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ABSTRACT

This work presents a non-intrusive load monitoring (NILM) method based on mixed-integer
linear programming (MILP). NILM are methods for disaggregating measurements from en-
ergy meters into information regarding operating appliances. Such information, such as the
power consumption and operating state, are valuable for promoting energy savings and predic-
tive maintenance. The proposed technique expands the classical model based on combinatorial
optimization (CO). The new formulation handles the problem of ambiguity of similar loads,
present in the classical model. Linear constraints are used to efficiently represent load signa-
tures. Additionally, a window-based strategy is proposed to enhance the computational perfor-
mance of the proposed NILM algorithm. The disaggregation can be made using only active
power measurements at low sampling rate, which is already available in commercial smart me-
ters. Other features can be added to the model, if available, such as the reactive power. The
performance of the algorithm is evaluated using two test cases from the public dataset AMPds.
The sampling rate from the test case is of one sample per minute. Results demonstrate the abil-
ity of the proposed method to accurately identify and disaggregate individual energy signatures

in a computationally efficient way.

Keywords: load disaggregation, load signature, mixed-integer linear programming, non-

intrusive load monitoring, combinatorial optimization.



RESUMO

Este trabalho apresenta um método de monitoramento nao intrusivo (Non-Intrusive Load
Monitoring - NILM) baseado em programacao linear inteira mista (Mixed-Integer Linear Pro-
gramming - MILP). NILM sdo métodos para desagregar leituras de medidores de energia em
informacdes a respeito dos aparelhos eletrodomésticos em operacdo. Tais informagdes, como
consumo e estado de operacao, sdo valiosas para promover a eficiéncia energética e manutengao
preventiva. A técnica NILM proposta neste trabalho expande o modelo cldssico fundamentado
em otimizacao combinatéria (Combinatorial Optimization - CO). A nova formulagao lida com o
problema de ambiguidade de cargas similares, presente no modelo cldssico. Restri¢des lineares
sdo utilizadas para representar eficientemente as assinaturas de carga. Além disso, uma es-
tratégia baseada em janelas temporais € proposta para melhorar o desempenho computacional.
A desagregacdo de cargas pode ser feita utilizando apenas medidas de poténcia ativa em uma
baixa taxa de amostragem, disponivel em medidores inteligentes comerciais. A técnica tam-
bém permite a utilizagdo de outros tipos de medidas, se disponiveis, como a poténcia reativa.
O desempenho do algoritmo € validado utilizando dois casos de teste a partir da base de dados
publica AMPds. A taxa de amostragem do caso de teste é de uma amostra por minuto. Os resul-
tados demonstram a habilidade do método proposto para identificar e desagregar com precisao

as assinaturas de energia individuais de forma computacionalmente eficiente.

Palavras-chave: desagregacdo de carga, assinatura de carga, programacdo linear inteira

mista, monitoramento nao intrusivo, otimiza¢do combinatoria.
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Chapter 1

Introduction

1.1 Motivation

The number of smart meters in the world is expected to increase up to 780 Million by 2020
[1]. Nowadays, there are more than 50 Million installed in the US [2]. However, unlike phone
bills in which calls are individually identified, the energy bill shows only the total price which
is a limited information. Providing energy usage feedback to homeowners is a helpful way for
promoting the energy efficiency [3]. Detailed appliance information on energy consumption is
still invisible to the general population which implies in a source of waste. Without feedback,
it is impossible for people to learn effectively about their energy usage patterns, necessary for
energy savings.

As shown in the spectrum of the Figure 1.1, the energy feedback can be either indirect or

direct [4]:

e The indirect feedback is provided after the consumption occurs. It may range from a
standard electricity bill to daily reports. This is the most common scenario for customers

of power utilities nowadays.

e The direct feedback is provided in real time with either aggregated or disaggregated
energy information. As a difference, the aggregated information provides the whole-
building consumption information while disaggregated information provides appliance

level consumption information.

Disaggregated feedback is in the highest informational level of the Figure 1.1. It is a valu-

able resource for homeowners, commercial buildings, and power utilities. For homeowners
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Figure 1.1: Spectrum with the different types of energy feedback [4]

and commercial buildings, disaggregation helps them making decisions about their consump-

tion habits and appliances to save energy [5]. In addition, it can be helpful to detect mal-

functions, inefficient equipment or for scheduling predictive maintenance [6]. In regards to

power utilities, disaggregation helps them to understand their customers and provide them with

better-customized services [7]. However, disaggregated feedback is a very difficult task to be

accomplished since it implies into finding a way to monitor all the appliances of a building. In

fact, the disaggregation of loads can be accomplished either with intrusion or not intrusively:

e The intrusive approach connects one measurement device to each power outlet. This

process might lead to high installation costs since it is necessary an infrastructure with

one measurement device for each outlet and also a network infrastructure to connect all

of them. This solution might also lead to privacy concerns, for example, if the power

utility wants to provide an intrusive approach to their customers, their employees should

get inside their customer’s houses.

e On the non-intrusive approach the energy consumption of the major appliances is esti-

mated using only a single meter installed in the consumer’s energy input panel. The mea-

surements acquired by the energy meter are processed in order to provide details about

the operating devices.

The advantage of non-intrusive identification is the reduced costs of hardware, maintenance,

and privacy. However, non-intrusive identification is still a software challenge due to the com-

plexity of extracting a set of individual load measurements from the whole house power mea-

surement. This challenge is closely related to the cocktail party problem where there are multi-
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ple sound sources recorded by a microphone and we want to extract just one of these sources [8].
In this context, non-intrusive load monitoring (NILM), also known as load disaggregation, is a

research field which seeks to break down a whole-house power signal into individual devices.

1.2 Description of the Problem

The keyword NILM was introduced in 1985 by George W. Hart in a technical report [9] and
later published in 1992 by the same author [10]. The paper proposes a full methodology, from
types of loads, load signatures, algorithm and physical implementation. The algorithm is based
on pattern recognition, which is described in the next chapter.

Before introducing the pattern recognition method, Hart describes the NILM problem as a
combinatorial optimization (CO) problem. However, the author discourages its usage. In the
CO formulation, the disaggregation is obtained by combining the multiple possible states that
minimize the full measurement for each time instant. For each time instant, we seek to minimize
the error between the combination of power states and the aggregated measurement. Here, it
is assumed that all the possible operating states are previously known. More details about this
formulation are also presented in the next chapter. Hart points three main issues to discourage

the usage of this formulation:

e The problem has a high computational cost and it increases with the addition of more

states of devices or measurements.

¢ Fundamental Problem: The complete set of operating states are never known. If the
model is used in the presence of unknown appliances, it would attempt to describe their

behavior as a combination of other known appliances.

e Multiple Switching (MS): A small change in the measurement might be translated into

a big change of the combination of loads.

As shown in the next section, despite various NILM approaches proposed in the literature,
very few have attempted in dealing with the CO formulation. While those difficulties are still
challenging, there is still room and potential for expanding the formulation in ways to handle
the previous problems. Techniques based on mathematical programming are still emerging.
This work is especially concerned in formulating the NILM problem as a Mixed-Integer Linear

Programming (MILP) problem in order to handle the MS.
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Figure 1.2: Number of publications with reference to Hart’s original work since its publication

1.3 Previous Work

Figure 1.2 shows the number of publications in the NILM field per year over the last 25 years.
Those NILM publications are inferred using publications citing the first NILM work published
by Hart in 1992!. An exponential growth of NILM publications can be observed since 2010.

A further analysis of the publication’s titles since 2010 did not reveal any trending strategy.
Figure 1.3 shows the most frequent words in those titles. Some obvious keywords such as
‘nonintrusive’, ’load’, monitoring’, ’energy’ and ’disaggregation’ were removed. As main
insights, the NILM research field seems to be mainly focused on residential applications and
buildings. Therefore, little attention has been paid to industrial applications. In addition, it
seems that privacy is increasingly a concern in the field.

There are many ways of categorizing the NILM approaches. For example, they can be

categorized into either supervised or unsupervised approaches [12]:

e Supervised NILM uses measurements of each single appliance to build their models and
then disaggregate. It is assumed that we previously have access to the measurements of

each individual appliance that is part of the full house measurement.

e Unsupervised NILM does not require single measurements of each appliance for training.

This approach allows general appliance models as input which are then tuned to each

'Based on [11]. Data acquired from Google Scholar. Code available in https://github.com/
WittmannF/nilm-publications
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Figure 1.3: Trending words in the titles of NILM publications since 2010

specific house. The challenge here is to find the right parameter’s values to be tuned.

Zeifman and Roth in [13] divide the types of algorithms in two categories: pattern recog-
nition (one-to-one matching) and optimization (multiple matching). Zeifman’s categorization

could also be expanded into either event-based algorithms or eventless algorithms:

e The event-based matching is based on the detection and classification of events. Since
the pattern recognition strategies are based on one-to-one matching, the efforts of these
strategies are mainly focused on feature extraction. As an example of features to be
extracted, we have the active and reactive power, harmonics, wavelet’s signatures and
fundamental frequency. These events are then classified by well-established classifiers,
such as k-nearest neighbor [14, 15, 16], fuzzy sets [17, 18], decision trees [19, 20], sup-
port vector machines [21, 22], neural networks [23, 24] and deep learning [25, 26]. As
noted by [13], the advantages of pattern recognition methods are that they provide better
results in the presence of unknown loads. However, those methods are sensitive to the

detection of false edges coming from noise or non-linear loads.

e Eventless methods are based on the simultaneous matching of multiple loads, and they
find the set of energized appliances that best fit the measured load. Most efforts from
researchers on this side are given methods based on probabilistic models such as hidden
Markov models (HMM) [27, 28, 29, 30]. Other approaches includes sparse coding [31,
32], genetic algorithms [33] and integer programming [34, 35]. These methods provide
better disaggregation performance [13] and are less sensitive to edge detection. However,

they are more susceptible to the fundamental problem presented in the previous section.

Regarding the programming approaches, very few of them were focused on expanding the

classical CO model. Some of these works are going to be discussed in the next subsection.
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1.3.1 Related Work Based on Optimization

[33] shows the CO pointed in Hart’s paper and discusses their equivalency with the knapsack
problem. However, their paper is focused only on verifying Hart’s statement regarding the MS.
Five metaheuristics optimization approaches are evaluated. Their work does not expand the
appliance model, such as new constraints to enhance the identification accuracy. They conclude
that it is hard to disaggregate loads with similar power draws and proposes as future work a
multi-objective optimization approach.

Kolter and Jaakkola in [27] formulate the NILM problem as a convex quadratic program-
ming problem. The authors consider an extension to HMMs, called additive factorial hidden
Markov models. Furthermore, authors in [27] describe an unsupervised learning procedure.
However, the method needs a regularization parameter that changes for each problem. In addi-
tion, the optimization function is made over the full set of time periods, which make the method
computationally expensive.

[34] formulates the NILM problem as an integer quadratic programming problem. The
technique represents the problem, as a combination of waveforms from multiple loads. At
any given one period of current, the overall load current is represented as a superposition of
each current of the operating appliance. The overall current waveform is considered to be
influenced by the waveform of each individual appliance as shown in the Figure 1.4. However,
as disadvantages, the technique requires data at a very high sampling rate. The model is based
on the reading of one cycle (60Hz or 50Hz), so a large number of points from each cycle is
necessary. In addition, as mentioned by Zeifman in [13], the approach is somewhat naive since
features are usually more robust than just unprocessed waveforms.

Finally, authors in [35] propose a load disaggregation method based on integer program-
ming. The work proposes enhancements to CO, such as state transition diagram and median
filtering, to deal with the MS. Most enhancements in [35] are included as an intensive pre-
processing rather than constraints. In addition, their model relies only on instantaneous load
samples. Hence, their model is limited to the use of constraints that do not depend on time

measurements.

1.4 Objectives

Based on the efforts made by previous works, the goal of this work is to represent and solve
the NILM problem as a MILP problem. We are especially concerned about expanding the

classic CO problem in order to deal with complex load signatures and handle the MS problem.
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Figure 1.4: Example of current waveforms for different loads, used by [34]

The CO formulation was not very much explored in previous works and we seek to propose
new constraints for optimizing the identification of loads. In addition, we investigate strategies
to improve the running time of the problem, which is also one of its main weakness. Another
objective of this work is to compare the proposed formulation with classic works. Most previous
works are based on either event based techniques or probabilistic models and this work allows
researchers to expand the range of possibilities and approaches to solve the NILM problem.
The Figure 1.5 shows the steps to approach the NILM problem using optimization. The
green blocks refer to steps that are applied only to an unsupervised approach while the orange
blocks are the steps for a supervised approach. As a difference, for the supervised approach,
the input parameters are acquired from the appliance’s data. In the unsupervised approach,
those input parameters are extracted from a preprocessing step. One more goal of this work
is to formulate an optimization algorithm with input parameters that can be acquired in both a
supervised or unsupervised approach. The focus is in the optimization algorithm rather than in
the methodology for extracting those input parameters. The methodology for extracting those

features is another challenge. Strategies are presented in the Appendix B and C.
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Figure 1.5: Steps for an optimization approach of NILM

1.5 Contributions

The main contributions of this dissertation are as follows:

e The NILM problem is represented as a MILP model, in which a new set of linear con-

straints is proposed to efficiently model the load signatures of the appliances.

e In order to enhance the computational performance, the proposed NILM is solved using
a window-based algorithm in which the overall problem is segmented into small, coupled

sub-problems that can be efficiently solved via MILP solvers.

e The proposed algorithm is suitable to smart meters with limited data such as only the
current or the active power in low sampling rate. In addition, the proposed technique is

also suitable for more measurements, if available.
e The model relies on generalized parameters that can be acquired from aggregated data.

e The MS is avoided in the test cases.

1.6 Organization of the Work

The next sections of this dissertation go in this way:
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e Chapter 2 describes the background work that is used as the basis for the remaining chap-

ters.

e Chapter 3 describes the main contributions of this work. A window-based math model

for modeling the load signatures.
e Chapter 4 shows experiments and test cases with results for supervised settings.
e Finally, Chapter 5 presents the main conclusions and future work.

Additionally, three appendices are presented:

e Appendix A presents the full proposed mathematical model.

e Appendix B describes a supervised strategy for extracting the input parameters of the

presented model.

e Appendix C presents unsupervised experiments.
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Chapter 2

Fundamentals

This chapter presents the core concepts to support the next chapters. First, a general description
of smart meters is given. Next, Hart’s classical NILM technique is going to be described. Then,
an overview of mathematical optimization is presented along with a linearization approxima-

tion. Finally, the NILM technique formulated as a CO problem is presented.

2.1 Smart Meters

One of the goals of this work is to formulate an algorithm suitable to smart meters. A general
description of smart meters is given in this section along with their main limitations.

Smart meters are devices that record electrical measurements and provides them to the cus-
tomer in near real time [36]. The measurements are acquired and displayed to the customer
in increments of minutes, usually 5-minute intervals up to hourly intervals [37]. The power
utility has access to those measurements for billing. Many power utilities around the world are
currently replacing old electric-mechanical meters to smart meters. In Europe, there are more
than 154 million units installed [38]. There’s a strong engagement of power utilities with load
disaggregation due to their interest in providing a better service to their customers [7].

As noted by Makonin in [39], cost is a key consideration for a power utility when installing
millions of smart meters. Most smart meters from power utilities provide their measurements
in low-frequency which is defined as a sampling rate lower than 1Hz. Makonin also notes that
high-frequency load disaggregation is not a viable option since a data transmission rate higher
than 1Hz might cause network and connection channels saturation. In addition, smart meters
must be inexpensive in terms of computation and storage usage. Finally, [39] observes that sen-

sors providing high-performance measurements are expensive which might cause an adoption
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barrier by the utility. Another constraint is the number of available measurements provided by
smart meters. Power utilities usually provide simple measurements such as the active power
which also constraints the development of algorithms for disaggregation. The addition of other
types of measurements would also imply in cost increment in their development.

Due to those practical limitations in smart meters, one of the main requirements desirable for
NILM algorithms is their ability to perform disaggregation in low frequency and with limited

information.

2.2 NILM as a Pattern Recognition Problem

Hart’s pattern recognition method for load disaggregation is described in this section. Most
event-based NILM techniques follow similar steps. The technique is fundamentally based on
event detection and classification of a pair of events with opposite direction. The major attention
in this section is given to the characteristics of the algorithm. For further details, the reader
may refer to [9] and [10]. The Figure 2.1 illustrates the core idea of Hart’s method which is
fundamentally based on the detection of steps in power measurements. Edges with similar step
size and opposite directions can be associated with the same appliance. For example, Figure
2.1 shows the activation of a heater (about 1000 W) followed by a refrigerator (about 200W).
Next two negative edges are observed, which can be associated to the deactivation of those same
appliances.

The core of Hart’s algorithm is illustrated in the chart presented in the Figure 2.2. As a
summary, the measurements are first normalized. Next, their edges are detected and linked
to similar ones. Next, appliances models are built based on groups (clusters) of edges with
opposite signs. Those models are linked to new edges detected in real time. Finally, statistics
can be inferred from those general models and those appliances can be named. More details on

each item of the Figure 2.2 are going to be discussed in the following items:

e Measure Power and Voltage: Power and RMS voltage are averaged over intervals of
one second. Voltage, real power, and reactive power are digitally acquired based on a

high sampling rate.

e Normalize Power: The Equation (2.1) is used in order to compute the normalized total
load power. The normalization translates into what the power would be if the utility

provided a steady voltage and the load obeyed a linear model.
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Figure 2.1: Illustration of edges that could be detected from a typical power measurement.
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e Edge Detection: The sizes of step-like changes and their times of occurrence (time
stamp) are obtained by an edge detection algorithm. Hart defines two types of periods:
steady period and periods of change. A steady period is defined as periods where the
input does not change more than a threshold during a certain number of samples. Any
other period that does not meet this criterion is defined as periods of change. The step
size is calculated as the average of a steady period. All the steps that are lower than a
given noise level are discarded. The time stamp is provided by the time of the first sample

in a changing period. The edge detection process is illustrated in the Figure 2.3.

e Cluster Analysis: The previously identified events are grouped into clusters. Each cluster
is a set of events which are all close to each other. The Figure 2.4 illustrates some clusters
that might appear after the edge detection process. This task might get very difficult if
many clusters of different appliances are intersecting each other. More details regarding

Hart’s clustering algorithm are found in the MIT 1985 technical report available in [9].

e Appliance Models: Models of appliances with simple ON/OFF states or multiple states
are constructed. For ON/OFF appliances, the model is constructed by taking the centroid
of symmetrical positive and negative clusters. In other words, a pair of similar clusters
representing positive and negative edges. The pair of centroids is matched involving a
tolerance criteria. Models of appliances with multiple states are constructed by combining

sequences of simple states.
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Figure 2.2: Core steps of Hart’s algorithm [10].

e Track Behavior: The available appliance models are tracked using a decoding approach
described in [40]. The approach is analog to a communication model where each ap-
pliance is considered a transmitter broadcasting electrical measurements as information.
The house wiring is the communication channel and finally, the algorithm is the receiver.
The decoding algorithm is based on a generalization of the Viterbi algorithm.! Giving
a message source, the algorithm corrects errors that may occur in the channel such as

insertions, deletions, and merges.

e Tabulate Statistics: Energy statistics can be computed from the power levels and time
stamp obtained in the previous step. Some example of useful statistics is the operating
power, total energy, and energy broken down by hour/day/week. The energy statistic is
also useful for a conflict resolution step to check if there are more appliances activated
than it should. It could be checked if the energy inferred from all appliances is higher

than the total house power. This situation is likely to happen in cases where both OFF

!Optimal decoding technique based on dynamic programming
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Figure 2.3: Illustration of the edge detection process of Hart’s method [10].

and immediately following ON event of an appliance are missed.

e Appliance Naming: Finally, a name should be assigned to each appliance model detected

from the collected data. Statistics based on the typical duration of an appliance can be

used for this task. Another useful information is the operating power level (127V vs

220V) of the device which is useful to check if the appliance is a single phase or two

phase element.

Although Hart’s technique is quite old, it is still relevant since many other techniques are

still based on the very same principles of event detection. The NILM problem may also be

approached using eventless techniques. The next section is going to introduce mathematical

optimization in order to describe the eventless approach.

2.3 Mathematical Programming

Mathematical programming is the process of minimization or maximization of an objective

function of many variables, subject to constraints on the variables [41]. One of the crucial parts

of mathematical programming is the model building process. A mathematical model involves

a set of rules, constraints, equations, inequalities and logical dependencies that correspond to

some relationship to the real world [42]. The equation (2.2) shows an example of optimization

model.

max Z V; T; (2.2)

i =1

subject to
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Equation (2.2) is a classic integer programming model also known as the knapsack problem.

Given a set of ¢ = 1..n different items, where each item has a specific value v;, the main goal

is to maximize the overall profit given that each item has a weight w; and it is not possible to

overcome the maximum limit /. The variable of this problem z; is an integer binary variable,

hence, the name of this type of problem.

Most mathematical programming models can be classified into either linear programming

(LP) models, non-linear programming (NLP) models or integer programming (IP) models [43,

41, 42]:

e Linear Programming (LP): The variables in the optimization function and in the con-

straints are linear. Involves three main features: a single linear expression (objective

function) to be maximized or minimized; a series of constraints in the form of linear

expressions that must meet a given inequality (for example >=, <= and =); and a set of

coefficients on the right-hand side of the constraints. LP models assume that their vari-

ables may have fractional values.

Non-linear Programming (NLP): When non-linear terms are incorporated into a model,

we have a NLP model. Those models are usually more difficult to solve and more com-
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putationally expensive. The objective function and/or the constraints contain nonlinear
variables. Some examples of non-linear terms are the product of two variables or the

square of a variable.

e Integer Programming (IP): Assumes that some or all of the variables must take integer
values (whole numbers). A special case of IP problems is those where their variables
must assume binary values (one or zero). Those models are more difficult to solve than

standard LP models.

Variation of the LP, NLP and IP models also exists. For example, a quadratic programming
(QP) model has a quadratic objective function and linear constraints. A mixed integer program-
ming (MIP) model combine both continuous and discrete (integer or binary) variables in the
objective function. When the objective function strictly assumes linear terms, we have a mixed-
integer linear programming (MILP) model. Finally, combinatorial optimization (CO) models is
a branch of discrete optimization problems in which their solutions may be expressed in some
kind of combinatorics such as shortest paths, sets, combinations, and permutations. CO models
may also be formulated as IP problems.

Algorithms are deployed in order to solve a mathematical problem. They are referred to
as solvers. Their solutions may either assume exact values under a given convergence or ap-
proximate solutions from heuristics. As an example, it is noted the commercial optimization
software CPLEX [43], owned by International Business Machines (IBM). CPLEX solves lin-
early or quadratically constrained problems where the objective function can be expressed as
a LP or a QP function. The variables in the model may assume either continuous or integer
values.

Strategies and/or approximations can be applied to programming models with the purpose
of improving the computational performance or simplification. One possible application will

be seen in the next subsection.

2.3.1 Linearization of an Absolute Objective Function

The conversion of non-linear optimization functions to linear terms is always attractive. As
an advantage, linear formulations are faster and guarantee the global solution. Boyd in [44]
presents linear approximations of non-linear functions with a norm in the objective function.
One of the approximations is made in a formulation similar to the Equation (2.4). The equation

seeks to find the product of the variable x with the matrix A that approximates to b.
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min |Ax — b (2.4)

Where A € R™"*" and b € R™ are problem data, x € R" is a variable. One of the
possible ways to avoid the non-linearity of this function could be taking the square of A x — b.
This way, the problem would be modeled to a quadratic programming problem. Alternatively,
this problem may also be modeled to a linear programming problem. The linear model has as
advantage that it is computationally faster. A linear formulation can be made by taking a new
variable t € R™ to be minimized. Next, new constraints can be used in order to approximate the
absolute term in (2.4) into linear terms. The Equation (2.5) presents the norm approximation

problem cast to a linear programming problem:

mtin t (2.5)

subject to
Az —b <t (2.6)
Az —b> —t 2.7

The approximation given by 2.5 is going to be deployed in the next section in order to make

the model suitable to a MILP solver.

2.4 NILM as a Combinatorial Optimization Problem

The NILM problem can also be formulated as a combinatorial optimization problem, which
does not require the detection of events. This formulation assumes that the whole house mea-
surement can be decoded into individual components. This section presents the CO formulation
presented by Hart in [10].

Let the measured variable (current or power) in the input of the house be given by P(t),
for each time t. The objective of the NILM would be to decode P(t) into power states P;,
Vi€ {1,...,n}. The Equation (2.8), shows this assumption[10].

P(t) =) zi(t) P +e (2.8)
=1

Where z;(t) € {0,1} is a boolean variable that decides the status of the power state 4, at
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Figure 2.5: Illustration of scenario with three appliances

time ¢. € is the noise error due to the approximation of P(¢) into a set of P; states. n is the total
number of power states for all appliances. Each appliance is associated with one or more power
states. For example, an ON/OFF appliance (e.g., a stove) could be represented by a single state,
while a washing machine could be represented by multiple states, since its power consumption
changes over time.

Eventually, the goal of the NILM problem is to minimize |¢|. The equation (2.9) rewrites
(2.8) as a CO problem.

min
X

(2.9)

P(t) - in(t) P,

Equation (2.9) aims at finding the combination of power states F; that best approximate the
measure P(t). When other types of measurements are also available (such as reactive power,
harmonics or distortion factor), the classical problem in (2.9) may include these measurements
in a vector. As an illustration, the Equation (2.10) also includes the reactive power measurement

()(t) and reactive power states ().

min N | (2.10)
* Q(1) ; Qi

In order to illustrate the terms P; and x;(¢) from the Equation (2.8), let’s consider the sce-

nario of the Figure 2.5. The presented scenario has three appliances: stove, washing machine,

and a refrigerator. As shown in the Table 2.1, the refrigerator is approximated to the state 130W,
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Figure 2.6: Illustration of the MS problem that occurs in the CO classic formulation

the stove is approximated to the state 850W, and finally, the washing machine is approximated
to the three states 3000W, 90W and 500W. At the sample near to ¢ = 5000 we observe that
only the refrigerator is active, which corresponds to the state ¢ = 1 in the Table 2.1. Hence, the

expected value of the binary variable z;(t) is z;(5000) = [1,0,0, 0, 0].

Table 2.1: Example of possible states for the illustrated scenario
appl ¢ B
Refrig. 1 130
Stove 2 850

Washer1 3 3000
Washer2 4 90
Washer3 5 500

As discussed in the introduction, one of Hart’s mains critiques of this formulation is the
possible confusion made from loads with similar power states (MS problem). For example,
consider a scenario where the set P; contains the states 100W, 200W, and 302W. A measurement
P(t) of 301W could continuously switch between the states I00W + 200W and the state 302W
due to the measurement noise.

The Figure 2.6 illustrates the MS problem for a hypothetical scenario with three appli-
ances (refrigerator, washing machine, and a stove). The refrigerator is activated and deactivated
multiple times in order to fit in the noise of the washing machine. The next subsection will
reformulate the Equation (2.9), which will allow for more advanced constraints, presented in

Chapter 3.
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2.4.1 Mixed-Integer Linear Programming (MILP) Formulation

While simple, the CO formulation in the Equation (2.10) is not linear due to the absolute term
in the objective function. In order to make the formulation suitable to linear solvers - which
is faster and guarantees the optimal solution - the Equation (2.10) can be reformulated as a
MILP problem, shown in (2.11)—(2.15). The linearization of the absolute function is made in

an analog way of the linearization presented in the Section 2.3.1.

min tEZT p(t) + dg(t) (2.11)
subject to

P(t) —iaz(tm < 6p(t) (2.12)

im1
P(t)—ixi(t)l% > —dp(t) (2.13)

P
Q(t) —;::lwi(t) Qi < 0g(?) (2.14)
Q(t)—ixi(t) Qi > —0g(t) (2.15)

Where 6p(t) and d¢(¢) in (2.11) are the errors in the active and reactive power. Those errors
are defined as the difference between the aggregated power states and the actual measurement
(i.e., the approximation error). Besides the linear formulation, another difference from (2.10) is
that the time 7" is included in the objective function. The advantage of doing so is the possibility
of adding new time-dependent constraints in order to improve the model’s accuracy. Those

constraints are going to be seen in the next Chapter.

2.5 Summary

This chapter has presented the base work to substantiate the next chapters. First, smart meters
were described in order to show that NILM algorithms should be suitable to low frequency and
limited data. Next, Hart’s algorithm framework was described which is one of the main event-
based techniques. Next, an overview of mathematical optimization was presented, which is one

of the main tools of this dissertation. Finally, the CO formulation was presented, which is the
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core formulation of this work. The next chapter is going to explore some further possibilities of

the CO formulation.
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Chapter 3

Expanding the Combinatorial

Optimization Model

As shown in the introduction, very few progress was observed in the CO formulation. The
Chapter 2 described the CO model in more details. This chapter proposes new constraints and
strategies for expanding the CO model. We are especially interested in constraints for modeling
the signature of a load and improve its performance. First, a visual intuition is presented. Next,
three set of constraints are proposed for defining a load signature such as the transition of states
and minimum time. Strategies and constraints for decreasing the computation time are also

introduced. Finally, the full proposed model is presented.

3.1 Visual Intuition

Before introducing the set of equations, a visual example is going to be presented. The disag-
gregation problem can be imagined as a puzzle where the goal is to find the best set of pieces
to fit a given space. An example of this scenario is illustrated in the Figure 3.1. In the example,
the goal is to combine some of the colored blocks on the left in order to create the gray image
on the right.

In order to handle this problem, first, a model for each of the pieces could be created. This
model could consider the height and width of a rectangular block. Next, more complex pieces
could be created as a set of rectangular blocks, such as the purple block on the button right.
Finally, in order to solve the puzzle, this scenario could be treated as a combinatorial problem.

The proposed NILM model is similar to the same analogy. The goal is to find the set of

appliance’s models that better fit in the whole aggregated power of a window of measurements.
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Figure 3.1: Illustration of the problem with a puzzle

The only difference is that a minimum width is defined instead of a fixed width. More details

are presented in the next section.

3.2 Load Signature Constraints

In this section, a new set of constraints are presented to model the load signatures. Many
of those constraints are similar and inspired from models of the operation of thermal units in
the unit commitment problem, proposed by authors in [45]. The Figure 3.2 presents the load
signature of two hypothetical appliances: a washing machine and a stove. The orange line is

the original measurement while the black lines are their approximation.
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Figure 3.2: Two hypothetical load signatures to be modeled

The washing machine’s load signature can be approximated using three power states (P, (),
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P5(t) and Ps(t)) while the stove’s has one single power state (P4(¢)). In order to model these

loads, the following hypotheses are considered:

e Multiple states P;(t) (also multiple reactive power states, if available) from the same

appliance cannot be activated simultaneously;

e Some loads work as finite-state machines, 1.e., a given state is only activated if another

state of the same appliance has finished;

e A state 7 can have a minimum time M D; in which it should remain ON.

The former hypotheses are used to formulate a set of constraints used to efficiently represent
the load signatures within the proposed MILP model. A detailed analysis of each one of the

former hypotheses is shown in the following subsections.

3.2.1 Avoiding Multiple States From the Same Appliance

Parameter D; identifies the appliance’s index of each state i. For example, the states ¢ = 1,2, 3
in Figure 3.2 are associated to the washing machine, that is, Dy = Dy = D3 = 1, where the
number 1 means “washing machine”. Likewise, D, refers to the stove, identified by the number
2. In order to avoid simultaneously allocation of different power states from the same appliance,

the constraint (3.1) can be included.

> z(t)<1 VteT,jeD (3.1)

i€S|D;=j
Constraint (3.1) limits the sum of the states z;(¢) from the same appliance to one. This way,
x1(t), z2(t) or x3(t) cannot be simultaneously activated since Dy, Dy and Dj are associated to

the same appliance.

3.2.2 Linking the Transition Between Power States

In Figure 3.2, power state P,(t) should be ON only if the power state P (¢) has finished. Like-
wise, we could also fix the power state P3(¢) to be ON only if P,(¢) has finished. The goal
is to include a constraint that allows a specific power state to be activated only if a previous
one (from the same appliance) has finished. In order to do so, two binary variables are used to
determine the transition from an ON state to an OFF state, and vice versa. The two variables
are called up;(t) (turned ON) and dw;(t) (turned OFF). Then, the linking constraints are given
by (3.2)—(3.3).



3.3. WINDOW-BASED FORMULATION 42

zi(t) — z;(t — 1) = up;(t) — dw;(t) Vie S;teT (3.2)

upi () + dw;(t) <1 VieSteT (3.3)

In constraint (3.2), up;(t) will be 1 only if the decision variable z;(¢) makes a transition
from O to 1, at time ¢. Likewise, dw;(t) will be 1 only if x;(¢) makes a transition from 1 to 0, at
time ¢. Finally, (3.3) prevents up;(t) and dw;(t) to be simultaneously 1.

Using constraints (3.2)—(3.3) and the parameter prev,, we can now link the transition be-

tween two states using the parameter prev; in the equation (3.4).

up;(t) = dwprey (t) Vi€ St €T |prev, >0 (3.4)

As an example, the state 7 = 2 of the washing machine in Figure 3.2 can only change from
OFF to ON (i.e., upy(t) = 1) if the state i = 1 has change from ON to OFF (i.e., dw; = 1), ata

given time ¢.

3.2.3 Minimum Active Time

The last proposed hypotheses is a minimum active time of a state. Parameter M D; in Figure 3.2
establishes the minimum number of time samples in which the state 7 should be kept activated.

The constraint in (3.5) is proposed to carry out this process.

t+MD;—1

Z zi(k) > MD; [x;(t) — z:(t — 1)]

k=t

VieSte2...[T|—MD;+1 (3.5

Where |T'| is the total number of samples, i.e., the last sample in 7". Constraint (3.5) forces

x;(t) to be 1 for at least M D; time samples.

3.3 Window-based formulation

The size of the time set 7' in the Equation (2.11) increases the computational burden since
the variable z;(t) is linked to the number of time periods. For example, if 7" corresponds to

measurements of a full day, with one measurement per minute and 10 states, the number of



3.3. WINDOW-BASED FORMULATION 43

binary variables z;(¢) would be 24 % 60 * 10 = 14400. The number of combinations to be
solved by the algorithm would be 2'4*%° which is not solvable in polynomial time [46]. In
order to shorten the complexity expansion, the set of time periods can be split into smaller,
homogeneous windows. Let 7 C T be the set of time periods within a window, where 7' =
{To,To + 1,- -+ ,To + m}. The parameter m is the number of time periods within the window,
and 7 is the initial period for each window. The Figure 3.3 illustrates the separation of the time

periods where 7' is split into three subsets of time periods T.
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Figure 3.3: New time space in a window-based algorithm

In order to decrease the computational burden, besides the window formulation, it is possible
to define a constraint to deactivate all the devices when the readings of a window is lower than
a given threshold (for example 7'/ = 20W). The constraint (3.11) presents a constraint under

those conditions.

z:(t)=0 VteT,icS|P(t)<TH (3.11)

The MILP problem can now be written using a sequenced optimization process as shown in
Algorithm 1, where T, is the last period of 7. The previously presented constraints have to
be adapted to a window-based case. The next two subsecions will present the adaptation of the

transition between states and the minimum time to the Algorithm 1.
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repeat
let T ={Ty,--- ,To +m}
solve
min > 6p(t) + 6o(t) (3.6)
' teT
S.t.:
P(t) =Y ai(t) P < 0p(1) (3.7)
=1
P(t)=> xi(t) B = —0p(t) (3.8)
=1
Q) =) () Qi < dg(t) (3.9)
=1
Q) = wi(t) Qi > —dq(t) (3.10)
=1
letTO :T0+m+1

until 7y, > 1.,,.4;
Algorithm 1: NILM using a window-based algorithm

3.3.1 Window-Based Transition of States

The constraints presented in the Section 3.2.2 to model the transition of states is going to be re-
formulated to a window-based case. The set of equations in (3.12)—(3.14) makes this translation

from (3.2)—(3.3):

upi(t) + dwi(t) <1 Vie S;teT (3.14)

The constraints (3.12) and (3.14) are analog to (3.2) and (3.3), but updated to the new time set
T. In addition, the starting time of each window 7j is also used in the new formulation. The
constraint (3.13) is new and links the state transitions between windows. The parameter X;
saves the state x;(¢) of the last time period of each window, necessary for the initialization of
x;(t) in the next window.

In a similar way to the constraint (3.4), the constraint (3.15) links the transition of states.
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The main difference is that now the subset 7" is used.
upi(t) = dwpey,(t) Vi € S,t € T | prev, > 0 (3.15)

3.3.2 Window-Based Minimum Active Time

Now the constraints to model the minimum active time presented in the Section 3.2.3 will also
be adapted to a window-based case. The constraint (3.5) is translated into three constraints in

(3.16)—(3.18).

To+G;
d [L-mz(k)]=0 Vies (3.16)
k="1To
t+MD;—1
> (k) > MD; [x;(t) — a(t — 1)]
k=t
VieSteGi+Ty.. Ty —MD;+1 (3.17)
Ty
> ai(k) > @i(t) — xi(t — 1)
k=t

VieSteTy—MD;+2...T; (3.18)

Each new window is split into three time segments, one for each constraint, as illustrated in
the Figure 3.4. The constraint (3.16) activates a certain state that was already activated at the
end of the previous window, but for less than M D, samples. Parameter G; is the number of
periods in which the state ¢ must remain active at the beginning of each window. It is calculated
as G; = min {7y, [M D; — NP;| X;}. NP, is the number of time periods in which ¢ has been
activated in the previous window, given by the equation (3.19)

Ty

NP= Y (k) Vies (3.19)

k = Tf*MDrFQ
Constraint (3.17) is analog to the constraint (3.5). Finally, constraint (3.18) is used to rep-
resent the operation at the final portion of the window, when there are less than M D, samples

available. It forces a given state z;(¢) to be ON until the end of the window, only if it has been
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Figure 3.4: New time segments for each new window

activated at any moment within this final interval. The size of M D; has as limit the length m of
the window, i.e, M D; < m.

In order to illustrate how this set of constraints work, suppose that the window in the Figure
3.4 has a size m = 100 samples. In addition, suppose that the stove (green load) has a minimum
ON time of M D, = 25 samples. In case the stove is activated at sample 90 of the window,
there are only 10 samples remaining until the window ends (which is lower than M D,). The
constraint (3.18) will force the state ¢+ = 4 to be ON until the window ends (until 7%). In
addition, the variable G4 will receive the value of 15 samples which is the number of samples
left to be ON in the next window. In the next window, the constraint (3.16) will force the stove

to be active for G4 = 15 samples.

3.4 Full Proposed Model

The full proposed model for a window-based case is given by the Algorithm 2. As it will be
illustrated in the chapter with experiments, this kind of optimization problem can be solved with
the help of standard convex mathematical optimization software. The full formulation in details

without shortening equations is available in Appendix A.
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repeat
let T ={Ty, -, To +m}
solve
min > dp(t) +do(t)
teT
S. t.
(3.7) ... (3.18)
letThy =Ty +m+1

until 7 > T';
Algorithm 2: Proposed NILM using a window-based algorithm.

3.5 Summary

This chapter has presented a set of constraints for modeling the load signature, which are the
main contributions of this work.The classic NILM CO model was expanded for modeling load
signatures in a computationally efficient way. Constraints were introduced for modeling the load
signature based on three features: power state, minimum time and sequence of states. Finally, a

window-based formulation was presented in order to decrease the computational burden.
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Chapter 4

Experiments

Two supervised test cases are conducted to evaluate the performance of the NILM method

proposed in Algorithm 2:

e Test Case A compares two experiments: one of them using only the active power and the

other also including the reactive power.

e Test Case B presents uses a longer sampling period and more appliances.

In addition, the proposed method is compared with CO, implemented in Algorithm 1 and
Hart’s pattern recognition method. The pattern recognition method is obtained from the open-
source NILM Toolkit (NILMTK) [47] implemented in Python. The simulation environment
was the AMPL modeling language [41] and the commercial solver CPLEX [43]. The PC con-
figuration was: Intel Xeon 2.4 GHz and 32 GB of memory.

4.1 The AMPds Dataset

The Almanac of Minutely Power Data Set (AMPds) [48] is chosen for evaluation. AMPds
contains two years of electricity measurements at one-minute intervals. Those measurements
are collected from a single household in Vancouver, BC, Canada. A total of 19 appliances from
the circuit breaker are collected with measurements of active power, reactive power, apparent
power, frequency, current, and voltage. The dataset was released in order to help researcher
and related to test NILM models, systems, and prototypes. This dataset is chosen since it uses
a sampling rate very close to commercial smart meters. In addition, this dataset offers a wide

range of appliances to be modeled and tested. Besides electrical measurements, other types of
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consumption are also included in the dataset such as water and natural gas. The Table 4.1 lists

the 19 loads along with their IDs.

Table 4.1: Loads measured by the data set AMPds

ID Load
BI1E North Bedroom
B2E Master/South Br
BME Basement Plugs and Lights
CDE Clothes Dryer
CWE Clothes Washer
DNE Dining Room Plugs
DWE Dishwasher
EBE Electronics Workbench
EQE Security/Network
FGE Kitchen Fridge
FRE HVAC/Furnace
GRE Garage
HPE Heat Pump
HTE Instant Hot Water Unit
OFE Home Office
OUE Outside Plug
TVE Ent TV/PVR/AMP
UTE Utility Room Plug
WOE Wall Oven

4.2 Metrics

Two metrics adapted from [47] are used to evaluate the accuracy of the proposed methodology.
The first one is referred as Error in Total Energy (ETE) shown in equation (4.1). ETE measures
how well the energy consumed by each appliance was predicted. The second metric is referred
as Error in Assigned Power (EAP), shown in the equation (4.2). EAP measures how well
each appliance was correctly assigned at each time slice ¢. Both metrics are normalized by the
appliance’s total energy consumption y;(t). The second metric provides more insight since it
evaluates the correctness of the identification for each time slice. Unlike the first metric, the

EAP does not counterbalance appliances identified at different time periods.

IS - D)
BTE = =25 00 @b
pap, - Siln) =30 ur

> yi(t)
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For a given appliance j, y;(t) is its true power measurement and y;(#) is the predicted power
at each time instant ¢. Ideally, both errors should be zero. However, the value of zero is never
achieved due to the approximation of the load signature. Hence, even in cases where the NILM
algorithm detects the correct load, an error would exist. It worth mentioning that both metrics
can achieve error rates higher than 100%. For example, if the sum of predicted power y;(t) is
higher than twice the ground truth power y;(¢), the error in ETE in higher than 100%.

The Figure 4.1 illustrates the difference of both metrics. In both graphs (ground truth and
predicted), the very same energy amount is consumed by the same load. Hence the ETE is
0% due to no difference in energy usage. However, the EAP error is 200% since the algorithm
made two errors: first, it missed the activation of the green load at the time that it was activated;

second, it wrongly predicted the load was activated at a time that it should be OFF.

yi(©) GROUND TRUTH
A

ETE = 0%
7® PREDICTED EAP =200%

>
>

Figure 4.1: Illustration of the ETE and EAP error metrics

4.3 Supervised Case 1

The first test case is going to evaluate the performance of the algorithm for a one-day scenario.

The input measurements along with the expected ground truth are presented in the Figure 4.2.

4.3.1 Experimental Settings

The input data was created with the power measurements of six appliances: Dryer (CDE); Dish-
washer (DWE); Fridge (FGE); Heat Pump (HPE); Wall Oven (WOE); and Television/Entertainment
(TVE). The full-time range has 24 hours, with 1440 measurements. All the appliances are repre-
sented by 14 power states, as shown in the Table 4.2. Moreover, Table 4.2 contains two columns
with the previous states (prev,) and the minimum number of periods (M D;). Each appliance
index D; and abbreviation are also informed in Table 4.2. These parameters in Table 4.2 were
acquired using the supervised approach described in Appendix B. As an example, prev, = 3

means that the state © = 4 is allowed to be ON only after © = 3. The window’s length was
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Figure 4.2: Model’s input measurements and expected ground truth

chosen in order to minimize the running time. A window’s length of 60 measurements was

used.

Table 4.2: Input Data for the Experimental Setup in Tests Case A

appl i D; prev; P, (W) Q;(VAr) MD;
CDE 1 1 0 4606 413 20
CDE 2 1 1 252 413 5
DWE 3 2 0 751 34 5
DWE 4 2 0 478 0 15
DWE 5 2 0 136 34 15
FGE 6 3 0 129 6 7
HPE 7 4 0 37 17 30
HPE 8 4 0 1807 324 10
HPE 9 4 7 2435 429 30
WOE 10 5 0 3442 141 5
WOE 11 5 0 3305 133 5
WOE 12 5 0 2796 130 1
V. 13 6 0 38 13 30
V. 14 6 0 239 31 30

4.3.2 Graphical Results

The difference between the results of the proposed model and the two other algorithms can be

illustrated using graphics. Two figures are presented:

e Figure 4.3 presents the results when considering only the active power from the Table 4.2.
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e Figure 4.4 presents the results when considering both the active and reactive power in the
Table 4.2.

When comparing the Figure 4.3 with the Figure 4.4, the proposed model performs well even

when using limited data (only the active power).

I cDE (a) Ground Truth Data
(b) Combinatorial Optimization
E 4000 [~ ]
g
g_ 2000 — I
0
(c) This Work
g 4000 [~ 7
g
8 2000 — I
0 T T T T T T T T T T
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Figure 4.3: Results and comparison of the proposed model with the other two techniques when
considering only the active power measurements

In the graphs, (a) contains the ground truth data with the expected results. (b) has the CO
method implemented using the Algorithm 1. (c) has the results using the model of this work
when using the Algorithm 2. Finally (d) compares with Hart’s pattern recognition method. Both

graphs are going to be discussed in details in the next subsections:

Using only active power measurements

The Fig. 4.3.b shows the disaggregation results applying only the classic CO from Algorithm
1. The highlighted zooms show a series of unrealistic activation of different loads, which is
an example of the MS problem discussed in the introduction section. Fig. 4.3.c shows the
disaggregation results using the full proposed model in the Algorithm 2. The minimum time

constraints (3.16)-(3.18) help the model to avoid multiple load switching. Hart’s algorithm



4.3. SUPERVISED CASE 1 53

I chE (a) Ground Truth Data

Poﬁer [W]

(b) Combinatorial Optimization

T

‘800 1000

(c) This Work

g
o 2000 —
o
0 T T T
(d) Pattern Recognition
g 4000 I —
D? 2000 I —
gplb= ==l = . ., I o lw = o
400 500 600 700 800 900 1000 1100 1200 1300 1400

t (min)

Figure 4.4: Comparison of the real measurements (ground truth) with the proposed model and
two other methods using both active and reactive power measurements

Fig. 4.3.d shows the disaggregation results for Hart’s method. As Hart’s implementation in
NILMTK is unsupervised, four out of the six appliances were identified. One unknown load
was also identified, which seems to be associated with the heat pump (HPE). As an example
of edge dependency, the turn off event of the HPE was not detected at t = 672. Hence, when
the load was turned on again at ¢t = 684, the pattern recognition algorithm assigned the event
to a different (unknown) load. The same problem also happens in the next few events and are

assigned to the unknown load.

Using both active and reactive power measurements

The Figure 4.4.b shows that the CO results are expected to improve when using more than
one kind of measurement. For example the CDE is better identified when comparing with the
Figure 4.3.b. No big visual change is observed in the proposed model in the Figure 4.4.c when
compared with the Figure 4.3.c. However, as it will be observed in the numerical results, the
identification metric of the proposed method slightly improved for all the appliances. Finally,
Hart’s method shown in the Figure 4.3.d did not change since the technique was implemented

using the active and reactive power in both cases.
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4.3.3 Numerical Results

The previously presented metrics ETE and EAP are applied to the test case. The Table 4.3
presents the numerical results when considering only the active power. The Table 4.4 presents
the results when also considering the reactive power.

In the Table 4.3, the lowest EAP for each appliance is highlighted. The average of the EAP
error for the CO method is about 88%. The proposed model has a lower EAP for all loads. The
average of the proposed method is 20.25%. Regarding Hart’s method, all EAP values are over
50%. The ETE error is lower than the other two methods; however, the ETE metric considers
the energy consumption of the overall time period.

In the Table 4.4, all the values in EAP were improved in the proposed model when compar-
ing to the Table 4.3. Thus, the addition of new features, when available, helps on improving
the method’s accuracy. The average of ETE for the proposed model decreased from 8.62% to
7%. In addition, the average of EAP for the proposed model decreased from 20.25% to 15.5%.
The results for CO have also highly improved from 22.3% to 6.61% (ETE), and from 88.41%
to 20.28% (EAP), respectively. For pattern recognition, the same results are presented since the
original method was implemented with the reactive power. The appliances CDE and WOE per-
formed better for the CO than for the proposed model. The WOE’s EAP is 0.5% for CO versus
6.1% for the proposed model. In addition, WOE’s EAP is 9.5% versus 12.2%. The proposed
method performed slightly worse since the model of those two appliances is approximated.
They are formed by states that continuously turn ON and OFF, and the model approximates

them to a minimum time.

Table 4.3: Error for the Supervised Case 1 with the Active Power Only
CO (%) This Work (%) Patt. Rec. (%)
ETE EAP ETE EAP ETE EAP

CDE 50.8 98.2 7 7.3 8.7 84.1
DWE 39.1 89 168 29 5.6 74.1
FGE 7.1 707 3.6 43.9 3.6 533
HPE 6.2 57 1.1 5.2 0.1 65.9
WOE 17.7 160.1 5.5 154 - -

TVE 129 555 177 207 - -

Average 223 8841 8.62 2025 45 6935

When comparing both Table 4.3 and the Table 4.4, it is possible to note that the proposed
model performed well even in a scenario with limited data (only the active power). The EAT
metric is directly correlated with the MS problem. CO significantly improved when including

the reactive power. As shown in the Table 4.3, when using only the active power, the proposed
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Table 4.4: Error for the Supervised Case 1 Including the Reactive Power
CO (%) This Work (%) Patt. Rec. (%)
ETE EAP ETE EAP ETE EAP

CDE 02 05 5.7 6.1 8.7 84.1
DWE 11.5  28.1 14 23.2 5.6 74.1
FGE 39 435 03 28 3.6 53.3
HPE 1.3 56 07 4 0.1 65.9

WOE 6.7 95 22 12.2 - -
TVE 16.1 345 193 197 - -
Average 6.61 20.28 7 15.5 45 69.35

model improved the CO method and decreased 60% of the EAP error (80.41% to 20.25%).

4.4 Supervised Case 2

4.4.1 Experimental Setup

The second test case considers a longer period of one week rather than one day. Hence, the total
number of samples is 10080 measurements (one per minute). In addition, the test case 2 consid-
ers seven appliances: Basement Plugs and Lights (BME); Dryer (CDE); Dishwasher (DWE);
Fridge (FGE); Forced Air Furnace (FRE); Heat Pump (HPE); and Television/Entertainment
(TVE). All the appliances are represented by 13 power states. Table 4.5 shows the data used as
input for the model. For this test scenario, both the active and reactive power are considered.

The chosen window’s length has 40 measurements.

Table 4.5: Input Data for the Experimental Setup in Test Case C
appl i D; prev, P, (W) Q;(VAr) MD,

BME 1 1 0 333 26 15
BME 2 1 0 407 26 5
CDE 3 2 0 4569 412 25
CDE 4 2 3 247 407 5
DWE 5 3 0 751 34 5
DWE 6 3 0 478 0 15
FGE 7 4 0 129 8 7
FRE 8 5 0 105 26 20
HPE O 6 0 37 17 30
HPE 10 6 0 1807 324 10
HPE 11 6 0 2435 429 30
TVE 12 7 0 38 13 30
TVE 13 7 0 239 31 30
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4.4.2 Graphical Results

The graphic in the Figure 4.5 shows a sub split of 1000 minutes for comparing the proposed
technique with the other two algorithms. The CDE is identified by the proposed technique,
however, with a different shape when compared with the ground truth data. This is due to
the minimum time approximation of the model of the CDE appliance. The HPE appliance is
visually very similar to the ground truth. The CO method is continually activating the BME
appliance in instants that the DWE was expected to be active, which does not occur in the
proposed method. Hart’s method identified the FGE, the HPE, and the CDE appliances. At
the instant between the sample 7500 and 7600, it is observed the activation of an unknown
appliance. This unknown appliance was activated due to the detection of a false event. The
HPE turned off and the CDE turned on in the next sample which created a false step of about

2000W. This confusion is not made by the proposed technique since it does not depend on event

detection.
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Figure 4.5: Comparison of the real measurements (ground truth) with the proposed model and
two other methods

4.4.3 Numerical Results

Table 4.6 shows the numerical results. When comparing with CO, the proposed model got a

lower EAP error for 6 out of the 7 appliances. The EAP for CDE was 3.3% for the CO while
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it was 12.2% for this work. The proposed model got a higher EAP error for the CDE since
the original appliance is made of multiple ON/OFF which are approximated by the proposed
technique (refer to the region near to the sample 7500 in the Figure 4.5). The highest error for
the proposed technique was for the DWE appliance, however, it was still a better result when
compared with the CO and it was not identified by the pattern recognition technique. Regarding
the energy prediction, the proposed technique got an ETE error lower than 10% for most of the
appliances, except the FRE which is 10.8%. The average of the ETE error was 5.86% which
is significantly lower than the two other techniques (19.15% and 20.6%). This means that the
proposed technique would perform a better estimation of energy consumption when compared

with the two other techniques.

Table 4.6: ETE and EAP metric for the supervised case 2.
CO (%) This Work (%) Patt. Rec. (%)
ETE EAP ETE EAP ETE EAP

BME 27 354 57 22.2 - -
CDE 0.6 33 47 122 428 522
DWE 87 1465 64 44.9 - -
FGE 442 8l1.1 7.6 38.2 154  64.1
FRE 26.6 268 10.8 11.1 - -
HPE 2.7 6.7 2.7 4 3.6 16.1
TVE 486 9377 3.1 4.2 -

Average 19.15 5621 586 19.54 20.6 44.1

4.5 Summary and Analysis of Results

This chapter presented two experiments in order to evaluate the performance of the NILM
method. Supervised scenarios were considered in order to validate the optimization model. The
public data set AMPds was used for validation. As discussed in [49], a good NILM algorithm
should address the following six requirements: use typical meter features, a minimal accuracy
of 80%, no training, real-time capability, scalability, and flexibility.

The presented NILM algorithm accomplishes with most of the former requirements, since:
uses only low frequency features; accomplishes the minimum 80% requirement (considering
the complement of ETE’s average); the parameters in the input table make it suitable for a no
training (unsupervised) setting; the results could be shown in real-time to the user at every m
measurements; scalability will depend on the way in which the input table is constructed and
how it is updated; finally multiple appliances types are handled (multi-state, ON/OFF, constant)
thanks to the parameters M D; and prev;.
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Chapter 5

Conclusion

In this dissertation, a NILM method based on MILP optimization was proposed. The classic CO
model was expanded for increasing the accuracy and performance. As the main contribution,
a new set of linear constraints were proposed to efficiently model the behavior of appliances.
The proposed model enhanced the classic CO model in order to avoid the MS problem. Also,
a window-based algorithm is proposed in order to improve the computational complexity. The
proposed algorithm surpassed the test cases for the identification of appliances. As the main
advantage, the algorithm does not require data in high resolution, hence low-cost smart meters
are sufficient to deploy it. Results were accomplished with a one-minute reading resolution.
The inclusion of other features besides the active power is optional and help to improve the
accuracy.

As main challenges, this algorithm demonstrated to work well in a supervised scenario.
However, as shown in the appendix, there’s work to be done in unsupervised cases and how
to deal with unknown loads. As proposed in the appendix, one possible approach is to apply
an preprocessing set to learn all the possible steps. Another challenge to be addressed in this
algorithm is the computational complexity. Although the use of windows is helpful to limit the
complexity growth in the time dimension, the algorithm is still susceptible to scenarios with too
many states. In tests cases, the maximum number of states was about 20 states. One possible
solution in this context is to apply many models in parallel where each one would be specialized

in identifying one specific appliance.

5.1 Future Work

The following list shows points that might be considered for future work in this area:
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e Investigate preprocessing techniques for extracting the input parameters from the aggre-

gated data (unsupervised approach);

e Study modifications of the presented model in order to allocate unknown loads without

the need of a preprocessing step;

e Propose an automatic feature extraction and disaggregation based on the methodologies

presented in the appendix;

e Implement semi-supervised models in which appliance models are learned from edge

detection of the aggregated data and deployed to the input parameters;

e Use different performance metrics and datasets such as the Reference Energy Disaggre-

gation Data Set (REDD);

e Implement probabilistic functions: for example, penalization for turning on on unlikely

times (like a washing machine at 3 AM);

e Implement the concept of an occupied and non-occupied type of loads.
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Appendix A

Full Proposed Mathematical Model

The full proposed model in details for a window based case is presented in the next page of this
Appendix. The algorithm was implemented using the mathematical programming language

AMPL with the very same equations.



APPENDIX A. FULL PROPOSED MATHEMATICAL MODEL
repeat .
let T ={To, - ,To + m}
solve
Inln Z dp(t) + do(t)
teT
S. t.
P(t) =Y xi(t) P, < 0p(t) (A.1)
i =1
P(t) = " ai(t) P > —0p(t) (A2)
=1
Q) — ) _xi(t) Qi < dglt) (A.3)
i=1
Q) — ) _=i(t) Qi = —dq(t) (A4)
=1
() =0 VteT,ieS|Pt)<TH (A.5)
upi(t) + dw;(t) <1 Vie S;teT (A.8)
upi(t) = dwprey, (t) Vi € S,t € T | prev, > 0 (A9)
G;
Y —w(k)=0 Vies (A.10)
k=T,
t+MD;—1
> wi(k) > MD; [x;(t) — xi(t — 1)]
k=t
VieSteGi+Ty.. Ty —MD;+1 (A.11)
Z{xz t)—zi(t—1)]} >0
k=t
VieSteTy—MD;+2...T; (A.12)
letTO :T0+m+1

until 7y > T';

Algorithm 3: Full proposed model in details.
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Appendix B

Extracting Input Parameters

The math model presented in Chapter 3 requires as input the power level, the minimum running
time and sequence of states of each load. The extraction of those input parameter may be either
with a visual inspection or automated. The visual inspection is useful in order to validate the
model. However, automatic extraction becomes necessary when applying the model to a real
world scenario. This appendix presents a strategy for extracting these input parameters both

manually and automated.

B.1 Supervised Setting

In the supervised setting, the challenge is to extract the main operational level, minimum time
and sequence of states from appliance measurements. The flowchart in the Figure B.1 illus-
trates how a NILM optimization algorithm would receive the input parameters. Given a set of
measurements of an appliance (such as the active and the reactive power), feature extraction is
performed in order to acquire the input parameters to the optimization algorithm. The feature

extraction process can be split into three steps:

1. Extract the main states from clustering algorithms;
2. Extract the minimum time from histograms of continuously active states;

3. Extract sequence of states from table of combinations of states

Further details of those items are presented in the next subsections.
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A. Measure
Input Parameters Input Parameters (P;, mintime, prev;) ‘ Measurements (current, voltage, active/reactive power)
Appliance’s data » Feature Extraction » B. Optimization Algorithm

1 On and Off states of each appliance

C. Tabulate Statistics

1 Energy vs. Time of day

Figure B.1: Flowchart of a supervised NILM algorithm using optimization

B.1.1 Main States

The most representative operating states of a given appliance can be extracted either manually

with visual plots or automatically by using clustering algorithms.

Manual Extraction

In the manual extraction, histograms can be used when only one measurement is available or
scatter plots for two or more. When only one measurement is available, the histogram plots
will display the most relevant states of the given appliance. The Figure B.2, illustrates how the
histogram plot of a hypothetical appliance might look like. The appliance of the Figure B.2

is composed of three main active power states A, B, and C. If those states are well defined, a

E

Time A B C
ACTIVE POWER

histogram plot will show three normal distributions around A, B, and C.

Active Power
Number of evets

A 4

\ 4

Figure B.2: Visualization of the main states with one measurement

When more than one measurement is available, the most relevant operating states may be

visualized using scatter plots. For example, the Figure B.3 shows the scatter plot of an appliance
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with two measurements (active and reactive power). A plot of the active power vs the reactive
power will appear as a set of measurements around the main states. The median of each cluster

can be taken as the main representative state.

A —— Active Power A

—— Reactive Power . Washing Machine 2
” i X o
% j . v
g o Washing Machine 3
% £ ﬁ Washing Machine 1
o b .
(8] ] -}(.

o .
X = Median
A
- » ”
Time ACTIVE POWER

Figure B.3: Visualization of the main states with two measurement

Automated Extraction

The extraction process can also be automated by using clustering algorithms. There are many
ready implementations of clustering algorithms in the major data science tools such as MAT-
LAB, Python (Sklearn) and R. Those algorithms range from simple methods such as K-means
[50] up to more advanced methods such as Bayesian Gaussian Mixtures [51]. A clustering al-
gorithm can be directly applied to a set of measurements independently of its dimension. Some
clustering algorithms require as inputs the number of clusters to be identified (K-means, for
example). Some others try to automatically define the number of clusters. For example, the
Bayesian Gaussian Mixtures has as an input parameter the maximum number of components
to be identified. The Figure B.4 shows an example of an application of the Bayesian Gaussian
Mixtures algorithm in four appliances. On the left, there’s a plot of four appliances (power
versus time). The active power is in red and the reactive power is in blue. On the right of
the Figure B.4, those same appliances are plotted with the active power in the x-axis and the
reactive power in the y-axis. The green, red and blue dots are the clusters identified by the
clustering algorithm. The algorithm also returns the centroid of each cluster, which can be used
as main states for the optimization algorithm of Chapter 3. The top left scatter plot identified
only two clusters. The clustering algorithm works well only when the clusters are well defined.
The button right plot shows that the algorithm identified two clusters in a suspicious region that
could be considered only one. It is worth noting that the automatic extraction of main power
states was not evaluated against other feature extraction strategies since this is not the focus of

this dissertation. A review of alternative feature extraction strategies may be found in [52].
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Figure B.4: Example of a clustering algorithm applied to find the main states of four appliances

B.1.2 Minimum Time

The minimum time may also be extracted by either visual inspection or automated. The visual
inspection of plots of time versus power state might help in giving an idea of the minimum time
parameter. In order to automate this process, it is possible to approximate me measurements
of an appliance to their main states, which are found in the steps described in the previous
subsection. Next, a set of activated time can be created for each power state. For example,
consider a hypothetical appliance with state x(¢) = [001110001100011110]. The activated time
in z(t) means that the appliance was first activated for 3 samples, later it was activated for 2
samples and finally, it was activated for 4 samples. A set with the continuously activated time
for this hypothetical appliance would be [3, 2, 4]. It is possible to create a histogram with the
set of continuously activated time. The Figure B.5 illustrates a histogram of activated time
created for a cyclic appliance. The minimum time can be extracted in the left tail region of the
histogram. Percentiles are a useful measurement for extracting the minimum time. A percentile
indicates the value below a given percentage of observations in which a group of observations
falls. For example, a percentile the 10th percentile is the value (or score) below which 10% of
the observations may be found.

The Figure B.6 shows an example of extraction of the minimum time for a heat pump.
One of the main states of the appliance is 339W. A set of activated time for the state 339W
is extracted and a histogram is created. The right in the Figure B.6 shows a histogram. The
first quartile of the histogram (25th percentile) is 5.25 minutes, which means that the minimum
time of 75% of activations was higher than 5.25 minutes. This value could be used as an input

parameter for the model. It is worth noting that this example considers a small time scenario
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Figure B.5: Illustration of extraction of the minimum time
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Figure B.6: Example of minimum time extraction for a heat pump

and a better minimum time extraction could be achieved with a larger set of measurements.

B.1.3 Sequence of States

Finally, the extraction of the sequence of states may also be inferred by visual inspection or
automated. In the visual inspection, we simply check in the measurement’s plots those transition
of states which always occur together. The automation extraction can be performed by creating
a model with the approximated states presented in the first subsection. Then, the transition of
states can be tabulated.

For example, the Figure B.7 presents a hypothetical cyclic appliance with two operating
states: state 1 and state 2. A third state O is also considered for instants where the appliance is
OFF. Next, the sequence of those states can be tabulated in the way presented on the right side
of the Figure B.7. When the frequency of a transition between states is very high, this transition
can be used as input parameter for the model. For example, in the Figure B.7, the transition of

the state O (OFF) to the state 1 occurred 90% of the times. Hence this transition could be used
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A From>To | Frequency
0>1 90%
- 0>2 10%
F 150 50%
< 2 1>2 50%
0 N 250 5%
Time 251 95%

Figure B.7: Illustration of extraction of minimum states

as input parameter for the model.

B.2 Summary

A strategy for extracting the input parameters was presented. This extraction can be performed
either using visual inspection or automatically. Clustering algorithms were proposed to auto-
mate the extraction of power states. The cluster’s centroids can be used as input parameter.
Next, those main states can be associated with continuously activated times in order to extract
the minimum time. Finally, a table with the transition of those states can be created in order to

extract the transition of states.



73

Appendix C

Unsupervised Experiments

Experiments were also performed considering that the measurements of each appliance are
not available. In this scenario, a preprocessing step is necessary in order to extract the input
parameters from the aggregated data. The Figure C.2 illustrates the flowchart of an unsupervised
NILM process when using optimization. A preprocessing strategy is described in the next

section along with two test cases.

A. Smart Meter

l Measurements (current, voltage, active/reactive power)

B. Preprocessing

l Input Parameters (P, mintime, prev;)

C. Optimization Algorithm

1 On and Off states of each appliance

D. Tabulate Statistics

1 Energy usage, operating power, etc

Figure C.1: Flowchart of an unsupervised optimization algorithm

C.1 Preprocessing Algorithm

Although it is not the goal of this work to propose an optimal preprocessing unsupervised
method, some basic and simple strategies are explored. The challenge here is to extract the

main operational state, the minimum time and the sequence of states from the aggregated data.
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The approached strategy was to create generic appliance models based on edge detection. The
developed algorithm can be summarized in the steps presented in the Figure C.2. For a given
aggregated data, a horizon of measurements is considered (for example 5 hours). Next, all the
absolute edges’ values (representing the activation and deactivation) of the horizon are detected.
Then, the most relevant edges are clustered and their centroids detected. For example, the K-
Means [50] clustering algorithm enables the definition of a number of centroids to be found in
the data. Those centroids are inputted as power states parameters in the optimization algorithm.
An always-ON state (standby) is also extracted from the aggregated data by taking the mini-
mum measurement of the horizon. Finally, a generic minimum time is also set as parameter
(between 4 and 10 minutes for this work). No sequence of states is considered for those generic

appliances. The implementation of this algorithm is going to be discussed next.

l Measurements

Get a horizon of measurements

Set of measurements

A 4

v Edge detection

Extract stand-by power JList of step changes

Cluster analysis

Top relevant edges

Min Time

Set a generic minimum time

& Input Parameters

Optimization algorithm

Figure C.2: Preprocessing algorithm

C.1.1 Preprocessing Algorithm Implementation

The preprocessing algorithm was implemented in Python. An integration with the AMPL soft-
ware was made in order to call the solver after the table with input parameters is filled. The
algorithm segments the measurements into horizons which are sent to the solver as input data.
Each horizon of measurements can be split into windows in order to speed up the process. The

optimization model was modified in order to accept standby states. The edges are extracted
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using Hart’s edge detection algorithm, implemented in NILMTK. The K-Means clustering al-
gorithm is applied to identify the top 4 or 5 states.

C.2 Test Casel

The preprocessing algorithm was applied to the data of the first test case presented in Chapter
5. Only the active power was considered in order to have an extreme case of limited data
for an unsupervised setting. The visual results are presented in the Figure C.3. The clustering
algorithm was set to detect the five most relevant edges. The detected states were 675W, 3180W,
1807W, 127W and 4545W. Also, a standby power of 64W was extracted. Those 6 states were
inputted to the optimization algorithm. Also, a generic minimum time of 5 minutes was defined.
The Figure C.3 shows that the CDE appliance was not correctly assigned, although its edge was
identified (4546W). This is due to the fact that the TV was also activated at the same time that
CDE was. Since the TV edge of 239W was not identified, the aggregated data was filled with
the WOE and the HPE. The label assignation of each appliance was made manually based on
their edges and similarity behavior with the ground truth data. In a real world setting, those
labels could be inputted by the user. The WOE appliance was also allocated in instants where
the DWE and the HPE were predominant.

The Table C.1 shows the numerical results. The EAP error was about the same when com-
paring with the two other techniques. In average, the proposed model performed better than
CO but worse than Hart’s. The addition of more measurements is likely to help, although this
possibility was not explored in this work. The presented preprocessing algorithm can serve as
a starting point for a more advanced strategy in future works. For example, it is possible to
implement a hybrid version of Hart’s algorithm were appliance models are detected (such as

the refrigerator) and combine with those generic load models.

Table C.1: EAP and EAT metric for the unsupervised case
CO (%) This Work (%) Patt. Rec. (%)
ETE EAP ETE EAP ETE EAP
CDE 943 943 858 858 8.7 84.1
DWE 239 572 296 633 5.6 74.1

FGE 326 623 21.6 587 3.6 53.3
HPE 119 612 69 61.1 0.1 65.9
WOE 145 205.6 104.2 180.8 - -
TVE 237 769 113 716 -

Average 5523 929 432 8688 45 69.35
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Figure C.3: Visual results for an unsupervised experiment

C.3 Test Case2

The second test case considered as input data the measurements from a smart meter installed
locally. The open source smart meter emonPi [53] by the UK based OpenEnergyMonitor [54]
project was installed in a local household and their measurements processed. More details about

the smart meter are given below along with some experiments.

C.3.1 Smart Meter Overview

The emonPi is an open source Raspberry Pi based energy monitor with two single-phase cur-
rent sensors as input. The smart meter also accepts as input voltage and temperature sensors,
although they were not installed. The smart meter also works as a server where its data can
be accessed via Ethernet, WiFi or even from the internet using their website or Android App.
The Figure C.4 shows the installed smart meter. Two current transformers (CT) are connected
to the two main phases of the circuit panel. One of the main advantages of this smart meter is
that since it is open source, it allows for modification of its internal code and implementation of

disaggregation algorithms.
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Figure C.4: Open source smart meter installed locally for experiments

C.3.2 Experiments

Six months of data were acquired by the smart meter with a 30 seconds interval sampling
rate. The previously described preprocessing algorithm was implemented in order to detect
generic appliances from those local measurements. A blind detection of generic appliances is
performed, i.e., no pre-input of known appliances is performed.

The Figure C.5 shows an example of detected appliances based on their edges. The top graph
shows the original measurements while the buttom graph shows the generic detected appliances.
The 4 main detected states were 91W, 5931W, 1359W and 1636W. The detected standby state
was 313W. For each new horizon, those four states and the standby state are updated.

The local household has some relevant devices such as two refrigerators and three electric
showers. The preprocessing algorithm can be optimized for identification of only those ap-
pliances by adding personalized info as input parameter. Unfortunately, it is not possible to
compare the measurements with the ground truth since the single appliances are not being mon-
itored. However, it is possible to empirically infer some of the expected appliances to be ON
based on the aggregated data. In addition, statistics can be tabulated based on those generic
appliances. For example, the Figure C.6 shows histograms of the activation higher than 1500W
in the last three months. It is possible to observe in the histogram of June that there is a certain
number of activation for the area higher than 7000W which was not observed in the previous
two months. This might indicate that a new appliance in this level is being used in the house-

hold. The appliance can be identified by tracking all the edges in the power level 7000W.
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Figure C.5: Example of generic appliances detected by the algorithm
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Figure C.6: Histogram analysis from the detected power levels

C.4 Summary

The proposed model works very competitively with other disaggregation methods as long as
the input parameters are well defined. The use of a simple preprocessing algorithm serves as
a starting point for the detection of appliances in an unsupervised scenario. Expansions of
the preprocessing algorithm are possible in order to enhance its capability to extract the input

parameter of the optimization model proposed in this work.



