated by noise in the form of (3.12). By connecting

the filter with the LPV system (3.3) with B(θ(k)) = 0, Dz(θ(k)) = 0, one obtains the

augmented system

Gaug =







x̃(k + 1) = Ã(θ(k), θ̃(k))x̃(k) + B̃(θ(k), θ̃(k))w(k),

e(k) = C̃(θ(k), θ̃(k))x̃(k) + D̃(θ(k), θ̃(k))w(k),
(3.24)
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where x̃(k) = [x(k)′ xf (k)′]′ is the augmented state vector, e(k) = z(k) − zf (k) represents

the error dynamics, and the augmented state-space matrices are

Ã(θ(k), θ̃(k)) =




A(θ(k)) 0

Bf (θ̃(k))Cy(θ(k)) Af(θ̃(k))



 , B̃(θ(k), θ̃(k)) =




E(θ(k))

Bf (θ̃(k))Ey(θ(k))



 ,

(3.25)

C̃(θ(k), θ̃(k)) =
[

Cz(θ(k)) −Df (θ̃(k))Cy(θ(k)) −Cf (θ̃(k))
]

and D̃(θ(k), θ̃(k)) = Ez(θ(k)) − Df (θ̃(k))Ey(θ(k)). The aim is to synthesize matrices

Af(θ̃(k)), Bf(θ̃(k)), Cf(θ̃(k)) and Df (θ̃(k)) such that the augmented system (3.24) is

asymptotically stable for the whole domain of uncertainty and to minimize an H2 guar-

anteed cost from the disturbance input w(k) to the estimation error e(k) only in a sub-

domain (or multiple sub-domains).

Consider the following partitioning scheme

W (•) =




W11(•) ⋆

W21(•) W22(•)



 , X(•) =




X1(•) X3(•)

X2(•) X4(•)



 (3.26)

Theorem 3.3. Let the augmented vector Θ(k) = (θ(k)′, δ(k)′)′ and the linear transforma-

tion θ̃(k) = ([1, 1]⊗Im)Θ(k) be given. Consider system (3.3) (B(θ(k)) = 0, Dz(θ(k)) = 0)

with Θ(k) ∈ ∆2m(B) and a set of subdomains Sri
(Hi), i = 1, . . . , s, where B and Hi are

given matrices. For given scalars ρ > 0, γA, γB and γq ∈ (−1, 1), if there exist symmetric

positive definite parameter-dependent matrices W (Θ(k)), Wsi
(Θ(k)) and M(Θ(k)), matri-

ces X(Θ(k)), and Xsi
(Θ(k)), i = 1, . . . , s, structured as in (3.26) and matrices SA(θ̃(k)),

SB(θ̃(k)), LA(θ̃(k)), LB(θ̃(k)), Cf(θ̃(k)) and Df (θ̃(k)) such that




Q11(Θ(k), W, X, LA(θ̃(k)), LB(θ̃(k))) ⋆

Q31(Θ(k), LA(θ̃(k)), LB(θ̃(k))) 0



+He








X1

X3








B1(θ(k), X, SA(θ̃(k)), SB(θ̃(k)))

B3(SA(θ̃(k)), SB(θ̃(k)))





′

 < 0,

(3.27)

holds for all (Θ(k),Θ(k + 1)) ∈ ∆2m(B) × ∆2m(B), and for i = 1, . . . , s











M(ξ(k)) ⋆ ⋆ ⋆

(Cz(ξ(k)) −Df(ξ(k))Cy(ξ(k)))T Wsi11
(ξ(k)) ⋆ ⋆

−Cf(ξ(k))T Wsi21
(ξ(k)) Wsi22

(ξ(k)) ⋆

(Ez(ξ(k)) −Df(ξ(k))Ey(ξ(k)))T 0 0 I











> 0, (3.28)
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






Q11(ξ(k),Wsi
, Xsi

, LA(ξ(k)), LB(ξ(k))) ⋆ ⋆

Q21(ξ(k),Wsi
, Xsi

, LA(ξ(k)), LB(ξ(k))) Q22 ⋆

Q31(ξ(k), LA(ξ(k)), LB(ξ(k))) Q32(ξ(k), LB(ξ(k)) 0








(3.29)

+He















X1

X2

X3















B1(ξ(k), Xsi
, SA(ξ(k)), SB(ξ(k)))

B2

B3(SA(ξ(k)), SB(ξ(k)))








′





< 0,

(3.30)

Tr (M(ξ(k))) < ρ2, (3.31)

hold for all (ξ(k), ξ(k + 1)) ∈ Λri
× Λri

, where2








Q11(•,W,X, LA(N), LB(N)) ⋆ ⋆

Q21(•,W,X, LA(N), LB(N)) Q22 ⋆

Q31(•, LA(N), LB(N)) Q32(•, LB(N)) 0








=




















Ψ11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Ψ21 Ψ22 ⋆ ⋆ ⋆ ⋆ ⋆

Ψ31 Ψ32 Ψ33 ⋆ ⋆ ⋆ ⋆

Ψ41 Ψ42 Ψ43 Ψ44 ⋆ ⋆ ⋆

Ψ51 Ψ52 Ψ53 Ψ54 −I ⋆ ⋆

Ψ61 0 0 0 Ψ65 0 ⋆

0 LA(N) 0 0 0 0 0




















,

(3.32)

Ψ11 =
γqHe(X1(•)A(•)

+LB(N)Cy(•) −W11(•))
Ψ21 =

γq(X2(•)A(•) + LB(N)

Cy(•) + LA(N)′) −W21(•)

Ψ31 = −γqX1(•)′ +X1(•)A(•) + LB(N)Cy(•) Ψ41 = −γqX3(•)′ +X2(•)A(•) + LB(N)Cy(•)

Ψ51 = γq(E(•)X1(•)′ + Ey(•)′LB(N)′) Ψ61 = LB(N)Cy(•)

Ψ22 = γqHe(LA(N)) −W22(•) Ψ32 = −γqX2(•)′ + LA(N)

Ψ42 = −γqX4(•)′ + LA(N) Ψ52 = γq(E(•)′X2(•)′ + Ey(•)′LB(N)′)

Ψ33 = W+
11(•) − He(X1(•)) Ψ43 = W+

21(•) −X2(•) −X3(•)′

Ψ53 = E(•)′X1(•)′ + Ey(•)′LB(N)′ Ψ44 = W+
22(•) − He(X4(•))

Ψ54 = E(•)′X2(•)′ + Ey(•)′LB(N)′ Ψ65 = LB(N)Ey(•),

2 The symbols • and N are used to represent the blocks of matrices Q and B generically in terms of

Θ(k), θ̃(k) and ξ(k). Moreover, the superscript + is used to denote the block matrices Wij one time-

instant ahead.
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






B1(•, X, SA(N), SB(N))′

B′
2

B3(SA(N), SB(N))′








=




















γq (X3(•) − SB(N)) γq (X3(•) − SA(N))

γq (X4(•) − SB(N)) γq (X4(•) − SA(N))

X3(•) − SB(N) X3(•) − SA(N)

X4(•) − SB(N) X4(•) − SA(N)

0 0

−SB(N) 0

0 −SA(N)




















,








X1

X2

X3








=




















I 0

0 I

I 0

0 I

0 0

γBI 0

0 γAI




















,

(3.33)

and Θ(k) = Hiξ(k), i = 1, . . . , s, then Af (θ̃(k)) = S−1
A (θ̃(k))LA(θ̃(k)), Bf (θ(k)) =

S−1
B (θ̃(k))LB(θ̃(k)), Cf(θ̃(k)) and Df(θ̃(k)) are the filter matrices that guarantee that the

filtered system (3.24) is asymptotically stable for all Θ(k) ∈ ∆2m(B) and ρ is an H2 guar-

anteed cost valid only inside the union of sub-domains Sri
(Hi), i = 1, . . . , s.

Proof. Firstly, multiply (3.27) on the left by B⊥(X(θ(k)), SA(θ̃(k)), SB(θ̃(k)))′ and on the

right by the transpose with

B⊥(X(•), SA(N), SB(N)) =




B⊥

11

B⊥
31





=

















I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

γqΦB3 γqΦB4 ΦB3 ΦB4

γqΦA3 γqΦA4 ΦA3 ΦA4

















,

with

ΦA3 = (SA(N)−1X3(•) − I)′
,

ΦA4 = (SA(N)−1X4(•) − I)′
,

ΦB3 = (SB(N)−1X3(•) − I)′
,

ΦB4 = (SB(N)−1X4(•) − I)′
,

(3.34)

to obtain



−W (Θ(k)) ⋆

0 W (Θ(k + 1))



+ He








γqX(Θ(k))

X(Θ(k))





[

Ã(θ(k), θ̃(k)) −I
]



 < 0 (3.35)

where Ã(θ(k), θ̃(k)) is given by (3.25) replacing Af (θ̃(k)) by S−1
A (θ̃)(k)LA(θ̃(k)) andBf (θ̃(k))

by S−1
B (θ̃(k))LB(θ̃(k)). Pre- and post-multiplying (3.35) respectively by

N ′
A =

[

I Ã(θ(k), θ̃(k))′
]

and NA, one has

Ã(θ(k), θ̃(k))′W (Θ(k + 1))Ã(θ(k), θ̃(k)) −W (Θ(k)) < 0

that assures the asymptotic stability of the augmented system (3.24). The existence of the

inverse of matrices SA(θ̃(k)) and SB(θ̃(k)) can be proved by observing that γA(SA(θ̃(k))+

SA(θ̃(k))′) and γB(SB(θ̃(k))+SB(θ̃(k))′) appear in diagonal blocks of (3.27). On the other
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hand, by multiplying (3.29) on the left by B⊥(Xsi
(ξ(k)), SA(ξ), SB(ξ))′ and on the right

by the transpose, with

B⊥(X(•), SA(N), SB(N)) =








B⊥
11 B⊥

12

B⊥
21 B⊥

22

B⊥
31 B⊥

32







, with

B⊥
12 =

[

0 0 0 0
]′
,

B⊥
21 =

[

0 0 0 0
]

,

B⊥
32 =

[

0 0
]′
,

B⊥
11 from (3.34),

B⊥
31 from (3.34),

B⊥
22 = I,

(3.36)

one gets








−Wsi
(ξ(k)) ⋆ ⋆

0 Wsi
(ξ(k + 1)) ⋆

0 0 −I








+ He




















γqXsi
(ξ(k))

Xsi
(ξ(k))

0








︸ ︷︷ ︸

V

[

Ã(ξ(k)) −I B̃(ξ(k))
]

︸ ︷︷ ︸

U













< 0

(3.37)

where Ã(ξ(k)) and B̃(ξ(k)) are given by (3.25) replacing Af (θ̃(k)) by S−1
A (θ̃(k))LA(θ̃(k))

and Bf (θ̃(k)) by S−1
B (θ̃(k))LB(θ̃(k)) and using the linear transformation Θ(k) = Hiξ(k).

Choosing the following bases for the null spaces of U and V

N ′
U =




I Ã(ξ(k))′ 0

0 B̃(ξ(k))′ I



 , N ′
V =




−I γqI 0

0 0 I



 , (3.38)

pre- and post-multiplying (3.37) respectively by N ′
U and NU , and applying the Schur’s

Complement, one obtains the controllability gramian of the LPV system (3.24) (DE

CAIGNY et al., 2010, Theorem 2), valid only inside the set of sub-domains. Additionally,

pre- and post-multiplying (3.37), respectively, by NT
V and NV , one gets the bounds for

the scalar parameter γq ∈ (−1, 1). Finally, note that (3.28) corresponds to the cost condi-

tion for the computation of the H2 guaranteed cost of (3.24) (DE CAIGNY et al., 2010,

Theorem 2) valid only inside the set of sub-domains.

One of the contributions of this chapter is the new filter synthesis conditions

proposed in Theorem 3.3 where, differently from the routine adopted in the literature, no

structural constraints are imposed to the slack variables X(Θ(k)) and Xsi(Θ(k)). In this

conditions, the filter matrices Af(θ̃(k)) and Bf (θ̃(k)) are recovered by a change of variables

whose variables are totally independent of each other (usually, SA(θ̃(k)) and SB(θ̃(k))

are the same). Furthermore, next lemma demonstrates that conditions (3.28)-(3.31) of

Theorem 3.3 (considered for only one sub-domain and equal to the whole domain, i.e., all

variables depending on Θ(k)) encompass a method from the literature for the synthesis

of H2 full-order filter by means of particular choices of the scalars and variables.

Lemma 3.1. If Theorem 1 from Palma et al. (2018c) has a solution, then Theorem 3.3

also does by means of the following choices γq = ξ, γA = γB → ∞, X3(•) = X4(•) =
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SA(•) = SB(•) = X̄(Θ(k)), LA(•) = H(Θ(k)), LB(•) = Z(Θ(k)), X1(•) = X11(Θ(k)),

X2(•) = X21(Θ(k)).

Proof. Firstly observe that conditions (3.31) and (3.28) of Theorem 3.3 are respectively

the same of (8) and (9) from Palma et al. (2018c). Adopting the choices given in Lemma 3.1

in (3.29), one has

[

ΠA ⋆

ΠB ΠC

]

=
















Π11 ⋆ ⋆ ⋆ ⋆ ⋆ ⋆

Π21 Π22 ⋆ ⋆ ⋆ ⋆ ⋆

Π31 Π32 Π33 ⋆ ⋆ ⋆ ⋆

Π41 Π42 Π43 Π44 ⋆ ⋆ ⋆

ξΠ53 ξΠ54 Π53 Π54 Π55 ⋆ ⋆

Π61 0 Π63 0 Π65 Π66 ⋆

0 Π72 0 Π63 0 0 Π77
















< 0, (3.39)

with
Π11 = ξHe (X11(Θ(k))A(Θ(k)) + Z(Θ(k))Cy(Θ(k))) − W11(Θ(k)),

Π72 = H(Θ(k)) − X̄(Θ(k))′,

Π21 = ξ (X21(Θ(k))A(Θ(k)) + Z(Θ(k))Cy(Θ(k)) + H(Θ(k))′) − W21(Θ(k)),

Π33 = W̃11(Θ(k)) − He (X11(Θ(k))),

Π31 = X11(Θ(k))A(Θ(k)) + Z(Θ(k))Cy(Θ(k)) − ξX11(Θ(k))′,

Π43 = W̃21(Θ(k)) − X21(Θ(k)) − X̄(Θ(k))′,

Π41 = X21(Θ(k))A(Θ(k)) + Z(Θ(k))Cy(Θ(k)) − ξX̄(Θ(k))′,

Π63 = −X̄(Θ(k))′,

Π53 = (X11(Θ(k))E(Θ(k)) + Z(Θ(k))Ey(Θ(k)))′,

Π55 = −I,

Π61 = Z(Θ(k))Cy(Θ(k)) − X̄(Θ(k))′,

Π65 = Z(Θ(k))Ey(Θ(k)),

Π22 = ξHe(H(Θ(k))) − W22(Θ(k)),

Π66 = −γBHe
(

X̄(Θ(k))
)

,

Π32 = H(Θ(k)) − ξX21(Θ(k))′,

Π42 = H(Θ(k)) − ξX̄(Θ(k))′,

Π54 = (X21(Θ(k))E(Θ(k)) + Z(Θ(k))Ey(Θ(k)))′,

Π77 = −γAHe(X̄(Θ(k))).

By applying a Schur’s complement in (3.39) one obtains

ΠA −Π ′
B (ΠC)−1 ΠB < 0 ⇒ ΠA −Π ′

B




−γBHe

(

X̄(Θ(k))
)

0

0 −γAHe(X̄(Θ(k)))





−1

ΠB < 0.

(3.40)

As suggested in Lemma 3.1, γA → ∞ and γB → ∞, implying that Π ′
B (ΠC)−1 ΠB → 0

and (3.40) → ΠA < 0, recovering the parameter-dependent LMI (10) from Palma et al.

(2018c).
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Instead of following the main stream of methods available in the literature,

where the routine is to introduce more and more slack variables to reduce the conserva-

tiveness, a different approach was pursued in Theorem 3.3. The slack variable X in Palma

et al. (2018c) was kept completely parameter-dependent (in Palma et al. (2018c) the sec-

ond column is fixed) and the filter matrices are introduced independently. As important

consequences, Theorem 3.3 is no more conservative than Palma et al. (2018c) and an

extra degree of freedom is obtained in the construction of Af(θ̃(k)) and Bf(θ̃(k)) with

SA(θ̃(k)) and SB(θ̃(k)). Finally, the technique employed in the development of Theorem 3

is general in the sense it can be applied in other design methods with more slack variables,

for instance, in the method of Lacerda et al. (2011).

3.7.1 H2 Filter Design Examples

An example borrowed from the literature is investigated in this section with

the purpose of evaluating the proposed approach in the context of H2 gain-scheduled

filtering with estimated parameters. Two investigations are carried out. The first one

is the analysis of the saturation effect of δ(k) over θ(k). To enrich the analysis, both

robust and gain-scheduled filters are designed and their performances are evaluated in

terms of guaranteed costs and the MSE of the estimation error. The second study aims

to evaluate the actual worst case H2 closed-loop norm (obtained via MC simulation)

associated with three distinct H2 full-order filters: the robust one and two gain-scheduled

filters synthesized using the SDOH approach (considering the whole additive uncertain

interval or a sub-domain defined by the standard deviation of the identification error

histogram).

3.7.1.1 H2 filter design using estimated parameters

Consider system (3.3) (with u(k) = 0) with affine uncertainty and state-space

matrices (borrowed from Palma et al. (2018c)) given by








A0 A1 A2 E0 E1 E2

Cy0 Cy1 Cy2 Ey0 Ey1 Ey2

Cz0 Cz1 Cz2 Ez0 Ez1 Ez2








=




















0 1 0.4 0 0 0 0 0 0 0.5 0 0 0 0 0

1 0 −0.3 0 0 0 0 0 1 −0.2 0 0 0 1 0

0 1 0.5 0 0 1 0 0 0 0.7 0 1 0 0 0

0 0 1 0 0 0 0 0 0 1 0.25 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0 0




















.

(3.41)

The time-varying parameters are θ1(k) = −0.5−0.2 sin((2π/1800)k) (Fig. 17a)

and θ2(k) is a triangular wave centered around 0.3 with a period of k = 4000 samples and
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amplitude 0.1 (Fig. 17d). Thus,

B =




−0.7 −0.3

0.2 0.4





By measuring the output y(k) and knowing the input w(k) = [w1(k)′ w2(k)′]′, it is possible

to identify the time-varying parameters in real-time through an inverse identification

scheme using the Recursive-Least-Squares (RLS) Algorithm following the steps given in

Section V from Palma et al. (2018c). For the MC simulation, the exogenous input w1(k)

is composed by a discrete-time sine wave with magnitude 8.8 and a sampling period of

k = 20 samples plus a Gaussian noise with null mean and standard deviation 3, while

w2(k) is a Gaussian noise with null mean and standard deviation 0.25.
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Figure 17 – Results of the identification process for the parameters: Fig. 17a and Fig. 17d
show the actual parameter (red curve), mean (blue curve) and standard de-
viation (green curve). Fig. 17b and Fig. 17e expose the histograms of the
identification error and the normal approximation for the data (red curve).
Fig. 17c and Fig. 17f show the correlation of the identification error computed
by E{eθi

(k)eθi
(k −mc)}.

The results of the identification process were obtained by employing 103 it-

erations of MC for 104 samples. Fig. 17a and Fig. 17d expose the actual value (θi(k)),

the mean (θ̂i(k)) and the standard deviation (±σei) of the identified parameters, whereas

Fig. 17b and Fig. 17e show the histograms of the identification error (eθi
) and the nor-

mal fit (red curve) in the data. Other relevant information, which was not presented

in Palma et al. (2018c), is the correlation of the identification error shown in Fig. 17c

and Fig. 17f. The statistical information obtained from the MC simulations that is used

to design the filter corresponds to the mean error (ēθi
) and the standard deviation (σei),

such that ēθ1
= −0.0022, σe1

= 0.0109, ēθ2
= 0.0023 and σe2

= 0.0087. Note that both
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error histograms present shapes close to the normal distribution, with a negligible dis-

crepancy in the values of higher frequency of θ1. Nevertheless, it is not assumed that those

identification errors have a normal distribution since the current value of the error has

a strong correlation with the past values (Fig. 17c and Fig. 17f). In this sense, the filter

design must consider the entire domain of the parameters, that is, the bounds for the ad-

ditive uncertainty must be given by the maximum value coming from the MC simulation:

max(|eθ1
|) = 0.0659 and max(|eθ2

|) = 0.0648.

First case study: comparison between gain-scheduled and robust filters

Traditionally, design methods for gain-scheduled filtering using inexact mea-

surements aim to guarantee stability and performance for the whole domain of the schedul-

ing and noise parameters. However, this case study investigates if the filter design consider-

ing the whole domain of the additive uncertainty (max(|eθ|) is capable of improving or not

the temporal behavior of the estimation error (e(k) in (3.24)) in terms of MSE. Although

it is not theoretically feasible to obtain the probability distribution of the identification er-

ror, by using the information depicted in Fig. 17, it is possible to determine a range where

the additive error lies. For instance, one can consider δ(k) ∈ (− max(|eθ|), max(|eθ|)),

and synthesize a robust filter valid for the entire additive uncertainty domain (denoted

by the sub-index (•)max). Another option, suggested in Palma et al. (2018c), is to assume

that δ(k) ∈ [−3σe, 3σe] (denoted by the sub-index (•)3σ), since the frequency of the

identification error is concentrated around zero and close to a normal curve3, meaning

that more than 99.5% of the histogram data is located in this interval. To design a filter

using Theorem 3.3, the time-varying parameter vector Θ(k) = (θ1(k), θ2(k), δ1(k), δ2(k))

is considered to belong to one of the following domains

∆4(Bmax) =











θ1 θ̄1

θ2 θ̄2

− max(|eθ1
|) max(|eθ1

|)

− max(|eθ2
|) max(|eθ2

|)











=











−0.2 0.2

−0.1 0.1

−0.0659 0.0659

−0.0648 0.0648











, ∆4(B3σ) =


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






θ1 θ̄1

θ2 θ̄2
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
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
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
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




(3.42)

Five different filter settings are investigated: i) classical robust filter (parameter-independent

denoted by rob) that is obtained by fixing zero degree in the variables associated to ma-

trices of the the filter; ii) gain-scheduled filter with affine dependency on the time-varying

parameters whose parametric domain is given by ∆4(Bmax) and the overbounded addi-

tive noise model (polytope of four vertices ); iii) the previous one but using the less

conservative additive noise model (polytope of six vertices); iv) Affine gain-scheduled fil-

ter with parametric domain given by ∆4(B3σ) and overbounded additive noise model; v)

Affine gain-scheduled filter with parametric domain given by ∆4(B3σ) and less conserva-
3 Figs. 17c and 17f do not represent exactly a normal distribution, since the correlation function is not

null for mc > 0.
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tive additive noise model. In the case of gain-scheduled filters; all filters are designed with

matrices SA(•) and SB(•) of degree zero and matrices LA(•) and LB(•) with degree one.

The other variables of Theorem 3.3 are fixed as polynomials of degree one.

Table 8 presents the H2 guaranteed costs (ρ) provided by Theorem 3.3, the

MSE of the estimation error and its standard deviation (SDMSE). Additionally, Table 8

also highlights the percentage improvement in those performance criteria (ρ%, MSE%,

SDMSE%) when comparing gain-scheduled and robust filters.

Table 8 – H2 guaranteed cost (ρ), MSE and the associated standard deviation (SDMSE),
and the percentage improvements (ρ%, MSE%, SDMSE%) of gain-scheduled
filters when compared with the robust filter considering different models of the
additive uncertainty (four and six vertices, respectively, equations (3.12) and
(3.14)) and domains of additive uncertainty (∆4(Bmax) and ∆4(B3σ)).

Additive Uncertainty
four vertices six vertices

Structure rob lpvmax lpv3σ lpvmax lpv3σ

ρ 1.2231 1.0651 0.7315 1.0056 0.6859
ρ% - 12.92 40.19 17.78 43.92

MSE 4.4159 3.4439 1.8085 2.9677 1.5931
MSE% - 22.01 59.05 32.80 63.92
SDMSE 1.4541 1.1772 0.6032 1.0085 0.5290
SDMSE% - 19.04 58.52 30.64 63.62

Clearly, when the online measurement of the time-varying parameters is not

an option, the design of a robust filter is the simplest alternative. However, if it is possible

to implement a real-time identification, one can expect less conservative results in terms

of H2 guaranteed costs and better performance in time-domain (MSE and SDMSE) by

designing filters scheduled by the identified parameters. The results informed in Table 8

corroborate the fact that the performance improvement achieved with the gain-scheduled

filters justifies the implementation of an identification procedure. The percentage differ-

ence is above 12% in the H2 guaranteed cost and above 22% in the MSE. Similarly to

the conclusions obtained in Example 3.6.2.3, a more accurate modeling of the additive

uncertainty can improve the results. Finally, it is important to emphasize that the amount

of information lost when considering the bounds of the additive uncertainty as ±3σe is

negligible (less than 1% of the samples). However, the performance difference is enormous,

being at least twice as efficient as the gain-scheduled filter ( lpvmax) when compared to the

robust one. This fact indicates that incorporating the probability distribution information

(obtained by the histogram of the parameter identification) can be useful when looking for

performance similar to that produced by the ideal gain-scheduled filter (accurate reading

of the time-varying parameters). The SDOH technique proposed in this chapter comes in

handy in this context, because it delivers theoretical guarantees of stability for the whole
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domain (∆4(Bmax)) and an optimized performance in a sub-domain associated with higher

data frequency. This claim is better investigated in the second case study.

Second case study: gain-scheduled filter using the SDOH methodology

Consider system (3.41). As previously discussed, the best performance can be

obtained by a gain-scheduled filter that employs a perfect reading of the parameters, that

is, an ideal gain-scheduled filter (called lpv in this case study). The lpv filter designed by

Theorem 3.3 considering null additive uncertainties (δi = 0) yields ρ = 0.3449, MSE =

0.4004 and SDMSE = 0.0519, corresponding to lower bounds of the performance that

can be attained by a scheduled filter that takes into account the additive uncertainties.

On the other hand, the performance of the robust filter (ρ = 1.2231, MSE = 4.4159

and SDMSE = 1.4541) establishes an upper bound for the scheduled filter in terms of

H2 guaranteed cost, MSE and standard deviation of the MSE.

In this case study, two SDOH filters are designed using the four-vertex additive

uncertainty model (neglecting the saturation of δ(k) over θ(k)). While the first design

assures the stability of the filter solving (3.27) for the whole additive uncertain domain

(∆4(Bmax)), the second one provides a stability certificate only for ∆4(B3σ). Regarding

the optimization of the H2 guaranteed cost, both filters were synthesized considering the

same sub-domain (assuming that the additive uncertainty lies in δi ∈ [−σei
, +σei

]) with

σe1
= 0.0109 and σe2

= 0.0087. Since the value of ρ provided by Theorem 3.3 is only valid

for the sub-domain, it constitutes a lower bound for the H2 “worst case” norm, because

the time-varying parameters can assume any value in the whole domain. Despite that,

when the filter is scheduled in terms of identified parameters, the H2 worst case norm

cannot be computed by MC simulation. Actually, the H2 norm is obtained by computing

the area of z(k)z(k)′ after applying a delta of Dirac in the exogenous input. However, note

that an impulsive input does not allow to provide a real-time parametric identification,

that is an assumption of this example. In this sense, the best alternative to evaluate the

filter performance is to compute the MSE (a performance index more frequently used in

practical applications) of the estimation error and the standard deviation of the MSE.

Table 9 summarizes the results of this example, presenting the value of ρ

computed by Theorem 3.3, the MSE and SDMSE (computed through MC simulation

performed as described in Palma et al. (2018c)), associated with the synthesis of a robust

filter (rob), an ideal gain-scheduled filter (lpv), three gain-scheduled filters with inexact

parameters: two designed using the SDOH technique (lpv(S(Bmax)) and lpv(S(B3σ))) and

the best result of the first case study (lpv6
3σ).

For the sub-domains constructed with S(Bmax) and S(B3σ) the filter perfor-

mance is the same (identical filter matrices). This means that, to use the full domain of

uncertainty does not imply introducing conservatism in the design, differently from what

was observed in the previous case study (Table 8). The filters synthesized by the SDOH
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Table 9 – Values of ρ, MSE and SDMSE associated with the filters: rob, lpv(S(Bmax)),
lpv(S(B3σ)) and lpv6

3σ and the incremental ratio between those performance
indexes and the one obtained by the ideal design lpv (MSEIn, SDMSEIn

).

Structure lpv lpv(S(Bmax)) lpv(S(B3σ)) lpv6
3σ rob

ρ 0.3449 0.4184 0.4184 0.6858 1.2231

MSE 0.4004 0.6337 0.6337 1.5931 4.4159
MSE In - 1.5827 1.5827 3.9788 11.0287

SDMSE 0.0519 0.1719 0.1719 0.5290 1.4541
SDMSEIn

- 3.3121 3.3121 10.1927 28.0173

methodology yield, respectively, a MSE and an SDMSE about 2.51 and 3.07 times lower

than the results obtained by the best standard approach with additive uncertainty (filter

lpv3σ with six-vertex in Table 8), and 6.96 and 8.45 better than the robust filter.

It is also possible to verify in Table 9 that the results employing the SDOH

methodology are much closer to the ideal project ( lpv) than the best standard approach

with additive uncertainty ( lpv6
3σ) or the robust filter. While the MSE provided by the

SDOH approach is only 1.58 times the MSE from ideal lpv design, the standard gain-

scheduled and robust approaches are 3.97 and 11.02 times greater. Likewise, concerning

SDMSE, the SDOH method is 3.31 higher than the lpv, while the lpv6
3σ and rob are

10.19 and 28.01 higher than the value obtained by lpv.

3.8 Partial Conclusion

The first contribution of this chapter is a systematic and generalist modeling

of LPV systems where the time-varying parameters can have polytopic or affine structure

and present arbitrarily fast or bounded rates of variation. The scheduling parameters are

assumed to be affected by additive uncertainties, which can be modeled in a traditional

way (considering that they are independent) or in a less conservative manner (where the

saturation is taken into account). In this sense, a control design example showed that

if the saturation is considered, a finite and lower bound to the H2 norm is achieved,

and when the effect of the saturation is neglected, the system may be not stabilized.

Similarly, a filtering example illustrated that both the H2 cost of the augmented system

and the associated time-dependent performance indexes (MSE and SDMSE) are reduced

by considering the saturation.

The second main contribution of the chapter is a novel design methodology

(for gain-scheduled H2 filtering and state-feedback control), called SDOH, that relies on

optimizing the performance criterion in a sub-domain associated with the higher frequency

of probability distribution of the random time-varying parameters, while the stability of

the closed-loop system (in case of control) or of the estimation error system (in case of



Chapter 3. H2 control and filtering of discrete-time LPV systems exploring statistical information of

the time-varying parameters 83

filtering) is assured for the whole domain of uncertainty. In order to allow the employment

of this technique, that is, to address gain-scheduled problems where statistical information

about the time-varying parameters is available, this chapter has introduced the concept of

sub-domain, proposing all the technical framework to handle this specificity and showing

how the procedure can be numerically implemented using the available software. The

control synthesis examples have shown that even in the context of robust (parameter-

independent) design, the SDOH technique can provide an improvement of 10% to 50% (or

even greater if the time-varying parameters are random variables of lower dispersion) with

respect to the actual worst case H2 closed-loop norm. In the context of filters scheduled

in terms of parameters contaminated by additive noise (inexact measurements or inherent

identification error), besides providing a new and more general LMI-based design condition

that includes another one from the literature as a particular case, the examples have shown

that the employment of SDOH can provide a temporal behavior closer to the ideal LPV

technique (perfect reading or estimation) than to the robust filter or the gain-scheduled

filter using the techniques available in the literature.

3.9 General additive uncertainty modeling

The vertices of the polytope defined by the set {x : Ax ≤ b} can be obtained

systematically by a vertex enumeration algorithm (AVIS; FUKUDA, 1992). A numerical

implementation that works with Matlab can be found in the Multi-Parametric Toolbox

(HERCEG et al., 2013) through the script Polyhedron}.The input parameters are ma-

trix A and vector b. In the next sections A and b are defined for affine and polytopic

uncertainty, considering limited and arbitrarily fast rates of variation.

3.9.1 Affine uncertainty

In the case of arbitrarily fast variation of θ(k), there is no need to consider the

limits for the rate of variation and the computation of the vertices of the polytope that

defines the feasible region of the pair (θi, δi) is performed considering

x =




θi

δi



 , A =

















1 0

−1 0

0 1

0 −1

1 1

−1 −1

















, b =

















Bi2

−Bi1

δi

−δi

Bi2

−Bi1

















If the parameters present bounded rates of variation as in (3.6), the constraints Bi1 ≤

θi(k) ≤ Bi2, Bi1 ≤ θi(k + 1) ≤ Bi2, (3.6), (3.13), (3.14) and Bi1 ≤ θi(k + 1) + δi(k) ≤ Bi2
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have to be considered, yielding the following definitions

x =








θi

θ+
i

δi







, A =








Ã

Â

Ā







, Ã =




I3

−I3



 , Â =




I2 12

−I2 −12



 , Ā =




−1 1 0

1 −1 0





b =
[

Bi2 Bi2 δi −Bi1 −Bi1 −δi Bi2 Bi2 −Bi1 −Bi1 bi −bi

]′

where θ+
i = θ(k + 1) and 1r denotes a vector of ones with dimension r.

3.9.2 Polytopic Uncertainty

For arbitrarily fast rates of variation, the following constraints need to be con-

sidered: 0 ≤ θi ≤ 1, (3.13), and (3.15). Note that the unitary sum of polytopic parameters

allows that the last parameter θN (k) be removed from the problem, although the additive

uncertainty associated to δN still can be considered. In this case, the following constraints

are included

0 ≤ 1 − θ1 − · · · − θN−1 ≤ 1, 0 ≤ 1 − θ1 − · · · − θN−1 + δN ≤ 1 (3.43)

As in this last set of constraints all parameters θi, i = 1, . . . , N − 1 are present, it is not

possible to build each pair (θi, δi) independently, as in the affine case. As a consequence

all parameters must be determined simultaneously. Taking into account all the necessary

constraints, one has

x =


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,

b =
[

1′
N−1 δ1 · · · δN 0′

N−1 −δ1 · · · −δN 0 1 0′
2N−1 0 1

]′

Once the set of vertices that defines the polyhedral region is obtained, the coordinate θN

of each vertex can be determined using θN = 1 − θ1 − · · · − θN−1.

Bounded rates of variation can be taken into account by considering (3.7).

Using the unitary sum, θN can be removed and it is considered (3.7) for i = 1, . . . , N − 1

and

bN ≤ 1 −
N−1∑

i=1

θi(k + 1) − (1 −
N−1∑

i=1

θi(k)) ≤ bN ⇒ bN ≤ −
N−1∑

i=1

θi(k + 1) +
N−1∑

i=1

θi(k) ≤ bN

(3.44)
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Besides, it is also necessary to limit θi(k + 1) + δi by means of

0 ≤ αi(k + 1) + δi ≤ 1, i = 1, . . . , N − 1, 0 ≤ 1 −
N−1∑

i=1

αi(k + 1) + δN ≤ 1 (3.45)

Taking into account all the constraints in the arbitrarily fast case plus (3.44), (3.45) and

0 ≤ θi(k + 1) ≤ 1, one has the following definitions
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4 LMI-based solution for memory static

output-feedback control of discrete-time

linear systems affected by time-varying pa-

rameters

This chapter proposes a solution for the problem of designing static output-

feedback memory control laws for uncertain LTI systems, LPV systems and Markov jump

linear systems with time-varying probabilities (non-homogeneous Markov chain). Differ-

ently from the LTI case, where the concept of eigenvalue, duality and congruence trans-

formations are useful to construct convex synthesis conditions for memory controllers, the

time-varying case poses a much more challenging scenario. To circumvent this problem,

the inspiration is the approach given in Felipe et al. (2016), Felipe (2017), which has as

main issue the fact that the control gain is treated as an optimization variable of the

problem, and not retrieved a posteriori by means of a change of variables, as the main

stream of methods for LPV and MJLS available in the literature. Therefore, as a unique

feature, the proposed technique allows the imposition of structures (decentralization) or

magnitude constraints in the control gain without restricting any other optimization vari-

able of the problem. New relaxations are provided to cope with the particular structure

of the closed-loop matrices due to the memory, yielding synthesis conditions formulated

in terms of a locally convergent iterative procedure based on LMIs. As by-products, other

important problems and particular cases as state-feedback or gain-scheduled control with

or without memory applied to LTI, LPV, MJLS and NHMJLS (mode-dependent, mode-

independent or considering partial information about the operation modes) can also be

dealt with. The applicability and advantages of the proposed technique are illustrated

by means of numerical examples borrowed from the literature and statistical compar-

isons demonstrating the low conservativeness of the proposed method (with or without

memory) when compared with techniques from the literature in LTI, LPV, MJLS and

NHMJLS scenarios.
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4.1 LPV systems

Consider the following linear discrete-time system affected by time-varying

parameters
x(k + 1) = A(α(k))x(k) +B(α(k))u(k)

y(k) = Cy(α(k))x(k)
(4.1)

where x(k) ∈ Rnx represents the state vector, u(k) ∈ Rnu is the control input, y(k) ∈ Rny

is the measured output, and α(k) = [α1(k), . . . , αN(k)]′ is a vector of bounded time-varying

parameters, which lies in the unit simplex given by

ΛN =
{

ξ ∈ RN :
N∑

i=1

ξi = 1, ξi ≥ 0, i = 1, . . . , N
}

, (4.2)

for all k ≥ 0. The rate of variation of the parameters is assumed arbitrarily fast, which

includes the class of switched systems, but bounded rates of variation could be addressed

as well following strategies available in the literature (DE CAIGNY et al., 2010). The state-

space matrices of system (4.1) are given as a convex combination of N known matrices

(called vertices) as M(α(k)) =
∑N

i=1 αi(k)Mi, α(k) ∈ ΛN . The aim is to determine a

scheduled (or robust, when parameter-independent) static output-feedback control law

u(k) =
m−1∑

ℓ=0

Kℓ(α(k))y(k − ℓ) (4.3)

that stabilizes system (4.1), where Kℓ(α(k)) ∈ Rnu×ny , ℓ = 0, . . . , m − 1 are the static-

output feedback gains to be determined andm ∈ N+ is a given positive integer correspond-

ing to the number of measured outputs that compose the control law (4.3). For simplicity,

each gain Kℓ depends only on the current value of α(k) and there is no need to store the

past values of α(k− ℓ), only the past measured output values y(k− ℓ). The choice m = 1

corresponds to the design of a standard gain-scheduled static output-feedback control law,

that is, u(k) = K0(α(k))y(k).

Applying the proposed control law (4.3) (with m > 1) in system (4.1), one

obtains the closed-loop system given by

s(k + 1) =




ϕ1 ϕ2

B(αk)K A(αk) +B(αk)K0(αk)C(αk)





︸ ︷︷ ︸

Acl(α(k))

s(k) (4.4)

where1

s(k) =
[

x(k −m+ 1)′ · · · x(k − 1)′ x(k)′
]′
, (4.5)

K =
[

Km−1(αk)Cy(αk−m+1) · · · K1(αk)Cy(αk−1)
]

(4.6)

ϕ1 =




0 I(m−2)nx

0nx
0



 , ϕ2 =




0

Inx



 . (4.7)

1 Hereafter, the dependence on α(k − ℓ) is replaced by αk−ℓ.
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Note that the past values of the outputs introduced in the closed-loop system (4.4) by the

control law (4.3) provide an augmentation in the system dynamics, producing an equiva-

lent system with greater dimensions and a particular structure that will be conveniently

explored.

4.1.1 SOF Memory Control Design for LPV systems

Before presenting the proposed control design conditions for the LPV sys-

tem (4.1), define:

P (αk) =




P1(αk) ⋆

P2(αk) P3(αk)



 , N =











I(m−1)nx
0 0

0 Inx
0

ϕ1 ϕ2 0

0 0 Inx











,

Θ11(ᾱk) = N ′




−P (αk) 0

0 P (αk+1)



N , ᾱk = (αk, αk+1),

Θ21(αk) =
[

B(αk)K A(αk) +B(αk)K0(αk)C(αk) −Inx

]

,

(4.8)

where P1(αk) ∈ R(m−1)nx×(m−1)nx , P2(αk) ∈ Rnx×(m−1)nx , and P3(αk) ∈ Rnx×nx, and K is

given by (4.6).

The first contribution of this chapter is a new sufficient parameter-dependent

LMI condition for the synthesis of the gains Kℓ(αk) associated to the control law (4.3).

Theorem 4.1. For given matrices Y1(ᾱk) ∈ Rnx×mnx, Y2(ᾱk) and Y3(ᾱk) ∈ Rnx×nx, if

there exist parameter-dependent matrices P (αk) = P (αk)′ > 0 given in (4.8), X1(ᾱk) ∈

Rmnx×nx, X2(ᾱk) and X3(ᾱk) ∈ Rnx×nx, and Kℓ(αk) ∈ Rnu×ny such that

Q(ᾱk) + He
(

X (ᾱk)B(ᾱk)
)

< 0, (4.9)

is verified for all ᾱk = (αk, αk+1) ∈ ΛN × ΛN , where

B(ᾱk) =
[

Y1(ᾱk) Y2(ᾱk) Y3(ᾱk)
]

,

X (ᾱk) =
[

X ′
1(ᾱk) X ′

2(ᾱk) X ′
3(ᾱk)

]′
,

Q(ᾱk) =




Θ11(ᾱk) ⋆

Θ21(αk) 0



 ,

(4.10)

with Θ11(ᾱk) and Θ21(αk) given in (4.8), then u(k) given in (4.3) is a stabilizing static

output-feedback gain-scheduled control law for system (4.1).

Proof. Knowing that if (4.9) is satisfied, Y3(ᾱk) has full-rank and, therefore, B(ᾱk) can be

rewritten as B(ᾱk) = Y3(ᾱk)
[

−F1(ᾱk) −F2(ᾱk) Inx

]

. Then, pre- and post-multiplying (4.9)
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respectively by B⊥′(ᾱk) and B⊥(ᾱk) with B⊥′(ᾱk) =
[

I(m+1)nx
F ′(ᾱk)

]

, where F(ᾱk) =
[

F1(ᾱk) F2(ᾱk)
]

one obtains

Θ11(ᾱk) + He (F ′(ᾱk)Θ21(αk)) < 0 (4.11)

By multiplying (4.11) on the right by Θ⊥
21(αk) and on the left by Θ⊥

21
′(αk), with

Θ⊥
21(αk) =








I(m−1)nx
0

0 Inx

B(αk)K A(αk) +B(αk)K0(αk)Cy(αk)








(4.12)

and Acl(αk) given in (4.4), one has

Θ⊥
21

′(αk)N ′




−P (αk) 0

0 P (αk+1)



N Θ⊥
21(αk)

=
[

Imnx
A′

cl(αk)
]




−P (αk) 0

0 P (αk+1)








Imnx

Acl(αk)





= A′
cl(αk)P (αk+1)Acl(αk) − P (αk) < 0 (4.13)

that assures the asymptotic stability of the closed-loop system (4.4) and, consequently, of

system (4.1) under the control law (4.3).

Although the inequality in (4.9) is linear with respect to the decision variables,

the fact that matrices Y1,2,3(ᾱk) are fixed imposes a great level of conservativeness. To cir-

cumvent this problem, a relaxation is introduced. Unfortunately, the relaxation proposed

in Felipe et al. (2016) (for continuous-time systems) is not useful because it only works

for time-invariant parameters, where the concept of eigenvalue is representative. A new

relaxation is proposed in the sequence, capable to cope with both LPV and NHMJLS.

First, considering that Acl(αk) and P (αk) can also be partitioned as

Acl(αk) =




0 I(m−1)nx

H1 H2



 , P (αk) =




P̂1(αk) ⋆

P̂2(αk) P̂3(αk)



 , (4.14)

with P̂1(αk) ∈ Rnx×nx , P̂2(αk) ∈ R(m−1)nx×nx , P̂3(αk) ∈ R(m−1)nx×(m−1)nx , the closed-loop

stability condition (4.13) can be rewritten as










H ′
1P̂3(αk+1)H1 ⋆




P̂ ′

2(αk+1)H1

+H ′
2P̂3(αk+1)H1












P̂1(αk+1)

+He(H ′
2P̂2(αk+1))

+H ′
2P̂3(αk+1)H2


















−




P̂1(αk) ⋆

P̂2(αk) P̂3(αk)



 < 0 (4.15)

or

M1 < M3 −M2 (4.16)
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where

M1 =




H ′

1 0

0 H ′
2








P̂3(αk+1) P̂3(αk+1)

P̂3(αk+1) P̂3(αk+1)








H1 0

0 H2



 ,

M2 =




0 ⋆

P̂ ′
2(αk+1)H1 He(H ′

2P̂2(αk+1))



 ,

M3 =




P̂1(αk) ⋆

P̂2(αk) P̂3(αk)



−




0 0

0 P̂1(αk+1)



 .

(4.17)

The proposed relaxation consists in solving (4.9) with Acl(αk) given in (4.14)

replaced by

Acl(αk) =




0 I(m−1)nx

H1/ρ H2/ρ



 , ρ > 0

and including the additional constraint M3 > 0. In the case of a feasible solution, (4.13)

leads to (instead of (4.16))

M1 < ρ2M3 − ρM2. (4.18)

The first benefit of the relaxation is that the relaxation level ρ allows to construct initial

choices for Y1,2,3(ᾱ) that guarantee a feasible solution for Theorem 4.1, as demonstrated

in Theorem 4.2 presented in the sequence. Moreover, another important property can be

demonstrated: if there is a feasible solution for ρ = ρ̄, (4.18) remains feasible for any

ρ > ρ̄. First observe that M1 ≥ 0 by construction. Thus, if

M1 < ρ̄2M3 − ρ̄M2 (4.19)

is feasible, then

ρ̄2M3 − ρ̄M2 > 0 ⇒ ρ̄M3 > M2. (4.20)

To guarantee that (4.19) remains feasible for values greater than ρ̄, it is necessary that

(ρ̄+ ǫ)2M3 − (ρ̄+ ǫ)M2 > ρ̄2M3 − ρ̄M2, ∀ǫ > 0

which is simplified to

ρ̄M3 + (ρ̄+ ǫ)M3 > M2

Finally, as (4.20) holds, by summing up a positive term (since ρ̄, ǫ and M3 are positive

definite), one has that last inequality is always feasible for any positive ǫ.

Also note that, for ρ = 1, to solve the relaxed condition (4.19) is the same as

satisfying the original stability condition (4.16), meaning that the closed-loop LPV system

is stable. As a consequence of the mentioned facts, if the conditions of Theorem 4.1 are

tested with the proposed relaxation and a solution with ρ ≤ 1 is found, the resulting

controller is stabilizing. Second and more important, it is possible to apply the changes

Â(αk) = A(αk)/ρ and K̂ℓ(αk) = Kℓ(αk)/ρ, (4.21)
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and condition (4.9) can be solved with Â(αk) and K̂ℓ(αk) considering ρ as an objective

function, since ρ appears linearly in (4.9). Regarding the additional constraint M3 > 0,

in principle it does not seem to be hard and its only purpose is to guarantee that if a

solution with ρ ≤ 1 is found, the controller is actually stabilizing. An alternative would

be not to considering M3 > 0 (probably sparing some computational effort) and apply a

stability analysis condition, a posteriori, in the closed-loop dynamic matrix to assure the

robust stability.

Before presenting an algorithm that exploits the minimization of ρ in Theo-

rem 4.1, the following result proposes a particular choice for the initial conditions Y1,2,3(ᾱk)

that assures the existence of a feasible solution for (4.9) using the proposed relaxation in

terms of ρ.

Theorem 4.2. The choice B(ᾱk) = B0 =
[

0 Inx
−Inx

]

assures the existence of a

feasible solution for Theorem 4.1 with A(αk) and Kℓ(αk) replaced respectively by Â(αk)

and K̂ℓ(αk), ∀ℓ = 0, . . . , m− 1 as in (4.21).

Proof. First, consider the following partitions for the blocks P1(αk) and P2(αk) of P (αk)

from (4.8)

P1(αk) =




P11(αk) P ′

12(αk)

P12(αk) P13(αk)



 , P2(αk) =
[

P21(αk) P22(αk)
]

,

meaning that Θ11(ᾱk) can be rewritten as

Θ11(ᾱk) =











−P11(αk) ⋆ ⋆ ⋆

P12(αk) P11(αk+1) − P13(αk) ⋆ ⋆

−P21(αk) P12(αk+1) − P22(αk) P13(αk+1) − P3(αk) ⋆

0 P21(αk+1) P22(αk+1) P3(αk+1)











.

Then, for B(ᾱk) = B0, the following choices for the variables of Theorem 4.1 such that

(4.9) is always verified can be done: a large enough ρ such that Â(αk) = 0 and K̂ℓ(αk) = 0,

X (ᾱk) = −0.5B′
0,

P12(αk) = P12(αk+1) = 0, P11(αk) = P11(αk+1) = ǫ1I,

P21(αk) = P21(αk+1) = 0, P13(αk) = P13(αk+1) = ǫ2I,

P22(αk) = P22(αk+1) = 0, P3(αk) = P3(αk+1) = ǫ3I,

with 0 < ǫ1 < ǫ2 < ǫ3 < 1. By plugging the above values in (4.9) with A(αk) and Kℓ(αk)

replaced respectively by Â(αk) = 0 and K̂ℓ(αk) = 0, one has













−ǫ1I 0 0 0 0

0 (ǫ1 − ǫ2)I 0 0 0

0 0 (ǫ2 − ǫ3)I 0 0

0 0 0 (ǫ3 − 1)I 0

0 0 0 0 −I














< 0 (4.22)
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that is always verified for 0 < ǫ1 < ǫ2 < ǫ3 < 1.

With the result of Theorem 4.2, Theorem 4.1 initialized with B(ᾱk) = B0

always provides a feasible solution with a finite value for ρ. If ρ ≤ 1, the synthesized

gain is robustly stabilizing. On the other hand, if ρ > 1, nothing can be concluded. Next

theorem provides the the last ingredient necessary to establish an iterative procedure

using the conditions of Theorem 4.1.

Theorem 4.3. Suppose that the conditions of Theorem 4.1 are feasible, providing Pf (αk),

Xf(ᾱk) and ρ̄f as solution. Then, a new feasible solution with ρ ≤ ρ̄f is always obtained

by choosing B(ᾱk) = Xf (ᾱk)′.

Proof. Straightforward, since He
(

X (ᾱk)B(ᾱk)
)

= He
(

B(ᾱk)′X (ᾱk)′
)

in (4.9). The update

X (ᾱk) = B(ᾱk)′ always provides a feasible solution if Theorem 4.1 is tested again and the

new value of ρ cannot be greater than the previous one.

Based on the above results, a locally convergent iterative algorithm is proposed

(see Algorithm 1), being the main contribution of the chapter. For a maximum number of

iterations itmax and an initial condition B(ᾱk) = B0, minimize ρ subject to (4.9) using the

replacements indicated in (4.21). Update B(ᾱk) = X ′(ᾱk) at each iteration, while ρ > 1

and the number of iterations it < itmax. If ρ ≤ 1, the asymptotic stability of Acl(αk) is

assured, and the iterative procedure is interrupted providing the control gain matrices

Kℓ(αk) = ρK̂ℓ(αk). If ρ > 1, then a stabilizing gain could not be obtained.

As a final important property, it is shown that the increase of the memory size

cannot produce worse (higher) values of ρ if a proper initialization of B(ᾱk) is adopted.

Note that condition (4.9) considering m memories can be rewritten as



Q11(ᾱk) ⋆

Q21(ᾱk)
[

Qm̃(ᾱk)
]



+ He








X(ᾱk)
[

Xm̃(ᾱk)
]





[

B(ᾱk)
[

Bm̃(ᾱk)
]]



 < 0, (4.23)

where Qm̃(ᾱk), Xm̃(ᾱk) and Bm̃(ᾱk) are the solutions for Theorem 4.1 with m̃ < m mem-

ories. Observe that, if Qm̃(ᾱk), Xm̃(ᾱk) and Bm̃(ᾱk) are solutions for Theorem 4.1, (4.23)

can always be satisfied with Q11(ᾱk) = −ǫI, ǫ > 0, Q21(ᾱk) = 0, X(ᾱk) = 0, B(ᾱk) = 0,

meaning that another valid initial condition for Theorem 4.2 with m memories is given

by B(ᾱk) = [0 Bm̃(ᾱk)]. Furthermore, this particular choice assures that if Theorem 4.2
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has a solution with m̃ memories, the same holds for m > m̃.

funtion Input(
(

A,B,Cy

)

(ᾱk), itmax,B0(ᾱk))

B(ᾱk) = B0(ᾱk)

A(αk) = A(αk)/ρ

while it < itmax do
Minimize ρ subject to

Theorem 4.1 and M3 > 0 (Eq. (4.16))

if ρ > 1 then
B(ᾱk) = X ′(ᾱk)

else
Kℓ(αk) = ρKℓ(αk)

return
end

end
Algorithm 1: SOF control of LPV system.

4.1.2 Numerical Implementation

The synthesis conditions of Theorem 4.1 are given in terms of parameter-

dependent LMIs because, currently, a finite set of LMIs (programmable test) assuring the

feasibility of the parameter-dependent LMIs can be automatically obtained by means of

polynomial approximations for the optimization variables as well as by relaxations for the

polynomial positivity test. Particularly for parameter-dependent LMIs with parameters

lying in the unit simplex, the parser ROLMIP (Robust LMI Parser) (AGULHARI et

al., 2019) that works jointly with YALMIP (LÖFBERG, 2004) and the semi-definite

programming solvers Mosek (MOSEK ApS, 2015) and SeDuMi (STURM, 1999), can be

used, and the only task of the user is to choose the polynomial degrees of the variables. The

following choices have been made in all examples presented in the next sections: P (αk) is

affine (degree one) on αk; Xi(ᾱk) is affine on both αk and αk+1 (i.e., multi-affine); K(αk)

is independent (degree zero) of αk when designing robust controllers or affine on αk when

synthesizing gain-scheduled controllers. The reason for these choices is that the conditions

from the literature also employ affine structures for the optimization variables.

4.1.3 Numerical examples

This section presents numerical examples to illustrate the applicability of the

proposed method to cope with robust and gain-scheduled stabilization of LTI and LPV

systems.
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4.1.3.1 Statistical comparisons of the stabilization methods for polytopic LTI and LPV sys-

tems

The aim of this example is to statistically compare the effectiveness of some

output-feedback control design techniques from the literature with the method given in

this paper for both LTI and LPV polytopic systems.

To this end, numerical stabilization tests were performed using a database

of time-invariant polytopic systems composed by open loop unstable systems, proposed

by Morais et al. (2013b), which are guaranteed to be stabilized by some robust (parameter-

independent) state-feedback gain but that are not quadratically stabilized. The proposed

analysis, adapted to deal exclusively with output-feedback, follows the experiment pre-

sented in Rosa et al. (2018), considering 100 systems for each combination of nx ∈ {2, 3}

states and N ∈ {2, . . . , 5} vertices. Two cases are investigated: Case 1: Robust static

output-feedback (SOF) stabilization considering the systems as time-invariant; Case 2:

Gain-scheduled (affine dependence on the scheduling parameters) SOF stabilization con-

sidering the parameters as time-varying with arbitrarily fast rates of variation. It was

shown in Rosa et al. (2018) that, concerning Case 1, Corollary 1 from Morais et al.

(2013b) (tested with nineteen values of ξ equally spaced in the interval [−0.9, 0.9]) and

Theorem 3 from de Oliveira et al. (1999) provide a lower feasibility rate than Theorem 1

from Rosa et al. (2018) with γ = −105, ξ = {−0.2,−0.1, 0, 0.1, 0.2} (RT), which is slightly

more conservative than the heuristic technique based on pole location using Algorithm 1

from Rosa et al. (2018) with ρ = {1.05, 1.1} and degP=1 (RC). Similarly, the results

reported in Rosa et al. (2018) have shown that the condition adapted from Equation (49)

of De Caigny et al. (2010) (by eliminating the last column and row) for gain-scheduled

output-feedback control is less efficient than (RT) and (RC).

Aiming to evaluate the benefits of control laws with memory, the technique

proposed in this paper (A1) with itmax = 10 and the one developed in Frezzatto et al.

(2018) (FOP), considering nineteen values of λ equally spaced in the interval [−0.9, 0.9],

are compared only with the methods (RT) and (RC), which have provided the best results

for this database of systems in the time-invariant case.

Table 10 shows the results for Case 1, regarding robust SOF stabilization of

polytopic LTI systems. The first important observation is that Algorithm 1 outperformed

all the other methods without resorting to a memory control law (feasibility rate of 99.3%).

When adopting memory, note that both FOP and A1 provided better results when includ-

ing past outputs in the control law, which can be considered an interesting alternative,

since only a slightly larger buffer (when compared with the case without memory) and

a few extra arithmetic operations are required in terms of implementation. Additionally,

even requiring fewer tests (a maximum of 10 iterations imposed to Algorithm 1 (A1)

against 19 values of scalar search used by FOP), the proposed technique is the less con-
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Table 10 – Robust SOF stabilization results for polytopic LTI systems.

nx N RT RC
FOP(m) A1(m)

(1) (2) (3) (4) (1) (2)

2

2 55 68 55 63 66 67 99 100
3 57 74 62 68 70 70 100 100
4 69 76 68 74 75 76 99 99
5 69 85 64 72 72 72 99 99

3

2 42 71 57 67 70 70 98 100
3 47 66 66 71 74 74 99 100
4 50 75 75 78 78 78 100 100
5 57 77 72 77 77 78 100 100

Total (%) 55.8 74 64.9 71.3 72.8 73.1 99.3 99.8

Table 11 – Gain-scheduled SOF stabilization results for polytopic LPV systems.

nx N RT RC
A1(m)

(1) (2)

2

2 14 18 31 35
3 21 28 42 53
4 17 19 38 53
5 25 28 38 46

3

2 3 10 19 24
3 4 9 25 35
4 8 16 39 47
5 10 17 30 39

Total (%) 12.8 18.1 32.8 41.5

servative one, outperforming FOP by more than 25%.

Before commenting Case 2, note that there is no guarantee of existence of

feasible controllers when considering the parameters as time-varying because the database

was created only to deal with time-invariant systems. However, the fact of considering

gain-scheduled gains increases the chances of finding feasible controllers. Regarding the

results, Table 11 shows that the proposed method stabilizes more than twice the number

of systems stabilized by RC. The advantage of using memory can also be observed.

4.1.3.2 Comparison with Frezzatto et al. (2018) and magnitude constraint on the gain entries

An important feature of the proposed method is the capability of imposing

magnitude constraints in the gain without restricting other variables of the problem,

differently from most of available methods, such as the one from Frezzatto et al. (2018)

where both matrices of gain recovery (F and Zℓ, ℓ = 0, . . . , m−1) are affected. To evaluate

how this property affects the conservativeness of the methods, consider again the system

given in Example 1 from Frezzatto et al. (2018) and the problem of establishing the

minimum magnitude (M) that can be imposed to the gains |Kℓ| < M , ℓ = 1, . . . , m− 1,
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and still obtain feasible solutions. The results are presented in Fig. 18.

Note that the magnitude constraint could be imposed in the method from Frez-

zatto et al. (2018) just because in this example the control gain is a number (SISO system).

If the gain is a vector or a matrix, all the synthesis conditions available in the literature

that computes the gain a posteriori with a change of variables are not suitable to cope

with magnitude constraints, differently from the condition proposed in this chapter, where

the control gain is an optimization variable.

4.1.3.3 Structural constraints

Consider a linearized dynamic model of a VTOL (Vertical Take-off and Land-

ing) helicopter adapted from Keel et al. (1988). The states x1(t), x2(t), x3(t), x4(t) and

the control inputs u1(t), u2(t) represent, respectively, the horizontal and vertical velocities

(knots), the pitch rate (degree/s), pitch angle (degrees), the collective pitch control and

the longitudinal cyclic pitch control, such that the continuous-time state-space matrices

(Ā, B̄, C̄) are given by

Ā=











−0.0366 0.0271 0.0188 −0.4555

0.0482 −1.0100 0.0024 −4.0208

0.1002 0.3681 −0.7070 p

0.0000 0.0000 1.0000 0.0000











, B̄=











0.4422 0.1761

3.5446 −7.5922

−5.5200 4.4900

0.0000 0.0000











,

C̄=




1 0 0 0

0 1 0 0



, (4.24)

1 2 3 4 5 6 7 8 9 10
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m
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Figure 18 – Minimum magnitude (M) to obtain gains |Ki| < M , i = 1, . . . , m−1 employ-
ing the methods from Frezzatto et al. (2018) (FOP) and the one proposed
here (A1).
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where p = 1.4200 ± ∆. The system is discretized using a first order Taylor expansion

approximation associated to a zero order hold method, meaning that the discrete-time

matrices (A,B,C) are given by A = I + ĀT , B = TB̄, and C = C̄, where T = 1s is the

sampling period.

The aim of this example is to verify the maximum value of ∆ such that the

memory control conditions from Frezzatto et al. (2018) (FOP) and Algorithm 1 are capable

of stabilizing the discretized model by introducing past values of the states. The following

situations are investigated: synthesis of state-feedback (SF) gains (full or structured)

or static-output feedback (SOF) gains considering that ∆ is either time-invariant (only

robust case is considered) or time-varying (gain-scheduled and robust cases are evaluated)

interval uncertainty. The results for full gains are presented in Table 12.

Table 12 – Maximum value of ∆ such that the method from Frezzatto et al. (2018) (FOP)
and Algorithm (A1) with itmax = 13 can provide a stabilizing robust memory
control law.

Method
m

1 2 3 4 5

LTI
SF

FOP 1.000 1.000 1.299 1.414 1.414
A1 1.042 1.430 1.871 1.927 1.961

SOF
FOP – – – – –
A1 – 0.028 0.282 0.382 0.434

LPV
SF A1rob 1.000 1.000 1.000 1.000 1.000

SOF
A1rob – 0.015 0.200 0.262 0.271
A1sch – 0.033 0.472 0.489 0.993

Observe that the increase of m allows to attain less conservative solutions in

both approaches. The method FOP, capable to deal with only time-invariant systems,

in this example provided stabilizing solutions only in SF control. However, even in this

particular case, the range of ∆ associated with feasible solutions is from 1% to 40% lower

than the feasible range yielded by the proposed method. As expected, a loss of performance

is observed in SOF control. However, when the values of the time-varying parameter are

available for feedback purposes, the gain-scheduled approach can produce solutions for

larger ranges of ∆.

In the second part of this example, the challenging problem of designing a

structured gain is investigated. Consider the following decentralized gain

Kℓ =




kℓ

11 kℓ
12 0 0

0 0 kℓ
23 kℓ

24





for the discretized model of (4.24) assuming p as time-invariant. The method FOP fails in

providing a feasible solution when m = 1, . . . , 5, while the proposed technique is able to

provide stabilizing controllers for different ranges of ∆ according with the chosen number
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of memories. For instance, by fixing ∆ = 1.2, Algorithm 1 can only stabilize the discrete-

time model by employing m ≥ 2. For instance, considering m = 2, one obtains the

following decentralized gains

K0 =




−0.0298 0.0709 0 0

0 0 −0.3035 −0.5141



 ,

K1 =




0.0369 −0.0360 0 0

0 0 −0.0430 −0.1315



 .

To conclude, consider the problem of determining the minimum value of M ,

|kℓ
ij| ≤ M , such that the system can be stabilized using the same decentralized structure.

This type of constraint is very difficulty to cope with using the LMI-based strategies from

the literature for multiple-input multiple-output systems. However, using the proposed

approach, the magnitude constraints are easily treated by simply including 8 additional

linear constraints in the optimization problem. Applying Algorithm 1 to solve the problem,

Mmin = 0.2237 has been obtained (itmax = 13) with the following gains

K0 =




−0.2116 0.0814 0 0

0 0 −0.2236 −0.2236



 ,

K1 =




0.2236 −0.0309 0 0

0 0 −0.2236 −0.2236



 .

4.2 Non-Homogeneous MJLS

Consider the discrete-time MJLS given by

G=







x(k + 1) = Aθk
(βk)x(k) +Bθk

(βk)u(k)

y(k) = Cy(βk)x(k)
(4.25)

where x(k) ∈ Rnx is the state vector, u(k) ∈ Rnu is the control input, and y(k) ∈ Rnz is the

measured output. The process {θk; k ≥ 0} is described by a discrete-time Markov chain

with finite state-space K = {1, . . . , σ} associated with a transition probability matrix

Γ(αk) = [pij(αk)], ∀i, j ∈ K, whose elements are given by

pij(αk) = Pr (θk+1 = j | θk = i) , ∀k ≥ 0,

satisfying pij(αk) ≥ 0 and
∑σ

j=1 pij(αk) = 1. When Γ(αk) = Γ(α), ∀k ≥ 0 (i.e., time-

invariant), the Markov chain is homogeneous, otherwise, the Markov chain is called non-

homogeneous (i.e., time-varying probabilities) (IOSIFESCU, 1980). Aiming a stabilizing

method as general as possible, each element pij(αk) can vary between two known bounds
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(0 ≤ p
ij

≤ pij(αk) ≤ pij ≤ 1), or be completely unknown (pij(αk) =?), or the time-

varying transition probability matrix Γ(αk) can be considered polytopic (been expressed

as a convex combination of known vertices). Hence, to systematically describe Γ(αk),

each one of its u uncertain rows is considered composed by time-varying parameters

αr(k) = [αr1(k), . . . , αrNr
(k)]′ belonging to a distinct unit simplex ΛNr

, r = 1, . . . , u,

given in (4.2) with N = Nr, by simply imposing that all elements of a row must sum

up to one, that is,
∑

j∈K pij(αk) = 1, similarly to what was done in Morais et al. (2013a)

for the homogeneous case (pij(αk) = pij(α), ∀k ≥ 0). Then, the time-varying parameters

associated to the partly unknown rows of Γ(αk) are grouped into one single domain,

given by the Cartesian product of u unit simplexes ΛN = ΛN1
× · · · × ΛNu

, named as

multi-simplex (OLIVEIRA et al., 2008).

The state space matrices of (4.25) depend upon the discrete-time non-homogeneous

Markov chain {θk; k ≥ 0} and on the time-varying parameter βk = [βk1
, . . . , βkL

]′ belong-

ing to a new unit simplex ΛL of dimension L. For conciseness, whenever θ(k) = i, ∀i ∈ K,

the notation
(

Aθ(k), Bθ(k)

)

(βk) =
(

Ai, Bi

)

(βk) is used.2

It is important to emphasize that the concepts of stability and norm compu-

tation for MJLS with non-homogeneous Markov chain are distinct from the homogeneous

case, that are derived from the second moment stability (SMS) concept, due to the arbi-

trary variation of the transition probabilities. As a consequence, system (4.25) is said to

be exponentially stable in the mean square sense with conditioning of type I (ESMS-CI)

(see Aberkane (2011a), Aberkane (2013) and Page 68 Definition 3.1(c) from Dragan et

al. (2010) for further details about this definition).

Before presenting the main results of this paper for non-homogeneous MJLS,

an extension of the stability condition for discrete-time non-homogeneous MJLS with

transition probabilities affected by arbitrarily fast time-varying parameters with polytopic

structure is presented in the next lemma (ABERKANE, 2011a; ABERKANE, 2013).

Lemma 4.1. System (4.25) with u(k) ≡ 0 is ESMS-CI if and only if there exist symmetric

positive definite matrices Pi(αk, βk), such that the parameter-dependent inequalities

Ai(βk)′Ppi(αk+1, βk+1)Ai(βk) − Pi(αk, βk) < 0 (4.26)

hold for each i ∈ K and for all (βk, αk) ∈ ΛL × ΛN , ∀k ≥ 0, being Ppi(αk, βk) =
∑σ

j=1 pij(αk)Pj(αk, βk).

For design purposes, it is also considered that the Markov chain may or may

not be completely accessible, meaning that the σ operation modes can be divided in

σc ≤ σ disjoint groups (clusters) whose union generates the set K, i.e., K = ∪q∈QUq

such that ∩q∈QUq with indexes q ∈ Q = {1, 2, . . . , σc}. Additionally, the controller to be
2 Note that (4.25) is suitable to model problems of local sensor - remote actuator (LSRA) (AMORIM
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designed can be considered robust (parameter-independent) or gain-scheduled in terms of

the time-varying parameters βk and probabilities αk (assuming that they can be measured

or estimated in real-time), such that the control law is given by

u(k) =
m−1∑

ℓ=0

Kq
ℓ (ωk)y(k − ℓ), ωk = (αk, βk) ∈ ΛN × ΛL, (4.27)

where Kq
ℓ (ωk) ∈ Rnu×ny , q ∈ Q, ℓ = 0, . . . , m− 1, are the static-output feedback partially

mode-dependent gains to be determined and m ∈ N+ is a given positive integer corre-

sponding to the number of measured outputs used in the control law. As an important

observation, note that since the output matrix Cy(βk) in (4.25) does not depend on θk,

the output feedback control law (4.27) does not lose the Markovian property, depend-

ing only on the previous state of the Markov chain. Furthermore, the implementation

of (4.27) does not require the storage of the past values of the time-varying parameters

(ωk−ℓ), only the past values of the measured output (y(k − ℓ)) and, as discussed in the

LPV section, the choice m = 1 corresponds to the design of a standard gain-scheduled

partially mode-dependent static output-feedback control law, that is, u(k) = Kq
0(ωk)y(k),

q ∈ Q = {1, 2, . . . , σc}.

Applying the proposed control law (4.27) in system (4.25), one obtains the

closed-loop system given by

s(k + 1) = Acli(ωk)s(k) (4.28)

where s(k) has the same structure as in (4.5) and

Acli(ωk) =




ϕ1 ϕ2

Bi(βk)Kq Ai(βk) +Bi(βk)Kq
0(ωk)C(βk)



 (4.29)

with ϕ1 and ϕ2 given in (4.7), and

Kq =
[

Kq
m−1(ωk)Cy(βk−m+1) · · · Kq

1(ωk)Cy(βk−1)
]

. (4.30)

4.2.1 SOF Memory Control Design for NHMJLS

Before presenting the proposed control design conditions for the NHMJLS

system (4.25), define:

Pi(ωk) =




P1i(ωk) ⋆

P2i(ωk) P3i(ωk)



 ,

Ωi
11(ω̄k) = N ′




−Pi(ωk) 0

0 Ppi(ωk+1)



N , ω̄k = (ωk, ωk+1),

Ωi
21(ωk) =

[

Bi(βk)Kq Ai(βk) +Bi(βk)Kq
0(ωk)C(βk) −Inx

]

,

(4.31)

et al., 2016), since the output matrix Cy(βk) does not depend on θk.
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where P1i(ωk) ∈ R(m−1)nx×(m−1)nx , P2i(ωk) ∈ Rnx×(m−1)nx , and P3i(ωk) ∈ Rnx×nx , Ppi(ωk) =
∑σ

j=1 pij(αk)Pj(ωk), N is given in (4.8), and Kq is given in (4.30).

The second contribution of this chapter is a new sufficient parameter-dependent

LMI condition for the synthesis of the memory static output-feedback gain-scheduled con-

trol law (4.27) for the discrete-time NHMJLS (4.25), as presented next.

Theorem 4.4. For given matrices Y1i(ω̄k) ∈ Rnx×mnx, Y2i(ω̄k) and Y3i(ω̄k) ∈ Rnx×nx, if

there exist parameter-dependent matrices Pi(ωk) = Pi(ωk)′ > 0 given in (4.31), X1i(ω̄k) ∈

Rmnx×nx, X2i(ω̄k) and X3i(ω̄k) ∈ Rnx×nx, ∀i ∈ K, and Kq
ℓ (ωk) ∈ Rnu×ny , ∀q ∈ Q, such

that

Qi(ω̄k) + He
(

Xi(ω̄k)Bi(ω̄k)
)

< 0, (4.32)

are verified for all i ∈ K, and for all ω̄k = (ωk, ωk+1) ∈ (ΛN × ΛL) × (ΛN × ΛL), where

Bi(ω̄k) =
[

Y1i(ω̄k) Y2i(ω̄k) Y3i(ω̄k)
]

,

Xi(ω̄k) =
[

X ′
1i(ω̄k) X ′

2i(ω̄k) X ′
3i(ω̄k)

]′
,

Qi(ω̄k) =




Ωi

11(ω̄k) ⋆

Ωi
21(ωk) 0



 ,

(4.33)

with Ωi
11(ω̄k) and Ωi

21(ωk) given in (4.31), then u(k) given in (4.27) is a partially mode-

dependent static output-feedback gain-scheduled control law that stabilizes system (4.25).

Proof. If (4.32) is satisfied then Y31(ω̄k) has full-rank and, therefore, Bi(ω̄k) can be rewrit-

ten as Bi(ω̄k) = Y3i(ω̄k)
[

−G1i(ω̄k) −G2i(ω̄k) Inx

]

. Pre- and post-multiplying (4.32) re-

spectively by B⊥
i

′(ω̄k) and B⊥
i (ω̄k) with B⊥

i
′(ω̄k) =

[

I(m+1)nx
G′

i(ω̄k)
]

, where Gi(ω̄k) =
[

G1i(ω̄k) G2i(ω̄k)
]

one obtains

Ωi
11(ω̄k) + He

(

G′
i(ω̄k)Ωi

21(ωk)
)

< 0 (4.34)

By multiplying (4.34) on the right by Ωi⊥
21 (ωk) and on the left by Ωi⊥

21
′(ωk), with

Ωi⊥
21 (ωk) =








I(m−1)nx
0

0 Inx

Bi(βk)Kq Ai(βk) +Bi(βk)Kq
0(ωk)Cy(βk)








(4.35)

and Acli(ωk) given in (4.29), one has

Ωi⊥
21

′(ωk)N ′




−Pi(ωk) 0

0 Ppi(ωk+1)



N Ωi⊥
21 (ωk)

=
[

Imnx
Acl

′
i(ωk)

]




−Pi(ωk) 0

0 Ppi(ωk+1)








Imnx

Acli(ωk)





= Acl
′
i(ωk)Ppi(ωk+1)Acli(ωk) − Pi(ωk) < 0 (4.36)

that assures that the closed-loop system (4.28) is ESMS-CI. �
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As done in the LPV case, the conditions of Theorem 4.4 need to be relaxed to

compensate the fact that Y1,2,3i
(ω̄(k)) are fixed matrices. Considering that Acli(ωk) can

be partitioned as

Acli(ωk) =




0 I(m−1)nx

H1i H2i



 , (4.37)

the ESMS-CI condition (4.36) for the closed-loop NHMJLS can be rewritten as










H ′
1iP3pi(ωk+1)H1i ⋆




P2

′
pi(ωk+1)H1i

+H ′
2iP3pi(ωk+1)H1i












P1pi(ωk+1)

+He(H ′
2iP2pi(ωk+1)

+H ′
2iP3pi(ωk+1)H2i


















−




P1i(ωk) ⋆

P2i(ωk) P3i(ωk)



 < 0 (4.38)

or

M1i < M3i −M2i (4.39)

where

M1i =




H ′

1i 0

0 H ′
2i








P3pi(ωk+1) P3pi(ωk+1)

P3pi(ωk+1) P3pi(ωk+1)








H1i 0

0 H2i



 ,

M2i =




0 ⋆

P2pi(ωk+1)H1i He(H ′
2iP2pi(ωk+1)



 ,

M3i =




P1i(ωk) ⋆

P2i(ωk) P3i(ωk)



−




0 0

0 P1pi(ωk+1)



 .

(4.40)

Introducing the relaxation level ρ > 0 in Acli(ωk) given in (4.37), that is,

Acli(ωk) =




0 I(m−1)nx

H1i/ρ H2i/ρ



 , (4.41)

it is possible to show that if the conditions of Theorem 4.4 solved jointly with M3i > 0,

i ∈ K, are feasible for a given ρ, then inequalities remain feasible for any ρ̄ > ρ, following

the same arguments presented in the LPV case. As a consequence, if the conditions of

Theorem 4.4 are tested replacing Ai(βk) by Âi(βk) = Ai(βk)ρ and Kq
ℓ (ωk) by K̂q

ℓ (ωk)/ρ,

a feasible solution for any ρ ≤ 1 assures that the closed-loop system (4.28) is ESMS-CI.

For completeness, it is also proved that a particular choice for the matrices

Y1,2,3i
(ω̄k) assures that the conditions of Theorem 4.4 tested with the relaxation level ρ

always provide a feasible solution.

Theorem 4.5. The choice Bi(ω̄k) = Bi0 =
[

0 Inx
−Inx

]

assures the existence of a

feasible solution for Theorem 4.4 with Ai(βk) and Kq
ℓ (ωk) replaced respectively by Âi(βk)

and K̂q
ℓ (ωk), ∀ℓ = 0, . . . , m− 1, q ∈ Q, i ∈ K.

Proof. First, consider the following partitions for the blocks P1i(ωk) and P2i(ωk) of Pi(ωk)

from (4.31)

P1i(ωk) =




P11i(ωk) ⋆

P12i(ωk) P13i(ωk)



 , P2i(ωk) =
[

P21i(ωk) P22i(ωk)
]

,
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meaning that Ωi
11(ω̄k) from (4.31) can be rewritten as

Ωi
11(ω̄k) =

















−P11i(ωk) ⋆ ⋆ ⋆

P12i(ωk)




P11pi(ωk+1)

−P13i(ωk)



 ⋆ ⋆

−P21i(ωk)




P12pi(ωk+1)

−P22i(ωk)








P13pi(ωk+1)

−P3i(ωk)



 ⋆

0 P21pi(ωk+1) P22pi(ωk+1) P3pi(ωk+1)

















.

Then, for Bi(ω̄k) = B0i, the following choices for the variables of Theorem 4.4 such

that (4.32) holds can be made: a large enough ρ such that Âi(βk) = 0 and K̂q
ℓ (ωk) = 0,

Xi(ω̄k) = −0.5B′
0i,

P12i(ωk) = P12pi(ωk+1) = 0, P11i(ωk) = ǫ1I,

P21i(ωk) = P21pi(ωk+1) = 0, P13i(ωk) = ǫ2I,

P22i(ωk) = P22pi(ωk+1) = 0, P3i(ωk) = ǫ3I,

P11pi(ωk+1) = ǫ1pii(αk)I, P13pi(ωk+1) = ǫ2pii(αk)I,

P3pi(ωk+1) = ǫ3pii(αk)I,

with 0 < ǫ1 < ǫ2 < ǫ3 < 1. By replacing the mentioned values in (4.32) with Ai(βk) =

Ai(βk)/ρ and Kq
ℓ (βk) = Kq

ℓ (βk)/ρ with ρ → ∞, one has













−ǫ1I 0 0 0 0

0 (ǫ1pii(αk) − ǫ2)I 0 0 0

0 0 (ǫ2pii(αk) − ǫ3)I 0 0

0 0 0 (ǫ3 − 1)I 0

0 0 0 0 −I














< 0 (4.42)

that is always verified since pii(αk) ≤ 1 and 0 < ǫ1 < ǫ2 < ǫ3 < 1. �

As in the LPV case, the conditions of Theorem 4.4 can be solved iteratively,

starting with Bi0 proposed in Theorem 4.5 and using the update Bi(ω̄k) = X ′
i (ω̄k) in each

new iteration, as formally presented by Algorithm 2. Local convergence and guarantees

that the increase of the memory cannot produce worse results can be easily demonstrated

following the material presented for the LPV case. Concerning the structure of the con-

trollers, note that two polynomial degrees must be chosen by the designer: one associated

to βk and the other associated to αk. If both degrees are zero, then one has the classical

gain (mode-dependent or independent) suitable to deal with homogeneous MJLS where
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both αk and βk are uncertain but time-invariant.

funtion Input(
(

Ai, Bi, Cy

)

(β̄k), itmax,B0i(ω̄k))

Bi(ω̄k) = B0i(ω̄k)

Ai(βk) = Ai(βk)/ρ initialization;

while it < itmax do
Minimize ρ subject to

Theorem 4.4 and M3i > 0 (Eq. (4.39))

if ρ > 1 then
Bi(ω̄k) = X ′

i (ω̄k)

else
Kq

ℓ (ωk) = ρKq
ℓ (ωk)

return
end

end
Algorithm 2: SOF control of NHMJL.

4.2.2 Numerical example of memory SOF mode-independent robust control

of NHMJLS

In NCS, where the communication among the components (sensors, controllers

and actuators) is performed through non ideal channels such as semi-reliable networks,

the MJLS is a suitable class of models to represent the common phenomena arising in

this scenario. In this example, the local sensor – remote actuator (LSRA) (AMORIM et

al., 2016) problem is investigated in the context of SOF control of a Vertical Take-Off and

Landing (VTOL) helicopter.

The linearized state-space dynamic model of the VTOL helicopter is given

in (4.24), adapted from Keel et al. (1988), with p1 = 0.3, p2 = p3 = 1.42. The equivalent

discrete-time system is obtained by a zero-order hold discretization method considering

the sampling time T = 0.5s. For static output-feedback control design, consider that only

the horizontal and vertical velocities (x1(t) and x2(t)) are measured (by radar, image

processing or other method). The control law is calculated remotely and sent, through

wireless communication between the remote control and the VTOL helicopter, constitut-

ing an LSRA control architecture. The control law scheme is depicted in Fig. 19. Observe

that the output measurement is always successfully performed, but a packet loss can occur

in the transmission of the control signal, which is done, for instance, by a standard wire-

less communication, such as IEEE 802.15.4 usually employed in Wireless Sensor Network

(WSN).

The probability of the helicopter receiving a successful transmission of the

control signal can be considered as a time-varying parameter since it depends on the

distance between the controller and the VTOL helicopter, and also because of the noise
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u(k)

y(k)K

Figure 19 – Local sensor - remote actuator (LSRA) for networked output-feedback control
of the VTOL helicopter.

introduced by the communication channel. Among the existing Markovian channel models

0 50 100 150 200 250

-0.5

0

0.5

1

k

x
(k

)′ x
(k

)

(a) Case 1 with m = 2.

0 50 100 150 200 250

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

k

x
(k

)′ x
(k

)

(b) Case 1 with m = 3

0 50 100 150 200 250

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

k

x
(k

)′ x
(k

)

(c) Case 1 with m = 4

0 100 200 300 400 500

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

k

x
(k

)′ x
(k

)

(d) Case 2 with m = 2
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(e) Case 2 with m = 3
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(f) Case 2 with m = 4

Figure 20 – Mean (blue) and standard deviation (dashed green) of x(k)′x(k) obtained
through MC simulation of the Local sensor - remote actuator (LSRA) closed-
loop system for VTOL helicopter with: Case one with (a) m = 2, (b) m = 3,
(c) m = 4; Case two with (d) m = 2, (e) m = 3, (f) m = 4.

in the literature for packet loss representation (GONÇALVES et al., 2010), in this example

a simplified Gilbert-Elliot model, appropriate to represent both time-varying probabilities

and burst failures, is used. In this sense, the time-varying transition probability matrix is

given by

P(α(k)) =




p(α(k)) 1 − p(α(k))

1 − q(α(k)) q(α(k))



 , p(α(k)), q(α(k)) ∈ [0, 1], (4.43)
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where p(α(k)) corresponds to the probability of a successful transmission be followed

by another successful transmission, q(α(k)) represents the probability of two consecutive

transmission failures, while their respective complements, 1 − p(α(k)) and 1 − q(α(k)),

are related to a change of states (success-failure and failure-success).

Note that the adopted Markov model considers two operation modes: the first

one corresponds to a successful transmission of the control signal, while the second one

represents failure. In this example, the packet loss of the control signal is modeled by the

Zero-input (SCHENATO, 2009) approach, which is equivalent to clear the elements of the

control matrix in the mode of the Markov chain that corresponds to transmission failure

(B2 = 0) and maintaining its actual value (B1 = B given in (4.24)) in the operation mode

that represents success. Assuming that the probabilities p(α(k)) and q(α(k)) from (4.43)

are bounded time-varying parameters whose intervals are given by p(α(k)) ∈ [0.55, 1]

and q(α(k)) ∈ [0, 0.45], the time-varying probability matrix (4.43) can be described by a

polytope of four vertices or, using multi-simplex representation, since each row of P(α(k))

is independent from each other, by the Cartesian product of two simplexes of two vertices

each (Λ2 × Λ2). Since it is not possible to know when a correct or a failure transmission

happened, the designed controller is considered mode-independent. When no memory is

considered (m = 1), Theorem 4.4 with itmax = 200 is not capable of providing a feasible

solution. On the other hand, when using at least one memory (m ≥ 2), the following

stabilizing mode-independent control gains are found (truncated with 4 decimal digits

and respectively considering m = 2, m = 3 and m = 4):

[

K0 K1

]

=




.0503 .0535 −.1065 .0028

−.0044 .4220 −.4112 .0136





[

K0 K1 K2

]

=




.0405 .0517 −.0801 .0038 −.0166 .0001

.0015 .4212 −.3967 .0153 −.0208 .0001





[

K0 K1 K2 K3

]

=



.0402 .0509 −.0723 .0049 −.0167 .0010 −.0089 −.0000

.0339 .4202 −.3952 .0195 −.0493 .0009 −.0094 −.0001





(4.44)

For additional validation, the closed-loop system stability is checked by a stability analysis

condition derived from Aberkane (2011b).

Aiming to illustrate the temporal behavior of the closed-loop states, Fig. 20

shows the graphics of x(k)′x(k) using 104 iterations of a Monte Carlo simulation and

the following initial condition x(0) =
[

0.1 −0.1 0 −0.1
]

. Two case studies are investi-

gated. The first one corresponds to assume the following functions for the time-varying

probabilities

p(α(k)) = 0.55 + 0.45 cos(0.45k)2, (4.45)

q(α(k)) = 0.45 cos(0.1k)2. (4.46)
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The second case study relies on evaluating the temporal behavior considering the most

aggressive probability value for NCS design, that is the lower successful packet rate

p(α(k)) = 0.55 and the maximum probability of failure q(α(k)) = 0.45. The results

of the first and second study cases are respectively presented in the first and second rows

of the graphics depicted in Fig. 20, where the green curves represent the standard devia-

tion and the blue curves the mean. Note that, although no performance criterion is used

in the design procedure (that regards only stabilization), when increasing the number

of memories considered in the controller, the dispersion around the mean of x(k)′x(k)

is clearly improved. This difference is more evident in the second row of Fig. 20, when

the probabilities are considered constant. Finally, observe that even though the inclusion

of memories in the control law augments the dimensions of the closed-loop system (de-

manding a larger computational effort to solve the problem), since no solution is obtained

when considering no memory, the proposed methodology can be considered advantageous

because it can provide stabilizing controllers when the conventional methods fail.

4.3 Partial Conclusion

This chapter presented a new approach for static output-feedback control

whose main novelty is the use of past information of the states or measured outputs

in the control law for uncertain systems with time-varying parameters. The main con-

tribution is an iterative procedure given in terms of parameter-dependent linear matrix

inequalities that handles the gain directly as an optimization variable, allowing to gener-

ate sufficient convex conditions for control design of memory controllers for LPV systems,

that do not exist in the literature. The results are extended for non-homogeneous MJLS,

where the time-varying parameters can affect the dynamics (space-state matrices) and

probabilities (Markov chain). The existence of feasible initial conditions, local conver-

gence for the iterative procedures and the validity of a relaxation strategy adopted in

the algorithms aiming to increase the effectiveness of the method were demonstrated. In

the numerical examples, the proposed approach proved to be superior to other techniques

from the literature in terms of effectiveness considering memory in the control law or not.

In the context of non-homogeneous MJLS, a practical example was presented to show

that the proposed approach can provide stabilizing controllers when the other methods

fail.
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5 Conclusion and Future Works

Different design methodologies were proposed in this PhD Thesis to provide

improved control and filtering solutions for LPV systems through convex optimization

based on LMIs. The first contribution, presented in Chapter 2, consisted in the proposi-

tion of a new modeling by exploring explicit formulas for the variation rate of time-varying

parameters. In this strategy, the time-varying parameters are written as solution of dif-

ference equations (usually expressed in terms of complex exponentials). Some numerical

examples have illustrated the effectiveness and efficiency of the proposed approach in

stability analysis and synthesis problems (control and filtering) when compared with the

traditional polytopic modeling (based on arbitrary or bounded rates of variations). It was

also shown that the proposed modeling is capable to provide, with lower computational

complexity, state-feedback controllers assuring improved performance for an example with

practical appeal (NCS with time-varying sampling rate), when compared with other spe-

cialized methods from the literature.

The second research topic, presented in Chapter 3, was concerned with the

problem of H2 state-feedback control and full-order filter design for LPV systems subject

to inexact information about the time-varying parameters. A special attention has been

paid to the case where the additive error (or the time-varying parameter itself) is associ-

ated with a known PDF, which was taken into account in the synthesis conditions in order

to improve performance (measured in terms of the closed-loop H2 norm or MSE). The

proposal developed in Chapter 3, called Sub-Domain Optimization Heuristic (SDOH), ba-

sically relies on optimizing performance only in a certain range of values of the parameters

(called sub-domain) where the probability of occurrence is higher, while the stability of

the closed-loop system (in case of control) or the estimation error system (when handling

filter design) is assured for all uncertain domain. Some numerical examples showed that

this strategy can provide great percentage improvements in the closed-loop H2 worst case

norm, MSE and SDMSE when compared with the methods from the literature.

Chapter 4 has proposed an iterative procedure based on parameter-dependent

LMI conditions for the synthesis of memory static output-feedback control laws to stabilize

LPV systems. The main novelty is the fact that the control gain is an optimization variable

of the problem (no change of variables is necessary), which is useful to deal with practical

requirements as magnitude constraints for the entries of the control gain. The numerical

examples have also shown that, besides more general, this approach is able to obtain less

conservative solutions (stabilizing a larger number of systems with or without structure or

magnitude constraints), when compared with other methods from the literature that can

only cope with LTI systems. Chapter 4 has also proposed a generalization of the method
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to deal with memory control of NHMJLS, which is an important feature since this class

of systems allows to simultaneously model stochastic and time-varying dynamics, being

appropriate to represent several problems in the NCS framework.

5.1 Main Papers that compose the PhD Thesis

This PhD research has produced five papers that constitute the most relevant

contributions of the thesis:

1. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. H2 control and filtering

of discrete-time LPV systems exploring statistical information of the time-varying

parameters. Accepted in Journal of the Franklin Institute ISSN: 0016-0032.

2. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. A less conservative approach

to handle time-varying parameters in discrete-time LPV systems with applications

in NCS. Accepted in International Journal of Robust and Nonlinear Control ISSN:

1099-1239.

3. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. LMI-based solution for

memory static output-feedback control of discrete-time linear systems affected by

time-varying parameters. Submitted to Automatica ISSN: 0005-1098.

4. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. H2 performance comparison

for gain-scheduled design using inexact information of the scheduling parameters:

standard parametric model versus saturation model. In Proceedings of the 2019

IEEE CHILEAN Conference on Electrical, Electronics Engineering, Information and

Communication Technologies (CHILECON), Valparaiso, Chile, November 2019.

5. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. H2 gain-scheduled filtering for

discrete-time LPV systems using estimated time-varying parameters. In Proceedings

of the 2018 American Control Conference, pages 4367−4372, Milwaukee, WI, USA,

June 2018. <10.23919/ACC.2018.8431838>.

5.2 Other related subjects investigated during doctorate

In addition to the main topics addressed in this thesis, the PhD candidate also

worked on related areas, producing the following articles.

5.2.1 Less conservative design for generalized Bernoulli jump systems

Many practical problems arising in networked control systems can be suit-

ably modeled by linear stochastic systems described in terms of discrete-time generalized
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Bernoulli models (PALMA et al., 2015; PALMA et al., 2016; DURAN-FAUNDEZ et al.,

2018), that are a particular case of MJLS. Motivated by real world applications where

the transition probability matrix is uncertain and the Markov chain obeys a generalized

Bernoulli distribution, a general framework to deal with the problems of filter and con-

trol design was investigated, providing synthesis conditions for state-feedback control,

full- or reduced-order filtering that are sufficient in the uncertain case and also necessary

(optimal) for precisely known models. Those propositions were summarized in

1. C. F. Morais, J. M. Palma, P. L. D. Peres, R. C. L. F. Oliveira, An LMI ap-

proach for H∞ and H2 reduced-order filtering of uncertain discrete-time Markov

and Bernoulli jump linear systems. Automatica, 95(9):463-471, September 2018.

2. C. F. Morais, J. M. Palma, P. L. D. Peres, R. C. L. F. Oliveira, H∞ and H2 mode-

independent state-feedback control of generalized Bernoulli jump systems with un-

certain probabilities. In Proceedings of the 2018 American Control Conference, pages

5724-5729, Milwaukee, WI, USA, June 2018.

The conditions are based on parameter-dependent linear matrix inequality conditions

associated with a scalar parameter that are sufficient to provide mode-dependent, partially

mode-dependent or mode-independent in controller and filter project.

5.2.2 H∞ control design for NHMJLS

Non-homogeneous Markov jump linear systems (ABERKANE, 2011b) are suit-

able for modeling discrete-time jump systems with time-varying operation modes. In this

topic two main problems regarding NHMJLS are evaluated: The first one is concerned with

discrete-time MJLS whose stochastic process that rules the jumps between the operation

modes is non-homogeneous (time-varying transition probabilities). The second problem

deals with control or filter design of LPV systems whose dynamics is subject to jumps.

The main purpose is to emphasize networked control problems in which the parameters

and output or input signals may not be available due to packet loss. The main motivation

to study those problems is their wide application in the NCS context. As result of the

investigations in this research field, the following papers have been published.

1. J. M. Palma, C. F. Morais, R. C. L. F. Oliveira, H∞ state-feedback gain-scheduled

control for MJLS with non-homogeneous Markov chains. In Proceedings of the 2018

American Control Conference, pages 5718-5723, Milwaukee, WI, USA, June 2018.

2. J. M. Palma, C. F. Morais, R. C. L. F. Oliveira, Gain-scheduled control for LPV

systems with scheduling parameters transmitted through a Markov channel. In Pro-

ceedings of the Joint 9th IFAC Symposium on Robust Control Design and 2nd IFAC
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Workshop on Linear Parameter Varying Systems, pages 549-554, Florianópolis, SC,

Brasil, September 2018.

5.2.3 Development of resource savings methods for wireless sensor networks

In order to optimize performance of systems controlled through digital com-

munication networks, the PhD candidate has proposed new protocols to improve energy-

efficiency in NCS (by evaluating the trade-off between the network consumption and

performance degradation) and has also investigated a new model of Markov Channel to

properly represent multi-route networks. These topics are summarized in

1. J. M. Palma, L. de P. Carvalho, C. F. Morais, R. C. L. F. Oliveira, E. Rubio,

K. Herman, Protocol for Energy-Efficiency in Networked Control Systems Based on

WSN. Sensors (Switzerland), 18(8):2590, August 2018.

2. J. M. Palma, L. P. Carvalho, T. E. Rosa, C. F. Morais, and R. C. L. F. Oliveira. "H2

and H∞ state-feedback control through Multi-Hop Networks: Trade-Off Analysis

Between the Network Load and Performance Degradation". In IEEE Latin America

Transactions. Vol. 16, no. 9 pp. 2377 − 2384, September 2018.

3. J. M. Palma, L. de P. Carvalho, T. E. Rosa, C. F. Morais, R. C. L. F. Oliveira,

"H2 filtering through multi-hop networks: Trade-off analysis between the network

consumption and performance degradation". In Proceedings of the CHILEAN Con-

ference on Electrical, Electronics Engineering, Information and Communication Tech-

nologies (CHILECON), Pucon, RA, Chile, October 2017.

4. J. M. Palma, C. F. Morais, L. de P. Carvalho, R. C. L. F. Oliveira, "Modelo de

canal Markoviano para projetos de filtros H∞ em redes multi-rotas". In Simpósio

Brasileiro de Automaçãoao Inteligente - SBAI 2017, pages 554-560, Porto Alegre,

RS, Brasil, Outubro 2017.

The first three papers are concerned with the proposition of new communication protocols

for output-feedback and state-feedback control or filtering through multi-hop communica-

tion networks by optimizing two conflicting criteria: the network energy consumption and

the stability/performance of the closed-loop system. In particular, the second and third

papers evaluate the influence of the initial probability distribution on the design of filter

and state-feedback controllers and the corresponding performance in time-domain. The

last article investigates the problem of filtering through a multi-path network, proposing a

modeling that minimizes the impact of the packet loss in the performance of the designed

filter.
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5.2.4 Robust control of combustion systems

The PhD candidate also investigated the robust control of combustion systems.

A non-linear model obtained through an identification technique by optical instrumenta-

tion of the plant was used to propose a linear model around an operating condition, for

which an output-feedback controller was designed.

1. J. M. Palma, H. O. Garces, A. J. Rojas, C. F. Morais, R. C. L. F. Oliveira,

H∞ output-feedback control design for combustion systems using optical instrumen-

tation. In Proceedings of the Joint 9th IFAC Symposium on Robust Control Design

and 2nd IFAC Workshop on Linear Parameter Varying Systems, pages 207-2012,

Florianópolis, SC, Brasil, September 2018.

2. J. M. Palma, H. O. Garces, C. F. Morais, R. C. L. F. Oliveira, A new approach

of H∞ filtering for combustion systems using optical instrumentation. Submitted to

ISA Transactions ISSN: 0019-0578.

5.2.5 LPV modeling of Biomathematical systems

Mathematical modeling of biological problems is a vast area of study in applied

mathematics. In the stability analysis for biological dynamic systems, the relationship

between different types of populations is commonly investigated in the literature using

LTI approximations of nonlinear dynamics. During the doctorate, the PhD candidate

has proposed a stability analysis methodology based on LPV (or polytopic LTI) models

for biological systems, with nonlinear dynamics, linearized around multiple equilibrium

points. Additionally, the differences between the nonlinear and the LPV representations,

particularly for the case of fish population, were evaluated in time domain. The research

in Biomathematical context can be found in the following publications.

1. R. Lobo, J. M. Palma, C. F. Morais, L. de P. Carvalho, M. E. Valle and R. C.

L. F. Oliveira. A Brief Tutorial on Quadratic Stability of Linear Parameter-Varying

Model for Biomathematical Systems. Accepted for publication in CHILECON 2019,

Valparaiso, Chile, October 2019.

2. D. E. Sánchez, J. M. Palma, R. A. Lobo, C. F. Morais, J. Meyer, A. Rojas-Palma

and R. C. L. F. Oliveira. Modeling and Stability Analysis of Salmon Mortality

due to Microalgae Bloom using Linear Parameter-Varying Structure. Accepted for

publication in CHILECON 2019, Valparaiso, Chile, October 2019.
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5.3 Future Works

The different topics studied in the PhD program allow to expand the research

areas and future works can be carried out. For instance, it is possible to generalize the

modeling of time-varying parameters based on solutions of difference equations for all

kinds of time-functions by means of a truncated Fourier series plus an approximation error

(representing the neglected terms). Note that, the inclusion of an additive uncertainty

(representing the error) in the model is an issue investigated in this thesis.

Another possible future contribution is to apply the modeling of stochastic

time-varying parameters (and the information about their PDF) in the NHMJLS con-

text, aiming to improve control and filtering synthesis techniques. One can also develop

LMI conditions for gain-scheduled control or filtering of LPV systems with time-varying

parameters transmitted through a Markov channel, since it is known that, when some

information is transmitted through a digital network, usually occurs the incorporation of

a discrete time-delay (dk) in the packet of information. Thus, it is reasonable to consider

that the controller or filter is scheduled by θ(k− dk), that is, by the delayed time-varying

parameter θ(k), where dk represents the time-delay. This delay can be modeled by using

the results of Palma et al. (2018b), connecting the theory of LPV systems subject to

inexact measurements and the information about bounded rates of variation in the pa-

rameters and/or the model proposed in terms of difference equations (specially when the

time-varying parameters or probabilities are a known function, such as a periodic one).

To provide an extra improvement in the performance associated with LMI-

based control design methods, one can also use the artificial enrichment of the system

dynamics by employing memory control laws. The main challenge of this research topic

is to develop memory control and filtering synthesis conditions associated with the opti-

mization of performance criteria, such as H2 or H∞ guaranteed costs.

5.4 Full List of Publications

In short, the PhD candidate has produced 31 works between March 2016 and

November 2019. Five of those papers constitute the most relevant contributions of the

PhD thesis (PALMA et al., 2018c; PALMA et al., 2019a; PALMA et al., 2019b; PALMA

et al., 2019c; PALMA et al., 2019d). The partial results of this thesis, which are listed

below, correspond to eighteen papers developed under supervision of Prof. Dr. Ricardo

C. L. F. Oliveira and Dra. Cecília F. Morais.

Three papers published in international journals:

1. J. M. Palma, L. de P. Carvalho, T. E. Rosa, C. F. Morais, and R. C. L. F. Oliveira.

H2 and H∞ state-feedback control through Multi-Hop Networks: Trade-Off Analysis

Between the Network Load and Performance Degradation. In IEEE Latin America
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Transactions. Vol. 16, no. 9 pp. 2377 − 2384, September 2018. <10.1109/TLA.2018.

8789558>

2. J. M. Palma, C. Duran-Faundez, L. de P. Carvalho, C. F. Morais, R. C. L. F.

Oliveira, E. Rubio and K. Herman, Protocol for Energy-Efficiency in Networked

Control Systems based on WSN. In Sensors (Basel), Vol. 18, no. 8 pp. 2590, August

2018. <https://doi.org/10.3390/s18082590>

3. C. F. Morais, J. M. Palma, P. L. D Peres and R. C.L.F. Oliveira. An LMI ap-

proach for H2 and H∞ reduced-order filtering of uncertain discrete-time Markov and

Bernoulli Jump Linear Systems. In Automatica. Vol. 95, pp. 463 − 471, September

2018. <https://doi.org/10.1016/j.automatica.2018.06.014>

Five papers submitted to international journals:

1. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. H2 control and filtering

of discrete-time LPV systems exploring statistical information of the time-varying

parameters. Accepted in Journal of the Franklin Institute ISSN: 0016-0032.

2. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. A less conservative approach

to handle time-varying parameters in discrete-time LPV systems with applications

in NCS. Accepted in International Journal of Robust and Nonlinear Control ISSN:

1099-1239.

3. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. LMI-based solution for

memory static output-feedback control of discrete-time linear systems affected by

time-varying parameters. Submitted Automatica ISSN: 0005-1098.

4. C. E. Galarza, J. M. Palma, C. F. Morais, J Utura, L. de P. Carvalho and R. C.

L. F. Oliveira. A novel probabilistic model for opportunistic routing and applica-

tions in computation of energy consumption in WSN. Submitted in the IEEE/ACM

Transactions on Networking ISSN: 1063-6692.

5. J. M. Palma, H. O. Garces, C. F. Morais and R. C. L. F. Oliveira. A new approach

of H∞ filtering for combustion systems using optical instrumentation. Submitted in

ISA Transactions ISSN: 0019-0578.

Nine papers published in the proceedings of international conferences:

1. J. M. Palma, C. F. Morais and R. C. L. F. Oliveira. H2 performance compari-
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A Appendix - Mathematical Framework:

Stability and Performance Analysis for

discrete-time LPV Systems

This Appendix presents parameter-dependent LMI conditions for stability

analysis and H2 and H∞ norm computation for discrete-time LPV systems.

Consider the following discrete-time LPV system

G =







x(k + 1) = A(θ(k))x(k) + E(θ(k))w(k)

z(k) = Cz(θ(k))x(k) + Ez(θ(k))w(k)
(A.1)

where x(k) ∈ Rnx , w(k) ∈ Rnw and z(k) ∈ Rnz , respectively denote the state, external

disturbance and output vectors. The matrices of the system depend polynomially on the

time-varying parameter vector θ(k), which lies in a compact set Λ for all k ≥ 0.

Next corollary presents a stability analysis condition expressed in terms of

parameter-dependent LMIs (DE CAIGNY et al., 2010).

Theorem A.1. System (A.1) is asymptotically stable if there exists a symmetric positive

definite parameter-dependent matrix P (θ(k)) such that

A(θ(k))′P (θ((k + 1))A(θ(k)) − P (θ(k)) < 0, (A.2)

hold for all (θ(k) × θ(k + 1)) ∈ Λ × Λ.

Theorem (A.1) is based on the existence of a quadratic Lyapunov function

depending generically on θ(k) and constitutes an infinite dimensional problem. In the

context of LPV systems, the computation of performance indexes based on the H2 and

H∞ norms are also important.

A.0.1 H2 guaranteed cost analysis

For an asymptotically stable system in the form (A.1), its H2 performance in

time-domain is defined as

||G||22 =
∞∑

k=0

E{z(k)′z(k)}, (A.3)

when the input w(k) is driven by a white-noise Gaussian process with null mean and

identity covariance. See De Caigny et al. (2010) for more details. Next theorem , borrowed

from De Caigny et al. (2010) (where the proof can be found) presents parameter-dependent

LMIs that can be used to compute upper bounds (guaranteed costs) for the H2 norm of

system (A.1).
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Theorem A.2. Consider system (A.1) as asymptotically stable,

(a) for a given positive scalar ρ, if there exist symmetric positive definite

parameter-dependent matrices P (θ(k)) and W (θ(k)), such that




P (θ(k + 1)) − A(θ(k))P (θ(k))A(θ(k))′ ⋆

E(θ(k))′ I



 > 0 (A.4)

and 


W (θ(k)) −Ez(θ(k))Ez(θ(k))′ ⋆

P (θ(k))Cz(θ(k))′ P (θ(k))



 > 0, (A.5)

Tr (W (θ(k))) < ρ2 (A.6)

hold for all (θ(k), θ(k + 1)) ∈ Λ × Λ, then ρ is an upper bound for the H2 norm.

(b) for a given positive scalar γ, if there exist symmetric positive definite

parameter-dependent matrices S(θ(k)) and Q(θ(k)), such that




Q(θ(k)) −A(θ(k))′Q(θ(k + 1))A(θ(k)) ⋆

Cz(θ(k))′ I



 > 0 (A.7)

and 


S(θ(k)) −Ez(θ(k))Ez(θ(k))′ ⋆

Q(θ(k + 1))E(θ(k)) Q(θ(k + 1))



 > 0, (A.8)

Tr (S(θ(k))) < γ2 (A.9)

hold for all (θ(k), θ(k + 1)) ∈ Λ × Λ, then γ is an upper bound for the H2 norm.

Next section presents parameter-dependent LMIs that can be used to compute

upper bounds (guaranteed costs) for the H∞ norm of system (A.1).

A.0.2 H∞ guaranteed cost analysis

Another important performance criterion used in robust control and filter de-

sign is the H∞ norm. In the context of LPV systems, it is defined by the quantity

‖G‖∞ = sup
‖w(k)‖2 6=0

‖z(k)‖2

‖w(k)‖2
, w(k) ∈ L2 (A.10)

where L2 is the class of square-summable sequences. Next theorem, borrowed from de

Souza et al. (2006) (where the proof can be found) provides a procedure to compute

guaranteed costs for the H∞ norm using parameter-dependent LMIs.

Theorem A.3. Consider system (A.1) as asymptotically stable. If there exist a symmetric

positive definite parameter-dependent matrix P (θ(k)) and a parameter-dependent matrix
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G(θ(k)), such that











P (θ(k + 1)) ⋆ ⋆ ⋆

G(θ(k))′A(θ(k))′ G(θ(k))′ +G(θ(k)) − P (θ(k)) ⋆ ⋆

E(θ(k)) 0 ηI ⋆

0 Cz(θ(k))G(θ(k)) Ez(θ(k)) ηI











> 0 (A.11)

hold for all (θ(k), θ(k + 1)) ∈ Λ × Λ, then η is an upper bound for the H∞ norm.

Finite dimensional tests based on LMIs to solve the conditions of Theorems A.1,

A.2 and A.3 can be obtained by employing polynomial structures for the optimization

variables and applying polynomial positivity tests according to the structure of the set

Λ (OLIVEIRA; PERES, 2007; AGULHARI et al., 2019).
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B Appendix - Computational Framework:

solving parameter-dependent LMIs using

ROLMIP

This Appendix presents the computational framework to solve parameter-

dependent LMIs using the Robust LMI Parser (ROLMIP) (AGULHARI et al., 2019),

which was employed in all numerical experiments of this thesis. As an example, the prob-

lem of robust stability analysis of a discrete-time LPV system with polytopic structure is

presented.

Consider the following discrete-time LPV system

x(k + 1) = A(θ(k))x(k) (B.1)

where x(k) ∈ Rnx denotes the state vector and A(θ(k)) is a time-varying polytopic matrix

given in the form

A(θ(k)) =
N∑

i=1

θi(k)Ai, θ(k) ∈ ΛN , (B.2)

where ΛN is the unit simplex of dimension N . The robust stability of system (B.1) can

be checked by the conditions presented next, which are the same used in Theorem 3.1.

Corollary B.1. If there exist a symmetric positive definite parameter-dependent matrix

P (θ(k)) and a parameter-dependent matrix G(θ(k)) such that




P (θ(k + 1)) ⋆

A(θ(k))G(θ(k)) P (θ(k)) −G(θ(k)) −G(θ(k))′



 > 0 (B.3)

holds for all (θ(k), θ(k + 1)) ∈ ΛN × ΛN , then system (B.1) is robustly stable.

The first step to derive finite dimensional tests is to impose a particular struc-

ture for the optimization variables P (θ(k)) and G(θ(k)). For instance, consider θ(k) ∈ Λ2

and assume that P (θ(k)) and G(θ(k)) depend affinely on θ(k), that is,

P (θ(k)) = θ1(k)P1 + θ2(k)P2, G(θ(k)) = θ1(k)G1 + θ2(k)G2, θ(k) ∈ Λ2, (B.4)

Considering that θ(k) varies arbitrarily fast over time, the value of θ(k + 1) can be con-

sidered completely independent of θ(k + 1), say β(k) ∈ Λ2 . In this case one has

P (θ(k + 1)) = P (β(k)) = β1(k)P1 + β2(k)P2. (B.5)
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Adopting the structures given in (B.4) and the hypothesis established in (B.5), inequal-

ity (B.3) can be programmed using the Robust LMI Parser, that applies Pólya’s relax-

ations to check the positivity of the polynomial matrix inequality (depending on θ and

β). The code presented next illustrates how the programming procedure can be done. It

is assumed that the dynamic matrix A(θ) is informed in terms of its vertices, given as a

cell array.

Matlab code.

func t i on output = stab_d (A)

% >> Determines the s t a b i l i t y o f the system

% dx ( t )/ dt = A(\ theta ( k ) ) x ( k )

% >> s o l v i n g

% [P(\ theta ( k+1)) G(\ theta ( k ) ) ’A(\ theta ( k ) ) ’ ;

% A(\ theta ( k ) )G(\ theta ( k ) ) P(\ theta ( k))−G(\ theta ( k))−G(\ theta ( k )) ’ ] >0

%

% Using a Lyapunov matrix P(\ theta ( k ) ) and a s l a c k v a r i a b l e G(\ theta ( k ) )

% with a f f i n e parameter−dependency ( degree one ) on \ theta ( k ) .

vert ices_A = s i z e (A, 2 ) ;

order_A = s i z e (A{ 1 } , 1 ) ;

% Convert ing the v e r t i c e s o f matrix A in a ro lmipvar ob j e c t

A = ro lmipvar (A, ’A’ , vertices_A , 1 ) ;

% Var iab le

G = ro lmipvar ( order_A , order_A , ’G( k ) ’ , ’ f u l l ’ , vertices_A , 1 ) ;

% Lyapunov func t i on P(\ theta ( k ) )

P = ro lmipvar ( order_A , order_A , ’P( k ) ’ , ’ symmetric ’ , vertices_A , 1 ) ;

% Lyapunov func t i on in k+1, P(\ theta ( k+1)) , a r b i t r a r i l y f a s t v a r i a t i o n

Pk1 = fo rk (P, ’P( k+1) ’)

% LMI cond i t i on

LMIstd = [ Pk1 , (A∗G) ’ ;

A∗G, P−G’−G] ;

LMIs = LMIstd >= 0 ;



Appendix B. Appendix - Computational Framework: solving parameter-dependent LMIs using ROLMIP136

s o l = opt imize (LMIs , [ ] , s d p s e t t i n g s ( ’ verbose ’ , 0 , ’ s o lv e r ’ , ’ mosek ’ ) ) ;

i f min( check s e t (LMIs ) ) > 0

pr in t ( ’ the system i s s tab l e ’ ) ;

end

end

Note that the command fork is being used to shift matrix P (θ) to a different

simplex, providing P (β). If higher degrees for the optimization variables are required,

pottentially leading to less conservative results, only the last input parameter of command

rolmipvar needs to be changed (the rest of the code is the same). See (AGULHARI et

al., 2019) for more details about how to deal with continuous- and discrete-time LPV

systems, including the case of bounded rates of variations.

See also (LOBO et al., 2019) for a tutorial about using ROLMIP to deal

with biomathematical systems modeled as LPV systems, available online at the GitHub

Repository1.

1 Repository "Linear Parameter Varying system Toolbook for Biomath-

ematical" in GitHub, Link <https://github.com/JonathanMPalma/

Linear-Parameter-Varying-system-Toolbook-for-Biomathematical>
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