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próximo em contexto multimı́dia”

Master Thesis presented to the Post Graduate Pro-

gram of the School of Electrical and Computer

Engineering of the University of Campinas to

obtain a MSc degree in Electrical Engineering in

the concentration area of Computer Engineering.

Dissertação de Mestrado apresentada ao Programa

de Pós-Graduação em Engenharia Elétrica da Fac-

uldade de Engenharia Elétrica e de Computação da

Universidade Estadual de Campinas para obtenção do

tı́tulo de Mestre em Engenharia Elétrica na área de

concentração Engenharia de Computação

THIS VOLUME CORRESPONDS TO THE FI-

NAL VERSION OF THE THESIS DEFENDED BY

ELIEZER DE SOUZA DA SILVA, UNDER THE SU-

PERVISION OF PROF. DR. EDUARDO ALVES

DO VALLE JUNIOR.

Este exemplar corresponde à versão final da
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Abstract

The increasing availability of multimedia content poses a challenge for information retrieval

researchers. Users want not only have access to multimedia documents, but also make sense of them

— the ability of finding specific content in extremely large collections of textual and non-textual

documents is paramount. At such large scales, Multimedia Information Retrieval systems must

rely on the ability to perform search by similarity efficiently. However, Multimedia Documents

are often represented by high-dimensional feature vectors, or by other complex representations in

metric spaces. Providing efficient similarity search for that kind of data is extremely challenging.

In this project, we explore one of the most cited family of solutions for similarity search, the

Locality-Sensitive Hashing (LSH), which is based upon the creation of hashing functions which

assign, with higher probability, the same key for data that are similar. LSH is available only for

a handful distance functions, but, where available, it has been found to be extremely efficient for

architectures with uniform access cost to the data. Most existing LSH functions are restricted

to vector spaces. We propose two novel LSH methods (VoronoiLSH and VoronoiPlex LSH) for

generic metric spaces based on metric hyperplane partitioning (random centroids and K-medoids).

We present a comparison with well-established LSH methods in vector spaces and with recent

competing new methods for metric spaces. We develop a theoretical probabilistic modeling of the

behavior of the proposed algorithms and show some relations and bounds for the probability of hash

collision. Among the algorithms proposed for generalizing LSH for metric spaces, this theoretical

development is new. Although the problem is very challenging, our results demonstrate that it can

be successfully tackled. This dissertation will present the developments of the method, theoretical

and experimental discussion and reasoning of the methods performance.

Keywords: Similarity Search; Nearest-neighbor Search; Locality-sensitive Hashing; Quantiza-

tion; Metric Space Indexing; Geometric Data Structure; Content-Based Multimedia Information

Retrieval.
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Resumo

A crescente disponibilidade de conteúdo multimı́dia é um desafio para a pesquisa em Recuperação

de Informação. Usuários querem não apenas ter acesso aos documentos multimı́dia, mas também

obter semântica destes documentos, de modo que a capacidade de encontrar um conteúdo especı́fico

em grandes coleções de documentos textuais e não textuais é fundamental. Nessas grandes escalas,

sistemas de informação multimı́dia de recuperação devem contar com a capacidade de executar a

busca por semelhança de forma eficiente. No entanto, documentos multimı́dia são muitas vezes

representados por descritores multimı́dia representados por vetores de alta dimensionalidade, ou

por outras representações complexas em espaços métricos. Fornecer a possibilidade de uma busca

por similaridade eficiente para esse tipo de dados é extremamente desafiador. Neste projeto, vamos

explorar uma das famı́lias mais citadas de soluções para a busca de similaridade, o Hashing Sensı́vel

à Localidade (LSH - Locality-sensitive Hashing em inglês), que se baseia na criação de funções de

hash que atribuem, com maior probabilidade, a mesma chave para os dados que são semelhantes.

O LSH está disponı́vel apenas para um punhado funções de distância, mas, quando disponı́veis,

verificou-se ser extremamente eficiente para arquiteturas com custo de acesso uniforme aos dados.

A maioria das funções LSH existentes são restritas a espaços vetoriais. Propomos dois métodos

novos para o LSH, generalizando-o para espaços métricos quaisquer utilizando particionamento

métrico (centróides aleatórios e k-medoids). Apresentamos uma comparação com os métodos LSH

bem estabelecidos em espaços vetoriais e com os últimos concorrentes novos métodos para espaços

métricos. Desenvolvemos uma modelagem teórica do comportamento probalı́stico dos algoritmos

propostos e demonstramos algumas relações e limitantes para a probabilidade de colisão de hash.

Dentre os algoritmos propostos para generelizar LSH para espaços métricos, esse desenvolvimento

teórico é novo. Embora o problema seja muito desafiador, nossos resultados demonstram que ele

pode ser atacado com sucesso. Esta dissertação apresentará os desenvolvimentos do método, a

formulação teórica e a discussão experimental dos métodos propostos.

Palavras-chave: Busca de Similaridade; Busca de Vizinho Mais Próximo; Hashing Sensı́vel à

Localidade; Quantização; Indexação de espaços métricos; Estruturas de Dados Geométricas;

Recuperação de Informação Multimı́dia.
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Chapter 1

Introduction

The success of the Internet and the popularization of personal digital multimedia devices (digital

cameras, mobile phones, etc.) has spurred the availability of online multimedia content. Meanwhile,

the need to make sense from ever growing data collections has also increased. We face the challenge

of processing very large collections, in many media (photos, videos, text and sound), geographically

dispersed, with assorted appearance and semantics, available instantaneously at the fingertips of the

users. Information Retrieval, Data Mining and Knowledge Management must attend to the needs of

the “new wave” of multimedia data [Datta et al., 2008].

Scientific interest in Multimedia Information Retrieval has been steadily increasing, with the

convergence of various disciplines (Databases, Statistics, Computational Geometry, Information

Systems, Data Structures, etc.), and the appearance of a wide range of potential applications, for

both private and public sectors. As an example of this interest we refer to the Multimedia Grand

Challenge1), opened in the ACM Multimedia conference of 2009, which consists of a competition

with a set of problems and issues brought by the industry to the scientific community. Amongst

others, Datta et al. [2008] present results showing an exponential growth in the number of articles

containing the keyword “Image Retrieval” as indicative of the growing interest in the area.

Similarity search is a key step in most of these systems (Information Retrieval, Machine Learning

and Pattern Recognition Systems) and there is the need for supporting different distance functions

and data formats, as well as designing fast and scalable algorithms, specially for achieving the

possibility of processing billions or more multimedia items in a tractable time. The strategy for

this task may be twofold: improving data-structure and algorithms for sequential processing and

adapting algorithms and data structure for parallel and distributed processing.

The idea of comparing the similarity of two (or more) abstract objects can be formally specified

and intuitively comprehended using the concept of distance between points in some generic space.

Thus, if we entertain the possibility of representing our abstract objects as points in some generic

space equipped with a distance measure, we may follow the intuition that the closer the distance

between the points, the more similar the objects. This has been established as a standard theoretical

and applied framework in Content-based Multimedia Retrieval, Data Mining, Pattern Recognition,

1http://www.acmmm12.org/call-for-multimedia-grand-challenge-solutions/
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1.1. Defining the Problem 2

Computer Vision and Machine Learning. Although such approach requires a certain level of

abstraction and approximation, it is very practical and appropriate for the task.

However, since there are many possible distance measures for different types of data (strings,

text documents, image, video, sounds, etc.), solutions that are effective and efficient only for specific

distances measures are useful, but limited. Our purpose is to study existing specific solutions in

order to generalize them to generic metric space without loosing efficiency and effectiveness.

In this chapter we will define formally similarity search, discuss the available solutions and

present its most common applications.

1.1 Defining the Problem

A definition of Metric Access Methods (MAM) is given by Skopal [2010]:

Set of algorithms and data structure(s) providing efficient (fast) similarity search under

the metric space model.

The metric space model assumes that the domain of the problem is captured by a metric space

and that the measure of similarity between the objects of that domain can be represented using some

distance function in the metric space. Thus, the problem of finding, classifying or grouping similar

objects from a given domain is translated to a geometric problem of finding nearest-neighbor points

in a metric space. The challenge is to provide data structures and algorithms that can accomplish

this task efficiently and effectively in a context of large scale search.

The obvious approach for the nearest neighbor search is a linear sequential algorithm that scan

the whole dataset. However this approach is not scalable in realistic set-ups with large dataset

and large query sets. It would be an interesting result that using some refined data structure and

algorithm we achieve a much more efficient query performance.

Another challenge for the naive approach is the case of dataset with high-dimensionality,

meaning, concentrated histogram of distances, sparsity of points and various other non-trivial

phenomena related to high dimensionality. Exact algorithms has failed to tackle with this challenge

and approximate methods has showed to be the most promising approach.

Finally we can enunciate our specific problem statement:

The development of effective and efficient methods (data structures and algorithms) for

approximate similarity search in generic metric space. The question is whether it would

be possible to offer better efficiency/effectiveness trade-off than available methods on

the literature and the condition that this improvement could be achieved.

1.2 Applications

Content-based multimedia information retrieval (CBMIR) is an alternative to keyword-based or tag-

based retrieval, which works by extracting features based on distinctive properties of the multimedia
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spaces, we sought to investigate a configuration of the technique for metric spaces in general. For

this purpose we use data-dependent partitioning of the space (for example, clustering) and hashing

associated with the partitions of the space. Intuitively, the idea is that points that are assigned the

same partition have a high probability of being relevant nearest neighbors, and points with distinct

partitions have a low probability of being real nearest neighbors (and conversely, a high probability

of being “far” points). This idea was explored in the course of the research and resulted in two

methods that generalizes the LSH for arbitrary metric spaces. This dissertation will present an

intuitive description and discussion of the proposed methods, as long with empirical results, but

also, as far as possible, will describe our contributions in a formalistic fashion, presenting and

demonstrating time and space complexities and proving some important and significant bounds

on the hashing probabilities under reasonable assumptions. As far as we know, among the works

proposing LSH for general metric space [Kang and Jung, 2012; Tellez and Chavez, 2010; Novak

et al., 2010; Silva and Valle, 2013; Silva et al., 2014], this is the first to develop a theoretical

characterization of the hashing collision probabilities (Sections 3.1.4, 3.1.3, 3.2.3).

1.3.1 Publications

Some of the contributions in this dissertation has been already reported for the research community.

A preliminary work describing VoronoiLSH was accepted and presented at the major national

conference on Databases – Brazilian Symposium on Databases. In this work, we introduce the

method, review significant part of the literature and report some experimental data supporting the

viability of the method. The paper was accepted as a short papers (only for poster session) but

was invited to a small group of short paper that was given oral presentation time in the technical

sessions. The parallel version of VoronoiLSH using multistage dataflow programming, developed

in collaboration between Prof. Dr. George Teodoro, Thiago Teixeira and Prof. Dr. Eduardo

Valle, was accepted for the 7th International Conference on Similarity Search and Applications

(SISAP 2014) and should be presented there in October, 2014. Besides we are planning for an

additional publication reporting VoronoiPlex LSH and taking a more theoretical stance, reporting

and extending the theoretical results presented in this dissertation. The complete list of publications

related to this research is:

• Eliezer Silva, Thiago Teixeira, George Teodoro, and Eduardo Valle. Large-scale distributed

locality-sensitive hashing for general metric data. In Similarity Search and Applications

- Proceedings of the 7th International Conference on Similarity Search and Applications.

Springer, October 2014[Silva et al., 2014]

• Eliezer Silva and Eduardo Valle. K-medoids lsh: a new locality sensitive hashing in general

metric space. In Proceedings of the 28th Brazilian Symposium on Databases, pages 127–

132, Brazil, 2013. SBC. URL http://sbbd2013.cin.ufpe.br/Proceedings/

artigos/sbbd_shp_22.html[Silva and Valle, 2013]



Chapter 2

Theoretical Background and Literature

Review

In this chapter we will present and discuss extensively the concepts necessary to understand our

contributions and the state-of-art on the subject. At first, we will introduce the basic mathematical

and algorithmic notions and notations. In the sequence, we will discuss how the broader problem

of Similarity Search in Metric Spaces has been approached in the specialized literature, however

not diving deeply in each specific method references. We will focus the discussion on the main

ideas applied to metric indexing and refer the reader to detailed surveys of the algorithms. Further,

Locality-Sensitive Hashing is addressed and discussed in details, including a formal presentation of

the algorithms and a mathematical demonstrations of selected properties.

2.1 Geometric Notions

In this dissertation we will use the framework of Metric Space to address the problem of Similarity

Search. We adopt this model because of it generality and versatility. Any collection of objects

equipped with a function measuring the similarity of the objects and obeying a small sets of axioms

(the metric axioms) are enabled to be analyzed and processed using the tools developed for metric

spaces.

Another advantage is the possibility of using geometric reasoning and intuition in the analysis

of objects that are not trivially thought as geometric (for example, strings, or text documents). So,

in this setting, it is possible to speak of a “ball” around a string using Edit distances, for example.

In this section we will develop some of these intuitions, formalizing geometric notions as balls and

triangular inequality over generic metric space.

2.1.1 Vector and Metric Space

We will briefly present the definition and axioms of metric space and the fundamental operations

we are interested in metric spaces.

5



2.1. Geometric Notions 6

Metric space are general sets equipped with a metric (or distance), which is a real-valued

positive function between pairs of points. Given that we have a definition of sets of objects and a

definition of a function comparing pairs of objects (obeying certain properties), we have a metric

space. The distance function must obey basically four axioms: the image of the distance function of

non-negative, the function is symmetric in relation to the order of the points, points with distance

zero are equals, and the triangle inequality.

Definition 2.1 (Metric space properties). Metric space: given a set U (domain) and a function

d : U × U → R (distance or dissimilarity function), a pair (U, d) is a metric space if the distance

function d have the following properties [Chávez et al., 2001]:

• ∀x, y ∈ U , d(x, y) ≥ 0 (non-negativeness)

• ∀x, y ∈ U , d(x, y) = d(y, x) (symmetry)

• ∀x, y ∈ U , d(x, y) = 0⇔ x = y (identity of indiscernibles)

• ∀x, y, z ∈ U , d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality)

If we want to build a notion of neighborhood for points in metric space there is only one tool to

use: the distance information between pairs of points. A natural way of accomplish that is to define

a distance range around of a point and analyze the region of the space in that range; this idea is

similar to looking to an interval with a central point in the real line, using distance between points,

generalized to metric space. This definition is useful for a set of indexing method that partition the

space using metric balls.

Definition 2.2 (Open and Closed ball). Given a set X in a metric space (U ,d) and a point p ∈ X

we define the Open Ball of radius r around p as the set BX(p, r) = {x|d(x, p) < r, x ∈ X} and the

Closed Ball of radius r around p as BX [p, r] = {x|d(x, p) ≤ r, x ∈ X}.

Definition 2.3 (Finite Vector Spaces). A given metric space (U, d) is a finite-dimensional vector

space (which for the sake of briefness we will refer simply as a vector space) with dimension D if

each x ∈ U can be represented as a tuple of D real values, x = (x1, . . . , xD). The most common

distance for vector space are the Lp distances [Chávez et al., 2001; Skopal, 2010].

• ∀x, y ∈ U , where x = (x1, . . . , xD) and y = (y1, . . . , yD),

Lp(x, y) = p

√

∑D
i=1 |xi − yi|p

Now we define three fundamental search problems central for similarity search in metric spaces:

Range Search, K-Nearest Neighbor Search and (R, c)-Nearest Neighbor Search. Given a subset of

metric space and a subset of queries, the Range Search problem is of finding efficiently a metric

ball of data points around query points given radius as parameter (called range).

Definition 2.4 (Range search). Given the metric space (U, d), a dataset X ⊂ U , a query point

q ∈ U and a range r, find the set R(q, r) = {x ∈ X|d(q, x) ≤ r} [Clarkson, 2006].
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Definition 2.5 (K-Nearest Neighbors (kNN) search). Given the metric space (U, d), a dataset

X ⊂ U , a query point q ∈ U and an integer k, find the set NNX(q, k), defined as |NNX(q, k)| =
k and (∀x ∈ X\NNX(q, k))(∀y ∈ NNX(q, k)) : d(y, q) ≥ d(x, q) (the k closest points to

q) [Clarkson, 2006].

A related problem is the (c, R)-Nearest Neighbor, defined as the approximate nearest neighbor

for a given radium.

Definition 2.6 (c-approximate R-near neighbor, or (c, R)-NN [Andoni and Indyk, 2006]).

Given a set X of points in a metric space (U, d) , and parameters R > 0, δ > 0, construct a

data structure such that, given any query point q ∈ U , if there is p ∈ X with d(p, q) ≤ R (p is a

R-near point of q), it reports some point p∗ ∈ X with d(p∗, q) ≤ cR (p∗ is a cR-near neighbor of q

in X) with probability at least 1− δ.

Given many challenges for large scale search in metric spaces, the choice for approximate

and random algorithms is justified because of the possibility of quality/time (efficiency/efficacy)

trade-off which may be favorable for a scaling of the algorithms under acceptable error rates.

Patella and Ciaccia [2009] presents a survey of approximate methods and the major challenges of

approximate search in spatial (vector) and metric data.

2.1.2 Distances

There are a variety of possible distance definitions over a variety of objects. We will restrain

ourselves to present just a small sample of the population of metric distances. Our aim is just to

illustrate and contextualize our discussion of Similarity Search presenting some distances that are

useful in applications, specially in Content-Based Multimedia Retrieval, Machine Learning, Pattern

Recognition, Databases and Data Mining.

The usual distances functions in coordinate spaces (in special Euclidean) are Lp distance, known

also as Minkowski distance. Lp distances are related to our most elementary geometric intuitions

and are widely applied in models of similarity and distance-based algorithms; for example, Skopal

[2010] says that more than 80% of relevant literature in metric indexing apply Lp distances.

Definition 2.7 (Lp distances on finite dimensional coordinate spaces). Given a coordinate metric

space (U, d), of dimensionality D, the Lp distance of two points p = (p1, · · · , pD),q = (q1, · · · , qD)

is defined as

Lp(p, q) =

(

D
∑

i=1

|pi − qi|p
)1/p

Euclidean metric space with D dimensions equipped with a Lp metric may be referred as LD
p

space.

Three Lp distances with widespread use are the Euclidean (p = 2), Manhattan (p = 1, also

known as Taxicab metric), and the Chebyshev (p =∞, also known as the maximum metric). The
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Euclidean distance is related with common analytic geometry, and is the generalization for higher

dimensions of the Pythagorean distance of two points in the plane – the square root of a sum of

squares.

Another import definition is the distance from a point to a set, a composite of distance to

individual points in the set. This concept will be applied in the analysis of our proposed methods

Definition 2.8 (Point distance to sets). Given a metric space (U, d), a point x ∈ U and set C ⊆ U ,

d(x, C) is defined as the distance from x to the nearest point in C.

• d(x, C) = min{d(x, c)|c ∈ C}

These are restricted examples of a long and diverse set of distances; we choose to define here

only the ones that are necessary for the understanding of concepts and algorithms described in this

dissertation. Deza and Deza [2009] has done a compendious work of cataloging an exhaustive

collection of distance and metric; that is proper reference for the reader interested in further details

and more examples of distances and metric.

2.1.3 Curse of Dimensionality

The “Curse of Dimensionality” (CoD) is a generic term associated with intractability and challenges

with growing dimensionality of the search space in algorithms for statistical analysis, mathematical

optimization, geometric operations and other areas. It is related to the fact that the geometric

intuition in lower dimensionality sometimes are totally changed in higher dimensionality, and many

times in a way that undermines the strategies that worked in lower dimensions. However not all

properties associated with the curse are always negative: depending on the subject area the curse

can be a blessing [Donoho et al., 2000]. It was first coined by Bellman [1961] as an argument

against the strategy that use a discretization and a brute force over the search space, in the context

of optimization and dynamic programming. The argument is simple: the number of partition grows

exponentially with the dimensionality, meaning, to approximately optimize of function over a space

with dimensionality D using grid search, to achieve a error ǫ we would need search over (1/ǫ)D

grids [Donoho et al., 2000].

In Similarity Search (Metric Access Methods and Spatial Access Methods) the curse has been

related to the difficulty to prune the search space as the (intrinsic) dimensionality grows – the

performance of many methods in high-dimensions are no better than linear scan. Also the very

notion of nearest-neighbor in high-dimensional space becomes blurred, specially when the distance

to the nearest point and the distance to the farthest point in the dataset becomes indistinguishable: it

has been demonstrated general conditions over the distance distribution, covering a wide class of

data and query workload, implying with high probability that as the dimensionality increases the

distance to farthest point and to the closest point are practically the same [Aggarwal et al., 2001;

Shaft and Ramakrishnan, 2006; Beyer et al., 1999]. This effect has been related to concentration of

distance and the intrinsic dimensionality of the dataset [Chávez et al., 2001; Shaft and Ramakrishnan,

2006; Pestov, 2000, 2008], but it is still an open question what is the formulation that explains how
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2.1.4 Embeddings

Since there is long standing solutions for proximity search in more specific space (for example

Euclidean or Vector spaces), a possible general approach to the problem is the mapping from general

metric space to those space where a solution already exists – a general technique in Computer

Science, reduction of an unsolved problem to another problem with a known solution. In order for

those mappings to be useful, some properties of the original space must be preserved, specifically

the distance information for any pairs of points in the original space. There are also techniques

focusing on preserving volume (or content) information between spaces [Rao, 1999], but we will

not discuss them.

Our theoretical and practical interest for approximate similarity search relies over a class of

embedding that preserve distances between pairs to a certain degree of distortion from the original

distance. In special we are interested in Lipschitz embedding with a fixed maximum distortion.

Definition 2.9 (c-Lipschitz mapping [Deza and Deza, 2009]). Given a positive scalar c, a c-Lipschitz

mapping is a mapping f : U → S such that dS(f(p), f(q)) ≤ cd(p, q), for p, q ∈ U .

Definition 2.10 (Bi-Lipschitz mapping [Deza and Deza, 2009]). Given a positive scalar c, metric

spaces (U, dU) and (S, dS), a funtion f : U → S is a c-bi-Lipschitz mapping if exists a scalar c > 0

such that: 1/cdU(p, q) ≤ dS(f(p), f(q)) ≤ cdU(p, q), for p, q ∈ U .

A simple example of 1-Lipschitz embedding is the pivot-space (as we will see later, this is the

basis for a whole family of metric indexing methods): given metric space (M, d), take k points as

the pivot set P = {p1, · · · , pk}, and build the mapping gP (x) = (d(x, p1), · · · , d(x, pk)). Calcu-

lating the maximum metric over two embedded points x, y ∈ M we obtain L∞(gP (x), gP (y)) =

maxi∈1,···k{|d(x, pi)−d(y, pi)|} and by triangle inequality |d(x, pi)−d(y, pi)| ≤ d(x, y),∀pi ∈M 1.

In general there are results indicating that an n−points metric can be embedded in Euclidean

space with log(n) distortion [Matoušek, 1996; Bourgain, 1985; Matoušek, 2002]. The reader

interested in further details about metric space embeddings should refer to the works of Deza and

Laurent [1997] and Matoušek [2002].

By relying on the general theory of embedding, one can advance the theoretical and practical

understanding of a great number of similarity search algorithms in metric space. Although not

always explicitly stated, many times embeddings are essential components of those algorithms. In

the next section we will discuss how this is accomplished in some classes of algorithms.

2.2 Indexing Metric Data

The basic purpose of indexing metric data is to avoid a full sequential search, decreasing the

number of distance computations and points processed. We may think of it as a data structure

partitioning the data space in such a way that the query processing is computationally efficient and

1d(x, y) + d(y, pi) ≥ d(x, pi) ⇒ d(x, y) ≥ d(x, pi) − d(y, pi) and d(x, y) + d(x, pi) ≥ d(y, pi) ⇒ d(x, y) ≥
d(y, pi)− d(x, pi), meaning that |d(y, pi)− d(x, pi)| ≤ d(x, y)
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space. Take two points p and q in the original space U , a non-expansive mapping (also known as

1-Lipschitz mapping, Definition 2.9) is a function from the original space U to the signature space S,

σ : U → S, such that dS(σ(p), σ(q)) ≤ d(p, q); a non-expensive mapping is an example of lower

bound in the signature space. It is possible to see that any Lipschitz or Bi-Lipschitz (Definition 2.10)

mapping could be used as a signature mapping. The aggregation mechanism, used more often in

conjunction with signature or dominance mechanism, consists in partitioning the search space in

regions such that the distance bounds are applied on the aggregate rather than in individual points

of the dataset. Those principles are used in specific metric mechanism for indexing:

• Pivoting and Pivot Scheme: a selected set of points P = {p1, · · · , pk} and the dataset is

stored with precomputed distance information that later is used to lower-bound the distance

from queries to points in the dataset. Given a point q in the dataset, a query q and the pivot set,

there is a lower-bound to the query to points in the dataset given by maxi∈1,···k{|d(p, pi)−
d(q, pi)|} ≤ d(p, q).

• Metric balls and shells: pivot and search spaces are organized in ball and shell partitions in

order to avoid distances calculations (aggregation). Generally some information regarding

the radius of the aggregate region must be stored with the index in order to apply metric

distance bound using a representative point of the region, but taking into consideration all the

other points. Most metric tree methods apply this technique, but also methods like List-of-

Clusters (a hierarchical list of metric balls inside metric shells) [Chávez and Navarro, 2005;

Fredriksson, 2007].

• Metric Hyperplanes and Dirichlet Domains: in this case the regions are not of a particular

shape, but are the result of dividing the metric dataset using metric hyperplanes. Taking two

point p1 and p2, we can divide the space using the distance to these points; points closer to p1

form a region, and points closer to p2 is another region – the separating metric hyperplane

is the set of points with d(x, p1) = d(x, p2). This idea can be generalized if we use many

reference points, or hierarchical organization of the partitions. Chávez et al. [2001] use the

compact partition relation to analyze different techniques relying on metric hyperplanes.

The survey by Chávez et al. [2001], despite being dated and not covering a considerable number

of new relevant techniques, is still very relevant since many challenges for similarity search are still

not solved and open to new methods and approaches. However, Chávez et al. [2001] shows that

those different views of metric indexing are equivalent and can be comprehensively understood

using the unifying model of equivalent relations, equivalent classes and partitioning. This unified

model is applied to the development of a rigorous algorithmic analysis of metric indexing methods,

specifically methods based on pivot-spaces and metric hyperplanes (denominated compact partitions

also), where lower-bound on the probability of discarding whole partition classes are given and are

related to a specific measure of intrinsic dimensionality (square of the mean over the square of the

variance of the distance histogram).
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Metric trees: Burkhard and Keller [1973] (BK-Tree), in their seminal work, introduced a tree

structure for searching with discrete metric distances. More recently, Uhlmann [1991] introduced

the concept of a “metric tree”, which can be seen as a generalization of the BK-Tree for general

metric distances. The Vantage-Point Tree (VPT), by Yianilos [1993] is a binary metric tree that

starts with a random root point, and then separates the dataset into left and right subtrees using

the median distance as separating criterion. The M-tree [Ciaccia et al., 1997] is a balanced tree

constructed using only distance information: at search phase, it used the triangle-inequality property

to prune the nodes to be visited. Slim-tree [Traina et al., 2000, 2002] is a dynamic metric tree with

enhanced feature including the minimizing the overlap between nodes of the metric tree using a

Minimum Spanning Tree algorithm.

Permutation-based Indexing: a recent family of MAM is the permutation-based indexing meth-

ods. This methods are based on the idea of taking a reference set (permutants), and using the

perspective of any point to the permutants, the distance ordering from a point in the dataset to the

permutants, as a relevant information for approximate search [Chávez et al., 2005; Gonzalez et al.,

2008; Amato and Savino, 2008]. This ordering is very interesting because it is mapping from a

general metric space to a permutation space, which a potentially cheaper distance function that can

be exploited to render new bound and offer better performance. In fact, this mapping can be used

with a inverted-file and compared using Spearman Rho, Kendall Tau or Spearman Footrule measure

to perform approximate search in an effective procedure [Gonzalez et al., 2008; Amato and Savino,

2008].

For a comprehensive survey of Metric Access Methods the reader may refer to existing sur-

veys [Chávez et al., 2001; Hjaltason and Samet, 2003; Zezula et al., 2006; Samet, 2005; Hetland,

2009; Clarkson, 2006]. Skopal [2010] and Zezula [2012] offer a critical review of the evolution of

the area, and an evaluation of possible future directions, making explicit claims about the necessity

of even more scalable algorithms for the future of the area. The PhD thesis of Batko [2006] is also

a good recent reference and survey for Metric Access Methods and general principles of metric

indexing.

2.3 Locality-Sensitive Hashing

The LSH indexing method relies on a family of locality-sensitive hashing function H [Indyk and

Motwani, 1998] to map objects from a metric domain X in a D-dimensional space (usually R
d)

to a countable set C (usually Z), with the following property: nearby points in the metric space

are hashed to the same value with high probability. It is presented in the seminal article [Indyk

and Motwani, 1998] as an efficient and theoretically interesting approach to the Approximate

Nearest-Neighbors problem and later also as a solution for the (R, c)-NN problem [Datar et al.,

2004; Andoni and Indyk, 2006] (Figure 2.3). A parallel line of work by Broder et al. [2000]

developed the idea of MinHash (Min-Wise Independent Permutations) for fast estimation of set and

documents similarity and later SimHash [Charikar, 2002] for cosine distance in vectors, using a
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functions reduces the probability of false positives, since two objects will have the same key for gj

only if their value coincide for all hi component functions. Each object v from the input dataset is

indexed by hashing it against L hash functions g1, . . . , gL. At the search phase a query object q is

hashed using the same L hash functions and the objects stored in the given buckets are used as the

candidate set. Then, a ranking is performed among the candidate set according to their distance to

the query, and the k closest objects are returned.

LSH works by boosting the locality sensitiveness of the hash functions. As M grows, the

probability of a false positive (points that are far away having the same value on a given gj) drops

sharply, but so grows the probability of a false negative (points that are close having different

values). But as L grows and we check all hash tables, the probability of false negatives falls, and the

probability of false positives grows. LSH theory shows that it is possible to set M and L so to have

a small probability of false negatives, with an acceptable number of false positives. This allows the

correct points to be found among a small number of candidates, dramatically reducing the number

of distance computations needed to answer the queries.

The need to maintain and query L independent hash tables is the main weak point of LSH. In

the effort to keep both false positives and false negatives low, there is an “arms race” between M

and L, and the technique tends to favor large values for those parameters. The large number of

hash tables results in excessive storage overheads. Referential locality also suffers, due to the need

to random-access a bucket in each of the large number of tables. More importantly, it becomes

unfeasible to replicate the data on so many tables, so each table has to store only pointers to the

data. Once the index retrieves a bucket of pointers on one hash table, a cascade of random accesses

ensues to retrieve the actual data.

2.3.1 Basic Method in Hamming Space

The basic scheme [Indyk and Motwani, 1998] (Hamming LSH) provided locality-sensitive families

for the Hamming distance on Hamming spaces, and the Jacquard distance in spaces of sets.

The original [Indyk and Motwani, 1998] method is limited to Hamming space (bit-vectors of

fixed size) using Hamming distance (dH , which is the number of different bits at corresponding po-

sitions, a sum of exclusive-or operation) and point-set space using Jaccard similarities. Equation 2.1

describes the hash functions family for Hamming distance. The idea is to choose one position of the

hamming point coordinate as representative of the point.

H = {hi : {0, 1}D → {0, 1} ∈ Z}
hi((b1, · · · , bD)) = bi, 1 ≤ i ≤ D

(2.1)

Because the distance between two hamming points is bounded and the number of different hashing

function also is bounded, it is easy to see that the probabilities p1 and p2 are bounded and obeying

the restriction of the LSH definition. Indeed, there are D possible functions hi for a given Hamming

space of dimensionality D and the hamming distance between two points measures the number of

times (over the D possible) that the hashing of the two points are supposed to have distinct values.
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ai ∈ R
D is a random vector with each coordinate picked independently from a Gaussian

distribution N(0, 1), bi is an offset value sampled from uniform distribution in the range [0, . . . , w]

and w is a fixed scalar that determines quantization width. Applying hi to a point or object v

corresponds to the composition of a projection to a random line and a quantization operation, given

by the quantization width w and the floor operation.

Andoni and Indyk [2006] extends LSH using geometric ball hashing and lattices. This approach

achieves a complexity near the lower bound established by Motwani et al. [2006] and O’Donnell

et al. [2014] for LSH-based algorithms. Instead of projecting the high-dimensional points to a

line, as in Datar et al. [2004] and Indyk and Motwani [1998], it is done a projection to a lower-

dimensional space with dimension k ≪ D greater than one (D is the original space dimension) and

“ball partitioning” quantization on the low-dimensional space. Nevertheless, for practical purposes

(fast encoding and decoding) Leech lattices quantizer is used as alternative to “ball partitioning”

quantizer. The Leech lattice is a dense lattice in the 24-dimensional space introduced by Leech

[1964] for the problem of ball packing.

Query adaptive LSH [Jegou et al., 2008] introduces a dynamic bucket filtering scheme based

on the relative position of the hashed (but not quantized) value of the query point to the quantizer

cell frontier. Suppose the hashing function h(x) may be seen as the composition of a function

f : M → R, mapping the point to a scalar value, and a quantizer g : x→ ⌊x⌋. The cell frontier of

h(x) is ⌊f(x)⌋ and ⌊f(x)⌋+ 1, and distance to the center of the cell given by |⌊f(x)⌋− f(x) + 1/2|
can be seen as a relevance criterion for the quality of the bucket. The further from the cell frontier

(or closer to the cell center), the better the quality of the bucket. Using this as a relevance criteria,

the “best” buckets are selected without using any point-wise distance calculation.

Panigrahy [2006] proposes entropy based LSH, an alternative approach to LSH in high-

dimensional nearest neighbor search that employs very few hash tables (often just one), and

for the search phase, probes multiple randomly “perturbed” buckets around the query bucket in each

table, in order to maintain the probabilistic response guarantees. Theoretical analysis support the

assertion that this approach renders similar performance to the basic LSH. Although the number

of probes is very large, increasing the query costs, the trade-off might still be interesting for some

applications, specially in very large-scale databases, since main memory might be a system-wide

constraint, while processing time might be available.

Multiprobe LSH [Lv et al., 2007] follows the approach of Panigrahy, that, instead of using the

expensive random probes, generates a carefully probing sequence, visiting first the buckets most

likely to contain the results. The probing sequence follows a success likelihood estimation, which

generates an optimal probing sequence, whose quality can be controlled by setting the number of

probes. Joly and Buisson’s a posteriori multi-probe LSH [Joly and Buisson, 2008] extends that

work by turning the likelihoods into probabilities by incorporating a Gaussian prior estimated from

training data, into a scheme aptly called a posteriori LSH. They employ an “estimated accuracy

probability” stop criterion instead of a number of probes.

Other contributions approach the problem of parameter tuning and the dynamic adaptation of the

LSH method. LSH Forest [Bawa et al., 2005] uses variable-length hashes and a prefix-tree structure

for self-tuning of the LSH parameters. Ocsa and Sousa [2010] propose a similar adaptive multilevel
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LSH index for dynamic index construction, changing the hash length parameter in each level of the

structure. A more recent work by Slaney et al. [2012] focus on the optimization of the parameters

using prior knowledge of the distance distribution of the base to achieve a desired quality level of

the nearest neighbor method.

2.3.3 Structured or Unstructured Quantization?

In original LSH formulation [Indyk and Motwani, 1998; Gionis et al., 1999; Datar et al., 2004;

Andoni and Indyk, 2006], the hashing schemes are based on structured random quantization of the

data space and this regularity is useful for the bounds on the hash collision probability. However,

the question could be raised whether this structure is really necessary for locality-sensitiveness and

if other non-regular partitioning could be applied. This discussion concerns how distinct space or

data partitioning be useful in the LSH framework.

Indeed, early proposals, Hamming LSH and E2LSH for example, used exclusively regular

quantizers of the space independent with the data. However, K-means LSH [Paulevé et al., 2010]

presents a comparison between structured (random projections, lattice) and unstructured (K-means

and hierarchical K-means) quantizers in the task of searching high dimensional SIFT descriptors,

resulting on the proposal of a new LSH family based on the latter (Equation 3.2). Experimental

results indicate that the LSH functions based on unstructured quantizers perform better, as the

induced Voronoi partitioning adapts to the data distribution, generating more uniform hash cells

population than the structured LSH quantizers. A drawback of this work is the reliance solely on

empirical evidence and the lack of theoretical results demonstrating, for example, how the collision

probabilities in K-means LSH could offer better results than the previous version based on structured

quantization.

Advancing the theoretical analysis in the direction of unstructured quantization, Andoni et al.

[2014] developed an adapted version of LSH using two-level data-dependent hashing. Two reference

works [Andoni and Indyk, 2006; Andoni, 2009] demonstrate lower bounds for approximate nearest-

neighbor search with locality-sensitive hashing (lower bound on ρ, given that the query complexity

is dnρ+o(1)); also an LSH family based on lattices and ball partitioning achieving near-optimal

performance is presented. Further more, relying on the same ideas, a two-level data-dependent

hashing may be constructed and perform (theoretically) even better [Andoni et al., 2014].

Finally, K-means and hierarchical K-means are clustering algorithms for vector spaces, restrict-

ing the application of this approach to metric data. In order to overcome this limitation we turn to a

clustering and data-dependent partitioning algorithms designed to work in generic metric spaces as

K-medoids clustering and random Voronoi partitioning.

2.3.4 Extensions in General Metric Spaces

As far as we know, there are only three works that tackles the problem of designing LSH indexing

schemes using only distance information, both of them exploiting the idea of Voronoi partitioning

of the space.
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M-Index M-Index [Novak and Batko, 2009] is a Metric Access Method for exact and approximate

similarity search based on universal mapping from the original metric space to scalar values in [0, 1].

The values of the mapping are affected by the permutation order of a set of reference points and

the distance to these points. It uses a broad range of metric filtering when performing the query

processing. In a follow-up work [Novak et al., 2010], this indexing scheme is analyzed empirically

as a locality-sensitive hashing for general metric spaces.

Permutation-based Hashing Tellez and Chavez [2010] presents a general metric space LSH

method using permutation based indexing, combining a technique of mapping and hashing. In the

permutation index approach the similarity is inferred by the perspective on a group of points called

permutants (if point p sees the permutants in the same order as point q, so p and q are likely to be

close to each other). In a way, this is similar to embedding the data to a proper space for LSH and

then applying a built-in (in this proper space) LSH function. Indeed the method consists in two

steps: first it creates a permutation index (designed to be compared using Hamming distance); and

then it hashes the permutation indexes using Hamming LSH [Indyk and Motwani, 1998].

DFLSH The DFLSH (Distribution Free Locality-Sensitive Hashing) is introduced in a recent

paper by Kang and Jung [Kang and Jung, 2012]. The idea is to randomly choose t points from the

original dataset (with n > t points) as centroids and index the dataset using the nearest centroid as

hash key — this construction yields an approximately uniform number of points-per-bucket: O(n/t).

Repeating this procedure L times it is possible to generate L hash tables. A theoretical analysis is

provided, and with some simplifications, it shows that this approach follows the locality-sensitive

property.

2.4 Final Remarks

We presented the fundamental mathematical and algorithmic concepts essential for this work, with

emphasis on the definition of metric space and different type of similarity search over metric spaces.

Despite the large number of metric indexing methods, we relied on the general techniques and

principles in the literature to give a wide description of the intuition behind most of the metric

indexing methods. Nevertheless it is still an open challenge to scaling up of the algorithms in terms

of size of the dataset and dimensionality. Given the flexibility of permutation-based methods for a

possible family of LSH methods, and taking in consideration the idea of data-based quantizer for

Euclidean spaces, we will present in next chapter two algorithms for Similarity Search in general

metric spaces using a family of LSH functions in metric spaces.



Chapter 3

Towards a Locality-Sensitive Hashing in

General Metric Spaces

This chapter introduces our main contribution. We present two methods for Locality-Sensitive

Hashing in general metric spaces and a theoretical characterization of the proposed methods as

locality-sensitive. In general metric spaces, all structural and local information is encoded in the

distance between the points, forcing us to somehow use this in the design of hashing functions. Our

practical solution is partitioning the metric space using clustering or simple induced Voronoi dia-

grams (or Dirichlet Domains) by a subset of points (generalized hyperplane partitioning), assigning

numbers to the partitions and using this to build hashing functions. We present VoronoiLSH in

Section 3.1 and VoronoiPlex LSH in Section 3.2, using an initial intuitive presentation and then a

theoretical discussion of the methods. Section 3.3 introduces the work regarding parallelization of

VoronoiLSH using dataflow programming.

3.1 VoronoiLSH

We propose a novel method for locality-sensitive hashing in the metric search framework and

compare them with other similar methods in the literature. Our method is rooted on the idea of

partitioning the data space with a distance-based clustering algorithm (K-medoids) as an initial

quantization step and constructing a hash table with the quantization results. Voronoi LSH follows a

direct approach taken from [Paulevé et al., 2010]: each partition cell is a hash table bucket, therefore

the hashing is the index number of the partition cell.

3.1.1 Basic Intuition

Each hash table of Voronoi LSH employs a hash function induced by a Voronoi diagram over the

data space. If the space is known to be Euclidean (or at least coordinate) the Voronoi diagram can

use as seeds the centroids learned by a Euclidean clustering algorithm, like K-means (in which

case Voronoi LSH coincides with K-means LSH). However, if nothing is known about the space,

20
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3.1.2 Algorithms

We define more formally the hash function used by Voronoi LSH in Equation 3.2. In summary, it

computes the index of the Voronoi seed closest to a given input object1. In addition, we present

the indexing and querying phases of Voronoi LSH, respectively, in Algorithms 1 and 2. Indexing

consists in creating L lists with k Voronoi seeds each (Ci = {ci1, . . . , cik},∀i ∈ {1, . . . , L}). When

using K-medoids, which is expensive, we suggest the Park and Jun fast K-medoids algorithm

(apud [Paulevé et al., 2010]), performing this clustering over a sample of the dataset, and limiting

the number of iterations to 30. Then, for each point in the dataset, the index stores a reference in

the hash table Ti (i ∈ {1, . . . , L}), using the hashing function defined in Equation 3.2 (hCi
(x)).

When using K-means, we suggest the K-means++ variation [Ostrovsky et al., 2006; Arthur and

Vassilvitskii, 2007]. The seeds can also simply be chosen at random (like in DFLSH). The querying

phase is conceptually similar: the same set of L hash functions (hCi
(x)) is computed for a query

point, and all hash tables are queried to retrieve the references to the candidate answer set. The

actual points are retrieved from the dataset using the references, forming a candidate set (shortlist),

and the best answers are selected from this shortlist.

In this work, we focus on k-nearest neighbor queries. Therefore, this final step consists of

computing the dissimilarity function to all points in the shortlist and selecting the k closest ones.

Definition 3.1. Given a metric space (X, d) (X is the domain set and d is the distance function),

the set of cluster centers C = {c1, . . . , ck} ⊂ U and an object x ∈ X:

hC : U → N

hC(x) = argmini=1,...,k{d(x, c1), . . . , d(x, ci), . . . , d(x, ck)} (3.2)

input : Set of points X , number of hash tables L, size of the sample set S and number of

Voronoi seeds k

output: list of L index tables T1, . . . , TL populated with all points from X and list of L

Voronoi seeds Ci = {ci1, . . . , cik},∀i ∈ 1, . . . , L

for i← 1 to L do1

Draw sample set Si from X;2

Ci ← choose k seeds from sample Si (random, K-means, K-medoids, etc.);3

for x ∈ X do4

Ti[hCi
(x)]← Ti[hCi

(x)] ∪ {pointer to x};5

end6

end7

Algorithm 1: Voronoi LSH indexing phase: a Voronoi seed list (Ci) is independently selected

for each of the L hash tables used. Further, each input data point is stored in the bucket entry

(hCi
(x)) of each hash table.

1Chávez et al. [2001] use to term Compact partition relation to refer to this kind of partitioning of the dataset and

demonstrate some lower bounds for algorithms using compact partitions
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input : Query point q, index tables T1, . . . , TL, L lists of M Voronoi seeds each

Ci = {ci1, . . . , cik}, number of nearest neighbors to be retrieved N

output: set of N nearest neighbors NN(q, N) = {n1, . . . , nN} ⊂ X

CandidateSet← ∅ ;1

for i← 1 to L do2

CandidateSet← CandidateSet ∪ Ti[hCi
(q)] ;3

end4

NN(q, N)← {k closest points to q in CandidateSet };5

Algorithm 2: Voronoi LSH querying phase: the input query point is hashed using same L

functions as in indexing phase, and points in colliding bucket in each hash table are used as

nearest neighbors candidate set. Finally, N closest points to the query are selected from the

candidate set.

Clustering Initialization

K-means and K-medoids clustering results exhibit a strong dependence on the initial cluster

selection. Usually those points are selected at random, but there are some proposed heuristics.

K-means++ [Ostrovsky et al., 2006; Arthur and Vassilvitskii, 2007] solve the O(log k) approximate

K-means problem2 simple by carefully designing a good initialization algorithm. That raises

the question of how the initialization could affect the final result of the kNN search for the

proposed methods. The K-means++ initialization method (Algorithm 3) is based on metric

distance information and sampling, thus can be plugged into a K-medoids algorithm without

further changes. [Park and Jun, 2009] propose also a special initialization (Algorithm 4)

for the fast K-medoids algorithm. We implemented both of those initialization, and the

random selection as well and empirically evaluated their impact on the similarity search task.

input : Set of points X and number of cluster centers k

output: list of cluster centers {c1, . . . , ck}
Choose an initial cluster c1 at random from X;1

while total of number of cluster centers < k do2

choose the next center ci, selecting ci = x′ ∈ X with probability
D(x′)2

∑

x∈X
D(x)2

;
3

end4

Algorithm 3: k-means++ procedure for initial cluster selection

2the exact solution is NP-Hard
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input : Set of points X = {x1, . . . , xn} and expected number of cluster centers k

output: list of cluster centers {c1, . . . , ck}
Calculate distance matrix with {dij = d(xi, xj)}n×n;1

for j ← 1 to n do2

vj ←
∑n

i=1 dij/
∑n

l=1 dil ;3

end4

Sort {v1, . . . , vn} in ascending order;5

Select the k points with smallest vj value as initial cluster centers;6

Algorithm 4: Park and Jun procedure for initial cluster selection

3.1.3 Cost models and Complexity Aspects

We will consider two models for query cost, a more simplistic looking only to distance computation

and another one taking into account other costs. We must remember that there is two basic

component of the query cost: the cost to find the appropriate bucket (called internal cost) and the

cost to sequentially process and rank the points in the bucket (called external cost). The basic

supposition is that the number of points in a bucket can be approximated by its mean when we

evaluate the average query cost.

Given a dataset X of n points and k centroids ci associated to a bucket Xi (which forms a

partition of the dataset, implying that ∪K
i=1Xi = X and ∩K

i=1Xi = ∅), the average number of point

in a bucket (n) is given by:

n =

∑K
i=1 |Xi|

k
=

n

k

For the fist model let us consider that the distance function evaluation is computationally much

more expensive than any other computation in the algorithm, so the complexity is dominated by

the number of distance function evaluations. We denominate this cost model the Range Search

Cost Model because it does not differentiate between range queries and k-nearest neighbor queries

in terms of cost. The internal cost is the number of distance computation in the linear scan for

the nearest centroid to the query and is fixed on k. The external cost is the number of distance

computations for the final ranking. In the average case we will approximate this cost by the average

number of points n in each bucket. So the final cost is given by:

RC(n, k) =
n

k
+ k

Another possibility is to jointly analyze the final ranking cost, which does not depend solely

on the number of distance computations. For that matter, we assume that any basic operation

(mathematical operators,numbers comparisons, memory transfer) has unit cost and that a given

distance has a constant cost of d > 1. We will denominate this model as Nearest-Neighbors Cost

Model. The final ranking operation has the complexity of a sorting algorithm, which is O(nlogn),
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over the average number of points in each bucket. Taking all into account the final cost is:

NNC(n, k, d) =
n

k
log(

n

k
) + d

n

k
+ dk

Optimizing the parameters: VoronoiLSH has basically two parameters, the number of tables

L and number of centroids k. For the sake of simplicity we will look only for the parameter k

(supposing a fixed L, and given that this parameter has a fixed multiplicative positive impact over

the query time complexity and a non-obvious multiplicative positive impact over the quality of the

search).

Let us start with Range Search Model; Note that 1 ≤ k ≤ n and that in practical setups k ≪ n.

∂RC(n, k)

∂k
= − n

k2
+ 1 = 0

So the optimal number of centroids k is

⇒ k =
√

n

⇒ RC(n) = 2
√

n

For the Nearest-Neighbor Model we proceed in the same way, using the same assumptions:

∂NNC(n, k, d)

∂k
= − n

k2
[log(

n

k
) + 1]− d

n

k2
+ d = 0

⇒ n

k2
[log(

n

k
) + 1 + d] = d

So the optimal number of centroids k is implicit given by

k2 =
n

d
[log(

n

k
) + 1 + d]

Knowing that log(n/k) > 0 we conclude that

k2 >
n

d
(d + 1)

⇒ n2

k2
<

d

d + 1
n

⇒ log(
n

k
) <

1

2
log(

d

d + 1
n)

⇒ n

d
(d + 1) < k2 =

n

d
[log(

n

k
) + 1 + d] <

n

d
[
1

2
log(

d

d + 1
n) + 1 + d]

⇒
√

n(
1

d
+ 1) < k <

√

n[
1

2d
log(

d

d + 1
n) +

1

d
+ 1]
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⇒ d

√

n(
1

d
+ 1) < dk < d

√

n[
1

2d
log(

d

d + 1
n) +

1

d
+ 1]

⇒
√

n(d + 1) < dk <

√

n[
1

2
log(

d

d + 1
n) + d + 1]

⇒ 1/

√

n[
1

2d
log(

d

d + 1
n) +

1

d
+ 1] < 1/k < 1/

√

n(
1

d
+ 1)

⇒ n
√

n[ 1
2d

log( d
d+1

n) + 1
d

+ 1]
< n/k <

n
√

n(1
d

+ 1)

⇒
√

√

√

√

dn
1
2

log( d
d+1

n) + d + 1
< n/k <

√

dn

d + 1

Knowing that the optimal k must satisfy

kd =
n

k
log

n

k
+ d

n

k
+

n

k

⇒ kd− n

k
=

n

k
log

n

k
+ d

n

k

We conclude that the optimal cost NNCopt(n, d) = NNC(n, k, d) may be simplified to

NNCopt(n, d) = 2dk + (d− 1)
n

k

Implying that

√
nd[2
√

d + 1+

√

√

√

√

√

(d− 1)2

log(
√

dn
d+1

) + d + 1
] < NNCopt(n, d) <

√
nd[2

√

√

√

√log(

√

dn

d + 1
) + d + 1+

√

(d− 1)2

d + 1
]

⇒ NNCopt(n, d) = O(
√

nd(log(
√

n) + d + 1) = O(d

√

n(log(
√

n) +
1

d
+ 1)

In the Nearest-Neighbor cost model the dimensionality information is built-in the distance cost

d, for instance, if we consider Lp distance in a D dimensional Euclidean space, the distance cost

d may be approximated by dimensionality D. It is interesting to note that, although we did not

achieve a logarithm query cost, we obtained a sub-linear cost on the number of points (and linear

on the distance cost) which does not hide exponential costs on the dimensionality. Comparing

to standard LSH in Euclidean space which solves the (c, r)-approximate nearest-neighbors with

O(dnρ) query complexity, where d is the dimensionality (and the approximate cost of evaluating the

distance function) and ρ is a fractional power (depending on the approximation factor c) [Indyk and

Motwani, 1998; Andoni and Indyk, 2006; Datar et al., 2004], we may conclude that the expected

query complexity (under reasonable assumptions) are very close to the Euclidean LSH. However
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Zp = d(p, NNC(p)) = d(p, C), and if NNC(p) = ci then hC(p) = i. We want to analyze the

probabilities of points being assigned the same hash value (attributed to the same Voronoi region)

looking at the distance of the points for different possible hash functions.

Because we are dealing with generic metric spaces without any specific structural information,

we shall recall to the tools and language of probability measure spaces. Our probability measure

space is (Ω, F, Pr), where Ω = {d(x, NNC(x))|x ∈ X, C ⊂ X} ⊆ [0, M ] is the sample space,

consisting in all possible distances from points in X to subsets of X , F is a Borel σ-algebra over

Ω (collection of subset of Ω closed on the operations of complement and disjoint union), which

constitutes the event space, and Pr is a probability measure over the σ-algebra, which assigns a

probability to each event. As an abuse of notation, we shall use inequalities (or other relations)

with the random variables in Ω representing elements of F , for example, Pr[Z < r], Z ∈ Ω, is the

probability measure associated with the event (a set A ∈ F ) where the relation is true. Similarly we

shall use a fashion of comprehensive set notation with inequalities (or other relations) and random

variables as a representation of events (sets in F ) where that relation is true, for example, {Z < r}
represents the event where a random variable Z is less than a fixed value r. Taking both notations in

consideration and the same example, Pr[Z < r] and Pr[{Z < r}] represents the same probability,

which is the measure of the event {Z < r} ∈ F .

The analysis will be developed supposing the framework of (R, c)-Nearest neighbors problem

and the random variables associated of the distance distribution. We will demonstrate that it is

possible to upper and lower bound the hashing probabilities using distance distribution information,

and under certain conditions, this may be shown to be locality-sensitive.

Theorem 3.1. The family of hash function {hC |hC : X → Z
+, with C ⊂ X and |C| = k} over

metric space (X, d), mapping a point to the index of the correspondent Voronoi region induced by

C, is locality-sensitive for every pairs of points p, q ∈ X and some fixed scalar r > 0, c > 3. In

other words:

• If d(p, q) ≤ r then Pr[hC(q) = hC(p)] ≥ p1 = Pr[|Zq − Zp| ≥ r] (probability of colliding

within the ball of radius r),

• If d(p, q) > cr then Pr[hC(q) = hC(p)] ≤ p2 = Pr[Zq + Zp ≥ cr] (probability of colliding

outside the ball of radius cr)

• p1 > p2, which is equivalent to Pr[|Zq − Zp| ≥ r] > Pr[Zq + Zp ≥ cr]
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p
q

NNC(p)

NNC(q)

Figure 3.3: Closed Balls centered at point q and p, illustrating the case where events with Zq + Zp ≤
d(p, q), which implies that NNC(p) 6= NNc(q)

Proof. Let us take two points, p and q, and look at the value of the random variables representing

the distance from a point to its nearest neighbor among the set C, Zp and Zq, and how their

outcomes might affect hC(p) and hC(q). We shall analyze the hashing probabilities in the case

where d(p, q) ≤ r, d(p, q) > cr and finally show how those probabilities are related.

Considering the case where d(p, q) ≤ r, by triangle inequality we have:

d(p, NNC(q)) ≤ d(p, q) + d(q, NNC(q)) = d(p, q) + Zq ≤ r + Zq

d(q, NNC(p)) ≤ d(p, q) + d(p, NNC(p)) = d(p, q) + Zp ≤ r + Zp

The probabilities of hC(p) 6= hC(q) is modeled as:

Pr[hC(p) 6= hC(q)] = Pr[{d(q, NNC(q)) < d(q, NNC(p))}, d(p, NNC(p)) < d(p, NNC(q))]

= Pr[Zq < d(q, NNC(p)), Zp ≤ d(p, NNC(q))]

≤ Pr[Zq < r + Zp, Zp < r + Zq] = Pr[|Zq − Zp| < r]

⇒ Pr[hC(p) 6= hC(q)] ≤ Pr[|Zq − Zp| < r]

Since Pr[hC(p) = hC(q)] = 1− Pr[hC(p) 6= hC(q)] we finally obtain:

Pr[hC(p) = hC(q)] ≥ Pr[|Zq − Zp| ≥ r] = p1

Consider the case where d(p, q) > cr. We define the events of interest ξ0 = {Zq + Zp < cr},
ξ1 = {Zq + Zp < d(p, q)} and ξ2 = {Zq < d(q, NNC(p)} ∩ {Zp < d(p, NNC(q)}.
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From the definitions and the hypothesis that cr < d(p, q):

Zp + Zq < cr ⇒ Zp + Zq < d(p, q)

⇒ ξ0 ⊆ ξ1

Applying triangle inequality we obtain in conjunction with Zp + Zq < d(p, q):







Zq + Zp < d(p, q) ≤ d(p, NNC(p)) + d(q, NNC(p)) = Zp + d(q, NNC(p))

Zq + Zp < d(p, q) ≤ d(q, NNC(q)) + d(p, NNC(q)) = Zq + d(p, NNC(q))

⇒






Zq < d(q, NNC(p))

Zp < d(p, NNC(q))

⇒ ξ1 ⊆ ξ2

⇒ ξ0 ⊆ ξ1 ⊆ ξ2

Knowing that the event ξ2 represents the situation where hC(p) 6= hC(q) we obtain a lower

bound for the hashing probabilities:

Pr[hC(p) 6= hC(q)] = Pr[ξ2] ≥ Pr[ξ0] = Pr[Zq + Zp < cr]

⇒ Pr[hC(p) = hC(q)] ≤ Pr[Zq + Zp ≥ cr] = p2

To show that p1 > p2 we have only a proof sketch that works under strict conditions. Start with

the complement event ξC
0 = {Zq + Zp ≥ cr}. Notice that cr > r and assume that Zq < δr (for

some δ > 1), meaning that the range r of search can not be less than a fixed factor of to the closest

cluster center (a limiting condition that does not hold in general). Putting all together:

Zq + Zp ≥ cr

⇒ Zq + Zp − 2Zq ≥ cr − 2Zq

Since Zq < δr, we know that −Zq > −δr

⇒ Zq + Zp − 2Zq = Zp − Zq ≥ (c− 2δ)r

Choosing c > 2δ + 1 we obtain

⇒ Zp − Zq ≥ r

⇒ {Zq + Zp ≥ cr} ⊆ {|Zq − Zp| ≥ r}
⇒ p2 ≤ p1

In order to finish the sketch-proof, consider the hypothetical case where Zq = r−ǫ and Zp = 2δr−ǫ,
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for an arbitrary ǫ > 0 (and maintaining the previous assumptions on δ and c). Taking Zp − Zq, we

obtain 2δr − ǫ − r + ǫ = (2δ − 1)r, meaning that |Zq − Zp| > r (Zp and Zq are elements of the

event {|Zq−Zp| ≥ r}). Computing Zp + Zq = 2δr− ǫ + r− ǫ, we obtain (2δ + 1)r− 2ǫ, implying

that Zq + Zp < (2δ + 1)r; Since (2δ + 1) < c (an assumption from the previous step of the proof),

we obtain Zq + Zp < cr , and conclude that {Zq + Zp ≥ cr} is a proper subset of {|Zq − Zp| ≥ r}
under the conditions we are analyzing.

⇒ p2 < p1

This is a generic result depending on some assumptions of the metric structure of the space and

a somehow reasonable workload of the (r, c)-ANN, but does not elucidate relationships between

the choice of variable (namely k and L) and the probabilistic guarantees of the method. Further

development in this line of argument is possible by observing that the distribution of the random

variables Zq and Zp may be understood as an order statistics over the distribution of distances in

the dataset. Indeed if we define the (unordered) sequence of random variable Zq(1), · · · , Zq(k) as

distances from q ∈ X to a each point {c1, · · · , ck} from a random sample C ⊆ X (|C| = k), the

random variable Zq correspond to the order statistics min(Zq(1), · · · , Zq(k)). We may compute the

cumulative distribution function (cdf) Fmin of the minimum order statistics using the hypothesis

that the random variables Zq(1), · · · , Zq(k) are i.i.d. (a not unrealistic one, given that the sample C is

randomly chosen from the original dataset) and are distributed according to a cdf F :

Fmin(x) = P (Zq ≤ x) = P (min(Zq(1), · · · , Zq(k)) ≤ x) = 1− P (min(Zq(1), · · · , Zq(k)) > x)

= 1− P (Zq(1) > x, · · · , Zq(k) > x) = 1−
i=k
∏

i=1

P (Zq(i) > x) = 1−
i=k
∏

i=1

(1− F (x))

⇒ Fmin(x) = 1− (1− F (x))k

The interesting fact about this relation is that somehow, without using the “concatenation”

trick (building a composite LSH hash using the concatenation of multiple LSH, implying in the

multiplication of the hashing probabilities), we achieved a similar exponential probability for the

nearest-neighbor distance probability from the distance distribution.

3.2 VoronoiPlex LSH

VoronoiLSH was our first attempt to develop a LSH family for general metric space, seeking good

trade-off between effectiveness, efficiency and generalization. We took a very simplistic design,

and as we have presented in the theoretical characterization of the method, despite the minimalistic

approach (in relation the other methods that directly apply various metric space properties for

filtering and pruning) the method achieves competitive average query time performance and can be
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The other three parameters have a non-trivial impact in selectivity and quality of the search that

we still need to further investigate. In the following sections, we will present a brief theoretical

characterization of this impact. Figure 3.4 presents an example with five shared centroids (k = 5),

four partitioning concatenated (w = 4) and three centroids in each partitioning (p = 3).

3.2.2 Algorithms

The algorithms for indexing and kNN searching are essentially the same described in Algorithm 1

and Algorithm 2, with the exception of the hash function. Hence, we will present the algorithm for

the construction of the hash function and for the application of the hashing to a point in the metric

space. We will assume that functions/methods are first class objects with the possibility of being

returned from a method, encapsulating data and computation.

Algorithm 5 performs a multiple selection of index and stores the selected indexes in a data

structure that represents the hashing function. The indexes selected are used as sub-samples of a

given sample of the dataset, and each group of selected indexes forms a set of centroid points that

spans a Voronoi partitioning of the space. Those k partitioning forms a product space of hash-vectors

of size k. The intuitive idea is to build up on the VoronoiLSH intuition, using the compact closest

center relation as a hashing function, and with a bounded number of distance computation, construct

a product space of hash function. The idea is to boost the single hash probabilities with a controlled

number of distance of computation.

input : Integer size k of the sample C = {c1, . . . , ck} ⊂ X , integer number of distinct

partitioning w, and integer number of centroids for each partitioning p < k

output: A hash function hk,w,p object with two arrays indicating the random choice of

centroids made by the method

selected← new binary array of size k;1

subsample← new integer multi-array of size w × p;2

for j ← 1 to w do3

Random sample S = {s1, · · · , sp} from {1, · · · , k};4

for i← 1 to p do5

subsample[j, i]← si;6

selected[si]← 1;7

end8

end9

hk,w,p ← (selected,subsample) ;10

Algorithm 5: Hash function building
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input : Hash function object hk,w,p,Sample C = {c1, . . . , ck} ⊂ X (|C| = k) and a point

q ∈ X

output: Integer value hk,w,p(q)

(selected,subsample)← retrieved from hk,w,p distances← new floating-point array of size k;1

for j ← 1 to k do2

if selected[j] == 1 then3

distances[j]← d(q, cj) ;4

end5

end6

hasharray← new integer array of size w;7

for i← 1 to w do8

hasharray[i]← element in subsample[i] that minimize distances[j] (varying j) ;9

end10

hk,w,p(q)← hash(hasharray) ;11

Algorithm 6: Hash function Application

3.2.3 Theoretical characterization

First, we must note that the hash function build procedure (Algorithm 5) is blind to the actual

data. It is a random selection of indexes of the arrays that store the sampled points. So in first

sight we can see that it could be precomputed, or at least re-used in various distinct settings of the

algorithm (for example, in a distributed memory system, there could be strong re-utilization of the

hash functions). The algorithm consist of two “for” loops and a simple random sample in a set of

k elements, resulting in a time complexity of O(w(p + k)) and a space complexity of O(k + wp)

(with size k of the sample C = {c1, . . . , ck} ⊂ X , integer number of distinct partitioning w, and

integer number of centroids for each partitioning p < k).

For the time complexity we will continue with the focus on expensive computation bottlenecks –

distance computation. The discussion will be focused on the expected number of positions in the

selected array that are set to one – IEi=1,··· ,k[selected[i] = 1].

Proposition 3.1. After w rounds of the outer “for” loop in Algorithm 5, the expected number of

position of the array selected set to one is IEi=1,··· ,k[selected[i] = 1] = k − k(1− p
k
)w.

Proof. Start with the probability of a specific position being assigned 1 in a single iteration of the

for loop. There are

(

k

p

)

possible ways of sampling p values from k. There are

(

k − 1

p

)

ways of

sampling p values of k excluding some value of the set with size k. So, the number of ways of
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sampling p and not assigning selected[i] one of them is

(

k − 1

p

)

. Putting all together:

Prsingle iteration[selected[i] = 1] = 1−

(

k − 1

p

)

(

k

p

) =
p

k

After w iteration, the probability of the position i not being assigned to 1 is multiplication of the

probabilities of not being assigned at each iteration.

Prafter w iteration[selected[i] 6= 1] =
w
∏

n=1

Prsingle iteration[selected[i] 6= 1]

Prafter w iteration[selected[i] 6= 1] = (1− p

k
)w

⇒ Prafter w iteration[selected[i] = 1] = 1− (1− p

k
)w

Using the probability of being assigned after w iterations of the for loop, we calculate the final

expectation of the number of elements in the array selected that are assigned to 1.

IEi=1,··· ,k[selected[i] = 1] = kPrafter w iteration[selected[i] = 1]

IEi=1,··· ,k[selected[i] = 1] = k − k(1− p

k
)w

This result is important because it helps us understand how the number of distance computation

(and the internal cost) of the hashing algorithm is bounded using the parameters that the hash

function is build and taking into account the randomness of the building algorithm. So in general

the internal cost, looking only for the number of distance computation is O(k − kǫ) where this ǫ

factor is well related with the effectiveness of the search.

3.3 Parallel VoronoiLSH

The design and adaptation of the original sequential algorithm for a distributed and parallel frame-

work was developed through a collaborative work of the author, Prof. Eduardo Valle, Prof. George

Teodoro and Thiago Teixeira. George Teodoro and Thiago Teixeira work is specialized in distributed

systems and they developed substantial part of the parallelization, specially the implementation us-

ing dataflow programming paradigm and performance test in a distributed cluster. This collaboration

resulted in an conference paper accepted at SISAP2014.

The parallelization strategy we employ is based on the dataflow programming paradigm [Arpaci-

Dusseau et al., 1999; Beynon et al., 2001; Teodoro et al., 2008]. Dataflow applications are typically
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represented as a set of computing stages, which are connected to each other using directed streams.

Our parallelization decomposes Voronoi LSH into five computing stages organized into two

conceptual pipelines, which execute the index building and the search phases of the application.

All stages may be replicated in the computing environment to create as many copies as necessary.

Additionally, the streams connecting the application stages implement a special type of commu-

nication policy referred here as labeled-stream. Messages sent through a labeled-stream have an

associated label or tag, which provides an affordable scheme to map message tags to specific copies

of the receiver stage in a stream. We rely on this communication policy to partition the input dataset

and to perform parallel reduction of partial results computed during a query execution. The data

communication streams and processes management are built on top of Message Passing Interface

(MPI).

The index building phase of the application, which includes the Input Reader (IR), Bucket Index

(BI), and Data Points (DP) stages, is responsible for reading input data objects and building the

distributed LSH indexes that are managed by the BI and the DP stages. In this phase, the input

data objects are read in parallel using multiple IR stage copies and are sent (1) to be stored into the

DP stage (message i) and (2) to be indexed by the BI stage (message ii). First, each object read

is mapped to a specific DP copy, meaning that there is no replication of input data objects. The

mapping of objects to DPs is carried out using the data distribution function obj map (labeled-stream

mapping function), which calculates the specific copy of the DP stage that should store an object as

it is sent through the stream connecting IR and DP. Further, the pair <object identifier, DP copy

in which it is stored> is sent to every BI copy holding buckets into which the object was hashed.

The distribution of buckets among BI stage copies is carried out using another mapping function:

bucket map, which is calculated based on the bucket value/key. Again, there is no replication

of buckets among BIs and each bucket value is stored into a single BI copy. The obj map and

bucket map functions used in our implementation are modulo operation based on the number of

copies of the receiver in a stream. We plan to evaluate other hashing strategies in the future.

The index construction is very compute-intensive, and involves many distance calculations

between the input data objects and the Voronoi seeds. For Euclidean data, we implemented a

vectorized code using Intel SSE/AVX intrinsics to take advantage of the wide SIMD (Single

Instruction, Multiple Data) instructions of current processors. Preliminary measurements have

shown that the use of SIMD instructions speeds-up the index building 8 times.

The search phase of the parallel LSH uses four stages, two of them shared with the index

building phase: Query Receiver (QR), Bucket Index (BI), Data Points (DP), and Aggregator (AG).

The QR stage reads the query objects and calculates the bucket values into which the query is

hashed for the L hash tables. Each bucket value computed for a query is mapped to a BI copy

using the bucket map function. The query is then sent to those BI stage copies that store at least

one bucket of interest (message iii). Each BI copy that receives a query message visits the buckets

of interest, retrieves the identifier of the objects stored on those buckets, aggregates all object

identifiers to be sent to the same DP copy (list(obj id)), and sends a single message to each DP

stage that stores at least one of the retrieved objects (message iv). For each message received by a

DP copy, it calculates the distance from the query to the objects of interest, selects the k-nearest



3.4. Final remarks 37

neighbor objects to the query, and sends those local NN objects to the AG stage. Finally, the AG

stage receives the message containing the DPs local NN objects from all DPs involved in that query

computation and performs a reduction operation to compute the global NN objects. The DP copies

(message v) use the query id as a label to the message, guaranteeing that the same AG copy will

process all messages related to a specific query. As a consequence, multiple AG copies may be

created to execute different queries in parallel. Although we have presented the index building and

the search as sequential phases for sake of simplicity, their executions may overlap.

The parallelization approach we have proposed exploits task, pipeline, replicated and intra-stage

parallelism. Task parallelism results from concurrent execution that allows indexing and searching

phases to overlap, e.g. during an update of the index. Pipeline parallelism occurs as the search

stages, for instance, execute different queries in parallel in a pipeline fashion. Replicated parallelism

is available in all stages of the application, which may have an arbitrary number of copies. Finally,

intra-stage parallelism results of the application’s ability to use multiple cores within a stage copy.

This parallelism has the advantages of sharing the same memory space among computing cores in a

stage copy, and a reduced number of messages exchanged, since a smaller number of state partitions

may be used.

3.4 Final remarks

We have demonstrated that using only metric space properties it is possible to design a LSH family

of function over general metric space, using a form of compact partition relation (inducing a

partitioning of the space in Dirichlet domains). Our mathematical proof is an original contribution

and one of the main contribution of this dissertation. However we should see experimentally how

this approach is comparable to other similar methods in the literature. We will accomplish this

comparison in the next chapter.



Chapter 4

Experiments

In this chapter the experimental data generated during this research is reported and discussed. This

is a recollection of at least four distinct groups of experiments performed in two years of research.

Since the development of the algorithms, and specially the parameters of the algorithms was done

in a cycle of theories, hypothesis and tests, the experimental data reported here is not homogeneous

nor along the datasets, neither along the methods. So for the case of Euclidean data, we compare the

performance of our proposed methods with the performance of K-Means LSH. When we are dealing

with metric data, K-Means LSH can not be directly applied (only with an additional embedding,

which is not the intent of this work), so we compare with another version of LSH for metric space

(BPI). In the large scale experiment our intent was not to compare with other methods, but evaluate

if the effectiveness and efficiency reported in the sequential small scale setup would scale-up in a

distributed framework.

4.1 Datasets

For the experiments regarding Euclidean Spaces and Image Retrieval we resorted to the APM

dataset (Arquivo Público Mineiro – The Public Archives in Minas Gerais) which was created from

the application of various transformation (15 transformation of scale, rotation, etc) to 100 antique

photographs of the Public Archives of Minas Gerais. The SIFT descriptors of each transformed

image were calculated, resulting in a dataset of 2.871.300 feature vectors (SIFT descriptor is a 128

dimensional vector). The queries dataset is build from the SIFT descriptors of the original images (a

total of 263.968 feature vectors). Each query point is equipped with its set of true nearest neighbors

– the ground-truth. For these experiments we used 5000 points uniformly sampled from the query

dataset and performed a 10-NN search.

In order to evaluate the case of general metric space we resorted to English dictionary of strings

and Listeria Genes string datasets with Levenshtein distance from SISAP Metric Library [Figueroa

et al., 2007]. The English dataset has 69,069 strings, 500 strings are randomly removed from the

set to serve as query dataset. In Figure 4.1 there are summarized information and graph regarding

string length distribution in those metric datasets. String length distribution affects directly for the
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respective brute-force linear scan runtime. Because the authors report their numbers graphically, we

added error bars to indicate the imprecision of our reading of their results.

Large-scale experiment : in this case the most important aspect to evaluate is the algorithm

speed up in the distributed configuration scaling-up the number of nodes and processors.

4.3 Evaluation Metrics

Given a query point q, we denote N(q, k) the set of true relevant k-nearest neighbors, A(q) the set

of candidate nearest neighbors (shortlist) and R(q, k) the set of k-nearest neighbors returned by the

algorithm. We are concerned especially with the relations between the recall and extensiveness

metric given the variation in the parametric space of the methods. The recall metric is the fraction

of total correct answers over the number of true relevant answers (Equation 4.1). The extensiveness

metric is the fraction of the dataset selected for the shortlist processing (Equation 4.2). The related

selectivity metric (Equation 4.3) has distinct (and sometimes conflicting) use in the database and

image communities.

We employ the recall as a metric of quality, and the extensiveness as metric of cost for the

techniques. The recall is defined as usual for information retrieval, as the fraction of relevant answers

that was effectively retrieved. The extensiveness metric is the fraction of the dataset selected into the

shortlist for linear scan. As the indexes work by selecting a (hopefully small) fraction of the dataset

as candidates, and then computing the actual distance to the query for those candidates, the size of

the shortlist corresponds to the number of distances computed for that query. The related selectivity

metric (selectivity = 1− extensivity) has distinct (and sometimes conflicting) use in the database

and image retrieval research communities: some authors used it as a synonymous for extensiveness,

while others and we use it as a complementary notion (as selectivity grows, extensivity drops).

We also employ the query runtime as metric of cost. Runtime metrics are difficult to compare

across the literature, due to differences in code optimization, programming language, and execution

environment, but in controlled experiments like ours they can offer a perspective on the cost of

different techniques.

Given a query point q, we denote N(q, k) the set of true relevant k-nearest neighbors, A(q) the

set of candidate nearest neighbors (shortlist) and R(q, k) the set of k-nearest neighbors returned by

the algorithm we define the recall, extensivity and selectivity metrics in Equation 4.1, Equation 4.2

and Equation 4.3.

recall(q) =
|R(q, k)|
|N(q, k)| (4.1)

extensiveness(q) =
|A(q)|

n
(4.2)

selectivity(q) = 1− |A(q)|
n

(4.3)
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4.4 Results

In the next section we will present our experimental results separated by datasets and methods. In

the Section 4.4.1 we will present the results using the APM dataset (Euclidean) which permits us a

comparison with K-Means LSH, since K-Means algorithm depends and uses specific coordinate

information that are not always available in generic metric spaces. In Section 4.4.2 the metric

dataset of words in English is used. Since the same dataset is used for reporting the results of

Brief-Permutation Index LSH, we use it for comparison of this alternative formulation of LSH

in metric spaces. It was shown in Figure 4.1 that the English dictionary is more easily processed

because of the limited and low length of the words, in the Listeria dataset the situation is much

more complicated because of the large variability and average lengths of words. We report results

of DFLSH and VoronoiPlex-LSH in this settings in Section 4.4.3. Finally in Section 4.4.4 the

results of the distributed large scale experiment using BigANN dataset (One billion of points of

124-dimensional euclidean points) are reported.
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improved by using more than one hash function (Figure 4.2b) . Clearly K-means LSH presents the

best result on the recall metric, however it is important to notice that both DFLSH and Voronoi LSH

are not exploiting any vector coordinate properties, relying solely on distance information, and are

therefore more general.

There seems to be a trade-off between number of cluster centers, number of hash functions and

selectivity. In Figure 4.2b we see a comparison of recall and extensiveness for a varying number of

hash functions. We observe results indicating that in some setups Voronoi LSH and DFLSH may

offer a better trade-off between quality of the response and selectivity than K-means LSH. It is not

clear what specific feature of those methods may trigger this improvement, but nonetheless it is

a very interesting result and may offer some precious intuition on the design of metric indexing

methods and choice of parameters.

Although K-means LSH attained the best results with a single hash table, the performance of

Voronoi LSH and DFLSH is comparatively better as the number of hash tables used increase (See

Figure 4.2b). As shown, in some setups Voronoi LSH and DFLSH may offer a better trade-off

between recall and selectivity than K-means LSH. For instance, for a recall of about 95% (L=5)

Voronoi LSH and K-means have extensiveness of nearly 0.013 and 0.018, respectively. In other

words, our method has to evaluate about 28% less elements in the final ranking phase. A similar

level of comparative performance is attained when with a recall of about 97% (L=8). In comparison

to DFLSH, our method attained better performance in all setups. The extensiveness results are very

important because the final ranking phase represents one of the bottlenecks of searching algorithms.

There is a strong linear correlation between query time and selectivity. Fitting this to a linear

model we obtain a very significant and well-adjusted linear model (R2 = 0.9985, p-value <

2.2×10−15), with a linear coefficient of 17756.205 for the extensiveness and an intercept coefficient

of −2.274. Other noticeable strong correlation appears between selectivity and number of cluster

centers (Figure 4.3a). Theoretically it is possible to show that, given an approximate uniform

population of points in the hash buckets, the selectivity for a k number of cluster centers is O(k−1).

The plot shows that the experimental data follows a power law curve. As presented, the extensiveness

of Voronoi LSH and DFLSH are higher than that of K-means LSH for small number of Voronoi

seeds. However, as the number of Voronoi seeds increase, the extensiveness of Voronoi LSH and

DFLSH reduce quickly and these methods outperform K-means LSH for a number of Voronoi seeds

higher than 1,000. It is important to highlight that small extensiveness are desirable and methods all

methods would attain better performance with Voronoi seed sets with more than 1,000 elements.

Therefore, the configuration in which Voronoi LSH and DFLSH are superior correspond to the

configuration used in practice.

Using DFLSH as a baseline, we plot the difference on the recall from K-means LSH and Voronoi

LSH to DFLSH (Figure 4.3b). The recall difference can be up to +0.05 for K-means LSH and

+0.015 for Voronoi LSH. The trend on the differences is sustained along the curves for different

values of extensiveness. There is a clear indication that Voronoi LSH is a viable approach with

equivalent performance to K-means LSH and DFLSH.
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Figure 4.4: Effect of the initialization procedure for the K-medoids clustering in the quality of

nearest-neighbors search

Initialization effect: First of all it is important to notice that the initial segment of the curves in

Figure 4.4 is not much informative - those points corresponds to a number of clusters up to 100,

implying in an almost brute-force search over the dataset (notice the explosion on the extensiveness

in Figure 4.3a). Figure 4.4 depicts the difference on the recall metric for the two initialization

algorithms, using the random selection as a baseline. The K-means++ initialization affects positively

the results with average gain of 1%. On the other hand, the Park and Jun initialization does not

present considerable gain over the random baseline (in fact, the average gain is negative). Our

analysis indicates that the K-means++ initialization can contribute to better results in the recall

metric, while the Park and Jun method presents a null effect (or negative). This graph is averaged

over 16 runs of the algorithm and the error bars depicts the standard deviation.

4.4.2 Dictionary Dataset: Comparison of Voronoi LSH and BPI-LSH

We compared our Voronoi LSH with Brief Permutation Indexing (BPI) LSH [Tellez and Chavez,

2010] in a sequential (non-distributed) environment. We implemented our Voronoi LSH on Java

with The Apache Commons Mathematics Library2. Also included is Distribution-Free LSH

(DFLSH) [Kang and Jung, 2012], which we evaluate as a specific configuration of our imple-

mentation of Voronoi LSH with the seeds of the Voronoi diagram chosen at random.

2 Commons Math: The Apache Commons Mathematics Library. http://commons.apache.org/proper/

commons-math/
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Figure 4.8 presents the performance of the VoronoiLSH using random samples as centroids

over the Listeria gene dataset for 5-NN search. It is possible to see that analyzing less than 1%

of the dataset the method achieves more than 85% of recall and, and by a trade-off with memory

(L = 3 hash table) and processing roughly 1% of the dataset it achieves 94% of recall. It seems very

promising to achieve such high rates of recall processing so little of the dataset. Figure 4.9 report

similar results using VoronoiPlex LSH, varying the key length w. It is possible to see the obvious

recall gain by the use of multiple hash tables, but it is not clear yet how the different parameters of

this method relate with each other to achieve a certain recall result.
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Chapter 5

Conclusion

Efficient large-scale similarity search is a crucial operation for Content-based Multimedia Infor-

mation Retrieval (CMIR) systems. But because those systems employ high-dimensional feature

vectors, or other complex representations in metric spaces, providing fast similarity search for

them has been a persistent research challenge. LSH, a very successful family of methods, has been

advanced as a solution to the problem, but it is available only for a few distance functions.

Voronoi diagrams has been long established as one of the top method for solving nearest-

neighbor queries in two dimensional Euclidean spaces. However, difficult to generalize due to the

necessity of an exponential amount of space to maintain the polygons that represent the Voronoi

region. Nevertheless there has been a variety of methods in high-dimensional Euclidean spaces using

K-Means (or other Vector Quantization methods) for Nearest-Neighbor queries, and after some

analysis, it is possible to see the k-means partitioning and Vector Quantization as a form of Voronoi

partitioning of the data, but dropping the need to store the partition polygons, maintaining only a

central element as a representative of the partition. We pursue this same idea for general metric

space and use it to address the limitation of possible distance and space for hashing, by extending

LSH to general metric spaces, using a Voronoi diagram as basis for a LSH family of functions

using “central” points to represent the partitioning. We have proposed a method that follows a

more directly the application of this general idea of partitioning (VoronoiLSH) and another one

that builds up on this idea in order to create a more selective hash (VoronoiPlex LSH). The central

theoretical development is a proof that VoronoiLSH is (r, cr, p1, p2)-locality sensitive hashing family

under some limited assumptions and that the average performance of the method is sub-linear. The

extension of the analysis for VoronoiPlex is natural and is similar to the concatenation “trick” used

on the original formulation of LSH, nevertheless a follow-up work should be done in order to be

obtained a more complete theoretical characterization of VoronoiPlex. In the algorithm design,

to avoid repetitive distance calculations, we added a structure maintained the index of the points

selected for a group of hash functions and also presented results characterizing the expected number

of points shared by the group of hash functions – it remains open to investigation how this additional

structure can affect the final quality.

Our experiments show our partitioning strategy to index the data works well both for metric and
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for Euclidean data. The experiments do not show any clear advantage in learning the seeds of the

Voronoi diagram by clustering: a random choice seems to work just as well. Further experimental

evaluation and theoretical analysis should be pursued in order to confirm or discard the advantages

of learning the centroids. If learning does not play a key role in quality of the search, it will also

be an important hint for scalability, since clustering is expensive. On the other hand, clustering

might in some cases affect query times, which is surprising. This seems to be due to a more uniform

partition of the data, since random seeds tend to create an unbalanced distribution of the dataset on

the buckets of the hash tables. The large-scale experiments show that our proposed parallelization

has very modest overhead and scales-up well even for a very large collection.

5.1 Open questions and future work

This work is certainly not exhaustive and there is many opened doors to pursue. One of the more

central problems is related to the probabilistic bounds of the hashing methods. The question is

how can we integrate our analysis, with other in the similarity metric space framework that uses

concentration of measures [Pestov, 2000, 2008; Volnyansky and Pestov, 2009] and unveil the role

of intrinsic dimensionality in the case of hashing-based methods for metric indexing, following,

for example, interesting relationship between intrinsic dimensionality and discriminability [Houle,

2013]. Another possible fruitful direction would be to follow recent developments in the area of

Ptolemaic Indexing, which assumes a more specific inequality axiom (more specific compared to

the triangle inequality), and analyze how the proposed methods would work under those different

assumptions and design possible adaptations of the method for this different setup.

5.2 Concluding Remarks

This work present two randomized hashing methods designed to approach the problem of similarity

search in general metric spaces: VoronoiLSH and VoronoiPlex LSH. Those methods are natural

extension to the metric space framework of the established Locality-Sensitive Hashing designed for

Hamming, Vector (Angular) and Euclidean Spaces. We offered theoretical characterization of the

methods using limiting bounds on the hashing collision probabilities, and average case performance

of the search algorithms. Experimental validation and performance comparison with other methods

in the literature were presented and the results are good.

We developed, in a collaboration work, a parallelization of the VoronoiLSH algorithms and

performed weak scaling experiments on the a thousand million high dimensional points dataset and

conclude that the parallel algorithm presented very modest parallelization overhead.

All evidences suggest that using metric partitioning techniques for designing hashing functions

for metric space is an effective technique and should be further explored and developed.

We reported to the community two of these results: an initial article presenting VoronoiLSH in

a national event (SBBD 2013) and an article describing the parallelization of VoronoiLSH to be

presented in an international event (SISAP 2014):
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• Eliezer Silva, Thiago Teixeira, George Teodoro, and Eduardo Valle. Large-scale distributed

locality-sensitive hashing for general metric data. In Similarity Search and Applications

- Proceedings of the 7th International Conference on Similarity Search and Applications.

Springer, October 2014

• Eliezer Silva and Eduardo Valle. K-medoids lsh: a new locality sensitive hashing in general

metric space. In Proceedings of the 28th Brazilian Symposium on Databases, pages 127–

132, Brazil, 2013. SBC. URL http://sbbd2013.cin.ufpe.br/Proceedings/

artigos/sbbd_shp_22.html
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Loı̈c Paulevé, Hervé Jégou, and Laurent Amsaleg. Locality sensitive hashing: A comparison

of hash function types and querying mechanisms. Pattern Recognition Letters, 31(11):1348–

1358, August 2010. ISSN 01678655. doi: 10.1016/j.patrec.2010.04.004. URL http://

linkinghub.elsevier.com/retrieve/pii/S0167865510001169.



BIBLIOGRAPHY 60

Vladimir Pestov. On the geometry of similarity search: Dimensionality curse and concentration

of measure. Information Processing Letters, 73(1–2):47 – 51, 2000. ISSN 0020-0190. doi:

http://dx.doi.org/10.1016/S0020-0190(99)00156-8. URL http://www.sciencedirect.

com/science/article/pii/S0020019099001568.

Vladimir Pestov. An axiomatic approach to intrinsic dimension of a dataset. Neural Networks, 21

(2):204–213, 2008.
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Figure A.1: Class diagram of the system
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