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“Music is the hidden arithmetical exercise of a mind
unconscious that it is calculating”

(Gottfried Wilhelm Leibniz)



Abstract

Audio-to-MIDI conversion can be used to allow digital musical control through an analog
instrument. Audio-to-MIDI converters rely on fundamental frequency estimators that are
usually restricted to a minimum delay of two fundamental periods. This delay is percepti-
ble for the case of bass notes. In this dissertation, we propose a low-latency fundamental
frequency estimation method that relies on specific characteristics of the electric bass gui-
tar. By means of physical modeling and signal acquisition, we show that the assumptions
of this method are based on the generalization of all electric basses. We evaluated our
method in a dataset with musical notes played by diverse bassists. Results show that our
method outperforms the Yin method in low-latency settings, which indicates its suitability

for low-latency audio-to-MIDI conversion of the electric bass sound.

Keywords: f; estimation; low latency, Audio-to-MIDI converter; Music information re-
trieval; MIDI-bass.



Resumo

A conversao de audio para MIDI pode ser usada para permitir o controle musical digital
por meio de um instrumento analégico. Os conversores de dudio para MIDI dependem
de estimadores de frequéncia fundamental que sao frequentemente restritos a um atraso
minimo de dois periodos da frequéncia fundamental. Este atraso é perceptivel no caso de
notas graves, pois as frequéncias fundamentais tem periodos mais longos. Nesta disserta-
¢ao, propoe-se um método de estimativa da frequéncia fundamental de baixa laténcia que
se baseia em caracteristicas especificas do baixo elétrico. Por meio de modelagem fisica
e aquisi¢ao de sinais, mostramos que o método se baseia na generalizagao para todos os
baixos elétricos. Avaliamos nosso método em um conjunto de dados com notas musicais
tocadas por diversos baixistas. Os resultados mostram que nosso método supera o método
Yin em configuracoes de baixa laténcia, o que indica sua adequacao a conversao de baixa

laténcia de dudio em MIDI do som de baixo elétrico.

Palavras-chaves: Estimador de fy; Conversor de audio para MIDI de baixa laténcia;

Recuperacgao de informacoes musicais; Baixo MIDI.
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1 Introduction

Digital instruments and controllers commonly use communication protocols
such as the MIDI (Musical Instrument Digital Interface) standard to communicate with
each other. This allows combining different digital synthesizers, controllers, and effect
racks, which expands the expressive possibilities related to timbres, musical performances,
musical recordings, and notations (GIBSON J.; accessed 05/9/2019). This toolchain can
also include analog instruments by means of audio-to-MIDI converters (DERRIEN, 2014).

Audio-to-MIDI converters are devices that aim at identifying the notes played
by an instrument in real-time or retrieving them from an audio file. For such, they use a
perceptual model that relates the fundamental frequency (fy) of an audio signal of a tonal
sound to its pitch (P., 2003). Many well-known algorithms aim at estimating f;, such as
the autocorrelation (Rabiner, 1977) and the Yin method (CHEVEIGNé; KAWAHARA,
2002).

fy estimators commonly aim at finding periodicity in a signal s;. The periodicity

is based on the model

St = St4kTy» (1.1)

where Ty is the fundamental period of s; and k& € Z. Methods that rely on this property
commonly require analyzing at least two fundamental periods of the signal. This incurs
in a lower-bound for the latency of Audio-to-MIDI conversion that can be close to 50 ms
for the lowest notes (41.2 Hz) in standard 4-string electric basses. These long delays are

perceptually detectable and this can impair the use of basses as a MIDI controller.

In this work, we aimed at attenuating this problem using an f; estimation
method especially crafted for the electric bass guitar. The method exploits specific prop-
erties of the electric bass guitar waveform. Our method allows f, estimation with an
algorithmic latency of 1.1 times the fundamental period of the signal, which is about 27

ms for the lowest frequency note of the four-string traditional bass guitar.

Experimental results show that this method is effective with an error rate of
15%. This is half the error rate of Yin, the baseline method, when an equal latency is
considered. The method was tested for the frequency range from 41.2 Hz to 392 Hz, that

is, from the lowest to the highest note of the standard four-string electric bass guitar.
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2 Theoretical Background

2.1 Pitch theory

Pitch is a psychoacoustical attribute of the sound related to the perception of a
repetition rate of a waveform (HELLER, 2012) above 20 Hz, in which it is perceived not as
rhythm but as tone. The lowest regular repetition rate is called Fundamental Frequency
(f0) and can be used to decompose harmonic complex tones into sinusoidal harmonic
components whose frequencies are multiple integers of the fundamental frequency fo,
that is:

M
Sy = Z Ay COS(2mm fol + D). (2.1)
m=1

The relative harmonic amplitudes a,,, among other attributes, are commonly
associated with timbre differences, and the fundamental frequency fy is closely related
to the sensation of pitch (OXENHAM, 26 September 2012). In this study, we assume
that the fundamental frequency is the physical counterpart of the psychological sensation
of tonality, commonly named as pitch, hence estimating the fundamental frequency is

equivalent to finding the pitch of a signal.

Moreover, perfectly periodic waveforms are rare, because in the real world the
signals differ between each repetition, even if small. Thus it is interesting to extend the
concept of the pitch to quasi-periodic signals, that is, waveforms that are not perfectly
identical in each cycle but have reasonable similarities between them to the point where
they can be identified as repetitions. Within this concept, the signals can be modulated,
turned off and on, and yet have a pitch. Still, there are exceptions to pitch determination
by fundamental frequency such as non-periodic but pitch-evoking signals (CHEVEIGN¢,;
KAWAHARA, 2002).

The human ability to detect the pitch of a sound, that is, human tonal per-
ception, has been linked to biological traits such as the periodicity of neural patterns
(CARIANI; DELGUTTE, 1996) and the harmonic partial pattern present by the cochlea
(TERHARDT, 1974). Tonal perception allows us to perceive the amount of repetition of
events that are too fast to be counted (FORNARI, 2010).

In music, several standards define the tuning frequency for each note. The
most commonly used nowadays is called Pitch International Standard, which defines the
fundamental frequency of the note A above middle C should be 440 Hz (ISO16:1975-
ACOUSTICS, 1975).
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For the western music, in the equal tempered chromatic system, the frequency
variation between one note and the next is 27 and the variation given an interval A, s
of notes is given by the equation (IAZZETTA, accessed 04/25/2019):

notes

Afreg = F127H5 (2.2)
where f; is the frequency of the lower note in the interval.

Using this rule, the fundamental frequency is set for every note. Some examples

are shown in Table 2.1

Table 2.1 — Some notes and their respectives frequencies e periods.

Note Frequency (Hz) Period (ms)

A2 220 4.545
A# 2 233.08 4.29

B2  246.94 4.05

C3  261.62 3.822
C4 3 277.18 3.608
D3  293.66 3.405
D# 3 311.12 3.214
E3  329.62 3.034
F3  349.22 2.863
F# 3 369.99 2.703
G3  391.99 2.551
G# 3 415.30 2.408
A3 440 2.273

2.2 Pitch detection

Human beings are able to hear frequencies from 20 Hz to 20 kHz and our
ability to interpret them comes from the cochlea, more specifically from the organ of
Corti, which has thousands of ciliated cells. Depending on the components present in
the sound, different regions of this organ resonate and the ciliated cells connected to that
region generate electrical impulses that will be transported by the auditory nerve for later
interpretation as sound. So we can interpret it from its various components, detecting the

pitch of a quasiperiodic sound, usually by its Lower component (FORNARI, 2010).

Based on various mathematical principles, various methods have been devel-
oped for determining the pitch of a signal. Assuming pitch is an auditory sensation related
to the fundamental frequency of a periodic or pseudo-periodic waveform, it is sufficient
to determine the interval Tj between its repetitions and then find fO through its inverse.
This can be simple for perfectly sinusoidal signals, but natural waveforms are diverse and
can have many harmonic components that make the task difficult (GERHARD, 2003).
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Figure 2.1 — Waveform with no upper harmonics.
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Figure 2.2 — Waveform with lower power upper harmonics.

Following (GERHARD, 2003), Figures 2.1, 2.2, 2.3, and 2.4 are some examples
of waveforms and their corresponding Fourier transforms, that represent the different
harmonics that compose them, in the frequency domain. These figures illustrate different

difficulties in estimating their respective fundamental frequencies.

Waveforms with low harmonics or where harmonics have low power, as in
Figures 2.1 and 2.2, have their periods more easily detectable because the component
referring to fundamental frequency is easily detectable in the spectrum because it is
unique or has an intensity higher than the upper harmonics, preventing it from being

ignored by some minimum intensity limit that may be used in the detection method.

Consequently, waveforms in which harmonic power is greater than the funda-
mental, as in Figure 2.3, or even when the fundamental frequency is missing, as shown in

Figure 2.4 make the task of estimating the fundamental frequency more complex.
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Figure 2.4 — Waveform with high power upper harmonics and no fundamental.

2.3 Related work

The signal presented in equation (2.1) is a continuous-time signal. Its digital
processing is only possible after sampling (RAMA; THEODORIDIS, 2014). Representing
the continuous-time signal by s;, and the corresponding discrete-time signal by s, we
have:

Sp = $¢(nT) (2.3)
where n € Z and T is a time interval called sampling period which allows us to define
another important parameter for processing and analyzing a uniform discrete signal, the

sampling frequency, f,, as:

(2.4)

N[ =
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Figure 2.6 — Waveform from a electric bass guitar’s recorded signal. f; = 44.1 Hz and Tj

= 24.2 ms. Its used as reference signal for the application of the following
pitch detection methods.

As exemplified in Figure 2.5, sampling occurs at the time instances t = nT'.

Several methods aim at finding the pitch of periodic signals, as discussed next.
Some of them were implemented and applied to a reference signal, which is shown in
Figure 2.6, of an excerpt from a recording of an electric bass playing the note EO, which

has approximately a fundamental frequency of 41,2 Hz and a fundamental period of 24.3

milliseconds.

2.3.1 Zero-Crossing Rate (ZCR)

The Zero-Crossing rate is a low-level property of audio signals that is often

used in audio classification. It can be interpreted as a measure of signal noisiness. It is very
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popular to discriminate whether audio is a speech or a song. However, it is widely used
in a wide range of other audio applications such as musical genre classification, speech

analysis, and environmental sound recognition (MITROVI¢, 2010).

ZCR of a signal is the rate at which that signal varies its sign over a given
time interval or frame. Thus, this determines how many times the signal has varied from
positive to negative and negative to positive, divided by the total frame size (GIAN-
NAKOPOULOS T., 2014). The following equation defines the zero-crossing rate:

1 M
Z, = W, ,;1 | signls,| — sign[s,_1]|, (2.5)

where Wy, is the frame lenght, s, is the input signal to be analyzed and sign|[] is the sign

function, i.e.

signls,] = { L oiten 20, } (2.6)

-1 ,if s, <0,

The ZCR is also used for determining the fundamental frequency. The basic
idea is that the zero-crossing rate should be directly related to the number of waveform
repetitions, but problems arise in determining f0. For a waveform without or with few
higher harmonics, as in Figure 2.7 (a), the signal crosses zero only twice. In the case of
the waveform of Figure 2.7 (b), due to the strong presence of higher frequency harmonics,
the signal crosses zero several times. Thus it is difficult to determine a zero-crossings
pattern that allows us to estimate f0. To try to avoid this problem, the ZCR fundamental
frequency detector can use a low pass filter, but this naturally implies a delay in the
signal, affecting the overall process latency (GERHARD, 2003).

2.3.2 Autocorrelation

It is possible to measure the similarity between two signals using the correlation
function, which compares and determines the similarity of two waveforms at different
intervals. It presents a function that shows how similar two similar signals are for different
intervals between the start of the two waveforms. Autocorrelation is the application of

the correlation between a waveform and itself and is defined by the following equation:

t+Wp,

Tt<7—>: Z SnSn4r (27)

n=t+1

The autocorrelation 7,(7) is a measure of the similarity between the signal s,

and a temporally shifted version s, ., of itself analyzed over a window with length Wp.
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Figure 2.7 — Influence of higher harmonics - (a) Waveform whitout harmonics. (b) Wave-
form with higher harmonics

A common method for estimating pitch of periodic signals is by detecting the
greatest positive peak of the autocorrelation function r, (Rabiner, 1977), as it presents

peaks in values of 7 that correspond to the fundamental periods of s,. The fundamental

frequency fy is calculated by:

1
fo = , T > O, (28)

Tma:v
tal que:

Ti(Timaz) = mazr,(T) (2.9)

The autocorrelation function, when applied to a periodic waveform, is also
periodic, showing maxima when the time lag 7 is equal to or multiple of the fundamental
signal period and minimums when it is close to half of the period, as can be seen in
Figure 2.8, which shows the autocorrelation function obtained from the reference signal,

shown in Figure 2.6.

2.3.3 Maximum likelihood in time domain

According to Noll (1970), maximum likelihood is the optimal way to detect
the fundamental frequency in the time domain. The main idea is to find the interval in
which an input signal can be divided repeatedly so that each of these sections is as similar

as possible (NOLL, 1970).

The periodic signal to be analyzed s,,, which has length T, is divided into N

segments of length 7 (7 < T}), as shown in Figure 2.9. Then these segments are added
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Figure 2.8 — Autocorrelation function calculated from the waveform in Figure 2.6. First
peak after the initial one occurs near 24.2ms, as expected.
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Figure 2.9 — Finite lenght T}, of a quasi-periodic signal splited in Ny, = 3 intervals of length
7 so that T,, = N7 + b.

together according to the following equation:

N
ﬁzsn+nsT ,1f0§n<b
Sml, ., = stslzo (2.10)
Lzsnwm Jdfb<n<r

Finally, considering the different ranges in proportion to the number in the
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Figure 2.10 — Maximum likelihood function J; calculated from the waveform in Figure 2.6.
Bigger peak occurs near 24.2 ms, as expected.

sum, is calculated the following integral of the square of Smi, .:

b T
J, = (N, +1) / Smi%_dn + N, / Smi2_dn. (2.11)
0 ’ b ’

When 7 is equal to the fundamental period Ty, all small intervals will add up
coherently so that J, will be maximum when 7 = T{. Thus, the maximum likelihood
estimate for the fundamental period is the value of 7 that maximizes the .J; function, as

shown in Figure 2.10.

2.3.4 Spectral peak picking

The fundamental frequency of a digital signal can also be determined in the
frequency domain applying the Discrete Fourier Transform (DFT) to this input signal s,

which is defined by the following equation:

WL_l - 2T k
Sp= > spe ", (2.12)
n=0
where &k = 0, ..., W, — 1. Thus, we will obtain its spectrum Sj that will present peaks in
the frequencies corresponding to the harmonics present in the input signal. Selecting the

lowest frequency peak, we find the fundamental frequency of this signal.

A first problem encountered in this approach is the computational cost. Solving
equation (2.12) presents computational complexity O(N?), where N is the size of the data

set.
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Figure 2.11 — FFT calculated from the waveform in Figure 2.6. First bigger peak occurs
near 41.2 Hz, as expected.

In practice, in order to reduce this complexity to O(NlogN), fast algorithms
called Fast Fourier Transform (FFT) are used. Some best-known examples are the Cooley-
Tukey, Danielson-Lancsoz, and Winograd algorithms (OPPENHEIM; SCHAFER, 1999).
Figure 2.11 present the resulting spectrum from FFT application to reference signal pre-

sented in Figure 2.6.

2.3.4.1 |Increasing DFT resolution

Simply applying the discrete Fourier transform as a pitch estimator will present
a resolution problem for low frequencies (KNESEBECK; ZOLZER, 2010). The resolution
of the DFT is given by:

wy’
where W is the frame size of the transform and f, is the sampling frequency of the input

A (2.13)

signal s,,. Thus, the DFT points are linearly distributed in the frequency domain with an
interval of Af. In a common example, where we have f, = 44.1kH z and W = 2048, there
will have a resolution of approximately 21.53Hz, which shows that the method would be
unable to correctly determine if a played note was E0(41.20H z) or F0(43.6Hz), as the

difference between the fundamental frequency of both is approximately 2.4H z.

(KNESEBECK; ZOLZER, 2010) demonstrates how to use the phase informa-

tion to increase DFT resolution as follows:

Each harmonic component, represented by a point in the DFT, can be defined
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as:

Snh = c0s(Qon + @o) = cos(¢y,), (2.14)

where the fundamental frequency is:

2

Qo =k .
0 W,

(2.15)

Therefore the fundamental frequency also can be represented as the derivative

of the cosine argument ¢,, by n,

den
Q= — 2.16

Using the phase difference A¢, between two discrete Fourier transforms from

the same signal shifted of R samples, this derivation can be approximated as:

A A¢n
Oy =
7 R

. (2.17)

To estimate the corrected fundamental frequency of an input signal that con-
tains harmonics is to select, for a given frame, the pitch candidate with the lowest corrected
frequency. The following equation is used to calculate the corrected frequency for pitch

candidates:

A 1 - 1 Y2 — L1
_ Oofs = —=24 T2 f 2.18
L T TR (2.18)

where ¢, is the phase angle at bin kg of the first DFT.

The real unwrapped phase 5, is calculated as sum of the expected phase and

the phase error:

You = P2t + Paerr (219)
The expected phase pq; after a progression of R samples can be calculated

with:

2T
= —koR 2.20
Yo = 1+ W, 0 ( )

and the phase error .. is given by:

Poerr = P2 — Pag, (221>
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where ¢ is the phase angle at bin kq of the second DFT.

Therefore, by calculating the expected phase after a progression of R samples,

the frequency resolution of a pitch candidate at frequency k0 can be improved.

2.3.5 Cepstrum method

Basically, Cepstrum is the spectrum of the log spectrum and its name comes
from the inversion of the first four letters of the word "spectrum" referring to the new

transformation applied to the spectrum of an original signal.

The cepstrum of a signal is defined by:

cn = FHlog F{s,}} (2.22)

Where s is the input signal, F' is the Fourier transform and F'~1 is the inverse

Fourier transform.

For the case where the input signal is a windowed frame of sound signal with

size W, , cepstrum is:

Uz U 25k | i2Ekn
= log | > spe” W) (2.23)
n=1 n=1
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Figure 2.12 — Cepstrum calculated from the waveform in Figure 2.6. Bigger peak occurs
near 24.3 ms, as expected.

Initially, the Fourier transform is applied to the input signal in the time do-

main, obtaining its spectrum in the frequency domain. In the second step, this spectrum
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is converted to a logarithmic scale and then the Fourier transform is applied again, ob-
taining the power cepstrum, a function in a domain very related to the time domain,
called quefrency. It has peak values that correspond to the period of the input signal, as
shown in Figure 2.12. Briefly, an attempt is made to determine the frequency of the input

signal spectrum (Singh; Kumar, 2014).

However, the method may present incorrect results if the input signals have
an inharmonic spectrum or the single-partial spectrum of a sinusoid, as it assumes that

the signal has regularly-spaced harmonics.

2.3.6  Harmonic product spectrum

The determination of the fundamental frequency of a signal can also be done
by using the method called Harmonic product spectra, widely-used when there is a con-

siderable presence of noise.

The main idea of this method is that the pitch peaks in the log spectrum are
multiples of the fundamental frequency. Thus, adding some compressed versions of the
spectrum would result in a large peak at the point of coincidence of these harmonics, as
shown in Figure 2.13. This is because the pitch peaks in the log spectrum are coherently
added while the rest of the log spectrum is uncorrelated and add non coherently (NOLL,
1970). Figure 2.13(a) shows the spectrum from waveform presented in Figure 2.6, Fig-
ure 2.13(b), (c) and (d) shows the compressed versions of this spectrum and Figure 2.13(e)

present the resulting Harmonic Product Spectrum.

The Harmonic Product Spectrum is defined as:

m(w) = [] Sklmw), (2.24)

m=1
where Si(mw) is the input signal S,, spectrum compressed by m and M is the number
of compressed versions of the spectrum. After this processing, the argument of the global

maximum of o corresponds to the f0.

2.3.7 Harmonic Sum Spectrum

Frequency-compressed versions of power Spectrum also present the same co-
herent sum of the log spectrum, making it possible to use the Harmonic Sum Spectrum

method to determine the fundamental frequency.

The Harmonic Sum Spectrum is obtained by adding the Spectrum of the input
signal to its sub-sampled versions of itself (NOLL, 1970). This corresponds to calculating:
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(a): spectrum from waveform presented in Figure 2.6. (b), (c¢) and (d): com-
pressed versions of the spectrum in (a). (e): Harmonic Product Spectrum
calculated from the waveform in Figure 2.6. Bigger peak occurs near 41.2
Hz, as expected.Only the first 200 samples of the waveforms are represented

in this figure.

o(w) =Y Sk(mw), (2.25)



Chapter 2. Theoretical Background 30

3000

2500

2000

[
un
o
o

Magnitude

1000}

5004

Frequency [Hz]

Figure 2.14 — Harmonic Sum Spectrum calculated from the waveform in Figure 2.6. Bigger
peak occurs near 41.2 Hz, as expected.

where, as previously, Si(mw) is the input signal S,, spectrum compressed by m and M is
the number of compressed versions of the spectrum. Finally, the argument of the global

maximum of o corresponds to the f0.

Although the peak generated by the harmonic product spectrum is more acute
and the secondary peaks are negligible in size compared to the harmonic sum spectrum
method, which has larger secondary peaks, as shown in Figure 2.14, both will show a higher
peak at the fundamental frequency, which it must be detected above a fixed threshold

value.

2.3.8 Darrien low latency method

Darrien proposes a low latency parametric method for pitch estimation based

on the Exponentially Damped Sinusoidal (EDS) model and a statistical model.

The method consists of two stages: initially, the most significant harmonic
components are selected in the input signal according to the Exponentially Damped Si-
nusoidal (EDS) model. In the second stage, a statistical model is used to determine the
most likely fundamental frequency (DERRIEN, 2014).

Using the Exponentially Damped Sinusoidal (EDS) model, the input signal is
described by:

Sp = dp, + wy, (2.26)

with d,, being the deterministic part and w,, the stochastic part. d, is a sum of K damped
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sinusoids described by:

K—1
dn = > ayzy. (2:27)
k=0

The complex amplitude «ay, is:

g = ape'* (2.28)
where ay is the initial amplitude and ¢y, is the phase.

The poles z, is:

2, = e WA (2.29)
where dy is the damping and v is the normalized frequency.
The stochastic part, w,, is white Gaussian noise.

The model parameters are estimated with a method derived from the ESPRIT
algorithm (BADEAU; DAVIDWANG, 2002). This phase is similar to spectral analysis and

a peak-picking stage, presented earlier in this work.

The estimation algorithm consists in finding the best values of &k, aj and z
for a given signal in the least square sense, using an estimation algorithm proposed by
Badeau and Wang (2002).

Then a statistical model is used to determine the most likely fundamental fre-
quency within the set of partials obtained in the previous step. This is done by calculating
the likelihood function of the fundamental frequency based on the probabilistic model of
the partials found so that the global maximum of this function is the best estimate for the
fundamental frequency. The probabilistic model used is a modification of that proposed
by B. Doval and X. Rodet (1991), with fewer parameters, not depending on the learning

database, as the original.

2.3.9 Yin method

Autocorrelation, presented earlier, commonly peaks not only with each wave-
form repetition but also due to the harmonics present in the signal. This creates difficulties
for fundamental frequency estimators that use autocorrelation, as they are eventually un-

able to determine if a peak is relative to the fundamental frequency or signal harmonics.

The Yin method was proposed by Cheveigné and Kawahara. It is based on
the same assumptions as of the autocorrelation method, with the addition of a series of

modifications that reduce errors. The name of the method ( Yin) alludes to the Yin and



Chapter 2. Theoretical Background 32

Yang of Eastern philosophy, alluding to the search for the balance between autocorrelation

and cancellation proposed by the method to reduce errors.

The method consists in the application of 6 steps that reduce the error rate
in the fundamental frequency estimation (CHEVEIGNé; KAWAHARA, 2002). Next, we
briefly describe the improvements applied to each step according to the authors’ study

information.

2.3.9.1 Step 1: The autocorrelation method

In the first step, the method uses autocorrelation, presented in the previous
subsection, obtaining an error rate of 10 % in the estimate of f0 when applied to the
database presented in the study of its authors. As shown in the next steps, autocorrelation

will no longer be used by the method.

2.3.9.2 Step 2: Difference function

In the second step of the method, the autocorrelation function is replaced by
the difference function, reducing the error rate to 1.95%. Here the period is no longer
defined by the largest peak, but by the largest dip in the function. A possible cause
for this reduction would be the high sensitivity of autocorrelation to amplitude changes,
so that, increases in signal amplitude lead the method to choose correlation function
peaks from harmonics rather than fundamental ones. Figure 2.15 presents the difference
function calculated from the waveform of Figure 2.6. The difference function is defined

by the equation:

447

dt(7—> = Z(Sn - Sn-i—"r)g' (230)

n=1
where s, is the input signal and s, , a 7 samples shifted version of itself analyzed over a

window with length W7.

2.3.9.3 Step 3: Cumulative mean normalized difference function (CMNDF)

In the third step, the difference function is replaced by the cumulative mean
normalized difference function reducing the error rate a little more. As can be seen in
Figure 2.16, unlike the difference function, which starts at 0, the (CMNDF) starts at
1, eliminating the need for an upper frequency limit. This limit is required when the

difference function is used, so that the first dip does not be selected as the fundamental
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Figure 2.15 — Difference function calculated from the waveform in Figure 2.6. First big
dip after the initial one occurs near 24.2ms, as expected.
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Figure 2.16 — Cumulative mean normalized difference function calculated (CMNDF) from
the waveform in Figure 2.6 and an absolute threshold on dashed line. First
big dip occurs near 24.2ms, as expected.

frequency dip. The (CMNDF) is defined by:

Jif 7 =0

1
/ di (TT) , otherwise (2.31)

dy(7) =
(1/7) Z_:ldt(n)

where d;(7) is the diference function defined in equation (2.30) and 7 the lag in samples

between the signal and the shifted version of itself in diference function.
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2.3.9.4 Step 4: Absolute threshold

The fourth step is the use of an absolute threshold that decreases by approx-
imately half the error rate obtained in the previous step, which generates a normalized
function. This Absolute threshold is represented by the dashed horizontal line in Fig-
ure 2.16. Using this threshold, dips above this value are disregarded, avoiding the selection

of harmonic generated dips.

2.3.9.5 Step 5: Parabolic interpolation

In the fifth step, a parabolic interpolation of the minimum location is included,
but the reduction in the error rate is minimal. The idea is that this reduces the error when
the period is not a multiple of the sampling period which could lead to an error of up to

half of the sampling period.

2.3.9.6 Step 6: Best local estimate

In the sixth step a new estimate is made, but now only in the vicinity of the
location indicated by the first estimate in order to find the best local estimate. Seeking
around 20% variation around the initial estimate, we obtained a reduction of approxi-

mately 1/3 in the error rate compared to the previous step.

Version Error rate (%)

Step 1 10
Step 2 1.95
Step 3 1.69
Step 4 0.78
Step 5 0.77
Step 6 0.50

Table 2.2 — Error rates after application of each step of Yin method.

According to the study of Cheveigné and Kawahara (2002), the error rates
obtained by the Yin method are about one-third times lower than the best competing
methods, as evaluated over a database of speech recorded together with a laryngograph

signal. The error rates at each step are shown in table 2.2.

2.4 Discussion about pitch estimation methods

All the methods discussed in the previous section directly rely on the periodic-
ity property as stated in Equation (1.1) or the harmonic series model shown in Equation
(2.1). This allows them to be applicable for the general case of finding pitch in periodic

signals but bounds them to a minimum delay of twice the fundamental period.
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In this work, we propose a pitch detection method that relies on specific char-
acteristics of the plucked electric bass string. This restricts our method to signals gener-
ated by this specific instrument. However, it allows reducing the delay to 1.1 times the

fundamental period, which is very close to the theoretical minimum latency.

This reduction is critical for real-time pitch detection in lower-pitch notes. In
this range of notes, general-purpose methods require a delay of around 50ms to work

properly. Our method allows detecting the same pitch with a delay of around 30ms.

The method proposed by (DERRIEN;, 2014) also indicates to estimate f0 close
to the theoretical minimum latency, i.e. the fundamental period of the lowest observable
pitch, but with higher computational complexity, which can be problematic for embedded

real-time applications, which can lead to an increase in delay due to computational cost.

The proposed method is based on specific properties of the plucked electric
bass signal. These properties are analyzed using a physical model, which guides its gen-
eralization possibilities. Then, the proposed model is compared to the Yin method using

a dataset containing recordings from electric bass guitars.

For comparison purposes, the Yin method was chosen as the reference method.
In addition to presenting excellent performance as shown in (CHEVEIGNé; KAWAHARA,
2002) study, it is commonly used as a reference method, as in the study by (DERRIEN,
2014), addressed in this work. It was also chosen because it is a well-known and cited
method, as in the works of (GERHARD, 2003) and (KNESEBECK; ZOLZER, 2010),
also cited in this work, counting more than 1300 citations according to the portal (RE-
SEARCHGATE, accessed 06/02/2020).

2.5 Latency

The human perception of sounds is very sensitive to its temporal character-
istics. Therefore, audio delays are experienced in many different scenarios and for many
different reasons and is called latency. In the context of this work, the sound delay refers
to the time elapsed between an initial event, such as playing a note on the electric bass
guitar, for example, and a second event, such as the moment when the sound is perceived

by a specific listener.

When you hear the sound from a sound source a few meters away, there is
a delay due to the amount of time it takes for this sound to travel through space over
that distance. For example, in a room with a temperature of 20°C, the speed of sound
is approximately 323.3 meters per second, which causes a delay of 2.91 milliseconds per

meter of distance between the sound source and the listener. This delay or the delay
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between two sound events can be large enough to be noticed and often causing several

negative effects.

In music applications latency can be a very serious problem as it directly im-
pacts musicians’ performance in many ways, making it difficult to maintain steady tempo,

rhythmic synchronism between musicians and even tuning depending on the instrument

(GREEF, 2016).

2.5.1 Causes for Latency

There are many causes of unwanted delays. In orchestras, for example, musi-
cians on opposite sides can experience latencies of up to 80 milliseconds due to the time
it takes the sound to propagate through the distance between one musician and another.
Nowadays in most current performances, musicians use close speakers and headsets as

feedback, most of the latency comes from processing audio signals (GREEF, 2016).

Digital processing of an instrument’s audio signal implies a series of delays,
starting with converting the analog to a digital signal at the system input and from digital
to analog at the output. Buffering digital samples and phase delay of digital filters also
add latency. Finally, the time required for processing the audio samples according to the
applications used (WANG, 2017).

In the case of audio-to-midi converters, besides the time spent performing the
algorithm operations to determine the fundamental frequency of the signal, there is still
the necessary interval from the onset of a note played on the instrument for the algorithm
to estimate what is the fundamental frequency. Most f0 estimators need at least two

periods to accomplish its task.

2.5.2 Tolerable Latency

The perception of how much a certain amount of latency bothers, hinders, or
even precludes the correct use of the instrument by the musician depends on the type
of instrument played and also on the musician’s listening skills. For example, musicians
such as professional saxophonists are more affected by latency and need more immediate
feedback, considering a latency of up to 10 milliseconds as acceptable, while keyboard
players have a higher latency tolerance, considering latencies of up to 40.5 milliseconds
as acceptable (LESTER; BOLEY, 2007).

A previous study (LESTER; BOLEY, 2007) has investigated the acceptable
latency in live sound applications for different professional musicians using in-ear moni-

toring (IEM) or wedge monitoring. The results of this study are presented in Table 2.3.
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Latency (ms) Sax Vocals Guitar Drums Bass Keys

IEM Good 0 1 4.5 8 4.5 27
Wedge Good 1.5 10 6.5 9 8 22
[EM Fair 3 6.5 14.5 54.5 25.5 46
Wedge fair 10 26 16 25 30 40.5

Table 2.3 — Tolerable latency - Instruments comparison using in ear monitoring (IEM)
and wedge monitoring (LESTER; BOLEY, 2007)

2.5.3 Latency Discussion

Table 2.3 shows that professional bassists consider a latency of up to 30 mil-
liseconds acceptable when using wedge monitoring. However, as already seen, most al-
gorithms require the use of at least two periods to estimate f0, and the lowest note of
a traditional four-string bass, EO, has a period of 24.27 milliseconds. That is, only the
algorithmic delay for these methods is at least 2 x 24.27 = 48.54 milliseconds.

The method proposed in this study estimates the fundamental frequency using
a time interval of 1.1 times the period, starting from the note onset. For the same note EO,
the algorithmic delay is 1.1 x 24.57 = 26.697 milliseconds, within the latency considered

acceptable by professional bassists.

2.6 The electric bass guitar

The electric double bass, also known as electric bass, or simply the bass, is an
electroacoustic musical instrument and can be described as a plucked box-chordophone
with a solid body instead of a hollow resonator. It receives the classification 513 - Electro-
acoustic chordophones in the Revision of the Hornbostel-Sachs Classification of Musical
Instruments (MIMO, 2011).

In both its appearance and construction, the electric bass guitar is similar to
the electric guitar, but has a larger neck and the most common models have four strings,

not six like the guitars and are tuned one octave lower than the four lower strings of the

guitar (STRINGVIBE, accessed 12/10/2019b).

The double bass, acoustic musical instruments with approximately 180 cm and
usually tuned the same way as the electric bass, have been replaced by those since the
1960s in most popular musical productions, taking on the role of the bass instrument in

the rhythm section of musical ensembles.

Many musical styles rely on the presence of the electric bass, such as blues,
jazz, rock, metal, pop, reggae, and many others. Although bassists play very varied

melodic lines, electric basses perform a similar function in most of these musical styles.
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This function is to set the rhythm and set the harmonic framework (VETTER, accessed
12/10/2019).

2.6.1 History

The first records of electric bass date back to the 1930s, when musician and
inventor Paul Tutmarc created the first electric string bass, a fretted instrument designed
to be held and played horizontally. His company, Audiovox, launched a first model in the
year 1935 and the second one in 1947, but none of them achieved success in the market
(VARIOUS, accessed 12/10/2019). In 1951, Leo Fender invented Fender Precision, the
first electric bass guitar that used the technologies contained in his electric guitars. This
model brings to the bass the magnetic pickups and the guitar-shaped body with fretted
fingerboard features. The Fender precision is considered a revolutionary instrument. After
all, it was easy to play as it contained frets, easier to carry because they were much
smaller than a double bass, and could have their volume easily adjusted because they were
directly connected to the amplifiers. From that moment on there were no drastic changes
in the design of the electric bass guitars. The changes were restricted to increasing the
number of pickups, adding more strings and subtle changes in body shape, as well as the

natural evolution of the electronics contained in these instruments (VETTER, accessed
12/10/2019).

2.6.2 Construction

The Bass guitar is made up of several parts assembled that affect the sound
produced by the instrument or how to use it. Basically, it is composed of a body, a neck,
and a headstock, but will be discussed below in more detail each of its parts for a complete
understanding of its operation. The following descriptions are based on articles by Porter
(PORTER, accessed 12/10/2019) and Stringvibe (STRINGVIBE, accessed 12/10/2019a)

2.6.2.1 Headstock

The headstock is at one end of the bass (Figure 2.17 (1)). It is attached to the
tuning machine (Figure 2.17 (g)), also called machine head, which decreases or increases
the traction of the strings (Figure 2.17 (d)) by rotating the tuning pegs. Changing the

traction of a string changes its pitch.

2.6.2.2 Nut

The nut (Figure 2.17 (f)) is a rectangular block, most commonly made of

plastic or synthetic 'bone’, positioned between the headstock and the neck (Figure 2.17
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Figure 2.17 — The traditional 4 strings electric bass guitar: a body, b neck, ¢ head

(k)). It keeps the strings evenly spaced and also helps to adjust their height relative to

the rest of the instrument.

2.6.2.3 Neck

The neck (Figure 2.17 (k)) is made of wood, most commonly maple, and con-
nects the headstock to the body (Figure 2.17 (j)) of the instrument. It is usually attached
to the body using four screws, but there are bass models in which the body and neck are
made of a single piece of wood, which helps increase the sustain of the played notes. It
is very common for basses to have a solid bolt running through the neck, which helps to

prevent warping due to string traction.

2.6.2.4 Fretboard

The fretboard (Figure 2.17 (c)) is a layer of wood, commonly rosewood, at-
tached to the front surface of the neck. Mounted on it are several small metal bars called
frets (Figure 2.17 (e)) that divide it into different tonal areas along its length. When a
string is pressed over an area of the fretboard, it will touch at least one of these frets and
the one closest to the instrument body will set the active width of the string. This ensures

that the notes you play are in tune.

Most basses have between 20 and 24 frets, although there are models with
up to 32 frets, usually used by soloists who need a longer range of notes. There are also

models without frets called fretless that feature the more muffled sound.

2.6.2.5 Body

The Electric bass guitar body is a solid piece of wood, usually Maple or Alder.

Its most traditional format is rounded along the outside with two curved horns on either
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side of the neck. Its main function is to serve as a point of attachment for other parts and

pieces of the musical instrument.

In it are installed all the electronics of the instrument such as pickups (Fig-
ure 2.17 (b)), switch knobs, control knobs and volume pots (Figure 2.17 (i)) and output
jack (Figure 2.17 (h)). Also, other structural mechanical components are attached to the
body, such as the bridge (Figure 2.17 (a)) and strap pins, which make it possible to use
a strap to support the bass, making it possible to play it while standing.

2.6.2.6 Pickups

Pickups (Figure 2.17 (b)) are bars, usually with plastic surfaces, fixed to the
center of the body, and under the strings. Inside are magnets surrounded by a coil of
copper wire. String vibration by the magnetic field induces an electrical voltage at the

coil terminals, which is sent to the amplifier via cables connected to the output jack.

By changing the position of the pickups it is possible to change the tone of the
instrument, so many basses have more than one pickup, making it possible to adjust the

tone by mixing and controlling the contribution of each pickup to the output signal.

There are also non-magnetic pickups, such as piezoelectric and optical pickups

that allow the use of non-ferrous strings, such as nylon. However, they are not very usual.

2.6.2.7 Bridge

The bass guitar bridge (Figure 2.17 (a)) is made of metal and is fixed to the
base of the body by screws. Its function is to anchor the strings to the body through holes
in its base through which each string is strung through. You can adjust the string height
using the saddle height adjustments. Each string goes through one of these saddles, which
contains a groove in the center where the string rests. They are movable and adjustable

by screws

2.6.2.8 Strings

Each electric bass string (Figure 2.17 (d)) is named by the note they produce
when they are played open, that is, without being pressed against the fretboard. Starting
from the top of the fretboard and moving downwards, the strings are called E;, A, D, and
G. The strings can be made of different materials like Nickel-plated steel, Stainless Steel,
and others. They are usually medium-caliber, so in a four-string counter bass pattern,
they are between 0.045 to 0.105 inches thick (STRINGVIBE, accessed 12/10/2019b).



Chapter 2. Theoretical Background 41

Frets and its respective notes

3 4 5 |6 718 9 10 | 11
15 |16 |17 18 |19]20 |21 |22]23
D# | E F | F#
A# | B C | C#
F F# | G | G#
C C# | D | D#

1
13

string ?4

G# | A | A# | B C | C#
E
B

D# F | T# |G | G#
A# C |C#|D | D#
F [ F# |G |G# | A | A#

= > O Q
clESIClalie
o | | T

Table 2.4 — Frets and its repective notes for each string on the bass guitar in standard
EAGD tuning

2.6.3 Tuning

The standard tuning for the strings of the four strings electric bass guitar is
E0 (41.20 Hz) for the E string, A0(55H z) for the A string, D1(73.41Hz) for the D string
and G1(97.99Hz) for the G string. The frequency notes for each fret of these string are
following the rule presented in equation (2.2) and its respective notes are presented in

table 2.4.

2.6.4 Playing techniques

Usually, bassists play the electric bass guitar while standing and the instrument
is played horizontally across the body. The fingers of the left hand press the string against
the fretboard so that it touches the fret, defining the note that will be played. The right

hand will excite the string, i.e., it will start its vibration, either using the fingers or a pick.

The pick is held between the thumb and index finger and used to downstroke
or upstroke the string with the motion supplied by the wrist. It is used to achieve greater
speed, a more articulate attack, or by personal preference and is more used among bassists

who play rock, punk rock, and metal.

The most traditional and characteristic way of playing the bass is using the
fingers of the right hand, a technique known as pizzicato. Usually, the bassist uses the
index and middle fingers alternately to pluck the strings, although the other fingers are
also sometimes used. The thumb can be used to support the right hand, resting over
the edges of the pickup. The strings can be plucked from the bridge to the fret where
it is pressed. Near the bridge, the sound has more brilliance, with a greater presence of

harmonics while in medium positions a mellow tone is obtained.
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3 Methodology

3.1 Time-domain Behavior of a Plucked String

This section discusses the properties of the plucked string signal that were used
as a basis for our f0 estimation method. These properties were inferred by analyzing the
audio signal of an electric bass string, as shown in Section 3.1.1, then the physical model

discussed in Section 3.1.2 was used to generalize these results, as shown in Section 3.1.3.

3.1.1 Plucking an Electric Bass String

----- position — velocity

_______________________________

t=0.00272

x=0 i Xx=xp (pluck position) x=L1
PP ckup position : :
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Length [m]

Figure 3.1 — Position and velocity of a string along the = axis at different times ¢ with
fixed ends at xt =0 and x = L

There are magnetic pickups placed on the body of the instrument, under the
strings. They convert the string transverse velocity at its position into an electric voltage.
The string transverse velocity can be seen as a wave that propagates from the pluck
position along the string length, reflecting and inverting when reaching the string end, as

shown in Figure 3.1.



Chapter 3. Methodology 43

The waveform of the voltage signal at the pickups, as shown in Figure 3.4,
indicates repetitions of a peak (positive or negative) at the beginning of each cycle. In
order to confirm that this characteristic is maintained for all the electric bass guitars
(instead of being a characteristic of the specific instrument), the behavior of its string

was mathematically modeled, as discussed in the next section.

3.1.2  Physical model

The behavior of the bass string can be modelled using an ideal string along
the coordinate x with fixed ends at * = 0 and x = L with a transversal displacement

along the coordinate y, which give us the following boundary conditions:
y(x =0,t) = 0. (3.1)

y(x = L,t) =0. (3.2)

The string has linear density p and is stretched with a force Frp. It is initially
at rest and is plucked in the position « = z, with amplitude y(z,,0) = A as depicted in
Figure 3.2. In this situation, the initial transverse displacement y(z,0) can be expressed
by

_ (3.3)
A(l — F2) | otherwise

L—xp

y(x,t:()):{ A(ﬁ) Jdf o <, }

string

]
_UN

=

kS 4

Figure 3.2 — String with fixed ends at x = 0 and = L being plucked at x = z, with
transversal displacement y(z,) = A.

Initially, the velocity distribution 3/(0, z) is:
y'(z,t=0)=0. (3.4)
As depicted in Figure 3.3, for a short segment of this string between x and Az

there is a slope dy/dz = tan(f) and a vertical force F' defined by:

F = Frsin(0(z + Ax)) — Frsin(f(z)) (3.5)
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A .
string segment Fr

v

x+Ax

Figure 3.3 — Short segment of a string between (z, y) and (x+ Az, y+ Ay) where a tension
Fr is applied.

If y corresponds to a small displacement, 6 is also small and can be approxi-

mated using sin(f) ~ tan(f) and tan(d) = %. This allows re-writing Equation (3.5) as:

y oy

F = FT(a—x(x + Az) — %(x)) (3.6)
Using the Newton’s second law:
0%y
and knowing that the mass for this string segment is m = pAx, we have:
Oy Oy 0%y
FT(%(x + Az) — a—x(x)) = ,qu@ (3.8)

dividing both sides of Equation (3.8) by Ax, applying the second derivative
definition with Az — 0 and making ¢ = |/ Fr/pu, it becomes the wave equation:

Py 0%

This model was used to simulate plucked strings and the resulting waveforms

were compared to measured waveforms, as discussed in Section 3.1.3.

3.1.3 Plucked string simulation

Equation 3.9 was numerically solved using the finite difference method (JAIN,
2003) and the algorithmic steps used by Langtangen (LANGTANGEN, 2016). The Taylor
series expansion was used to approximate it as:

y(x + 0x,t) — 2y(z,t) + y(x — Oz, t)
ox? -
1 y(z,t + 0t) — 2y(x, t) + y(x,t + Ot) (3.10)

c? ot?
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Using the 4, j notation such that y(x,t) = y;;, inserting the wave number

C= %—8; and rearranging Equation 3.10 yields:
Yigr = C?yicr; +2(1 = C?)yij + C?yivrj — Yijor- (3.11)

To calculate the value of this function in the first time step, y; ;1 must be
determined. This can be done using the initial velocity in Equation 3.4 and Tailor’s series

as follows:
y(x,t + 0t) — y(z,t — Ot)

20t

Rearranging equation 3.12 and rewriting in the ¢, 7 notation, we find that:

— 0. (3.12)

Yij—1 = Yij+1- (3.13)

Finally, replacing v; j_1 by ¥ ;41 in Equation 3.11, isolating y; j_; and dividing

both sides by 2, we have:
02 02

Yij+1 = 5 Yi-1 +(1—=C?yi; + o Yirris (3.14)

which is the finite difference scheme. The numerical simulation was executed over the
discrete spatial domain [0,L] equally spaced by dx and over the discrete temporal domain

[0, T] equally spaced by 0t.

The model’s pluck position =, = L/5 and the string length L = 0.87m were
directly measured from the strings of an electric bass. The wave velocity ¢ was calculated
using ¢ = f/(2L) (IAZZETTA, accessed 04/25/2019) related to note EO. The simulation

time was define as ty = 0.05s.

Over the spatial domain, the algorithm computes y; ¢ using Equation 3.3 and
y;1 using Equation 3.14 and applying the boundary conditions from Equations 3.1 and
3.2. Then, for each element j from temporal domain, apply Equation 3.11 to find y; j+1

for each element i from the spatial domain, applying the boundary conditions again.

The output simulated signal was retrieved from the string velocity in the posi-
tion x = L /5, approximately the pickup position, and was yielded to a 5th order low-pass
Butterworth filter with a 150H z cutoff frequency. This simulates the smoother bend of
the string due to its stiffness and the soft touch from the fingertip, which are responsi-
ble for generating tones with weaker high-frequency components (JANSSON, 2002). The

resulting signals were compared to the recorded signals, as shown in Figure 3.4.

Figure 3.4 shows that the physical model generates shapes that are similar to
those found in the acquired signals. This means that the peak behavior is not a particular
behavior of the specific electric basses that were used in our acquisitions. Rather, this
behavior can be expected to appear in electric basses in general, hence it can be used for

further steps in fundamental frequency estimation.
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Figure 3.4 — Simulated and measured notes played on string E of the electric bass guitar
(a) EO (b) Af0 (c) F1 (d) Al

3.2 Fundamental Frequency Estimation

The simulated and measured waveforms in Figure 3.4 show that there is a
peak at the onset of the note and at the beginning of each cycle after it. These peaks
have approximately the same width, regardless of the note’s frequency, and the note’s
fundamental frequency occurs due to the rate in which peaks appear in the signal. The

proposed method is based on these two characteristics, as follows:

As it is a proposal for analysis in real-time, the signal coming from the electric
bass guitar must be analyzed continuously, that is, the analog electrical signal must be
converted to digital and the samples saved in a buffer for analysis. For each new sample
obtained, the buffer must be updated, eliminating the “oldest” sample from it. A flowchart

of the entire algorithm process is presented in Figure 3.5.

3.2.1 Detect onset

Initially, it is necessary to detect the onset of the note that will be played on
the instrument. There are several methods for detecting onsets that can be applied in this
case, according to the study by (PORCIDES; TAVARES, 2014). As in the case of the

electric bass guitar, there is usually a rapid and considerable increase in relative energy
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Figure 3.5 — Proposed method flowchart process.

when a note is played, it is proposed to use the method based on the energy function:

1 Nen
En, = — l?, 3.15
n Nennglls | (3.15)

where N,, is the length of the analysis window. A note onset is detected when the energy

variation is positive and bigger than a threshold value.
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Figure 3.6 — Analyzed signal s,, and integration short window with size W. This signal is
a recording of the GO note played on the E string of an electric bass guitar

3.2.2 Determine starting peak

When onset is detected, the algorithm will seek to determine the initial peak
in the buffer, as expected according to figure 3.6. The instant of occurrence of this peak is
used to define the start time of the short W-size integration window, also shown in Figure
3.6, which will be used in the following steps in the application of the absolute difference

function.

3.2.3 Detect if there is enough data

The W size of the short integration window is one of the input parameters
of the algorithm and must be less than half the width of the initial peak. Bearing in
mind that for the same string, the width of this peak remains approximately constant,

regardless of the note.

To perform the next step, it is necessary to check if the number of samples
available in the buffer generated after the initial peak is greater than W, as an onset
can be detected so quickly that the analyzed signal has not yet toured enough for the

generation of the samples necessary for the application of the absolute difference function.

3.2.4 Absolute difference function

The next step is to apply the absolute difference function to the W length
section of the signal available in the buffer. In the initial instant, this signal will be
exactly the same as the short integration window itself, that is, the result will be zero.

For each new sample that becomes available in the buffer, the absolute difference function
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Figure 3.7 — Absolute difference function from the analyzed signal s,, from figure 3.6 and
threshold value represented as the horizontal dotted line

is applied again, keeping the same short integration window samples, but comparing it
to a new signal segment, which contains the new sample made available and does not

contain the sample from the "oldest" instant.

The absolute difference function is defined as:

W
d(1) = |80 — Snarls (3.16)

n=1
where 7 is the temporal lag between the initial peak and the analized section from the
audio signal s,. So we are measuring the absolute difference between the first moments
of the signal after the initial peak in relation to the following sections of this same signal,

resulting in a function like the one illustrated in Figure 3.7.

The absolute difference function must be applied to each buffer update until
it has passed, from the initial peak, an interval of 1.1 times the fundamental period T} of
the lowest frequency to be detected. Theoretically, this interval could be Ty + W, but the
first cycle from the onset is subject to harmonics that can vary the interval between the

first two peaks of the signal. Thus, 1.1 x Tj gives a margin of tolerance.

3.2.5 Find local minima

In sequence, the algorithm searches for local minima in the absolute difference
function, referenced as dips in Figure 3.7. For the lowest notes, there will be only a
local minimum as depicted in Figure 3.7, from which we will obtain the 7y interval. For

the highest notes, as exemplified in Figure 3.8, there may be 2 or 3 local minimums, as
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Figure 3.8 — Analyzed signal s,, and integration short window with size W. This signal is
a recording of the G1 note played on the E string of an electric bass guitar
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Figure 3.9 — Absolute difference function from the analyzed signal s, from figure 3.8 and
threshold value represented as the horizontal dotted line

depicture in Figure 3.9, depending on how many frets the bass has. In this case, 7y is

obtained by:

n )
n=1
where N, is the number of local minimums and 7, is the temporal lag between the initial

peak and nTH local minimums.
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Figure 3.10 — Algorithmic delay for the proposed method and for the Yin method.

3.2.6 Determine fO

Since 7y represents the interval in which the signal most seems to repeat its
initial stretch, we define that the fundamental period of the T} signal is equal to 7. Thus

we determine the fundamental frequency fy of the signal as:

1

=7

(3.18)

Therefore, briefly, the proposed method consists of the application of the signal
to an absolute difference with a window size W shorter than half-width of this first peak
as shown in Figure 3.6. This thin window plays an important role to make it possible for
the method to find fO after 1.1 times the fundamental period, whereas the Yin method
needs more than two fundamental periods (CHEVEIGNé¢; KAWAHARA | 2002), as shown
in Figure 3.10.

The next section discusses experiments regarding the proposed method.
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4 Experiments and results

4.1 Dataset

The proposed method was tested using a set of audio recordings acquired from
3 different electric bass guitars. Each of them was played by a different musician, and all
of them used the finger-plucking technique. All notes within the instrument’s range were
recorded from each of the guitars, using two different instrument equalizations (full bass
and full treble). This yielded 528 recordings, which were all manually cropped to start at

the note onset since the proposed method does not have a note onset detector.

4.2 Experiments

This section describes experiments that compare the proposed method to the
Yin method (CHEVEIGNé; KAWAHARA, 2002), as implemented by Guyot (GUYOT,
2018). The experiments comprised executing both the proposed method and the Yin

method to estimate the f0 in the dataset samples.

421 Test 1- sample length for note

In this first test, the sample length provided as input parameters for the algo-
rithms is equal to 1.1 x T}y X fs, being T}, the fundamental period of the expected note
and fs the sampling frequency of the digital audio signal. To serve as a reference, the
test was repeated for the Yin method with a sample length equal to 2.1 x T}; X fs and is

referenced as "Yin2" in Figure 4.2 (a).

4.2.2 Test 2 - sample length for string

This second test is a more common application for a pitch detector in a string
instrument, where the fundamental frequency should be estimated from a range of approx-
imately 2 octaves. So, the sample length provided as input parameters for the algorithms
is equal to 1.1 X Ty X fs, being T}s the fundamental period of the lower note from the
specific string to which the recorded note belongs. Also, in this case, the test was repeated
for the Yin method with a sample length equal to 2.1 x T}, X fs and is referenced as "Yin2'
in Figure 4.2 (b).

Figure 4.1 compares the length of the samples used in test 1, shown in the first

column, and test 2, shown in the second column of the figure.
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Figure 4.1 — sample lengths for test 1 in the first column and for test 2 in the second
column

To determined if the method fails, the MIDI note correspondent to the funda-

mental frequency estimated is calculated as:

Jo 1
Mo = 121 , 4.1
' o8 (16.351597 log(2) (41)

where fp is the estimated fundamental frequency and 16.351597 is the fy for the MIDI
note = 0. The result is rounded to the nearest integer. If the calculated MIDI note differs

from the expected one, it is counted as one error.
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4.3 Proposed method applied to other musical instruments

The proposed method was developed based on specific characteristics of the
electric bass waveform when played using the finger plucking technique. These charac-
teristics were observed in samples of recordings made with the referred instrument and
mathematically modeled to guarantee that they will be present in the waveforms generated
by electric basses in general. As these characteristics may be also present in waveforms
generated by other instruments, this section presents the results of applying the method
to audio samples of some other instruments in order to indicate promising paths for future

work in the expansion of the method application.

The samples of musical instruments analyzed below were obtained from the
soundbank of the FreePats project (FREEPATS, accessed 09/02/2020).

4.3.1 Electric Guitar

The waveforms illustrated in Figure 4.3 (a) and (c) were obtained from recorded

samples from the Fender Telecaster Electric Guitar, direct from its bridge pickup output.

From the analyzed waveforms we can find the main characteristics for the
application of the proposed method. The signal generated by the electric guitar shows
sharp peaks at the beginning of each cycle and that varies little in relation to the note

played.

The proposed method was able to detect the fundamental frequency of the
analyzed signals, presenting local minimums at the waveform repetition points, as can be
seen in Figure 4.3 (b) and (d).
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Figure 4.3 — Analyzed signals from an electric guitar: (a) note F1; (c¢) note E2. Absolute
difference function: (b) from signal in Figure(a); (d) from signal in Figure

(c).

4.3.2 Acoustic Guitar

The waveforms illustrated in Figure 4.4 (a) and (c) were obtained from samples

recorded from a Spanish classical guitar through a microphone.

The analyzed waveforms do not have the necessary characteristics for the ap-
plication of the proposed method. Consequently, the application of the absolute difference
function does not have a function that allows us to determine the fundamental frequency,
as shown in the figure 4.4 (b) and (d).

Observing the waveform of the figure 4.5 it is possible to notice that in the first
moments after the note onset there is a strong presence of harmonics, probably due to
the contact between the musician’s nail and the instrument’s nylon string, which hinder
the use of the proposed method. Another factor responsible for the big difference in the
waveform is the capture method, which was made by a microphone, adding to the signal

the effects of room reverberation.
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Figure 4.4 — Analyzed signals from an acoustic guitar: (a) note E1; (c) note E2. Absolute
difference function: (b) from signal in Figure(a); (d) from signal in Figure
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Figure 4.5 — waveform from an acoustic guitar attack and first cycles.

4.3.3 Upright Piano

The waveforms illustrated in Figure 4.6 (a) and (c) were obtained from samples
recorded from a Kawai upright piano, located in a living room through a microphone
positioned in front of the piano, approximately at the place where the head of a piano

player would be.

Again, the analyzed waveforms do not have the necessary characteristics for
the application of the proposed method. Consequently, the application of the absolute
difference function does not have a function that allows us to determine the fundamental

frequency, as shown in the figure 4.4 (b) and (d).
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Figure 4.6 — Analyzed signals from an Upright Piano: (a) note A0; (c¢) note Al. Absolute
difference function: (b) from signal in Figure(a); (d) from signal in Figure
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Figure 4.7 — waveform from an Upright Piano attack and first cycles.

From the waveform shown in figure 4.7 it is possible to notice that there is a
strong presence of harmonics along with the signal, probably due to the impact of the
hammer on the string and the construction of the instrument that differs greatly from the
electric bass. Therefore, the use of the proposed method for this type of instrument also

seems unfeasible.

4.3.4 Wooden Recorder

The waveforms illustrated in Figure 4.8 (a) and (c) were obtained from samples

recorded from a "Venus" wooden recorder through a microphone.
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Figure 4.8 — Analyzed signals from a wooden recorder: (a) note A5; (c) note A6. Absolute
difference function: (b) from signal in Figure(a); (d) from signal in Figure

(c)-

This is yet another case where the analyzed waveforms do not have the charac-
teristics that supported the development of the proposed method. However, as the signal
generated by this instrument has few harmonics, approaching a sinusoid, the application
of the absolute difference function generated a signal with local minimums at the begin-
ning of each cycle, as shown in the figure 4.8 (b) and (d), making it possible to determine

the fundamental frequency.

As may be observed in figure 4.9, this instrument has a relatively slow attack
so that the initial peak detected in the onset has a lower amplitude than the following
peaks. Depending on how big this difference is, the point of occurrence of the local minima
of the absolute difference function can be changed enough to cause the error of the note

determined by the method.

4.4 Discussion

The error rates presented in Figure 4.2 show that the proposed method had
less than half of the Yin method’s error rate, so having a better performance estimating
f0 on both tests.
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Figure 4.9 — waveform from an wooden recorder attack and first cycles.

It is important to note that the tests refer to a very specific condition, as they
aim to verify the performance of the methods to determine the fundamental frequency
of notes played on a specific musical instrument, the electric bass, right after its first
oscillation cycle. In addition, the method was tested for the frequency range from 41.2 Hz
to 392 Hz, that is, from the lowest to the highest note of the standard four-string electric

bass.

As expected, the Yin method is a better solution when sample length is longer
than 2 cycles of the fundamental period, but for the string E of an electric bass guitar,
the algorithmic delay is higher than 50 ms (2/f0 = 2,1/41.20Hz =~ 0,051s), which is
perceptible for a bass player, making it harder to play the bass guitar with real-time MIDI
outputs, as shown in the (LESTER; BOLEY, 2007) study, where professional bassists

deemed acceptable latencies of up to 30 ms.

The study on the application of the proposed method to other musical in-
struments indicated that there is a possibility of obtaining good results with the electric
guitar. This is due to the fact that the instruments share many constructive character-
istics, such as metallic strings and capture by electromagnetic pickups. For the acoustic
guitar and upright piano, the results were not promising. The waveforms generated by
these instruments are quite different from those generated by the electric bass, mainly
because the sound generated is not a simple capture of the vibrating string, but rather
the vibration of its entire structure. Finally, the method even proved to be reasonably
applicable to the Wooden Recorder, but as this instrument reproduces high notes, more
accurate methods that use more than two cycles for the detection of the pitch will not

present great latencies.
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5 Conclusion

A method based on the absolute difference function and the waveforms from a
finger plucked strings of an electric bass guitar was presented. It was tested over 528 notes
recorded from three different bass guitars and it shows to be capable to estimate these
notes from samples with length equal to 1.1 times their fundamental periods, while our
reference method, Yin, under the same conditions, had double the error rate. This shorter
algorithmic delay, near the minimal theoretical delay (one fundamental period) and low
computational complexity, makes the proposed method suitable for real-time applications

for the electric bass guitar, such as a MIDI bass guitar.

However the method missed 15% of the notes on test 2, which is a similar
application, so future studies should be made to improve these results. An approach to
reduce errors, unrelated to improvements in the method, would be to adopt a specific way
of playing the musical instrument. If the bass player always plucks the string smoothly,
in order to keep the first cycles of the signal similar to the modeled ones, error rates can
be drastically improved. It can be a useful alternative way to a MIDI bass guitar, where
the way you pluck the strings will not affect the sound timber. But, clearly, this imposes

a limited way to play in exchange for a more precise note detection and lower latency

Also, the method was not tested for notes played on top of an already vibrating
string which certainly should make it harder to estimate the correct f0. However, it is
possible that contact with the plucking finger, at the moment of playing the new note,
dampens the string enough to not interfere with the performance of the method. This

case will be approached in future work.

The method is applicable for pitch determination for monophonic electric bass
signals, so in a real application, it would be necessary to use individual pickups per string,
so that each generated signal can be analyzed individually and ensuring that there will be
no more than one note simultaneously for each signal. In addition, the method requires
a quick onsets detector, which provides the information that a note has been played to

begin the analysis process.

A promising path for future work would be the development of a hybrid
method, which uses the proposed method for rapid pitch detection in low notes and
another more accurate method using at least two cycles, such as Yin, for higher notes.
Thus, adjusting the proposed method to provide an estimate after an analysis window
of 1.1 times the period of the lowest fundamental frequency, and the second method to

provide an estimate as soon as it is obtained, that is, after two cycles of the analyzed
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frequency, we will have the following process: if the note is high, the second method will
offer the estimate before the end of the analysis of the proposed method, otherwise the

proposed method will provide its estimate, avoiding greater latencies.

Finally, future works can study how the use of the reed to play the strings
affects the error rates, which could allow the application of the method for the electric
guitar, an instrument that indicated to have similar characteristics in the waveforms, from

those used in the analysis by the proposed method.
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