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“Music is the hidden arithmetical exercise of a mind

unconscious that it is calculating”

(Gottfried Wilhelm Leibniz)



Abstract

Audio-to-MIDI conversion can be used to allow digital musical control through an analog

instrument. Audio-to-MIDI converters rely on fundamental frequency estimators that are

usually restricted to a minimum delay of two fundamental periods. This delay is percepti-

ble for the case of bass notes. In this dissertation, we propose a low-latency fundamental

frequency estimation method that relies on speciĄc characteristics of the electric bass gui-

tar. By means of physical modeling and signal acquisition, we show that the assumptions

of this method are based on the generalization of all electric basses. We evaluated our

method in a dataset with musical notes played by diverse bassists. Results show that our

method outperforms the Yin method in low-latency settings, which indicates its suitability

for low-latency audio-to-MIDI conversion of the electric bass sound.

Keywords: f0 estimation; low latency, Audio-to-MIDI converter; Music information re-

trieval; MIDI-bass.



Resumo

A conversão de áudio para MIDI pode ser usada para permitir o controle musical digital

por meio de um instrumento analógico. Os conversores de áudio para MIDI dependem

de estimadores de frequência fundamental que são frequentemente restritos a um atraso

mínimo de dois períodos da frequência fundamental. Este atraso é perceptível no caso de

notas graves, pois as frequências fundamentais tem períodos mais longos. Nesta disserta-

ção, propõe-se um método de estimativa da frequência fundamental de baixa latência que

se baseia em características especíĄcas do baixo elétrico. Por meio de modelagem física

e aquisição de sinais, mostramos que o método se baseia na generalização para todos os

baixos elétricos. Avaliamos nosso método em um conjunto de dados com notas musicais

tocadas por diversos baixistas. Os resultados mostram que nosso método supera o método

Yin em conĄgurações de baixa latência, o que indica sua adequação à conversão de baixa

latência de áudio em MIDI do som de baixo elétrico.

Palavras-chaves: Estimador de f0; Conversor de áudio para MIDI de baixa latência;

Recuperação de informações musicais; Baixo MIDI.
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1 Introduction

Digital instruments and controllers commonly use communication protocols

such as the MIDI (Musical Instrument Digital Interface) standard to communicate with

each other. This allows combining different digital synthesizers, controllers, and effect

racks, which expands the expressive possibilities related to timbres, musical performances,

musical recordings, and notations (GIBSON J., accessed 05/9/2019). This toolchain can

also include analog instruments by means of audio-to-MIDI converters (DERRIEN, 2014).

Audio-to-MIDI converters are devices that aim at identifying the notes played

by an instrument in real-time or retrieving them from an audio Ąle. For such, they use a

perceptual model that relates the fundamental frequency (f0) of an audio signal of a tonal

sound to its pitch (P., 2003). Many well-known algorithms aim at estimating f0, such as

the autocorrelation (Rabiner, 1977) and the Yin method (CHEVEIGNé; KAWAHARA,

2002).

f0 estimators commonly aim at Ąnding periodicity in a signal 𝑠j. The periodicity

is based on the model

𝑠t = 𝑠t+kT0
, (1.1)

where 𝑇0 is the fundamental period of 𝑠t and 𝑘 ∈ Z. Methods that rely on this property

commonly require analyzing at least two fundamental periods of the signal. This incurs

in a lower-bound for the latency of Audio-to-MIDI conversion that can be close to 50 ms

for the lowest notes (41.2 Hz) in standard 4-string electric basses. These long delays are

perceptually detectable and this can impair the use of basses as a MIDI controller.

In this work, we aimed at attenuating this problem using an f0 estimation

method especially crafted for the electric bass guitar. The method exploits speciĄc prop-

erties of the electric bass guitar waveform. Our method allows f0 estimation with an

algorithmic latency of 1.1 times the fundamental period of the signal, which is about 27

ms for the lowest frequency note of the four-string traditional bass guitar.

Experimental results show that this method is effective with an error rate of

15%. This is half the error rate of Yin, the baseline method, when an equal latency is

considered. The method was tested for the frequency range from 41.2 Hz to 392 Hz, that

is, from the lowest to the highest note of the standard four-string electric bass guitar.
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2 Theoretical Background

2.1 Pitch theory

Pitch is a psychoacoustical attribute of the sound related to the perception of a

repetition rate of a waveform (HELLER, 2012) above 20 Hz, in which it is perceived not as

rhythm but as tone. The lowest regular repetition rate is called Fundamental Frequency

(f0) and can be used to decompose harmonic complex tones into sinusoidal harmonic

components whose frequencies are multiple integers of the fundamental frequency 𝑓0,

that is:

𝑠t =
M
∑︁

m=1

𝑎m cos(2Þ𝑚𝑓0𝑡 + ãm). (2.1)

The relative harmonic amplitudes 𝑎m, among other attributes, are commonly

associated with timbre differences, and the fundamental frequency 𝑓0 is closely related

to the sensation of pitch (OXENHAM, 26 September 2012). In this study, we assume

that the fundamental frequency is the physical counterpart of the psychological sensation

of tonality, commonly named as pitch, hence estimating the fundamental frequency is

equivalent to Ąnding the pitch of a signal.

Moreover, perfectly periodic waveforms are rare, because in the real world the

signals differ between each repetition, even if small. Thus it is interesting to extend the

concept of the pitch to quasi-periodic signals, that is, waveforms that are not perfectly

identical in each cycle but have reasonable similarities between them to the point where

they can be identiĄed as repetitions. Within this concept, the signals can be modulated,

turned off and on, and yet have a pitch. Still, there are exceptions to pitch determination

by fundamental frequency such as non-periodic but pitch-evoking signals (CHEVEIGNé;

KAWAHARA, 2002).

The human ability to detect the pitch of a sound, that is, human tonal per-

ception, has been linked to biological traits such as the periodicity of neural patterns

(CARIANI; DELGUTTE, 1996) and the harmonic partial pattern present by the cochlea

(TERHARDT, 1974). Tonal perception allows us to perceive the amount of repetition of

events that are too fast to be counted (FORNARI, 2010).

In music, several standards deĄne the tuning frequency for each note. The

most commonly used nowadays is called Pitch International Standard, which deĄnes the

fundamental frequency of the note A above middle C should be 440 Hz (ISO16:1975-

ACOUSTICS, 1975).
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For the western music, in the equal tempered chromatic system, the frequency

variation between one note and the next is 2
1

12 and the variation given an interval Δnotes

of notes is given by the equation (IAZZETTA, accessed 04/25/2019):

Δfreq = 𝑓12
∆notes

12 (2.2)

where 𝑓1 is the frequency of the lower note in the interval.

Using this rule, the fundamental frequency is set for every note. Some examples

are shown in Table 2.1

Table 2.1 Ű Some notes and their respectives frequencies e periods.

Note Frequency (Hz) Period (ms)
A 2 220. 4.545
A# 2 233.08 4.29
B 2 246.94 4.05
C 3 261.62 3.822
C# 3 277.18 3.608
D 3 293.66 3.405
D# 3 311.12 3.214
E 3 329.62 3.034
F 3 349.22 2.863
F# 3 369.99 2.703
G 3 391.99 2.551
G# 3 415.30 2.408
A 3 440. 2.273

2.2 Pitch detection

Human beings are able to hear frequencies from 20 Hz to 20 kHz and our

ability to interpret them comes from the cochlea, more speciĄcally from the organ of

Corti, which has thousands of ciliated cells. Depending on the components present in

the sound, different regions of this organ resonate and the ciliated cells connected to that

region generate electrical impulses that will be transported by the auditory nerve for later

interpretation as sound. So we can interpret it from its various components, detecting the

pitch of a quasiperiodic sound, usually by its Lower component (FORNARI, 2010).

Based on various mathematical principles, various methods have been devel-

oped for determining the pitch of a signal. Assuming pitch is an auditory sensation related

to the fundamental frequency of a periodic or pseudo-periodic waveform, it is sufficient

to determine the interval 𝑇0 between its repetitions and then Ąnd f0 through its inverse.

This can be simple for perfectly sinusoidal signals, but natural waveforms are diverse and

can have many harmonic components that make the task difficult (GERHARD, 2003).









Chapter 2. Theoretical Background 21

popular to discriminate whether audio is a speech or a song. However, it is widely used

in a wide range of other audio applications such as musical genre classiĄcation, speech

analysis, and environmental sound recognition (MITROVIć, 2010).

ZCR of a signal is the rate at which that signal varies its sign over a given

time interval or frame. Thus, this determines how many times the signal has varied from

positive to negative and negative to positive, divided by the total frame size (GIAN-

NAKOPOULOS T., 2014). The following equation deĄnes the zero-crossing rate:

𝑍n =
1

2𝑊L

WL
∑︁

n=1

| sign[𝑠n] − sign[𝑠n⊗1]|, (2.5)

where 𝑊L is the frame lenght, 𝑠n is the input signal to be analyzed and sign[] is the sign

function, i.e.

sign[𝑠n] =

⎧

⨄︁

⋃︁

1 , if 𝑠n ≥ 0,

−1 , if 𝑠n < 0,

⎫

⋀︁

⋂︁

(2.6)

The ZCR is also used for determining the fundamental frequency. The basic

idea is that the zero-crossing rate should be directly related to the number of waveform

repetitions, but problems arise in determining f0. For a waveform without or with few

higher harmonics, as in Figure 2.7 (a), the signal crosses zero only twice. In the case of

the waveform of Figure 2.7 (b), due to the strong presence of higher frequency harmonics,

the signal crosses zero several times. Thus it is difficult to determine a zero-crossings

pattern that allows us to estimate f0. To try to avoid this problem, the ZCR fundamental

frequency detector can use a low pass Ąlter, but this naturally implies a delay in the

signal, affecting the overall process latency (GERHARD, 2003).

2.3.2 Autocorrelation

It is possible to measure the similarity between two signals using the correlation

function, which compares and determines the similarity of two waveforms at different

intervals. It presents a function that shows how similar two similar signals are for different

intervals between the start of the two waveforms. Autocorrelation is the application of

the correlation between a waveform and itself and is deĄned by the following equation:

𝑟t(á) =
t+WL
∑︁

n=t+1

𝑠n𝑠n+τ (2.7)

The autocorrelation 𝑟t(á) is a measure of the similarity between the signal 𝑠n

and a temporally shifted version 𝑠n+τ of itself analyzed over a window with length 𝑊L.
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as:

𝑠nh = cos(Ω0𝑛 + 𝜙0) = cos(ãn), (2.14)

where the fundamental frequency is:

Ω0 = 𝑘0

2Þ

𝑊L

. (2.15)

Therefore the fundamental frequency also can be represented as the derivative

of the cosine argument ãn by 𝑛,

Ω0 =
𝑑ãn

𝑑𝑛
, (2.16)

Using the phase difference Δãn between two discrete Fourier transforms from

the same signal shifted of 𝑅 samples, this derivation can be approximated as:

Ω̂0 =
Δãn

𝑅
. (2.17)

To estimate the corrected fundamental frequency of an input signal that con-

tains harmonics is to select, for a given frame, the pitch candidate with the lowest corrected

frequency. The following equation is used to calculate the corrected frequency for pitch

candidates:

𝑓0 =
1

2Þ
Ω̂0𝑓s =

1
2Þ

𝜙2u − 𝜙1

𝑅
𝑓s. (2.18)

where 𝜙1 is the phase angle at bin 𝑘0 of the Ąrst DFT.

The real unwrapped phase 𝜙2u is calculated as sum of the expected phase and

the phase error:

𝜙2u = 𝜙2t + 𝜙2err (2.19)

The expected phase 𝜙2t after a progression of 𝑅 samples can be calculated

with:

𝜙2t = 𝜙1 +
2Þ

𝑊L

𝑘0𝑅 (2.20)

and the phase error 𝜙2err is given by:

𝜙2err = 𝜙2 − 𝜙2t, (2.21)
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is converted to a logarithmic scale and then the Fourier transform is applied again, ob-

taining the power cepstrum, a function in a domain very related to the time domain,

called quefrency. It has peak values that correspond to the period of the input signal, as

shown in Figure 2.12. BrieĆy, an attempt is made to determine the frequency of the input

signal spectrum (Singh; Kumar, 2014).

However, the method may present incorrect results if the input signals have

an inharmonic spectrum or the single-partial spectrum of a sinusoid, as it assumes that

the signal has regularly-spaced harmonics.

2.3.6 Harmonic product spectrum

The determination of the fundamental frequency of a signal can also be done

by using the method called Harmonic product spectra, widely-used when there is a con-

siderable presence of noise.

The main idea of this method is that the pitch peaks in the log spectrum are

multiples of the fundamental frequency. Thus, adding some compressed versions of the

spectrum would result in a large peak at the point of coincidence of these harmonics, as

shown in Figure 2.13. This is because the pitch peaks in the log spectrum are coherently

added while the rest of the log spectrum is uncorrelated and add non coherently (NOLL,

1970). Figure 2.13(a) shows the spectrum from waveform presented in Figure 2.6, Fig-

ure 2.13(b), (c) and (d) shows the compressed versions of this spectrum and Figure 2.13(e)

present the resulting Harmonic Product Spectrum.

The Harmonic Product Spectrum is deĄned as:

Þ(æ) =
M
∏︁

m=1

𝑆k(𝑚æ), (2.24)

where 𝑆k(𝑚æ) is the input signal 𝑆n spectrum compressed by 𝑚 and 𝑀 is the number

of compressed versions of the spectrum. After this processing, the argument of the global

maximum of à corresponds to the f0.

2.3.7 Harmonic Sum Spectrum

Frequency-compressed versions of power Spectrum also present the same co-

herent sum of the log spectrum, making it possible to use the Harmonic Sum Spectrum

method to determine the fundamental frequency.

The Harmonic Sum Spectrum is obtained by adding the Spectrum of the input

signal to its sub-sampled versions of itself (NOLL, 1970). This corresponds to calculating:
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sinusoids described by:

𝑑n =
K⊗1
∑︁

k=0

Ðk𝑧n
k . (2.27)

The complex amplitude Ðk is:

Ðk = 𝑎k𝑒iφk (2.28)

where 𝑎k is the initial amplitude and ãk is the phase.

The poles 𝑧k is:

𝑧k = 𝑒⊗dk+2iπνk (2.29)

where 𝑑k is the damping and Ük is the normalized frequency.

The stochastic part, 𝑤n, is white Gaussian noise.

The model parameters are estimated with a method derived from the ESPRIT

algorithm (BADEAU; DAVIDWANG, 2002). This phase is similar to spectral analysis and

a peak-picking stage, presented earlier in this work.

The estimation algorithm consists in Ąnding the best values of 𝑘, Ðk and 𝑧k

for a given signal in the least square sense, using an estimation algorithm proposed by

Badeau and Wang (2002).

Then a statistical model is used to determine the most likely fundamental fre-

quency within the set of partials obtained in the previous step. This is done by calculating

the likelihood function of the fundamental frequency based on the probabilistic model of

the partials found so that the global maximum of this function is the best estimate for the

fundamental frequency. The probabilistic model used is a modiĄcation of that proposed

by B. Doval and X. Rodet (1991), with fewer parameters, not depending on the learning

database, as the original.

2.3.9 Yin method

Autocorrelation, presented earlier, commonly peaks not only with each wave-

form repetition but also due to the harmonics present in the signal. This creates difficulties

for fundamental frequency estimators that use autocorrelation, as they are eventually un-

able to determine if a peak is relative to the fundamental frequency or signal harmonics.

The Yin method was proposed by Cheveigné and Kawahara. It is based on

the same assumptions as of the autocorrelation method, with the addition of a series of

modiĄcations that reduce errors. The name of the method ( Yin) alludes to the Yin and
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Yang of Eastern philosophy, alluding to the search for the balance between autocorrelation

and cancellation proposed by the method to reduce errors.

The method consists in the application of 6 steps that reduce the error rate

in the fundamental frequency estimation (CHEVEIGNé; KAWAHARA, 2002). Next, we

brieĆy describe the improvements applied to each step according to the authorsŠ study

information.

2.3.9.1 Step 1: The autocorrelation method

In the Ąrst step, the method uses autocorrelation, presented in the previous

subsection, obtaining an error rate of 10 % in the estimate of f0 when applied to the

database presented in the study of its authors. As shown in the next steps, autocorrelation

will no longer be used by the method.

2.3.9.2 Step 2: Difference function

In the second step of the method, the autocorrelation function is replaced by

the difference function, reducing the error rate to 1.95%. Here the period is no longer

deĄned by the largest peak, but by the largest dip in the function. A possible cause

for this reduction would be the high sensitivity of autocorrelation to amplitude changes,

so that, increases in signal amplitude lead the method to choose correlation function

peaks from harmonics rather than fundamental ones. Figure 2.15 presents the difference

function calculated from the waveform of Figure 2.6. The difference function is deĄned

by the equation:

𝑑t(á) =
WL
∑︁

n=1

(𝑠n − 𝑠n+τ )2. (2.30)

where 𝑠n is the input signal and 𝑠n+τ a á samples shifted version of itself analyzed over a

window with length 𝑊L.

2.3.9.3 Step 3: Cumulative mean normalized difference function (CMNDF)

In the third step, the difference function is replaced by the cumulative mean

normalized difference function reducing the error rate a little more. As can be seen in

Figure 2.16, unlike the difference function, which starts at 0, the (CMNDF) starts at

1, eliminating the need for an upper frequency limit. This limit is required when the

difference function is used, so that the Ąrst dip does not be selected as the fundamental
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2.3.9.4 Step 4: Absolute threshold

The fourth step is the use of an absolute threshold that decreases by approx-

imately half the error rate obtained in the previous step, which generates a normalized

function. This Absolute threshold is represented by the dashed horizontal line in Fig-

ure 2.16. Using this threshold, dips above this value are disregarded, avoiding the selection

of harmonic generated dips.

2.3.9.5 Step 5: Parabolic interpolation

In the Ąfth step, a parabolic interpolation of the minimum location is included,

but the reduction in the error rate is minimal. The idea is that this reduces the error when

the period is not a multiple of the sampling period which could lead to an error of up to

half of the sampling period.

2.3.9.6 Step 6: Best local estimate

In the sixth step a new estimate is made, but now only in the vicinity of the

location indicated by the Ąrst estimate in order to Ąnd the best local estimate. Seeking

around 20% variation around the initial estimate, we obtained a reduction of approxi-

mately 1/3 in the error rate compared to the previous step.

Version Error rate (%)
Step 1 10
Step 2 1.95
Step 3 1.69
Step 4 0.78
Step 5 0.77
Step 6 0.50

Table 2.2 Ű Error rates after application of each step of Yin method.

According to the study of Cheveigné and Kawahara (2002), the error rates

obtained by the Yin method are about one-third times lower than the best competing

methods, as evaluated over a database of speech recorded together with a laryngograph

signal. The error rates at each step are shown in table 2.2.

2.4 Discussion about pitch estimation methods

All the methods discussed in the previous section directly rely on the periodic-

ity property as stated in Equation (1.1) or the harmonic series model shown in Equation

(2.1). This allows them to be applicable for the general case of Ąnding pitch in periodic

signals but bounds them to a minimum delay of twice the fundamental period.
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In this work, we propose a pitch detection method that relies on speciĄc char-

acteristics of the plucked electric bass string. This restricts our method to signals gener-

ated by this speciĄc instrument. However, it allows reducing the delay to 1.1 times the

fundamental period, which is very close to the theoretical minimum latency.

This reduction is critical for real-time pitch detection in lower-pitch notes. In

this range of notes, general-purpose methods require a delay of around 50ms to work

properly. Our method allows detecting the same pitch with a delay of around 30ms.

The method proposed by (DERRIEN, 2014) also indicates to estimate f0 close

to the theoretical minimum latency, i.e. the fundamental period of the lowest observable

pitch, but with higher computational complexity, which can be problematic for embedded

real-time applications, which can lead to an increase in delay due to computational cost.

The proposed method is based on speciĄc properties of the plucked electric

bass signal. These properties are analyzed using a physical model, which guides its gen-

eralization possibilities. Then, the proposed model is compared to the Yin method using

a dataset containing recordings from electric bass guitars.

For comparison purposes, the Yin method was chosen as the reference method.

In addition to presenting excellent performance as shown in (CHEVEIGNé; KAWAHARA,

2002) study, it is commonly used as a reference method, as in the study by (DERRIEN,

2014), addressed in this work. It was also chosen because it is a well-known and cited

method, as in the works of (GERHARD, 2003) and (KNESEBECK; ZOLZER, 2010),

also cited in this work, counting more than 1300 citations according to the portal (RE-

SEARCHGATE, accessed 06/02/2020).

2.5 Latency

The human perception of sounds is very sensitive to its temporal character-

istics. Therefore, audio delays are experienced in many different scenarios and for many

different reasons and is called latency. In the context of this work, the sound delay refers

to the time elapsed between an initial event, such as playing a note on the electric bass

guitar, for example, and a second event, such as the moment when the sound is perceived

by a speciĄc listener.

When you hear the sound from a sound source a few meters away, there is

a delay due to the amount of time it takes for this sound to travel through space over

that distance. For example, in a room with a temperature of 20oC, the speed of sound

is approximately 323.3 meters per second, which causes a delay of 2.91 milliseconds per

meter of distance between the sound source and the listener. This delay or the delay
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between two sound events can be large enough to be noticed and often causing several

negative effects.

In music applications latency can be a very serious problem as it directly im-

pacts musiciansŠ performance in many ways, making it difficult to maintain steady tempo,

rhythmic synchronism between musicians and even tuning depending on the instrument

(GREEF, 2016).

2.5.1 Causes for Latency

There are many causes of unwanted delays. In orchestras, for example, musi-

cians on opposite sides can experience latencies of up to 80 milliseconds due to the time

it takes the sound to propagate through the distance between one musician and another.

Nowadays in most current performances, musicians use close speakers and headsets as

feedback, most of the latency comes from processing audio signals (GREEF, 2016).

Digital processing of an instrumentŠs audio signal implies a series of delays,

starting with converting the analog to a digital signal at the system input and from digital

to analog at the output. Buffering digital samples and phase delay of digital Ąlters also

add latency. Finally, the time required for processing the audio samples according to the

applications used (WANG, 2017).

In the case of audio-to-midi converters, besides the time spent performing the

algorithm operations to determine the fundamental frequency of the signal, there is still

the necessary interval from the onset of a note played on the instrument for the algorithm

to estimate what is the fundamental frequency. Most f0 estimators need at least two

periods to accomplish its task.

2.5.2 Tolerable Latency

The perception of how much a certain amount of latency bothers, hinders, or

even precludes the correct use of the instrument by the musician depends on the type

of instrument played and also on the musicianŠs listening skills. For example, musicians

such as professional saxophonists are more affected by latency and need more immediate

feedback, considering a latency of up to 10 milliseconds as acceptable, while keyboard

players have a higher latency tolerance, considering latencies of up to 40.5 milliseconds

as acceptable (LESTER; BOLEY, 2007).

A previous study (LESTER; BOLEY, 2007) has investigated the acceptable

latency in live sound applications for different professional musicians using in-ear moni-

toring (IEM) or wedge monitoring. The results of this study are presented in Table 2.3.
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Latency (ms) Sax Vocals Guitar Drums Bass Keys
IEM Good 0 1 4.5 8 4.5 27
Wedge Good 1.5 10 6.5 9 8 22
IEM Fair 3 6.5 14.5 54.5 25.5 46
Wedge fair 10 26 16 25 30 40.5

Table 2.3 Ű Tolerable latency - Instruments comparison using in ear monitoring (IEM)
and wedge monitoring (LESTER; BOLEY, 2007)

2.5.3 Latency Discussion

Table 2.3 shows that professional bassists consider a latency of up to 30 mil-

liseconds acceptable when using wedge monitoring. However, as already seen, most al-

gorithms require the use of at least two periods to estimate f0, and the lowest note of

a traditional four-string bass, E0, has a period of 24.27 milliseconds. That is, only the

algorithmic delay for these methods is at least 2 × 24.27 = 48.54 milliseconds.

The method proposed in this study estimates the fundamental frequency using

a time interval of 1.1 times the period, starting from the note onset. For the same note E0,

the algorithmic delay is 1.1 × 24.57 = 26.697 milliseconds, within the latency considered

acceptable by professional bassists.

2.6 The electric bass guitar

The electric double bass, also known as electric bass, or simply the bass, is an

electroacoustic musical instrument and can be described as a plucked box-chordophone

with a solid body instead of a hollow resonator. It receives the classiĄcation 513 - Electro-

acoustic chordophones in the Revision of the Hornbostel-Sachs ClassiĄcation of Musical

Instruments (MIMO, 2011).

In both its appearance and construction, the electric bass guitar is similar to

the electric guitar, but has a larger neck and the most common models have four strings,

not six like the guitars and are tuned one octave lower than the four lower strings of the

guitar (STRINGVIBE, accessed 12/10/2019b).

The double bass, acoustic musical instruments with approximately 180 cm and

usually tuned the same way as the electric bass, have been replaced by those since the

1960s in most popular musical productions, taking on the role of the bass instrument in

the rhythm section of musical ensembles.

Many musical styles rely on the presence of the electric bass, such as blues,

jazz, rock, metal, pop, reggae, and many others. Although bassists play very varied

melodic lines, electric basses perform a similar function in most of these musical styles.
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This function is to set the rhythm and set the harmonic framework (VETTER, accessed

12/10/2019).

2.6.1 History

The Ąrst records of electric bass date back to the 1930s, when musician and

inventor Paul Tutmarc created the Ąrst electric string bass, a fretted instrument designed

to be held and played horizontally. His company, Audiovox, launched a Ąrst model in the

year 1935 and the second one in 1947, but none of them achieved success in the market

(VARIOUS, accessed 12/10/2019). In 1951, Leo Fender invented Fender Precision, the

Ąrst electric bass guitar that used the technologies contained in his electric guitars. This

model brings to the bass the magnetic pickups and the guitar-shaped body with fretted

Ąngerboard features. The Fender precision is considered a revolutionary instrument. After

all, it was easy to play as it contained frets, easier to carry because they were much

smaller than a double bass, and could have their volume easily adjusted because they were

directly connected to the ampliĄers. From that moment on there were no drastic changes

in the design of the electric bass guitars. The changes were restricted to increasing the

number of pickups, adding more strings and subtle changes in body shape, as well as the

natural evolution of the electronics contained in these instruments (VETTER, accessed

12/10/2019).

2.6.2 Construction

The Bass guitar is made up of several parts assembled that affect the sound

produced by the instrument or how to use it. Basically, it is composed of a body, a neck,

and a headstock, but will be discussed below in more detail each of its parts for a complete

understanding of its operation. The following descriptions are based on articles by Porter

(PORTER, accessed 12/10/2019) and Stringvibe (STRINGVIBE, accessed 12/10/2019a)

2.6.2.1 Headstock

The headstock is at one end of the bass (Figure 2.17 (l)). It is attached to the

tuning machine (Figure 2.17 (g)), also called machine head, which decreases or increases

the traction of the strings (Figure 2.17 (d)) by rotating the tuning pegs. Changing the

traction of a string changes its pitch.

2.6.2.2 Nut

The nut (Figure 2.17 (f)) is a rectangular block, most commonly made of

plastic or synthetic ŠboneŠ, positioned between the headstock and the neck (Figure 2.17
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Figure 2.17 Ű The traditional 4 strings electric bass guitar: 𝑎 body, 𝑏 neck, 𝑐 head

(k)). It keeps the strings evenly spaced and also helps to adjust their height relative to

the rest of the instrument.

2.6.2.3 Neck

The neck (Figure 2.17 (k)) is made of wood, most commonly maple, and con-

nects the headstock to the body (Figure 2.17 (j)) of the instrument. It is usually attached

to the body using four screws, but there are bass models in which the body and neck are

made of a single piece of wood, which helps increase the sustain of the played notes. It

is very common for basses to have a solid bolt running through the neck, which helps to

prevent warping due to string traction.

2.6.2.4 Fretboard

The fretboard (Figure 2.17 (c)) is a layer of wood, commonly rosewood, at-

tached to the front surface of the neck. Mounted on it are several small metal bars called

frets (Figure 2.17 (e)) that divide it into different tonal areas along its length. When a

string is pressed over an area of the fretboard, it will touch at least one of these frets and

the one closest to the instrument body will set the active width of the string. This ensures

that the notes you play are in tune.

Most basses have between 20 and 24 frets, although there are models with

up to 32 frets, usually used by soloists who need a longer range of notes. There are also

models without frets called fretless that feature the more muffled sound.

2.6.2.5 Body

The Electric bass guitar body is a solid piece of wood, usually Maple or Alder.

Its most traditional format is rounded along the outside with two curved horns on either
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side of the neck. Its main function is to serve as a point of attachment for other parts and

pieces of the musical instrument.

In it are installed all the electronics of the instrument such as pickups (Fig-

ure 2.17 (b)), switch knobs, control knobs and volume pots (Figure 2.17 (i)) and output

jack (Figure 2.17 (h)). Also, other structural mechanical components are attached to the

body, such as the bridge (Figure 2.17 (a)) and strap pins, which make it possible to use

a strap to support the bass, making it possible to play it while standing.

2.6.2.6 Pickups

Pickups (Figure 2.17 (b)) are bars, usually with plastic surfaces, Ąxed to the

center of the body, and under the strings. Inside are magnets surrounded by a coil of

copper wire. String vibration by the magnetic Ąeld induces an electrical voltage at the

coil terminals, which is sent to the ampliĄer via cables connected to the output jack.

By changing the position of the pickups it is possible to change the tone of the

instrument, so many basses have more than one pickup, making it possible to adjust the

tone by mixing and controlling the contribution of each pickup to the output signal.

There are also non-magnetic pickups, such as piezoelectric and optical pickups

that allow the use of non-ferrous strings, such as nylon. However, they are not very usual.

2.6.2.7 Bridge

The bass guitar bridge (Figure 2.17 (a)) is made of metal and is Ąxed to the

base of the body by screws. Its function is to anchor the strings to the body through holes

in its base through which each string is strung through. You can adjust the string height

using the saddle height adjustments. Each string goes through one of these saddles, which

contains a groove in the center where the string rests. They are movable and adjustable

by screws

2.6.2.8 Strings

Each electric bass string (Figure 2.17 (d)) is named by the note they produce

when they are played open, that is, without being pressed against the fretboard. Starting

from the top of the fretboard and moving downwards, the strings are called E, A, D, and

G. The strings can be made of different materials like Nickel-plated steel, Stainless Steel,

and others. They are usually medium-caliber, so in a four-string counter bass pattern,

they are between 0.045 to 0.105 inches thick (STRINGVIBE, accessed 12/10/2019b).
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Frets and its respective notes

string
0
12

1
13

2
14

3
15

4
16

5
17

6
18

7
19

8
20

9
21

10
22

11
23

G G G# A A# B C C# D D# E F F#
D D D# E F F# G G# A A# B C C#
A A A# B C C# D D# E F F# G G#
E E F F# G G# A A# B C C# D D#

Table 2.4 Ű Frets and its repective notes for each string on the bass guitar in standard
EAGD tuning

2.6.3 Tuning

The standard tuning for the strings of the four strings electric bass guitar is

𝐸0 (41.20 Hz) for the E string, 𝐴0(55𝐻𝑧) for the A string, 𝐷1(73.41𝐻𝑧) for the D string

and 𝐺1(97.99𝐻𝑧) for the G string. The frequency notes for each fret of these string are

following the rule presented in equation (2.2) and its respective notes are presented in

table 2.4.

2.6.4 Playing techniques

Usually, bassists play the electric bass guitar while standing and the instrument

is played horizontally across the body. The Ąngers of the left hand press the string against

the fretboard so that it touches the fret, deĄning the note that will be played. The right

hand will excite the string, i.e., it will start its vibration, either using the Ąngers or a pick.

The pick is held between the thumb and index Ąnger and used to downstroke

or upstroke the string with the motion supplied by the wrist. It is used to achieve greater

speed, a more articulate attack, or by personal preference and is more used among bassists

who play rock, punk rock, and metal.

The most traditional and characteristic way of playing the bass is using the

Ąngers of the right hand, a technique known as pizzicato. Usually, the bassist uses the

index and middle Ąngers alternately to pluck the strings, although the other Ąngers are

also sometimes used. The thumb can be used to support the right hand, resting over

the edges of the pickup. The strings can be plucked from the bridge to the fret where

it is pressed. Near the bridge, the sound has more brilliance, with a greater presence of

harmonics while in medium positions a mellow tone is obtained.
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The waveform of the voltage signal at the pickups, as shown in Figure 3.4,

indicates repetitions of a peak (positive or negative) at the beginning of each cycle. In

order to conĄrm that this characteristic is maintained for all the electric bass guitars

(instead of being a characteristic of the speciĄc instrument), the behavior of its string

was mathematically modeled, as discussed in the next section.

3.1.2 Physical model

The behavior of the bass string can be modelled using an ideal string along

the coordinate 𝑥 with Ąxed ends at 𝑥 = 0 and 𝑥 = 𝐿 with a transversal displacement

along the coordinate 𝑦, which give us the following boundary conditions:

𝑦(𝑥 = 0, 𝑡) = 0. (3.1)

𝑦(𝑥 = 𝐿, 𝑡) = 0. (3.2)

The string has linear density Û and is stretched with a force 𝐹T . It is initially

at rest and is plucked in the position 𝑥 = 𝑥p with amplitude 𝑦(𝑥p, 0) = 𝐴 as depicted in

Figure 3.2. In this situation, the initial transverse displacement 𝑦(𝑥, 0) can be expressed

by

𝑦(𝑥, 𝑡 = 0) =

⎧

⨄︁

⋃︁

𝐴( x
xp

) , if 𝑥 < 𝑥p

𝐴(1 − x⊗xp

L⊗xp
) , otherwise

⎫

⋀︁

⋂︁

(3.3)

Figure 3.2 Ű String with Ąxed ends at 𝑥 = 0 and 𝑥 = 𝐿 being plucked at 𝑥 = 𝑥p with
transversal displacement 𝑦(𝑥p) = 𝐴.

Initially, the velocity distribution 𝑦′(0, 𝑥) is:

𝑦′(𝑥, 𝑡 = 0) = 0. (3.4)

As depicted in Figure 3.3, for a short segment of this string between 𝑥 and Δ𝑥

there is a slope Ó𝑦/Ó𝑥 = tan(𝜃) and a vertical force 𝐹 deĄned by:

𝐹 = 𝐹T sin(𝜃(𝑥 + Δ𝑥)) − 𝐹T sin(𝜃(𝑥)) (3.5)
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Figure 3.3 Ű Short segment of a string between (𝑥, 𝑦) and (𝑥+Δ𝑥, 𝑦+Δ𝑦) where a tension
𝐹T is applied.

If 𝑦 corresponds to a small displacement, 𝜃 is also small and can be approxi-

mated using sin(𝜃) ≈ tan(𝜃) and tan(𝜃) = ∂y

∂x
. This allows re-writing Equation (3.5) as:

𝐹 = 𝐹T (
𝜕𝑦

𝜕𝑥
(𝑥 + Δ𝑥) −

𝜕𝑦

𝜕𝑥
(𝑥)) (3.6)

Using the NewtonŠs second law:

𝐹 = 𝑚
𝜕2𝑦

𝜕𝑡2
(3.7)

and knowing that the mass for this string segment is 𝑚 = ÛΔ𝑥, we have:

𝐹T (
𝜕𝑦

𝜕𝑥
(𝑥 + Δ𝑥) −

𝜕𝑦

𝜕𝑥
(𝑥)) = ÛΔ𝑥

𝜕2𝑦

𝜕𝑡2
(3.8)

dividing both sides of Equation (3.8) by Δ𝑥, applying the second derivative

deĄnition with Δ𝑥 −→ 0 and making 𝑐 =
√︁

𝐹T /Û, it becomes the wave equation:

𝜕2𝑦

𝜕𝑡2
= 𝑐2

𝜕2𝑦

𝜕𝑥2
, 𝑥 ∈ (0, 𝐿), 𝑡 ∈ (0, 𝑡f ] (3.9)

This model was used to simulate plucked strings and the resulting waveforms

were compared to measured waveforms, as discussed in Section 3.1.3.

3.1.3 Plucked string simulation

Equation 3.9 was numerically solved using the Ąnite difference method (JAIN,

2003) and the algorithmic steps used by Langtangen (LANGTANGEN, 2016). The Taylor

series expansion was used to approximate it as:

𝑦(𝑥 + 𝜕𝑥, 𝑡) − 2𝑦(𝑥, 𝑡) + 𝑦(𝑥 − 𝜕𝑥, 𝑡)
𝜕𝑥2

=

1
𝑐2

𝑦(𝑥, 𝑡 + 𝜕𝑡) − 2𝑦(𝑥, 𝑡) + 𝑦(𝑥, 𝑡 + 𝜕𝑡)
𝜕𝑡2

(3.10)
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Using the 𝑖, 𝑗 notation such that 𝑦(𝑥, 𝑡) = 𝑦ij, inserting the wave number

𝐶 = c∂t
∂x

and rearranging Equation 3.10 yields:

𝑦i,j+1 = 𝐶2𝑦i⊗1,j + 2(1 − 𝐶2)𝑦i,j + 𝐶2𝑦i+1,j − 𝑦i,j⊗1. (3.11)

To calculate the value of this function in the Ąrst time step, 𝑦i,j⊗1 must be

determined. This can be done using the initial velocity in Equation 3.4 and TailorŠs series

as follows:
𝑦(𝑥, 𝑡 + 𝜕𝑡) − 𝑦(𝑥, 𝑡 − 𝜕𝑡)

2𝜕𝑡
= 0. (3.12)

Rearranging equation 3.12 and rewriting in the 𝑖, 𝑗 notation, we Ąnd that:

𝑦i,j⊗1 = 𝑦i,j+1. (3.13)

Finally, replacing 𝑦i,j⊗1 by 𝑦i,j+1 in Equation 3.11, isolating 𝑦i,j⊗1 and dividing

both sides by 2, we have:

𝑦i,j+1 =
𝐶2

2
𝑦i⊗1,j + (1 − 𝐶2)𝑦i,j +

𝐶2

2
𝑦i+1,j, (3.14)

which is the Ąnite difference scheme. The numerical simulation was executed over the

discrete spatial domain [0,L] equally spaced by 𝜕𝑥 and over the discrete temporal domain

[0, 𝑇 ] equally spaced by 𝜕𝑡.

The modelŠs pluck position 𝑥p = 𝐿/5 and the string length 𝐿 = 0.87𝑚 were

directly measured from the strings of an electric bass. The wave velocity 𝑐 was calculated

using 𝑐 = 𝑓/(2𝐿) (IAZZETTA, accessed 04/25/2019) related to note E0. The simulation

time was deĄne as 𝑡f = 0.05𝑠.

Over the spatial domain, the algorithm computes 𝑦i,0 using Equation 3.3 and

𝑦i,1 using Equation 3.14 and applying the boundary conditions from Equations 3.1 and

3.2. Then, for each element 𝑗 from temporal domain, apply Equation 3.11 to Ąnd 𝑦i,j+1

for each element 𝑖 from the spatial domain, applying the boundary conditions again.

The output simulated signal was retrieved from the string velocity in the posi-

tion 𝑥 = 𝐿/5, approximately the pickup position, and was yielded to a 5th order low-pass

Butterworth Ąlter with a 150𝐻𝑧 cutoff frequency. This simulates the smoother bend of

the string due to its stiffness and the soft touch from the Ąngertip, which are responsi-

ble for generating tones with weaker high-frequency components (JANSSON, 2002). The

resulting signals were compared to the recorded signals, as shown in Figure 3.4.

Figure 3.4 shows that the physical model generates shapes that are similar to

those found in the acquired signals. This means that the peak behavior is not a particular

behavior of the speciĄc electric basses that were used in our acquisitions. Rather, this

behavior can be expected to appear in electric basses in general, hence it can be used for

further steps in fundamental frequency estimation.
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Figure 3.6 Ű Analyzed signal 𝑠n and integration short window with size 𝑊 . This signal is
a recording of the G0 note played on the E string of an electric bass guitar

3.2.2 Determine starting peak

When onset is detected, the algorithm will seek to determine the initial peak

in the buffer, as expected according to Ągure 3.6. The instant of occurrence of this peak is

used to deĄne the start time of the short 𝑊 -size integration window, also shown in Figure

3.6, which will be used in the following steps in the application of the absolute difference

function.

3.2.3 Detect if there is enough data

The 𝑊 size of the short integration window is one of the input parameters

of the algorithm and must be less than half the width of the initial peak. Bearing in

mind that for the same string, the width of this peak remains approximately constant,

regardless of the note.

To perform the next step, it is necessary to check if the number of samples

available in the buffer generated after the initial peak is greater than 𝑊 , as an onset

can be detected so quickly that the analyzed signal has not yet toured enough for the

generation of the samples necessary for the application of the absolute difference function.

3.2.4 Absolute difference function

The next step is to apply the absolute difference function to the 𝑊 length

section of the signal available in the buffer. In the initial instant, this signal will be

exactly the same as the short integration window itself, that is, the result will be zero.

For each new sample that becomes available in the buffer, the absolute difference function
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Figure 3.7 Ű Absolute difference function from the analyzed signal 𝑠n from Ągure 3.6 and
threshold value represented as the horizontal dotted line

is applied again, keeping the same short integration window samples, but comparing it

to a new signal segment, which contains the new sample made available and does not

contain the sample from the "oldest" instant.

The absolute difference function is deĄned as:

𝑑(á) =
W
∑︁

n=1

|𝑠n − 𝑠n+τ |, (3.16)

where á is the temporal lag between the initial peak and the analized section from the

audio signal 𝑠n. So we are measuring the absolute difference between the Ąrst moments

of the signal after the initial peak in relation to the following sections of this same signal,

resulting in a function like the one illustrated in Figure 3.7.

The absolute difference function must be applied to each buffer update until

it has passed, from the initial peak, an interval of 1.1 times the fundamental period 𝑇0 of

the lowest frequency to be detected. Theoretically, this interval could be 𝑇0 + 𝑊 , but the

Ąrst cycle from the onset is subject to harmonics that can vary the interval between the

Ąrst two peaks of the signal. Thus, 1.1 × 𝑇0 gives a margin of tolerance.

3.2.5 Find local minima

In sequence, the algorithm searches for local minima in the absolute difference

function, referenced as dips in Figure 3.7. For the lowest notes, there will be only a

local minimum as depicted in Figure 3.7, from which we will obtain the á0 interval. For

the highest notes, as exempliĄed in Figure 3.8, there may be 2 or 3 local minimums, as
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Figure 3.8 Ű Analyzed signal 𝑠n and integration short window with size 𝑊 . This signal is
a recording of the G1 note played on the E string of an electric bass guitar

Figure 3.9 Ű Absolute difference function from the analyzed signal 𝑠n from Ągure 3.8 and
threshold value represented as the horizontal dotted line

depicture in Figure 3.9, depending on how many frets the bass has. In this case, á0 is

obtained by:

á0 =
Nτ
∑︁

n=1

án

𝑛
, (3.17)

where 𝑁τ is the number of local minimums and án is the temporal lag between the initial

peak and 𝑛th local minimums.
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4 Experiments and results

4.1 Dataset

The proposed method was tested using a set of audio recordings acquired from

3 different electric bass guitars. Each of them was played by a different musician, and all

of them used the Ąnger-plucking technique. All notes within the instrumentŠs range were

recorded from each of the guitars, using two different instrument equalizations (full bass

and full treble). This yielded 528 recordings, which were all manually cropped to start at

the note onset since the proposed method does not have a note onset detector.

4.2 Experiments

This section describes experiments that compare the proposed method to the

Yin method (CHEVEIGNé; KAWAHARA, 2002), as implemented by Guyot (GUYOT,

2018). The experiments comprised executing both the proposed method and the Yin

method to estimate the f0 in the dataset samples.

4.2.1 Test 1 - sample length for note

In this Ąrst test, the sample length provided as input parameters for the algo-

rithms is equal to 1.1 × 𝑇t1 × 𝑓𝑠, being 𝑇t1 the fundamental period of the expected note

and 𝑓𝑠 the sampling frequency of the digital audio signal. To serve as a reference, the

test was repeated for the Yin method with a sample length equal to 2.1 × 𝑇t1 × 𝑓𝑠 and is

referenced as "Yin2" in Figure 4.2 (a).

4.2.2 Test 2 - sample length for string

This second test is a more common application for a pitch detector in a string

instrument, where the fundamental frequency should be estimated from a range of approx-

imately 2 octaves. So, the sample length provided as input parameters for the algorithms

is equal to 1.1 × 𝑇t2 × 𝑓𝑠, being 𝑇t2 the fundamental period of the lower note from the

speciĄc string to which the recorded note belongs. Also, in this case, the test was repeated

for the Yin method with a sample length equal to 2.1×𝑇t2 ×𝑓𝑠 and is referenced as "Yin2"

in Figure 4.2 (b).

Figure 4.1 compares the length of the samples used in test 1, shown in the Ąrst

column, and test 2, shown in the second column of the Ągure.
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5 Conclusion

A method based on the absolute difference function and the waveforms from a

Ąnger plucked strings of an electric bass guitar was presented. It was tested over 528 notes

recorded from three different bass guitars and it shows to be capable to estimate these

notes from samples with length equal to 1.1 times their fundamental periods, while our

reference method, Yin, under the same conditions, had double the error rate. This shorter

algorithmic delay, near the minimal theoretical delay (one fundamental period) and low

computational complexity, makes the proposed method suitable for real-time applications

for the electric bass guitar, such as a MIDI bass guitar.

However the method missed 15% of the notes on test 2, which is a similar

application, so future studies should be made to improve these results. An approach to

reduce errors, unrelated to improvements in the method, would be to adopt a speciĄc way

of playing the musical instrument. If the bass player always plucks the string smoothly,

in order to keep the Ąrst cycles of the signal similar to the modeled ones, error rates can

be drastically improved. It can be a useful alternative way to a MIDI bass guitar, where

the way you pluck the strings will not affect the sound timber. But, clearly, this imposes

a limited way to play in exchange for a more precise note detection and lower latency

Also, the method was not tested for notes played on top of an already vibrating

string which certainly should make it harder to estimate the correct f0. However, it is

possible that contact with the plucking Ąnger, at the moment of playing the new note,

dampens the string enough to not interfere with the performance of the method. This

case will be approached in future work.

The method is applicable for pitch determination for monophonic electric bass

signals, so in a real application, it would be necessary to use individual pickups per string,

so that each generated signal can be analyzed individually and ensuring that there will be

no more than one note simultaneously for each signal. In addition, the method requires

a quick onsets detector, which provides the information that a note has been played to

begin the analysis process.

A promising path for future work would be the development of a hybrid

method, which uses the proposed method for rapid pitch detection in low notes and

another more accurate method using at least two cycles, such as Yin, for higher notes.

Thus, adjusting the proposed method to provide an estimate after an analysis window

of 1.1 times the period of the lowest fundamental frequency, and the second method to

provide an estimate as soon as it is obtained, that is, after two cycles of the analyzed
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frequency, we will have the following process: if the note is high, the second method will

offer the estimate before the end of the analysis of the proposed method, otherwise the

proposed method will provide its estimate, avoiding greater latencies.

Finally, future works can study how the use of the reed to play the strings

affects the error rates, which could allow the application of the method for the electric

guitar, an instrument that indicated to have similar characteristics in the waveforms, from

those used in the analysis by the proposed method.
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