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Abstract

Massive MIMO (M-MIMO) is one of the most promising technologies towards the fifth gen-
eration (5G) wireless systems and beyond. M-MIMO uses a large number of antennas at the
base station (BS) serving many user terminals (UTs) in a same radio resource. Furthermore,
it presents exceptional performance in terms of the ergodic capacity and bit error rate (BER)
using simple linear detectors, such as maximal-ratio combining (MRC), zero-forcing (ZF), or
minimum-mean-square error (MMSE) due to the interference reduction and the favorable prop-
agation. However, this exceptional performance is reached when time-invariant channels (TIC)
and perfect channel state information (CSI) are present.

Impairments introduced by time-variant channels (TVC) and imperfect channel estimation
restrict the M-MIMO performance. Some works have evaluated these impairments in terms of
the BER using only simulations. Besides, multiplexed pilot estimation (MPE) employing the
minimum-mean-square error (MMSE) estimator is widely employed in the channel estimation.
However, other channel estimation techniques, such as superimposed pilot estimation (SPE)
and hybrid pilot estimation (HPE) that perform differently on TICs and TVCs can be used for
M-MIMO.

In general, the uplink performance of single cell M-MIMO systems is evaluated in terms of
interference reduction factor (IRF) and BER. For this purpose, the IRF of M-MIMO systems
employing linear and planar antenna arrays in line-of-sight (LOS) and non-line-of-sight NLOS
channels is evaluated. The normalized mean-square-error (NMSE) of the channel estimator and
the system BER is then evaluated for MRC, ZF and MMSE detectors using MPE, SPE and
MPE techniques for obtaining the channel estimation on TICs and TVCs models.

The contributions of this dissertation are summarized in the following. Closed-form expres-
sions are derived to evaluate the IRF as a function of the spacing among antennas for linear
and planar arrays. Additionally, the condition of favorable propagation for different channel
models is presented. On the other hand, MPE, SPE and HPE techniques are described. These
channel estimation techniques are evaluated for TICs and TVCs in terms of the NMSE. Fur-
thermore, closed-form expressions of the BER are derived for linear detectors. For this aim,
the signal-to-noise-plus-interference ratio (SNIR) is derived for TICs and TVCs, considering
the aforementioned channel estimation techniques. Additionally, lower and upper bounds of
the BER are also derived. Finally, a comparison among detectors and estimation techniques is
presented. In all scenarios, multilevel quadrature amplitude modulation (M-QAM) modulations
are considered. Monte Carlo simulations are employed to verify the accuracy of the presented
mathematical expressions.

Keywords: Massive MIMO; channel estimation; bit error rate; time-variant channel; time-
correlation; linear detection; antenna array; channel state information; inter-user interference;
Rayleigh fading.



Resumo

MIMO massivo (M-MIMO) é uma das tecnologias mais promissoras para os sistemas sem fio
de quinta geração (5G) e além. M-MIMO usa um grande número de antenas na estação radio
base (BS), atendendo a vários aparelhos de usuário (UTs). Além disso, ele apresenta um desem-
penho excepcional em termos da capacidade ergódica e da taxa de erro de bit (BER) usando
detectores lineares, como o combinador de razão máxima (MRC), forçamento de zero (ZF) ou
erro quadrático médio mı́nimo (MMSE) devido à redução da interferência e ao mecanismo de
propagação favorável. No entanto, esse desempenho excepcional é alcançado somente na pre-
sença de canais invariantes no tempo (TIC) e quando a informação de estado do canal (CSI) é
perfeita.

As deficiências introduzidas por canais variantes no tempo (TVC) e por uma estimação de
canal imperfeita limitam o desempenho do M-MIMO. Alguns trabalhos avaliaram essas defi-
ciências em termos da BER usando apenas simulações. Além disso, a técnica de estiamção de
canal com pilotos multiplexados (MPE) em conjunto com o estimador de erro médio quadrático
mı́nimo (MMSE) são amplamente empregadas. No entanto, outras técnicas de estimação de
canal, como a de pilotos sobrepostos (SPE) e a h́ıbrida (HPE), que apresentam desempenhos
diferentes em TICs e TVCs, podem também ser usadas em M-MIMO.

Em geral, este trabalho aborda o desempenho do enlace de subida de sistemas M-MIMO
para uma única célula em termos do fator de redução de interferência (IRF) e da BER. Para
isso, o IRF de arranjos de antenas lineares (unidimensionais) e planares em canais com linha
de visada (LOS) e sem linha de visada (NLOS) é calculada. A seguir, o erro quadrático médio
normalizado (NMSE) do estimador e a BER são avaliadas para os detectores lineares MRC, ZF
e MMSE usando as técnicas de estimação MPE, SPE e HPE em canais TICs e TVCs.

As contribuições desta dissertação são resumidas a seguir. Expressões em forma fechada são
derivadas para o IRF em função do espaçamento entre antenas de arranjos lineares e planares.
Além disso, as condições de propagação favorável são apresentadas. As técnicas de estimação
de canal MPE, SPE e HPE são apresentadas a seguir. Essas técnicas são avaliadas em termor
do NMSE para TICs e TVCs. Além disso, expressões em forma fechada da relação sinal ruido
mais interferência (SNIR) e da BER são derivadas para os detectores lineares em TICs e TVCs.
Também, limitantes inferiores e superiores da BER são derivados. Por último, uma análise
comparativa entre os detectores e as técnicas de estimação é apresentada. Em todos os cenários,
modulações multińıvel de amplitude em quadratura (M-QAM) são consideradas. Simulações de
Monte Carlo corroboram a precisão das expressões apresentadas.

Palavras-chave: MIMO Massivo, estimação de canal; taxa de erro de bit; canal variante no

tempo; correlação temporal; deteção linear; arranjos de antenas; informação de estado do canal;

interferência entre usuários; desvanecimento Rayleigh.
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CHAPTER 1

Introduction

The development of wireless communication systems promises a continuous increase

in mobile data traffic, allowing operators to offer several services that can range from a

simple call, to data services or even newer applications or services [1, 2]. The continuous

development motivated by the growing requirements has brought new challenges for both

academic and industry researches to pursue innovative strategies that enable reliable com-

munications with higher data rates, lower latency and bit error rate and greater spectral

efficiency and coverage.

Wireless communication systems present several operational impairments such as path

loss, multipath fading, co-channel interference, additive white Gaussian noise (AWGN),

and others. In order to overcome these undesirable effects, several transmission-reception

mechanism have been employed by wireless communication standards. In particular, the

fourth generation (4G) of cellular networks has introduced a technique that uses multiple

antennas at both the transmitter and the receiver, known as multiple-input multiple-

output (MIMO) systems [3]. This solution provides spatial multiplexing and diversity to

the wireless system, achieving higher data rates and reliability without any expansion of

the bandwidth or increase in the system transmission power. Nowadays, MIMO systems

employing at most 8 antennas at both ends are a mature and well understood technology

[4]. Furthermore, MIMO is part of some wireless communication standards, such as

802.11n/Wi-Fi and 802.16/WiMAX [5, 6].

However, 4G systems are proving to be insufficient to meet future demands of services

and applications [7]. The fifth generation (5G) of cellular networks has established new

parameters in order to fulfill the International Mobile Telecommunications (IMT) 2020

requirements [8], with wide impact not only in the technology but also in the economics

by creating new business models [9, 10]. In this context, 5G introduces a new network

core and a new radio interface [11]. One of the new radio innovations is the deployment of

MIMO systems with a large number of antennas at the base station (BS) serving a limited

number of single antenna user terminals (UT), known as massive MIMO (M-MIMO). M-

MIMO has emerged as one of the most promising technologies since it allows a much
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higher spectral efficiency and, consequently, very high data rates without requiring extra

bandwidth, or time resources, or additional transmit power [12]. M-MIMO improves

the ordinary MIMO performance, because it exploits the advantages of extra degrees of

freedom provided by using more antennas.

The remainder of this chapter is organized as follows. In Section 1.1, related works

in the area of M-MIMO systems are summarized and the motivation of this study is also

introduced. Finally, the contributions and the outline of this dissertation are presented

in Section 1.2.

1.1 Related Work and Motivation

The concept of M-MIMO was introduced by Marzetta in his seminal paper, ”Noncoop-

erative cellular wireless with unlimited numbers of base station antennas” [13]. Succeed-

ing works have shown that the fundamental concepts of M-MIMO has improved ordinary

MIMO, allowing reliable communication with high throughput and power efficiency using

simple linear processing [14–16].

In [17], it was established that M-MIMO takes advantage of the channel favorable

propagation property, defined by the mutual orthogonality among the channel vectors

of the UTs. Favorable propagation has the effect of reducing the inter-user interference

[18], which can be assessed by the interference reduction factor (IRF) [19]. One condition

to achieve favorable propagation is to employ very large antenna arrays, which could be

impractical for real BS with limited physical space [20, 21]. Furthermore, a dense array of

antennas in a limited space does not reduce the inter-user interference due to the spatial

correlation [22, 23]. The large size of M-MIMO arrays is a fundamental problem for its

practical deployment. Thus, a study that evaluates the IRF of several antennas array on

different channels is necessary for the M-MIMO development.

The IRF is a basic performance indicator for M-MIMO, however, in order to evaluate

the overall performance of M-MIMO, other performance indicators may be used. In most

of the literature, the performance of M-MIMO is evaluated in terms of the ergodic capacity

[12, 15, 24–28]. Moreover, other more practical performance evaluations measures could

also be used, such as the bit error rate (BER), pair-wise error probability (PEP), or outage

probability [29–32]. The BER is often used, once it assesses the full end to end performance

of wireless systems, including the transmitter, receiver and channel impairments. Thus,

it is interesting to evaluate the BER of M-MIMO systems.

M-MIMO also presents near-optimal performance for simple linear detectors such as

zero-forcing (ZF) and minimum-mean-square error (MMSE), assuming perfect channel

state information (CSI) [31, 33–36]. Furthermore, maximal ratio combining (MRC), which

is the simplest linear detector, presents an exceptional performance [37]. In the literature,
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the performance of M-MIMO systems is commonly evaluated considering perfect CSI, as

shown in the works mentioned above.

CSI is obtained by channel estimation, which is a classical problem of communication

systems. Usually, MIMO systems use pilot symbols to aid with channel estimation [38].

Thus, for the uplink, the CSI is obtained at the BS by using known orthogonal pilot

sequences transmitted by each UT. Commonly, pilot symbols are time-multiplexed with

data. In the literature, this technique is named multiplexed pilot estimation (MPE),

conventional pilot (CP), or regular pilot (RP) [39]. Some studies suggest that it may be

advantageous to superimpose the pilot and data, this technique is named superimposed

pilot estimation (SPE), that has been studied in the channel estimation of MIMO systems

and used to solve synchronization issues [40, 41]. It is considered an excellent technique

to combat pilot contamination in multi-cell M-MIMO [42, 43]. Furthermore, a hybrid

pilot estimation (HPE) that consist of combining MPE and SPE techniques is explored

for M-MIMO in [44].

In [45], a survey on M-MIMO systems in presence of channel and hardware impair-

ments is presented. In that work, in order to study the channel impairments, the channel

dispersion is divided into four categories: In the first category, the channel is assumed time-

invariant and the fading is flat. In the second category, the channel is time-variant and the

fading is flat. In the third one, the channel is time-invariant and the fading is frequency-

selective. Finally, the last category corresponds to a time-variant and frequency-selective

fading. The authors conclude that channel issues need to be addressed, particularly the

estimation and channel aging effects, especially in fast mobility environments. Therefore,

the channel estimation effects on the performance of M-MIMO systems should be analyzed

for some channel models and estimation techniques.

Most of the M-MIMO studies lie on the first category defined in [45], which considers

a time-invariant channel (TIC) and flat fading. In general, the system performance of

M-MIMO using MPE is evaluated in terms of the ergodic capacity in [15, 24, 26] and in

terms of BER in [30, 46, 47]. On the other hand, the ergodic capacity of M-MIMO using

SPE is evaluated in [42, 48, 49] and the BER based on simulation in [43] for an iterative

detector employing the least-squares (LS) estimator, and in [50] by using estimation aided

by second-order statistics. Finally, the performance of M-MIMO for HPE in [44, 51], in

terms of the ergodic capacity and in [43] in terms of the BER. As a consequence, there are

a limited number of studies that evaluates M-MIMO performance in terms of the BER

using SPE and HPE.

The second category in [45] considers a time-variant channel (TVC), where the channel

coefficients vary in a coherence time-interval due to the Doppler effects caused by the

UTs motion [52, 53]. The effects of time-variant coefficients in the uplink performance

of M-MIMO in terms of the channel capacity using both MRC and ZF detectors are

presented in [54], where another reason for CSI inaccuracy, named as channel aging, is
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also introduced. The channel aging problem is due to delay between the channel estimation

instant and the detection usage in MPE and HPE techniques. The effects of channel aging

on the sum-rate and on the spectral efficiency were investigated for a multi-cell M-MIMO

system with regularized ZF precoder and ZF detector in [55] and [56]. The results show

that channel aging degrades the system performance severely. However, using channel

prediction techniques, the effects of channel aging can be minimized. It was also shown

that for UT at higher speeds, the maximum achievable rates are reduced. Further analysis

of M-MIMO performance using MPE can be found in [57–60]. On the other hand, the

effects of TVCs on the channel capacity of M-MIMO systems using SPE technique for high

speeds are shown in [61]. Based on the literature review, there is a lack of investigation

for both SPE and HPE techniques on TVCs. Furthermore, the BER analysis of M-MIMO

systems on TVCs is scarce.

The third and fourth categories described in [45] for frequency-selective fading goes

beyond the proposal of this work. However, some useful references related to this topic

are [62, 63].

By the aspects mentioned in previous paragraphs, evaluating the impairments intro-

duced by TVCs on the channel estimation quality and on the BER of M-MIMO systems

it is a relevant topic that deserves attention. Hence, evaluating the BER of M-MIMO

systems employing MRC, ZF and MMSE detectors using MPE, SPE and HPE techniques

on TICs and TVCs is one of the contributions of this thesis.

1.2 Contributions and Outline of the Dissertation

This thesis encompasses several results in the performance evaluation of M-MIMO

systems. The contributions are addressed in separate chapters raised from the motivations

described in Section 1.1. The first contribution is in terms of the IRF, as a result of the

M-MIMO channel analysis. The second contribution in terms of the BER, for some linear

detectors and some channel estimation techniques for time-variant and time-invariant

channel models. For this purpose, some basic concepts of digital communications, cellular

systems, MIMO systems, linear detection and channel estimation are presented. The

remainder of the dissertation is structured as follows:

� Chapter 2. The aim of this chapter is to provide some basic concepts for the

analysis performed in the next chapters. A brief review of fundamental concepts

such as digital modulation, cellular systems, MIMO and M-MIMO systems and

their mathematical representation is presented. Moreover, the principles of linear

detection and channel estimation are introduced.

� Chapter 3. This chapter depicted the contributions of the published articles [64]

and [65]. Hence, exact closed-form expressions to evaluate the IRF for linear and
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planar antenna arrays are presented. Furthermore, based on the array geometry, a

study of the relationship between IRF and favorable propagation is presented. This

chapter also describes the channel models for the M-MIMO performance evaluation.

� Chapter 4. This chapter presents the contributions based on the results published

in [47] and [66]. The M-MIMO system model is described and some channel esti-

mation techniques for M-MIMO systems are presented. These channel estimation

techniques are evaluated for TIC and TVC channel models in terms of the normal-

ized mean-square-error (NMSE).

� Chapter 5. The contributions of the results published in [34, 47, 66, 67] are pre-

sented in this chapter. The performance of linear detectors in M-MIMO systems

in terms of the BER is outlined, the signal-to-noise-plus-interference ratio (SNIR)

of linear detectors is derived and the performance is evaluated for TIC and TVC

channel models by using the expressions obtained in Chapter 4. Exact closed-form

expressions are obtained to evaluate the BER. Moreover, lower and upper bounds

on the BER are also derived. Finally, a comparison analysis between the detectors

and estimation techniques is presented.

� Chapter 6. This chapter summarizes the main contributions of this work and some

proposals for future works are presented.
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CHAPTER 2

Basic Concepts

2.1 Introduction

In this chapter, the basic concepts of wireless communication systems are described.

The wireless communication systems face several challenges, including the limited avail-

ability of the radio frequency spectrum and the distortion and degradation by the channel

effects.

For improving the quality of the communication service to the users, splitting a ge-

ographic region into cells is a widely used technique. Furthermore, in order to increase

data rates efficient modulation techniques are required.

Thus, an introduction to cellular systems and modulation techniques are presented

in this chapter. Moreover, the characteristics of the propagation phenomena that distort

and degraded the radio signals are also presented.

Multiple-input-multiple-output (MIMO) systems exploit some channel characteristics

in order to increase system capacity and reliability. Moreover, the benefits of increasing the

number of antennas are harnessed by massive multiple-input-multiple-output (M-MIMO)

systems. Additionally, MIMO systems require efficient detection techniques. Therefore,

low complexity linear detectors are presented in this chapter. Furthermore, as the channel

state (CSI) information is required for linear detection, the channel estimation is also

discussed.

For better understanding, this chapter is organized as follows. The basics of digital

modulation is presented in Section 2.2. The cellular systems principles are described in

Section 2.3. The mobile radio channel is analyzed in Section 2.4. MIMO systems are

presented in Section 2.5. Linear detectors are detailed in Section 2.6. Finally, the channel

estimation is described in Section 2.7.
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2.2 Digital Modulation Schemes

Modulation shifts the spectrum of a baseband digital signal to a radio channel with

frequency carrier fc. Digital modulation performs the mapping of a block of bits into a

waveform. The waveform can be obtained by changing one of the following parameters

of a carrier: amplitude, phase or frequency. Furthermore, the set of waveforms can be

represented by a constellation diagram as shown in Fig. 2.1 for a particular modulation.

At the transmitter, the modulation stage is a mapper followed by an up-converter. At

the receiver, the signals undergo a down-converter, a matched-filter, a decision rule device

and finally a demapper [68]. In the following, some concepts regarding the modulation

process are presented and the digital modulation schemes used in this thesis are also

described.

2.2.1 PAM Modulation

Pulse amplitude modulation (PAM) consists in transmitting digital information in

baseband through the amplitudes of a pulse train. Hence, PAM signals can be written as

[68]:

xptq “
8ÿ

ℓ“´8
Apℓqppt ´ ℓTsq, (2.1)

where Apℓq is the signal amplitude at the ℓth time interval, Ts is the symbol time duration

and pptq is a baseband pulse format that satisfies the Nyquist criterion. If the PAM signal

has M different amplitudes, then the modulation scheme is known as M -PAM (multilevel

pulse amplitude modulation), which transmits log2M bits in each symbol.

2.2.2 ASK Modulation

Including a sinusoidal carrier in the PAM signals, the bandpass modulation scheme is

named amplitude shift keying (ASK) modulation. Hence, the ASK scheme can written

as [68]:

sptq “ xptq cosp2πfctq, (2.2)

where fc is the carrier frequency and xptq is theM -PAM signal. In this scheme, the digital

information is transmitted on the amplitudes of the sinusoidal carrier, that is, a unique

combination of bits is attributed to each amplitude. For example, if M “ 2 and the set

of amplitudes is t´A,Au, the modulation is called 2-ASK. For the binary case, amplitude

modulation is equivalent to phase modulation, that is named 2-PSK or BPSK (binary

phase shift keying) modulation [69].
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2.2.3 M -QAM Modulation

Multilevel quadrature amplitude modulation (M -QAM) consist in transmitting infor-

mation using two orthogonal
?
M -ASK modulation schemes. The ASK carrier waves

have the same frequency and are out of phase with each other by π{2 radians. Thus, by

the orthogonality, there is no interference between carriers despite of they use the same

bandwidth. Both carriers are typically called quadrature carriers. Hence, M -QAM signal

can be written as:

sptq “ xiptq cosp2πfctq ´ xqptq sinp2πfctq, (2.3)

where xiptq and xqptq are independent in-phase and in-quadrature PAM signals, respec-

tively.

M -QAM scheme has M “ 2k waveforms, where k ě 2 represents the number of bits

transmitted per symbol. If k is an even number, then the M -QAM constellation can be

obtained as the Cartesian product of two
?
M -ASK constellations. Besides, the baseband

or lowpass equivalent of the M -QAM signal can be obtained by the cartesian product of

two
?
M -PAM constellations, which is given by:

xptq “ xiptq ` ✐xqptq, (2.4)

where ✐ “
?

´1. Furthermore, the PAM amplitudes are ˘A,˘3A, ¨ ¨ ¨ , p
?
M´1qA, as can

be seen in Fig. 2.1a and 2.1b for modulations 4-QAM and 16-QAM, respectively. Thus,

the mean power of the baseband M -QAM constellation is equal to:

|x|2 “ 2

3
pM ´ 1qA2. (2.5)

On the other hand, the energy per symbol of a bandpass M -QAM signal is equal to:

Es “ 1

2
|x|2Ts. (2.6)

Furthermore, the bit energy is given by:

Eb “ Es

log2M
. (2.7)

The M -QAM modulation has been widely used in the last generations of cellular

systems because it uses the radio spectrum efficiently.

2.2.4 Gray Mapping

Gray mapping is a labeling technique of the symbols of modulation schemes in terms

of bits, where the closest symbols differ in only one bit position, which minimizes the
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There are different sources of interference. The interference produced by users in the

same cell is called multiple access interference (MAI). The interference produced by users

in co-cells is known as co-cell interference (CCI). These types of interference are produced

when users employ the same radio channels simultaneously. Notice that multi cell systems

include both CCI and MAI. A simpler single cell model does not include CCI.

Errors during the channel estimation process can be seen as added interference named

channel estimation error interference (CEEI). The CEEI is analyzed in this thesis.

Finally, the effects of thermal noise can be mitigated by increasing the transmission

power, on the contrary, the interference effects can not be diminished as the transmission

power increases. Consequently, techniques should be employed in order to reduce the

interference effects.

2.3.2 Cellular Spectral Efficiency

Spectral efficiency refers to the total information rate that can be transmitted in a cell

through a given channel bandwidth. In cellular systems, the cellular spectral efficiency

(ξ) is evaluated in bits/s/Hz. Thus, the cellular spectral efficiency can be defined as the

ratio of the total cell throughput and the total system bandwidth, that is [72]:

ξ “
řK

k“1 Rb,k

B
, (2.8)

where K is the total number of UTs in the cell, Rb,k “ log2 pMkq{Ts is the k-th UT bit

rate and B “ 1{Ts is the system minimum Nyquist bandwidth for passband modulation.

2.4 Mobile Radio Channel

The propagation of radio signals through wireless channels involves different phenom-

ena that create distortion and attenuation. The propagation phenomena can be divided

into large-scale and small-scale fading [73].

2.4.1 Large-Scale Fading

Large-scale fading is the result of signal attenuation due to signal propagation over

large distances and diffraction around large objects between the transmitter and receiver.

This type of fading is relatively slow and is responsible for long-term signal power varia-

tions. Furthermore, there are two large-scale fading phenomena: path-loss and shadowing

[71].
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2.4.1.1 Path-Loss

The received power depends on the transmitted power and it is a function of the

distance between the transmitter and the receiver. Hence, the received power is given by:

Pr “ KPtr
´ε, (2.9)

where Pt is the transmitted power, r is the distance between a UT and the BS, K is the

propagation factor and ε is the propagation path-loss exponent. These last two parameters

depend on the employed propagation model. There are several propagation models in the

literature, such as Okumura-Hata, COST231-Hata and the SUI model, which include the

path-loss phenomena [70, 74].

2.4.1.2 Shadowing

Shadowing is produced by obstacles between the UTs and the BS. Thus, as the ob-

stacles size and position are random, the shadowing produces fluctuations of the received

power around its mean value given by the path-loss. The received power can increase or

decrease considerably. Shadowing is typically modeled by a log-normal distribution [70].

2.4.1.3 Power Control

In cellular systems, the power levels transmitted by each UT are under constant control

by the corresponding BS. In this way, power control contributes to several functionalities,

such as connectivity, power economy and interference management. Moreover, the power

control solves the near-far problem and allows to extend the UTs battery life [70].

The power control consists of adjusting the power transmitted by all UTs in the same

cell, so that the received power from all UTs is the same at the BS. Thus, the transmitted

power for each UT is given by:

Pt “ K
´1Pr,0r

ε, (2.10)

where Pr,0 is the constant received power at the BS from each UT in the same cell, r is the

distance between a UT and its BS, K is the propagation factor and ε is the propagation

path-loss exponent. Regulation standards for wireless systems consider that Pt ď Pt,max,

where Pt,max is the maximum transmission power of a UT. Notice that power control

compensates the effects of large-scale fading.

Finally, the power control used in 3G and 4G cellular systems is considered almost

perfect [75]. Thus, perfect power control is considered along this thesis.
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2.4.2 Small-Scale Fading

The small-scale fading is due to the constructive or destructive combination of ran-

domly delayed multipath signal components. These components may be originated by re-

flection, scattering and diffraction phenomena. Some factors influence on the small-scale

fading, such as the the UT speed, surrounding objects speed and the signal bandwidth.

This type of fading is relatively fast and is therefore responsible for the short-term signal

variations. Depending on the nature of the radio propagation environment, there are

different models describing the statistical behavior of the multipath fading envelope [73].

Small-scale variations of a radio signal is directly related to the channel impulse re-

sponse. Thus, the radio channel can be modeled as a linear filter with a time-variant

impulse response that is a function of t and τ , where t represents time variations due

to the UT movement and τ denotes multipath delays for a fixed t. Thus, the low-pass

equivalent of the channel impulse response is given by [69]:

hpt, τq “
ÿ

l“1

αlptq exp
“

´ ✐φlptq
‰
δ
“
τ ´ τlptq

‰
, (2.11)

where αlptq, φlptq “ 2πfcτlptq and τlptq are the amplitude, phase and delay of the l-th

multipath at the instant of time t, respectively, and δpτq denotes the delta of Dirac.

Observe that the filter model sum signals with random amplitudes, phases and delays.

Furthermore, the time-variant nature is produced by the UT movement.

2.4.2.1 Line-of-Sight Channel

In the line-of-sight (LOS) case, the received signal is composed by the direct path

component between transmitter and receiver. Thus, the low-pass equivalent of the channel

impulse response given by (2.11) can be rewritten as:

hpt, τq “ αptq exp
“
´ ´ ✐φptq

‰
δrτ s. (2.12)

By considering the fading amplitude αptq as deterministic and modeling φptq as a

uniform random variable over r0, 2πq, this channel is named uniform random line-of-sight

(UR-LOS) [21].

2.4.2.2 Non-Line-of-Sight Channel

In the non-line-of-sight (NLOS) case, the received signal is composed by different

components that are replicas of the transmitted signal, among which there is no dominant

component. As the number of multipaths is high and the amplitudes, delays and phases

of the multipaths are random, the low-pass equivalent of the channel impulse response can

be modeled as a zero-mean complex Gaussian stochastic process. Thus, the envelope of
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this process (α “ |hpt, τq|) can be modeled by a Rayleigh distribution, whose probability

density function (PDF) is given by [69]:

fpαq “ α

σ2
exp

ˆ
α2

2σ2

˙
, α ě 0, (2.13)

where σ2 is the Rayleigh parameter. Additionally, the resultant phase (φ) of the Gaussian

process is a random variable assumed uniformly distributed over r0, 2πq.

2.4.2.3 Small-Scale Fading Parameters

The small-scale fading can be classified in different types according to some parameters

that describe the dispersive nature of the channel. These parameters are detailed below.

Delay spread, Td, is defined as the propagation time difference between the shortest

and the longest path, counting only the paths with significant energy. Hence, the delay

spread is a measure of the channel impulse response duration [76].

Channel coherence bandwidth, Bc, shows how quickly the channel changes in frequency.

Furthermore, it is related to the inverse of the delay spread and can be written as [76]:

Bc « 1

2Td
. (2.14)

Two signals separated by a frequency range much greater than Bc are affected by inde-

pendent fading [70].

Another important parameter is the channel temporal variation. In this case, when

a UT moves, the carrier frequency shifts upward or downward, depending if the UT

approaches or moves away from the BS. In fact, the power spectrum is not only shifted

but spreaded in the interval fc ´ fd ď f ď fc ` fd, where fc is the carrier frequency

and fd is the Doppler shift. The power spectrum depends on the maximum Doppler shift

fd,max “ vfc{c, where v is the UT speed and c is the light speed. Therefore, the channel

time variation is described by the Doppler spread.

Doppler spread, BD, is defined as the range of frequencies over which the power spec-

trum is non-zero. If the bandwidth of the transmitted signal is much greater than BD,

then the Doppler spread effects are negligible [70].

Channel coherence time, Tc, is the time interval within the received signals present

high time correlation. The channel coherence time is inversely proportional to the Doppler

spread, that is [76]:

Tc « 1

2BD

, (2.15)

where BD “ fd,max.
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2.4.2.4 Types of Small-Scale Fading

By considering the parameters described in the previous subsection, the small-scale

fading can be classified in the next types:

Non-frequency-selective or flat fading occurs when the coherence bandwidth is much

larger than the bandwidth of the transmitted signal, that is, Bc " B. In this case, the

spectral components of the signal are susceptible to the same magnitude of fading. Thus,

the channel impulse response can be approximated by a Dirac delta function and there is

no ISI.

Frequency-selective fading occurs when the coherence bandwidth is smaller than the

transmitted signal bandwidth, that is, Bc ă B. The spectral components of the signal are

attenuated by different magnitudes of fading causing significant distortion in the signal.

Slow fading occurs when the coherence time interval of the channel is much greater

than the symbol time interval, that is Tc " Ts. Thus, the channel can be considered

roughly invariant during a symbol time interval Ts.

Fast fading occurs when the coherence time interval is less than the symbol duration,

that is Tc ă Ts. In this case, coherent detection can not be employed.

2.4.2.5 Slow-Flat Time-Variant Channel

The slow-flat time-variant channel (TVC) considers the Doppler shift effects. Further,

the Doppler effects are part of the channel impulse response, by considering that the

phase shift is equal to φℓptq “ 2πpfc ` fdqτℓptq in (2.11), where fd “ vfc cospθq{c is the

Doppler shift that depends on the UT speed v, the light speed c, the frequency carrier fc

and the angle θ between the direction of UT motion and the direction of arrival of the

electromagnetic wave.

By employing the Jakes’ model [77–79], the channel can be modeled as a zero-mean

complex wide-sense stationary Gaussian process with auto-correlation function given by

[80]:

Rhp∆q “ α2J0 p2πfd,max∆q , (2.16)

where α2 is the Rayleigh fading mean power, J0p¨q is the Bessel function of the first kind

of order zero, fd,max is maximum Doppler shift and ∆ is the time delay. Therefore, in this

case, the transmitted symbols are affected by a time-correlated fading.

Fig. 2.2 presents an example of the fading power spectrum as a function of time and

the fading normalized auto-correlation function as a function of the delay for α2 “ 1 and

by considering fc “ 3.5 GHz. In particular, Fig. 2.2a and 2.2c presents a snapshot of the

fading time variation during one second, for v “ 6 km/h and v “ 60 km/h, respectively.

Observe that as the UT speed increases the fading envelope variation becomes faster.

Furthermore, Fig. 2.2b and 2.2d shows the fading normalized channel auto-correlation
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order is increased, the system become more susceptible to fading effects [72]. Therefore,

systems with high spectral efficiency are required nowadays.

Wireless systems with multiple transmit antennas present high spectral efficiency, once

the antenas can transmit simultaneously on the same radio resource. On the other hand,

wireless systems with multiple receive antennas present high performance, once the an-

tennas provides spatial diversity and spatial multiplexing as detailed below.

2.5.1 Spatial Diversity

Spatial diversity is a technique for combating the undesirable fading effects, once it

exploits multipath signals affected by independent fadings by combining different replicas

of the received signal. As a consequence, the probability that combined replicas present

significant degradation is much smaller than the probability of a single replica presenting

the same degradation. The number of replicas is known as diversity order. Further, the

higher the diversity the higher is the system performance. Several diversity techniques

such as frequency diversity, time diversity, and spatial diversities are well established in

the literature [76].

In particular, spatial diversity can be obtained by using multiple antennas at the

reciever, which is also known as antenna diversity. It is also possible to obtain spatial

diversity with multiple antennas at the transmitter. In this thesis we consider spatial

diversity by employing multiple antennas only at the receiver. In Chapter 3, a study of

the distance between antennas is carried out in order to make the fading independent

at the different antennas. However, in a multipath channel the distance between two

antennas is d « λc{2, where λc denotes wavelength, which is calculated as λc “ c{fc [76].
Antenna diversity is the most employed diversity technique because its implementation

is easy and presents superior performance than frequency or time diversity techniques [82].

2.5.2 Spatial Multiplexing

Multiplexing consists in combining signals from different sources (users) into one com-

posite signal that is transmitted over a shared medium. In the literature, there are several

multiplexing techniques, such as time-division multiplexing, frequency-division multiplex-

ing, code-division multiplexing, and space-division multiplexing [69].

In space-division multiplexing many symbols are simultaneously transmitted by the

different transmit antennas, thus, the data rate is increased without any change in fre-

quency band or transmission power.

MIMO systems are attractive because it provides high performance reliability and

spectral efficiency through spatial diversity and spatial multiplexing, respectively. How-

ever, in [76] it is shown that there is a trade-off between diversity and multiplexing if

linear detectors are employed.
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Finally, MIMO systems, in addition to providing spatial diversity and multiplexing,

can also be used to suppress the interference.

2.5.3 MIMO Channel

MIMO systems employK transmit antennas andN receive antennas to simultaneously

transmit/receive symbols in the same radio resource, as shown in Fig. 2.4. As K transmit

antennas are employed, the spectral efficiency is increased K times. Thus, the received

signal vector y is given by:

y “ Hx ` w, (2.17)

where y “ ry1, y2, ..., yN sT has dimension N ˆ 1, x “ rx1, x2, ..., xKsT is the transmitted

signal vector of dimension Kˆ1, whose elements belong to theM -QAM modulation with

order M , w “ rw1, w2, ..., wN sT is the additive complex white Gaussian noise (AWGN)

vector of dimensionNˆ1, whose entries consists of independent and identically distributed

(i.i.d) complex Gaussian random variables with zero mean and variance σ2
w and H is the

slow-flat Rayleigh fading MIMO channel matrix of dimension NˆK, whose entries consist

of i.i.d complex Gaussian random variables with zero mean and variance equal to α2. The

MIMO channel matrix is of the form:

H “

»
————–

h1,1 h1,2 ¨ ¨ ¨ h1,K

h2,1 h2,2 ¨ ¨ ¨ h2,K
...

...
. . .

...

hN,1 hN,2 ¨ ¨ ¨ hN,K

fi
ffiffiffiffifl
, (2.18)

where hi,j denotes the entry of the link between the ith receive antenna and jth transmit

antenna, as shown in Fig. 2.4. For a better understanding of the MIMO channel, some

matrix properties are presented in Appendix A.

2.5.4 Massive MIMO Channel

M-MIMO considers a system with a great number of antennas, where the number of

receive antennas is much greater than the number of transmit antennas, that is N " K.

Therefore, the product HHH, where HH is the conjugate transpose of H, converges

asymptotically to α2NIK , as N goes to infinity for a fixed K, that is [24]:

lim
NÑ8

`
HHH

˘
“ α2NIK . (2.19)

The condition given by (2.19) establish that all eigenvalues of HHH becomes equal,
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Consequently, the eigenvalues becomes deterministic for N " 1 and β Ñ 0. This is

equivalent to N " K, which is known as massive MIMO. This behavior produces the

channel hardening phenomenon [12].

In [12] another channel hardening scenario is distinguished for large N and K, that

is for N “ K, which is known as symmetric MIMO channel. However, along this thesis

only the massive MIMO channel scenario is considered.

2.5.4.3 Finite M-MIMO

The condition established in (2.19) produces favorable propagation and channel hard-

ening, once the number of receive antennas N tends to infinite. However, the employment

of an infinite number of receive antennas is impractical. Thus, a natural question arises:

How many antennas do we need for M-MIMO? [25]. The answer is not straightforward

because it depends on the system configuration required for a desired performance. How-

ever, an approach based on the condition number given by (2.20) can give us a practical

answer. Thus, as the condition number of HHH goes to 1, the channel becomes asymptot-

ically orthogonal. On the other hand, a large condition number, means that the channel

is highly non-orthogonal or ill-conditioned.

Another reference for the channel orthogonality of M-MIMO systems is the Frobenius

norm of the orthogonality error matrix, Eo “ HHH ´ α2NIK , given by:

}Eo}F “
a
TrpEH

o Eoq, (2.24)

where TrpEH
o Eoq denotes the matrix trace.

In Fig. 2.6a and Fig. 2.6b, the condition number of HHH and the Frobenius norm of

the orthogonality matrix error are obtained using Monte Carlo simulation. Both metrics

are evaluated and averaged over 104 channel simulations.

Fig. 2.6a shows the condition number of HHH as a function of the number of receive

antennas for K “ 4, 16, and 64 transmit antennas. Notice that as N increases the

condition number tends to one, that is κpHHHq « 1, which is more evident when N " K.

For N “ 100 the condition number is closer to one for K “ 4 than for K “ 64.

On the other hand, Fig. 2.6b shows the normalized Frobenius norm of the orthogonal-

ity error matrix Eo as a function of the number of receive antennas for K “ 4, 16, and 64

transmit antennas α2 “ 1. Notice that the normalized Frobenius norm of the orthogonal-

ity error matrix tends to zero as N increases, which shows that for N " K, the channel

matrix H can be considered well conditioned (quasi-orthogonal) and behaves as deter-

ministic. However, the condition number and the Frobenius norm show that the channel

orthogonality is improved, but they do not show the loss in performance due to the chan-

nel non-orthogonality. Therefore, performance analysis such as the ergodic capacity or

bit error rate are required.
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In order to reduce the computational complexity, sub-optimal linear detectors can be

an interesting approach. They consider the signals from the other antennas as MAI and

detect the transmitted signal vector x by multiplying the received signal vector y, given

by (2.17), by a compensation matrix A as:

px “ Ay. (2.25)

Furthermore, the kth transmitted signal can be detected from:

pxk “ aky, (2.26)

where ak is the kth row of A.

Linear detectors cannot achieve reasonably good performance if the channel matrix H

is ill-conditioned or non-orthogonal. Thus, they do not achieve the full diversity as the

optimum detector. On the other hand, when the channel matrix H is well-conditioned or

quasi-orthogonal, that is the case of M-MIMO, these detectors can achieve near optimum

performance [24].

The most common linear detectors are the maximal-ratio-combining (MRC), zero-

forcing (ZF) and minimum-mean-square-error (MMSE) detectors, and they are presented

below under the assumption that pH is the estimation of H. Furthermore, their perfor-

mance is presented in Chapter 5.

2.6.1 Maximal-Ratio-Combining

The MRC detector is the less complex linear detector which can be implemented by

using (2.25) with:

A “ pHH . (2.27)

Therefore, by using (2.27) in (2.17), the detected symbol vector is given by:

px “ pHHy, (2.28)

and the detected symbol transmitted by the kth antenna can be rewritten as:

pxk “ phHk y, (2.29)

where phHk is the kth row vector of pHH .

Notice that the transpose-conjugate is an operation that requires complexity order

of OpKq, which is attractive. However, MRC considers MAI as pure noise. Thus, the

MRC detector works properly only for the M-MIMO case, otherwise, the performance is

severely degraded by MAI.
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2.6.2 Zero-Forcing

The ZF detector eliminates the MAI at the cost of more complexity and noise en-

hancement. The ZF compensation matrix is given by:

A “ pH` “
´
pHH pH

¯´1 pHH , (2.30)

where pH` is the left-inverse or Moore-Penrose pseudo-inverse of the matrix pH as shown

in Appendix (A.4). Therefore, by using (2.30) in (2.17), the detected symbol vector is

given by:

px “ pH`y, (2.31)

and the kth detected symbol is given by:

pxk “ ph`
k y, (2.32)

where ph`
k is the kth row vector of pH`. Observe that MAI is eliminated according to:

ph`
k
phj “

#
1 if k “ j

0 if k ‰ j
. (2.33)

The ZF detector complexity is in computing pH`, which has cubic complexity, given

by OpK3q. However, in [35], several inversion algorithms have been shown which at

a performance cost present complexity of OpνK2q or OpνKq, where ν is a factor that

depends on the inversion algorithm. On the other hand, the ZF performance achieves, on

average, a diversity order of N ´ K ` 1 [68]. For M-MIMO the diversity order is nearly

optimal.

2.6.3 Minimum-Mean-Square-Error

The MMSE detector mitigates the noise enhancement of ZF detector by minimizing the

mean-square-error (MSE) between the transmitted symbol vector x and the compensated

received symbol vector Ay, which consist in solving the minimization problem given by:

min
A

E
“
}x ´ Ay}2

‰
. (2.34)

Thus, the solution of (2.34) is the compensation matrix given by:

A “ CxyC
´1
yy , (2.35)

where Cxy “ |x|2 pHH and Cyy “ |x|2 pHpHH ` σ2
wIN are covariance matrices, |x|2 is the

constellation mean power and σ2
w is the noise variance. Notice that (2.35) requires the
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inversion of a N ˆ N matrix. However, by using the matrix inversion lemma given by

(A.13) in (2.35), the compensation complexity can be reduced by the matrix inversion

of A “ |x|2
´

|x|2 pHH pH ` σ2
wIK

¯´1 pHH , which is K ˆ K. Therefore, the detected signal

vector is given by:

px “ |x|2
´

|x|2 pHH pH ` σ2
wIK

¯´1 pHHy, (2.36)

and the kth detected symbol is given by (2.26).

As for ZF detector, the complexity of the MMSE detector is cubic with the number

of transmit antennas, due to the matrix inversion involved in (2.36). However, additional

knowledge of the constellation mean power and noise variance is required.

MMSE detector has a diversity order of N´K`1. Besides, it has similar performance

to the ZF detector in M-MIMO [47]. However, the benefits of the MMSE detector are

well evident in MIMO systems with a few numbers of antennas [85].

2.7 Channel State Information

The CSI is the knowledge of channel matrix H at the receiver. Channel estimation is

performed before the symbol detection is carried out [82]. For simplicity, perfect CSI is

widely used in communication systems analysis. In this ideal scenario pH “ H.

In practice, CSI is obtained by transmitting pilot symbols which are known at the

receiver. Thus, the received samples yp, of dimension Lpˆ1, used in the channel estimation

can be modeled as:

yp “ Xph ` w, (2.37)

where Xp is the pilot symbols matrix of dimension Lp ˆ Lp, h is the unknown channel

vector of dimension Lpˆ1, w is the noise vector of dimension Lpˆ1 and Lp is the number

of pilot symbols.

There are two techniques to estimate h: the ML estimator and the MMSE [86]. Con-

ventionally, the ML estimator is used only if the noise variance is known. On the other

hand, if the noise variance and the a-priori distribution of h are known, the MMSE esti-

mator can be used as shown below.

2.7.1 Minimum-Mean-Square-Error Estimator

The MMSE estimator, which is also called Bayesian mean-square-error (MSE) estima-

tor, exploits the knowledge of the channel coefficients distribution in order to obtain an

estimator that is better than the ML [86]. Thus, the Bayesian MSE estimator is given by

the mean of the a-posteriori PDF pph|ypq given by:

ĥ “ E rh|yps . (2.38)
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The result of (2.38) is equivalent to minimize the MSE, that is:

min
h

E

››››
´
h ´ ĥ

¯2
›››› , (2.39)

where ĥ is the estimated channel vector.

By considering the observed data in (2.37) as a linear model, where h is a random

vector with Gaussian PDF CN p0,Chhq, and w is the noise vector with Gaussian PDF

CN p0,Cwwq that is independent of h. Then, y has also a complex Gaussian distribution

with PDF CN p0,Cypyp
q and therefore, h and yp are jointly Gaussian. As a consequence

the estimator in (2.38) can be rewritten as:

ĥ “ Chyp
C´1

ypyp
yp, (2.40)

where Chyp
“ ChhX

H
p , and Cypyp

“ XpChhX
H
p ` σ2

wILp
are covariance matrices. Fur-

thermore, the MSE matrix is given by:

Mh “ Chh ´ Chyp
C´1

ypyp
Cyph, (2.41)

which is obtained by applying the orthogonal principle which establishes that the optimal

estimator is obtained when the error is orthogonal to the data sample.

Additionally, if the observed data in (2.37) is a wide-sense stationary Gaussian process

and the MMSE estimator is used, this problem is known as Wiener filtering, that can be

cast the functions of filtering, smoothing and prediction. The smoothing filter is given by

(2.40) and the prediction filter is given by [86]:

ĥpℓq “ Chpℓqyp
C´1

ypyp
yp, (2.42)

for all ℓ ě Lp ` 1.

Finally, the CSI quality depends also on the training scheme, which consists on the

usage of pilot and data symbols in a block with a duration TB. Commonly, pilot and data

symbols are multiplexed in a block. This technique is named as multiplexed pilot esti-

mation (MPE) [87]. If pilot and data symbols are superimposed this technique is named

superimposed pilot estimation (SPE). Furthermore, a hybrid pilot estimation (HPE) tech-

nique can be built by using both MPE and SPE [38]. These estimation techniques are

detailed in Chapter 4.
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CHAPTER 3

Inter-User Interference Reduction in

M-MIMO

3.1 Introduction

The key idea in M-MIMO systems is the favorable propagation introduced in Section

2.5.4.1. Favorable propagation is defined as the mutual orthogonality among the channel

column vectors of the channel matrix [21]. However, favorable propagation depends on

the channel model [22, 88, 89]. In the literature, there are several channel models for

M-MIMO systems [15, 90]. Although the benefits of M-MIMO systems are undoubtedly

very attractive, its practical implementation, like the deployment of antenna arrays, is

equally challenging [88].

The physical size of M-MIMO arrays is the fundamental problem of practical deploy-

ment. Once M-MIMO has been initially conceived for ordinary rich scattering in sub-6

GHz frequency channel [13], it is ideal for frequency bands in the range of 30-300 GHz,

known as millimeter wave (mmWave). Despite conceptual similarities, the way M-MIMO

can be exploited in these bands is radically different due to their specific propagation be-

haviors [91, 92]. Furthermore, for small wavelengths, the antenna elements can be packed

in a finite volume, due to the highly directional nature of propagation at mmWave, line-

of-sight (LOS) propagation dominates.

On the other hand, it is shown in [20] that the independent and identically distributed

(i.i.d.) Rayleigh fading channel is a good model for non-line-of-sight (NLOS) channels,

once it occurs in special cases with a rich scattering environment where multipaths are

uniformly distributed which is a propagation characteristic of sub-6 GHz. However, the

array size increases as the number of antennas grows [93]. For this purpose, recent works

have also investigated the possibility of increasing the number of array elements in fixed

physical spaces. However, this approach introduces correlation between antennas which

limits the favorable propagation [94, 95]. Therefore, other properties of M-MIMO must

be exploited [96].
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This chapter addresses the favorable propagation issues through the interference re-

duction factor (IRF) presented in [19]. The IRF is the interference reduction of an array

in relation to the single antennas case. It also can be used to evaluate the antenna cor-

relation issues presented in fixed physical spaces. For this purpose, the uniform random

line of sight (UR-LOS) and the Rayleigh fading channel models are used.

The channel models are introduced in Section 3.2, the IRF is derived in Section 3.3

and the numerical results and discussions are presented in Section 3.4.

3.2 Channel Model

The entries of the MIMO channel matrix defined in (2.18) depend on the channel

impulse response given by (2.11). According to [90] and [46], the channel impulse re-

sponse can be modeled by a geometric-based stochastic model (GBSM) or correlation-

based stochastic models (CBSM). GBSM is used to evaluate the performance of practical

wireless communication systems using simulation. On the other hand, CBSM is used

as a theoretical model to evaluate the performance of M-MIMO systems based on the

correlation of the channel impulse response 2.

In the context of theoretical analysis, this thesis approaches the UR-LOS channel

model and the Rayleigh fading channel model, introduced in Section 2.4.2.1 and 2.4.2.2,

respectively.

Actually, the N ˆ K MIMO channel matrix given by (2.18), for the ℓth time interval

can be rewritten as:

Hpℓq “ rh1pℓq h2pℓq ¨ ¨ ¨hKpℓqs , (3.1)

where hkpℓq is the kth UT channel vector of dimension N ˆ 1.

3.2.1 UR-LOS Channel

UR-LOS channel model assumes that at each receive antenna arrives one LOS path

as in (2.12), where the fading amplitude α is unitary, and the phase is a function of the

UT position and the antenna array pattern.

In a three dimensional (3-D) scenario, the azimuthal angle of arrival (AoA) and the

elevation angle of arrival (EoA) of the LOS path at each antenna depends on the position

of each UT defined by φk and θk @k ď K, which are modeled as independent random

variables with probability density function p pφkq “ 1
2π

distributed between r0, 2πq and

p pθkq “ sin θk distributed over rπ{2, πq, respectively. Furthermore, the 3-D scenario could

2The GBSM can model several channel parameters that are not included in the CBSM due to its
increased complexity.
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Figure 3.1: Uniform linear array along X-axis, Y -axis and Z-axis.

be reduced to a two dimensional (2-D) if θk “ π{2, which is called horizon or far-field

scenario.

On the other hand, the antenna array radiation pattern, that is the radiated power

distribution, depends on the array geometry and on each antenna radiation pattern. The

most common array geometries are the linear, planar, circular and cylindrical. Further-

more, there are several antenna types, such as, the half-wave dipole antenna that is the

very popular and the short dipole used when space is an issue [97].

For simplicity, no time-correlation is assumed in this channel model and consequently

Doppler effects are not presented.

3.2.1.1 Uniform Linear Array

The uniform linear array (ULA) consists of equally spaced antenna elements placed in

a straight line. Fig. 3.1 shows three uniform linear arrays using short dipoles with vertical

polarization deployed along the X-axis, Y -axis and Z-axis, respectively. When the radio

signal travels one wavelength λc, then the carrier phase changes 2π radians, therefore the

phase difference between signals arriving at two adjacent antennas in each axis can be
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written as:

Φk,x “ 2π∆x cosφk sin θk, (3.2)

Φk,y “ 2π∆y sinφk sin θk, (3.3)

Φk,z “ 2π∆z cos θk, (3.4)

where ∆x “ dx
λc

“ Lx

λcpNx´1q ,∆y “ dy
λc

“ Ly

λcpNy´1q and ∆z “ dz
λc

“ Lz

λcpNz´1q , are the normalized

separation between antennas, λc “ c{fc is the carrier wavelength, c » 3 ˆ 108 m/s is the

light speed, fc is the carrier frequency, dx, dy and dz are the distance between antennas,

Lx, Ly and Lz are the array edge length and Nx, Ny and Nz are the number of antennas

along the X-axis, Y -axis and Z-axis, respectively.

Notice that a steering vector can be formed by using the phase differences of the kth

UT received signal at the antennas of the array 3 [72]. The first antenna is used as a phase

of reference. Thus, for the ULA on each axis, the steering or channel vector for the kth

UT is given by:

hk,x “
”
1 exp r´✐Φk,xs ¨ ¨ ¨ exp r´✐ pNx ´ 1qΦk,xs

ıT
, (3.5)

hk,y “
”
1 exp r´✐Φk,ys ¨ ¨ ¨ exp r´✐ pNy ´ 1qΦk,ys

ıT
, (3.6)

hk,z “
”
1 exp r´✐Φk,zs ¨ ¨ ¨ exp r´✐ pNz ´ 1qΦk,zs

ıT
. (3.7)

Finally, in the far-field, the elevation angle is equal to θk “ π{2. Thus, the steering

vector for the ULA on the Z-axis can be reduced to a single antenna element and the

steering vectors for the ULA on X and Y axis do not depend on the elevation angle.

3.2.1.2 Uniform Planar Array

The uniform planar array (UPA) is composed by equally spaced antenna elements

placed in a plane. A planar array could be deployed along the XY -plane, XZ-plane or

Y Z-plane. By using the ULA steering vectors for the ULAs in each axis, the UPA in each

plane can be obtained as follows:

hk,xy “ hk,x b hk,y, (3.8)

hk,xz “ hk,x b hk,z, (3.9)

hk,yz “ hk,y b hk,z, (3.10)

3The UR-LOS channel vector can also be named steering vector.
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where b denotes the Kronecker product. For example, the steering vector hk,xy of dimen-

sion NxNy ˆ 1, that represents the UPA on the XY -plane, can be rewritten as:

hk,xy “

»
————————————————————–

1

exp t´✐Φk,xu
...

exp t´✐ rNx ´ 1sΦk,xu
exp t´✐Φk,yu

exp t´✐ rΦk,x ` Φk,ysu
...

exp t´✐ rpNx ´ 1qΦk,x ` Φk,ysu
...

exp t´✐ rpNx ´ 1qΦk,x ` pNy ´ 1qΦk,ysu

fi
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffifl

. (3.11)

Additionally, for Nx “ Ny the UPA geometry is square and for Nx ‰ Ny is rectangular.

Notice that the total number of antennas in the array is N “ NxNy. A similar procedure

can be performed in order to represent the UPA on the other planes.

Finally, in the far-field, the UPAs steering vectors hk,xz and hk,yz, are reduced to the

ULAs with steering vectors given by hk,x and hk ,y , respectively.

3.2.2 Rayleigh Fading Channel Model

Rayleigh fading channel occurs on an idealized rich scattering environment with a

large number of multipaths uniformly distributed that rise a flat and slow fading. Thus,

the entries of the channel matrix given by (3.1), for the ℓth time interval, can be written

as:

hi,jpℓq “ αi,j expt´✐p2πfdi,jℓTs ` φi,jqu, (3.12)

for 1 ď i ď N and 1 ď j ď K. Therefore, the channel is modeled by a zero-mean

complex wide-sense stationary Gaussian process with auto-correlation function Rpℓq “
Ethi,jpℓqh˚

i,jpℓ´mqu, where αi,j is the Rayleigh fading amplitude with mean power α2 and

PDF given by (2.13), φi,j is the uniformly distributed phase over the interval r0, 2πq, fdi,j “
vj
c
fc cosϕi,j is the Doppler shift, vj is the jth UT speed, and ϕi,j is the angular position,

uniformly distributed over the interval r0, πq. In a mobile communication environment

that considers the Jakes’ model, the time auto-correlation function is given by (2.16).

Once in (3.12) only the azimuthal angle is considered, the Rayleigh fading channel

should be employed only on 2-D propagation scenarios. For 3-D scenarios, other channel

models should be used.

Finally, notice that in the Rayleigh channel model there are multipaths, while in the

UR-LOS channel model there is only one path.



3.3. Interference Reduction Factor 55

3.3 Interference Reduction Factor

An antenna array can pinpoint the main beam of the radiation pattern in the direction

of the desired UT [97]. Furthermore, as the number of antennas increases, the main beam

becomes narrower and directive by diminishing the secondary lobes, which reduces the

interference from other UTs.

The radiation pattern and the IRF are related definitions, both depend on the inner

product between the channel steering vector fixed on a desired direction and channel

steering vector from any direction. In particular, the IRF is defined by the mean value of

the squared radiation pattern. These aspects are presented in the following sections.

3.3.1 IRF in UR-LOS Channels

The normalized radiation pattern of an antenna array in the direction of the kth UT

for UR-LOS channels in 3-D scenarios is given by [97]:

R3´D “ sin pθkq sin pθjq
ˇ̌
hHj hk

ˇ̌

N
, (3.13)

where the steering vector hk is a function of θk and φk, that is the desired direction and hj

is a function of θj and φj directions, N normalizes the radiation pattern and sin pθjq and

sin pθkq are introduced by the use of vertical polarized short dipoles. Moreover, depending

on the array geometry, the steering vectors hk and hj are given by (3.5), (3.6), and (3.7)

for ULAs and (3.8), (3.9) and (3.10) for UPAs, respectively. For a simple notation of

(3.13) the steering vectors axis or plane is not presented.

Once φk and φj may assume any angular position between r0, 2πq and θk and θj any

angular position between rπ{2, πq, the array IRF can be obtained by averaging the squared

normalized radiation pattern given by (3.13) as:

Υ3´D “ E
 
R2

3´D

(

Υ3´D “ 1

N2

2πż

0

πż

π{2

2πż

0

πż

π{2

sin2 pθjq sin2 pθkq
ˇ̌
hHj hk

ˇ̌2
p pφkq p pθkq p pφjq p pθkq dθkdφkdθjdφj,

(3.14)

where p pφjq and p pφkq are the azimuthal angle PDFs and p pθjq and p pθkq are the elevation
angle PDFs.

In a 2-D scenario, i.e. fixing θk “ θj “ π{2, the factors introduced by the short dipoles

in (3.13) are unitary. Thus, the radiation pattern for 2-D scenarios can be rewritten as
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[64]:

R “
ˇ̌
hHj hk

ˇ̌

N
, (3.15)

and the IRF is given by:

Υ “ E
 
R2

(

Υ “ 1

N2

2πż

0

2πż

0

ˇ̌
hHj hk

ˇ̌2
p pφkq p pφjq dφkdφj. (3.16)

3.3.1.1 IRF for ULAs

The IRF expressions given by (3.14) and (3.16) depend on the inner product
ˇ̌
hHk hj

ˇ̌

of the ULA steering vectors given by (3.5), (3.6) and (3.7). Thus, after some algebraic

manipulation, the inner products for ULAs on each axis can be written as:

ˇ̌
hHj,xhk,x

ˇ̌
“ sin

`
Nx

ψx

2

˘

sin
`
ψx

2

˘ , (3.17)

ˇ̌
hHj,yhk,y

ˇ̌
“

sin
´
Ny

ψy

2

¯

sin
´
ψy

2

¯ , (3.18)

ˇ̌
hHj,zhk,z

ˇ̌
“ sin

`
Nz

ψz

2

˘

sin
`
ψz

2

˘ , (3.19)

where ψx “ 2π∆x pcosφj sin θj ´ cosφk sin θkq, ψy “ 2π∆y psinφj sin θj ´ sinφk sin θkq and
ψz “ 2π∆z pcos θj ´ cos θkq.

A closed-form expression of the IRF in 3-D scenarios can be obtained after integrating

(3.14). Thus, by using (3.17) and (3.19) in (3.14), the IRF for the ULA on X-axis and

Z-axis are respectively given by:

Υ3´D,x “ 4

9Nx

` 2

N2
x

Nx´1ÿ

m“1

pNx ´ mq 1

p2π∆xmq6
!

p2π∆xmq cos p2π∆xmq

`
“
p2π∆xmq2 ´ 1

‰
sin p2π∆xmq

)2

, (3.20)

Υ3´D,z “ 4

9Nz

` 2

N2
z

Nz´1ÿ

m“1

pNz ´ mq 1

p2π∆ymq6
!
8 ` 8 p2π∆zmq2 ` p2π∆zmq4

´
“
8 ` 4 p2π∆zmq2

‰
rcos p2π∆zmq ` p2π∆zmq sin p2π∆zmqs

)
. (3.21)

The IRF for the ULA on Y -axis, that is Υ3´D,y, is equivalent to the IRF for the ULA

on X-axis, given by (3.20), with ∆x “ ∆y and Nx “ Ny.
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In 2-D scenarios, a closed-form expression for the IRF for the ULA on X-axis can be

obtained by integrating (3.16), considering the steering vectors inner product in (3.17).

Thus, the IRF is given by:

Υx “ 1

Nx

` 2

N2
x

Nx´1ÿ

m“1

pNx ´ mq J2
0 p2π∆xmq . (3.22)

As for the 3-D scenario, the IRF for the ULA on Y -axis is equivalent to the IRF on

X-axis given by (3.22), with ∆x “ ∆y and Nx “ Ny. Finally, there is no IRF for the ULA

on Z-axis, once the elevation angle is not considered in 2-D scenario.

3.3.1.2 IRF for UPAs

Applying the same criteria used for ULAs, the inner product
ˇ̌
hHk hj

ˇ̌
for the UPA on

planes XY , XZ and Y Z, in terms of the steering vectors given by (3.8), (3.9) and (3.10),

can be written as:

ˇ̌
hHj,xyhk,xy

ˇ̌
“ sin

`
Nx

ψx

2

˘

sin
`
ψx

2

˘
sin

´
Ny

ψy

2

¯

sin
´
ψy

2

¯ , (3.23)

ˇ̌
hHj,xzhk,xz

ˇ̌
“ sin

`
Nx

ψx

2

˘

sin
`
ψx

2

˘ sin
`
Nz

ψz

2

˘

sin
`
ψz

2

˘ , (3.24)

ˇ̌
hHj,yzhk,yz

ˇ̌
“

sin
´
Ny

ψy

2

¯

sin
´
ψy

2

¯ sin
`
Nz

ψz

2

˘

sin
`
ψz

2

˘ , (3.25)

where ψx “ 2π∆x pcosφj sin θj ´ cosφk sin θkq, ψy “ 2π∆y psinφj sin θj ´ sinφk sin θkq and
ψz “ 2π∆z pcos θj ´ cos θkq.

A closed-form expression of the IRF for the UPA on XY -plane can be obtained by
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integrating (3.14) using (3.23), that is:

Υ3´D,xy “ 4

9NxNy

` 2Ny

N2
xN

2
y

Nx´1ÿ

m“1

pNx ´ mq
p2π∆xmq6

!
p2π∆xmq cos p2π∆xmq

`
“
p2π∆xmq2 ´ 1

‰
sin p2π∆xmq

)2

` 2Nx

N2
xN

2
y

Ny´1ÿ

n“1

pNy ´ nq
p2π∆ynq6

!
p2π∆ynq cos p2π∆ynq

`
“
p2π∆ynq2 ´ 1

‰
sin p2π∆ynq

)2

` 4

N2
xN

2
y

Nx´1ÿ

m“1

Ny´1ÿ

n“1

pNx ´ mq pNy ´ nq
„b

p2π∆xmq2 ` p2π∆ynq2
6

ˆ
#b

p2π∆xmq2 ` p2π∆ynq2 cos
„b

p2π∆xmq2 ` p2π∆ynq2


`
“
p2π∆xmq2 ` p2π∆ynq2 ´ 1

‰
sin

„b
p2π∆xmq2 ` p2π∆ynq2

+2

. (3.26)

On the other hand, the IRF for the UPA on XZ-plane is obtained by integrating (3.14)

using (3.24). The result is a semi closed-form expression equal to:

Υ3´D,xz “ 4

9NxNz

` 2Nz

N2
xN

2
z

Nx´1ÿ

m“1

pNx ´ mq
p2π∆xmq6

!
p2π∆xmq cos p2π∆xmq

`
“
p2π∆xmq2 ´ 1

‰
sin p2π∆xmq

)2

` 2Nx

N2
xN

2
z

Nz´1ÿ

l“1

pNz ´ lq
p2π∆zlq6

!
8 ` 8 p2π∆zlq2

` p2π∆zlq4 ´
“
8 ` 4 p2π∆zlq2

‰
rcos p2π∆zlq ` p2π∆zlq sin p2π∆zlqs

)

` 4

N2
xN

2
z

Nx´1ÿ

m“1

Nz´1ÿ

l“1

pNx ´ mq pNz ´ lq
ż π

π{2

ż π

π{2
J0 p2π∆xm sin θkq J0 p2π∆xm sin θjq

ˆ cos r2π∆zl pcos θk ´ cos θjqs sin3 pθkq sin3 pθjq dθkdθj. (3.27)

The IRF for the UPA on Y Z-plane is obtained by integrating (3.14) using (3.25)

and the result is equal to that obtained for the UPA on Y Z-plane given by (3.27), with

∆x “ ∆y and Ny “ Nx.

For 2-D scenarios, a closed-form expression of the IRF for the UPA on XY -plane can

be obtained by integrating (3.16) and considering that the steering vectors inner product

given by (3.23) are function of ψx “ 2π∆x pcosφj ´ cosφkq and ψy “ 2π∆y psinφj ´ sinφkq.
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Thus, the IRF is given by:

Υxy “ 1

NxNy

` 2Ny

N2
xN

2
y

Nx´1ÿ

m“1

pNx ´ mq J2
0 p2π∆xmq ` 2Nx

N2
xN

2
y

Ny´1ÿ

n“1

pNy ´ nq J2
0 p2π∆ynq

` 4

N2
xN

2
y

Nx´1ÿ

m“1

Ny´1ÿ

n“1

pNx ´ mq pNy ´ nq J0
´
2π∆x

?
m2 ` n2

¯
J0

´
2π∆y

?
m2 ` n2

¯
.

(3.28)

Finally, for 2-D scenarios and for the UPAs on XZ-plane and Y Z-plane, the IRF is

equivalent to the ULA on X-axis and Y -axis, given by (3.22).

3.3.1.3 Physical Space Considerations

Depending on the available physical space to deploy the antenna array, there are two

cases to be considered. In the first one physical space is unlimited, thus, there is enough

room to increase the number of antennas and the separation between antennas can be

greater than or equal to λc{2. In the second one the physical space is limited, thus, there is

not enough room to increase the number of antennas and the separation between antennas

should be less than λc{2 [22].

For the sake of simplicity, consider the IRF for the ULAs of 2-D scenarios given by

(3.22). Therefore, in the first case, the optimal IRF is achieved by taking the array length

Lx to infinity in (3.22), that is:

lim
LxÑ8

Υ “ 1

Nx

. (3.29)

On the other hand, the second case is relevant for M-MIMO, once the number of

antennas in limited spaces is very large. Therefore, the IRF for a large number of antennas

on (3.22) in a limited space, is given by:

lim
NxÑ8

Υ “ 2Λ ´ Ψ, (3.30)

where Λ “ 2F3 r1{2, 1{2; 1, 1, 3{2; p´2πLx{λcq2s is defined by the generalized hypergeo-

metric function [98] and Ψ “ J2
0 p2πLx{λcq ` J2

1 p2πLx{λcq, where J1 is the first-order

Bessel function of the first kind.

For M-MIMO systems, unlimited physical space should be desirable in order to avoid

the IRF saturation and to reach the optimal IRF. In general, the optimal IRF of ULAs

and UPAs for 2-D scenario is given by:

Υopt “ 1

N
, (3.31)
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while for 3-D scenario it is given by:

Υ3´D,opt “ 4

9N
, (3.32)

where it is considered that N “ Nx “ Ny “ Nz for ULAs and that N “ NxNy “ NxNz “
NyNz for UPAs.

3.3.2 IRF in Rayleigh Fading Channels

For the Rayleigh fading channel, the normalized IRF is similar to that given by (3.16)

for 2-D scenarios, that can be rewritten as:

Υ “ E

#ˇ̌
hHj hk

ˇ̌2

α2
2
N2

+

Υ “ 1

α2
2
N2

8ż

´8

8ż

´8

ˇ̌
hHj hk

ˇ̌2
p phjq p phkq dhjdhk, (3.33)

where the entries of hk and hj are i.i.d. complex-Gaussian random variables given by

(3.12). Therefore, hk and hj are multivariate complex-Gaussian random variables with

PDFs, pphkq and pphjq, given by CN „ p0, α2INq. By integrating (3.33), the IRF is equal

to:

Υ “ 1

N
. (3.34)

Notice that the IRF obtained in (3.34) is equal to the optimal IRF given by (3.31) for

the UR-LOS channel. Therefore, in the Rayleigh fading channel model it is possible to

assume that the antennas of the array are widely spaced in an unlimited physical space.

Notice that in practical applications the separation between antennas is at least λc{2 [20].

In these cases, as N increases the IRF tends to zero, thus, the channel vectors becomes

orthogonal and the favorable propagation established in Section 2.5.4.1 is reached.

Furthermore, in MIMO systems the Rayleigh fading is also named as spatially un-

correlated fading, once the channel coefficients between antennas are uncorrelated. In

this particular scenario, it is reasonable to assume that the angle of arrival of each UT is

uniformly distributed in [0, π) at each antenna. Therefore, the Jakes’ model is suitable

for modeling the channel time-correlations [99].

3.4 Numerical Results and Discussions

In this section, the IRF of ULAs and UPAs for UR-LOS channels and Rayleigh chan-

nels are evaluated using the proposed analytical expressions. Additionally, simulations
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(a) Radiation pattern for N “ 16.
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(b) Radiation pattern for N “ 256.

Figure 3.2: Radiation pattern of ULAs and square UPAs intended to an UT at position φk “ 0˝

and φk “ 45˝.

employing the Monte Carlo method are performed in order to support the validity of the

proposed expressions. Furthermore, a comparison between ULAs and UPAs for unlimited

and limited physical space is presented for 2-D and 3-D scenarios.

Fig. 3.2a and 3.2b show the BS azimuthal radiation pattern intended to an UT at

position φk “ 0˝ and φk “ 45˝ using ULAs and square UPAs with N “ 16 and N “ 256

antennas spaced by d “ λc{2. For plotting Fig. 3.2a and 3.2b, the equation (3.13) is

used4. Notice that the radiation lobe is maximized on the direction of the kth UT, that

is hk “ hj and small radiation lobes are presented for hk ‰ hj. Besides, as expected, the

radiation lobe becomes more directive as the number of antennas increases. As shown in

Fig. 3.2a and 3.2b, the radiation pattern is a snapshot for a given position of the desired

user. In particular, at 0˝ direction, the ULA lobe is wider than the UPA lobe, and in the

direction of 45˝, the UPA lobe is wider than the ULA which presents an additional lobe

in the direction of ´45˝.

Fig. 3.3a shows the inverse of the IRF as a function of the number of antennas with

separation between antennas of d “ dx “ dy “ dz “ λc{2 for ULAs and UPAs in 3-D

scenarios. The IRF for the ULA deployed along X-axis and Z-axis are given by (3.20)

and (3.21), respectively. Besides, ULAs deployey along the X-axis or Y -axis have the

same IRF. On the other hand, the IRF for square UPAs on XY -plane is given by (3.26)

and for UPAs on XZ-plane it is given by (3.27). Additionally, the IRF of the UPA on

Y Z-plane is equivalent to UPA on XZ-plane. Notice that the ULA on X-axis and the

UPA on XY -plane that are deployed on the horizontal plane reduce more interference

than the arrays deployed on the vertical plane, which are the ULA on Z-axis and the

UPA on XZ-plane. Furthermore, for the same number of antennas, the ULAs reduce

more interference than the UPAs. Notice that the IRF of the ULA on X-axis is near

4The same results can be obtained by using (3.13) with θj “ θk “ π{2
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Table 3.1: Inverse of the IRF for ULAs and UPAs with different separation between antennas.

Array
Edge Typical Spacing Spacing Reduction

Lx dx Nx Υ
´1

dx,min Nx Υ
´1

min

ULA
3λc{2 4 3.32 3λc{8 5 4.27
15λc{2 λc{2 16 10.97 15λc{38 20 13.87
63λc{2 64 36.96 63λc{154 78 45.16

UPA
λc{2 4 3.09 λc{4 9 4.40
3λc{2 λc{2 16 7.83 3λc{8 25 11.59
7λc{2 64 18.21 7λc{18 100 25.28

Table 3.2: Inverse of the IRF for different UPAs configuration.

Nx Ny Lx Ly Υ´1

256 1 255λc{2 0 127.33
128 2 127λc{2 λc{2 81.32
64 4 63λc{2 3λc{2 54.87
32 8 31λc{2 7λc{2 43.70
16 16 15λc{2 15λc{2 40.38

in this channel the antennas arrays shows spatial uncorrelation. For this condition the

separation between antennas must be at least d “ λc{2. Besides, due to the propagation

characteristics, the Rayleigh fading channel is not a good model for mmWaves [92].

Finally, the expressions of the IRF for UPAs given by (3.26), (3.27) and (3.28) are

valid for square and rectangular arrays. Tab. 3.2 shows the IRF for N “ NxNy “ 256

antennas in 2-D scenarios for different edge lengths. Notice that more linear the arrays

of antennas, the better the IRF.
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CHAPTER 4

Channel Estimation

4.1 Introduction

The channel estimation is a fundamental process for obtaining the CSI in order to per-

form coherent detection, as indicated in Section 2.6. MPE, SPE, and HPE are described.

Additionally, the perfect channel estimation (PCE) is also presented for comparison pur-

poses. The estimation techniques are analyzed in terms of the average energy and spectral

efficiency for TVCs and TICs.

From the estimation theory, there are two main estimate process: ML and MMSE.

The MMSE estimator is considered in this work due to its better performance [86]. Fur-

thermore, the quality of the estimated channel is presented in terms of the NMSE.

In this chapter, the M-MIMO system model is also described. For this purpose, the

transmitted and received signals are detailed for the uplink of a single cell cellular system

considering M-MIMO.

The system model is described in Section 4.2. The channel estimation techniques are

presented in Section 4.3. The channel coefficients estimation is derived in Section 4.4 and

the channel estimation error is presented in Section 4.5. Finally, the numerical results

and discussion are carried out in Section 4.6.

4.2 System Model

The uplink of a single cell system employing M-MIMO with imperfect channel esti-

mation is analyzed in this next chapter. Fig. 4.1 presents the system model including

the UT and the receiver structure at the BS. Moreover, Fig. 4.2 shows a summarized

representation of the cellular scenario.
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On the other hand, the noise sample at the ith BS antenna for the ℓth time slot is

given by:

wipℓq “ 1

Ts

ż Ts

ℓτ

wiptq
 
cos p 2πfct q ´ ✐ sin p 2πfct q

(
ppt ´ ℓτqdt, (4.5)

where the Euler identity is employed expp✐2πfctq “ cosp2πfctq ` ✐ sinp2πfctq. From (4.5),

it is easy to show that noise samples have zero mean. Furthermore, the variance of the

noise in-phase component samples can be obtained by:

σ2
w “ 1

T 2
s

ż ℓτ`Ts

ℓτ

ż ℓτ`Ts

ℓτ

E twiptqwipt1qu ppt´ ℓτqppt1 ´ ℓτq cosp2πfctq cosp2πfct1qdtdt1, (4.6)

where

E twiptqwipt1qu “ N0

2
δpt1 ´ tq, (4.7)

is the white noise autocorrelation function, N0 is the unilateral noise power spectral density

and δpxq is the Dirac delta function. By substituting (4.7) in (4.6), the variance of the

noise in-phase component samples can be rewritten as:

σ2
w,I “ N0

2T 2
s

ż ℓτ`Ts

ℓτ

p2pt ´ ℓτq cos2p2πfctqdt, (4.8)

where it has been employed that
ş
gpt1qδpt1 ´ tqdt1 “ gptq, where gpt1q is any function of t1.

Thus, the integral result is given by:

σ2
w,I “ N0

4Ts
. (4.9)

Notice from (4.7) that the white noise is an uncorrelated stochastic process. Therefore,

the noise samples are uncorrelated. Moreover, it is easy to show that the variance of

the noise quadrature component samples are also given by (4.9), that is σ2
w,Q “ σ2

w,I .

Therefore, the sample wipℓq represents the additive complex white Gaussian noise, whose

entries are independent and identically distributed random variables with distribution

CN p0, σ2
wq, where the noise sample variance is equal to:

σ2
w “ N0

2Ts
. (4.10)

Finally, the sample at the output of the matched filter given by (4.2) can be rewritten

as:

yipℓq “ Mipℓq ` wipℓq. (4.11)
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𝒚(1) 𝒚(𝑙) 𝒚(𝐿)
𝐿

𝑇𝐵
Figure 4.3: Temporal block structure of duration TB consisting of L data and pilot symbols.

4.2.2 Matrix Form of the Received Samples

All the samples at the output of the matched filter bank can be written as an N

dimensional column vector, that is:

ypℓq “
“
y1pℓq y2pℓq . . . yNpℓq

‰T
. (4.12)

From (4.11), (4.5), and (4.4), the received vector ypℓq can be obtained as

ypℓq “ 1

2
Hpℓqxpℓq ` wpℓq, (4.13)

where Hpℓq “ rh1pℓq h2pℓq ¨ ¨ ¨ hKpℓqs is the N ˆ K channel matrix and hkpℓq is the jth

UT channel vector with entries hi,jpℓq, for i “ 1, 2, ¨ ¨ ¨ , N and j “ 1, 2, ¨ ¨ ¨ , K.

Additionally, xpℓq “ rx1pℓq x2pℓq ¨ ¨ ¨ xKpℓqsT is the K ˆ 1 vector of transmitted symbols

and wpℓq “ rw1pℓq w2pℓq ¨ ¨ ¨ wNpℓqsT is the N ˆ 1 vector of noise samples.

4.2.3 Block Structure

Fig. 4.3 shows the temporal block structure of duration TB where L is the number of

time slots consisting in data and pilot symbols. For N BS antennas, the received samples

in a block can be written as a N ˆ L matrix, that is:

Y “ ryp1q ¨ ¨ ¨ ypℓq ¨ ¨ ¨ ypLqs , (4.14)

where ypℓq is the N ˆ 1 column vector of received samples at the ℓth time interval, given

by (4.13). For a slow fading channel TB ď Tc, where Tc “ 1
2fd,max

is the channel coherence

time interval.

The block structure allows to identify the pilot and data symbols position. Addition-

ally, two different block structures can be defined: for TVCs and for TICs.
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4.2.3.1 Time-Variant Channel

The received samples at the ith antenna during a block are given by the ith row of

(4.14) that can be rewritten as:

y̌i “ ryip1q ¨ ¨ ¨ yipℓq ¨ ¨ ¨ yipLqsT , (4.15)

which is a Lˆ 1 vector with entries yipℓq “ řK

j“1 hi,jpℓqxjpℓq `wipℓq, for i “ 1, 2, ¨ ¨ ¨ , N
and ℓ “ 1, 2, ¨ ¨ ¨ , L. The elements of (4.15) are also obtained as:

y̌i “
Kÿ

j“1

1

2
X̌jȟi,j ` wi, (4.16)

where ȟi,j “ rhi,jp1q hi,jp2q ¨ ¨ ¨ hi,jpLqsT is the L ˆ 1 time-variant channel vector for

the link between the jth UT and the ith BS antenna, X̌j “ diagpxjq is the vector of

transmitted symbols by the jth UT in the form of a L ˆ L diagonal matrix, and wi “
rwip1q wip2q ¨ ¨ ¨ wipLqsT is the L ˆ 1 noise vector.

For TVCs, the temporal correlation between the channel coefficients is given by (2.16).

Therefore, the channel autocorrelation matrix Rȟi,j ȟi,j
“ Etȟi,jȟHi,ju, has dimension LˆL

whose pm, ℓqth entry is given by:

´
Rȟi,j ȟi,j

¯
m,ℓ

“ α2J0 r2πfd,maxTspℓ ´ mqs , @ ℓ,m “ 1, 2, ¨ ¨ ¨ , L, (4.17)

where Ts “ TB{L is the symbol duration. Notice that, Rȟi,j ȟi,j
is a symmetric Toeplitz

matrix [101].

4.2.3.2 Time-Invariant Channel

For the time-invariant channel, it is considerd that Hpℓq “ H for ℓ “ 1, ¨ ¨ ¨L, i.e., it is
assumed that the channel coefficients remain invariant during a block. It is a particular

case of the time-variant channel, where the maximum Doppler shift fd,max “ 0. Moreover,

the received symbols at the ith antenna during a block are given by (4.15) and (4.16), with

channel vector entries equal to ȟi,j “ hi,j1, where 1 is a vector with ones with dimension

L ˆ 1 and hi,j is the TIC channel coefficient.

For TICs the channel vector ȟi,j has an autocorrelation matrix given by:

Rȟi,j ȟi,j
“ α2 JL, (4.18)

where JL “ 11T is an all-ones matrix of dimension L ˆ L.
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symbol time intervals for PCE and MPE is given by:

Ts “ p1 ` ηqTs,m, (4.26)

where

η “ Lp

Ld
. (4.27)

Notice that η “ 0 for PCE and η ą 0 for MPE. From (4.26), observe that Ts,m ă Ts,

which represents a bandwidth expansion for MPE.

Besides, the received energy per block can be rewritten as:

EB “ LpEp ` LdEd, (4.28)

where Ep “ 1
2
|xp|2Ts,m is the pilot symbols energy5 and Ed “ 1

2
|xd|2Ts,m is the average

energy of the data symbols. Additionally, equating the received energy per block EB, for

both techniques, it is easy to show that the relation between energies of PCE and MPE

techniques is given by:

Es “ ηEp ` Ed, (4.29)

where Es is the average symbol energy for the PCE scenario. By introducing the ratio:

µ “ Ep

Ed
, (4.30)

the pilot and data symbol energies for MPE are given by:

Ep “ µ

p1 ` ηµqEs, (4.31)

Ed “ 1

p1 ` ηµqEs. (4.32)

Finally, by considering the effects of bandwidth expansion, the MPE spectral efficiency

is given by:

ξ “ K log2M

1 ` η
, (4.33)

where in (2.8) allK UTs transmit at the same bit rate Rb “ log2M

Ts
and that the bandwidth

is B “ p1`ηq
Ts

. Notice that, as expected, the spectral efficiency of MPE is reduced, since

η ą 0.

5Once the pilot symbols are deterministic (known at the receiver), their energy do not need to be
expressed in terms of the average.
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For a fair comparison between PCE and HPE, in this case, the relation between the

symbol duration is given by:

TB “ pLs ` Ld,mqTs,h. (4.44)

For the spectral efficiency analysis, by using (4.44) and (4.42), it is easy to show that

Ts “ Ts,h. Thus, there is no bandwidth expansion for HPE. As a consequence, the spectral

efficiency of HPE is also given by (4.23).

The received energy per block given by (4.43), can be rewritten as:

EB “ LspEp,s ` Ed,sq ` Ld,mEd,m, (4.45)

where Ep,s “ 1
2
|xp,s|2Ts,h is the pilot symbol energy, Ed,s “ 1

2
|xd,s|2Ts,h is the average

energy of superimposed data symbols and Ed,m “ 1
2
|xd,m|2Ts,h is the average energy of

multiplexed data symbols.

Considering that the block energy and the number of data symbols in a block are equal

for PCE and HPE, then the relation between the energies is given by:

Es “ ηh

1 ` ηh
Ep,s ` ηh

1 ` ηh
Ed,s ` 1

1 ` ηh
Ed,m, (4.46)

where

ηh “ Ls

Ld,m
. (4.47)

Furthermore, by introducing the ratios

µh,m “ Ep,s ` Ed,s

Ed,m
, (4.48)

and

µh,s “ Ep,s

Ed,s
, (4.49)

it is straightforward to show that the pilot, the superimposed data and multiplexed data

symbol energy are given respectively by:

Ep,s “ µh,sµh,mp1 ` ηhq
p1 ` µh,sqp1 ` ηhµh,mqEs, (4.50)

Ed,s “ µh,mp1 ` ηhq
p1 ` µh,sqp1 ` ηhµh,mqEs, (4.51)

Ed,m “ p1 ` ηhq
p1 ` ηhµh,mqEs. (4.52)

Finally, notice that HPE can be considered the general estimation scenario and the

other techniques as special cases. Notice that the received energy per block of HPE,
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given by (4.45), can be reduced to the energy per block of SPE, given by (4.37), by using

Ld,m “ 0 in (4.45), or yet to the energy per block of MPE, given by (4.28), by using

Ed,s “ 0 in (4.45) or to the energy per block of PCE, given by (4.20), by using Ep,s “ 0

in the same equation.

4.4 Channel Coefficients Estimation

In this section, the channel coefficients are estimated by using the MMSE estima-

tor/predictor presented in Section 2.7.1 and the estimation techniques shown in the pre-

vious section. Moreover, the channel coefficients are estimated for TVCs and TICs. For

this purpose, the next assumptions are made:

The N antennas at the BS are enough spaced and all K UTs are uniformly distributed

in the cell. Thus, the spatially uncorrelated scenario is assumed [20, 65]. Therefore, the co-

efficients of the channel matrix are uncorrelated and they can be estimated independently

at each antenna.

Furthermore, for a channel estimation of all K UTs, each user terminal must transmit

at least K pilot symbols [18]. Besides, the pilot sequences transmitted by the kth UT

must be pairwise orthogonal in order to eliminate the MAI during the channel estimation.

Thus, at the output of the matched filter of each BS antenna, the received pilots matrix

are stored in a buffer in order to perform the channel estimation as shown in Fig. 4.1b.

Additionally, the mean and variance of the estimated channel coefficients are derived

in order to evaluate the channel estimation quality.

4.4.1 Channel Coefficients Estimation for TVCs

In this section, the channel coefficients are estimated/predicted assuming TVCs. The

CSI is obtained for each one of the three estimation techniques.

4.4.1.1 CSI for MPE

The matrix of received pilot samples for MPE is obtained from the overall block given

by (4.14), that is:

Yp “ ryp1q ¨ ¨ ¨ypℓq ¨ ¨ ¨ ypLpqs . (4.53)

Therefore, from (4.16), the vector of pilot samples of length Lp received at the ith antenna

can be written as:

y̌p,i “
Kÿ

j“1

1

2
X̌p,jȟi,j ` wi, (4.54)
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where ȟi,j “ rhi,jp1q hi,jp2q ¨ ¨ ¨ hi,jpLpqsT and wi “ rwip1q wip2q ¨ ¨ ¨ wipLpqsT are the

channel vector and the noise vector, respectively. Additionally, X̌p,j “ diagpxp,jq is a

diagonal matrix of dimension Lp ˆ Lp that contains the vector of pilot symbols xp,j of

dimension 1 ˆ Lp transmitted by the jth UT, that is selected from the pilots matrix Xp.

The pilots matrix can be defined as Xp “ ∆Φ, where ∆ is a K ˆ K diagonal matrix

containing the amplitude of the transmitted pilot symbols. By assuming that the received

power is the same for all K UTs at each symbol time interval, then, xp,jp1q “ xp,jp2q “
¨ ¨ ¨ “ xp,jpLpq “ xp and ∆ “ xpIK . Besides, Φ is a K ˆ Lp matrix containing the first

K rows of a Lp ˆ Lp Hadamard matrix (see Appendix A.5 for the Hadamard matrix

construction), such that K ď Lp, where K “ 2r for r ě 0 and Lp ě 2qK for q ě 1. Notice

that X̌p,j “ diagpxp,jq can be rewritten as X̌p,j “ xpΦ̌j, by considering that xp,j “ xpϕj,

where ϕj is the jth row vector of Φ which can be rewritten as a diagonal matrix, i.e.,

Φ̌j “ diagpϕjq. In order to make the definition of X̌p,j clearer, consider the next example.

Given K “ 2 and Lp “ 4, the matrix of pilot symbols is given by:

Xp “
«
xp,1p1q xp,1p2q xp,1p3q xp,1p4q
xp,2p1q xp,2p2q xp,2p3q xp,2p4q

ff
, (4.55)

where xp,1 “ rxp,1p1q xp,1p2q xp,1p3q xp,1p4qs and xp,2 “ rxp,2p1q xp,2p2q xp,2p3q xp,2p4qs.
Therefore, for the second user, X̌p,2 can be written as:

X̌p,2 “

»
————–

xp,2p1q 0 0 0

0 xp,2p2q 0 0

0 0 xp,2p3q 0

0 0 0 xp,2p4q

fi
ffiffiffiffifl
. (4.56)

By considering that Xp “ ∆Φ, (4.55) can be rewritten as:

Xp “ xp

«
1 1 1 1

1 ´1 1 ´1

ff
, (4.57)

where ∆ “ xpI2 and Φ is composed by the first two rows of the Hadamard matrix:

H “

»
————–

1 1 1 1

1 ´1 1 ´1

1 1 ´1 ´1

1 ´1 ´1 1

fi
ffiffiffiffifl
. (4.58)



4.4. Channel Coefficients Estimation 79

Thus, for the second user, (4.56) can be rewritten as:

X̌p,2 “ xpΦ̌2 “ xp

»
————–

1 0 0 0

0 ´1 0 0

0 0 1 0

0 0 0 ´1

fi
ffiffiffiffifl
. (4.59)

where Φ̌2 is the diagonal matrix form of ϕ2 that is the second row vector of the Hadamard

matrix given by (4.58).

By substituting the received vector given by (4.54) in a MMSE predictor given by

(2.42), then the estimated coefficients of the channel between between the kth UT and

the ith BS antenna at the ℓth symbol time interval are given by:

ĥi,kpℓq “ Rhi,kpℓqy̌p,i
R´1

y̌p,iy̌p,i
y̌p,i, (4.60)

where

Rhi,kpℓqy̌p,i
“ 1

2
x˚
pRhi,kpℓqȟi,k

Φ̌H
k , (4.61)

and

Ry̌p,iy̌p,i
“

Kÿ

j“1

1

4
|xp|2Φ̌jRȟi,j ȟi,j

Φ̌H
j ` σ2

wILp
, (4.62)

where Rȟi,j ȟi,j
is the channel autocorrelation matrix, whose entries pRȟi,j ȟi,j

qm,ℓ are given
by α2J0

”
2πfd,max

Ts
p1`ηqpℓ ´ mq

ı
for ℓ,m “ 1, 2, ¨ ¨ ¨ , Lp. Moreover, Rhi,kpℓqȟi,k

of dimension

1ˆLp is the channel correlation vector at the ℓth symbol time interval, which enables the

prediction of the channel coefficients for ℓ ě Lp ` 1. Notice that the MMSE estimator

performs the channel coefficients prediction by using the pilot symbols transmitted during

the first Lp time slots of the block.

The vector y̌p,i is a complex Gaussian random variable. Therefore, the estimated

channel coefficient ĥi,kpℓq has also complex Gaussian distribution with mean Etĥi,kpℓqu “ 0

and variance:

̺i,kpℓq “ E
!
ĥi,kpℓqĥ˚

i,kpℓq
)

“ Rhi,kpℓqy̌p,i
R´1

y̌p,iy̌p,i
RH
hi,kpℓqy̌p,i

, (4.63)

where ĥi,kpℓq is given by (4.60). By using (4.61) and (4.62) in (4.63), the variance can be
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rewritten as:

̺i,kpℓq “ Rhi,kpℓqȟi,k
Φ̌H
k M

´1Φ̌kR
H
hi,kpℓqȟi,k

, (4.64)

where:

M “ 4

|xp|2
Ry̌p,iy̌p,i

“
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` 4σ2

w

|xp|2
ILp

“
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` N0

Ep
ILp

“
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` 1 ` µη

µEb

N0

log2pMq
ILp

, (4.65)

Ep for MPE, is given by (4.31), η is given by (4.27) and µ is given by (4.30). Notice

that M is a symmetric Toeplitz matrix and its inverse is a bisymmetric matrix [102]. A

bisymmetric matrix presents symmetries in relation to the main and secondary diagonals.

Additionally, due to the uncorrelated antennas assumption, all the estimated channel

coefficients have the same statistics at each antenna. Thus, the variance obtained in (4.64)

is the same for any channel coefficient, i.e., ̺i,jpℓq “ ̺pℓq for 1 ď i ď N and 1 ď j ď K.

Furthermore, by assuming that Lp “ K the variance can be approximated by:

̺pℓq ď
α2

2řK

j“1 J
2
0 r2πfd,maxTspℓ ´ jqs

α2K ` p1`µηq
µEb{N0 log2pMq

, (4.66)

whereRhi,kpℓqȟi,k
Φ̌H
k Φ̌kR

H
hi,kpℓqȟi,k

ď α2
2řK

j“1 J
2
0 r2πfd,maxTspℓ ´ jqs IK and

řK

j“1 Φ̌jRȟi,j ȟi,j
Φ̌H
j “

α2KIK . Once Lp “ K the spectral efficiency is maximized because the minimum number

of pilot symbols for reliable estimation is used. Besides, (4.66) is a simple scalar expression

where the matrix operations are not necessary in order to obtain the channel variance.

On the other hand, for Lp ą K there is no closed-form expression for M´1 and

therefore for (4.64).

4.4.1.2 CSI for SPE

The matrix of received pilot and data samples at the matched filter output is also

given by (4.14). Therefore, the vector of superimposed pilot and data symbols at the ith
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antenna, given by (4.16), can be rewritten as:

y̌i “
Kÿ

j“1

1

2

`
X̌p,j ` X̌d,j

˘
ȟi,j ` w̌i, (4.67)

where X̌d,j “ diagpxd,jq represents the transmitted data symbols that introduce interfer-

ence during channel estimation. Notice that the definitions are similar to MPE but with

different dimensions. Thus, y̌i, ȟi,j and w̌i are L ˆ 1 vectors. Besides, the pilot symbols

matrix is X̌p,j “ xpΦ̌j where Φ̌j “ diagpϕjq and ϕj is the jth row vector of the K ˆ L

matrix Φ.

The estimated channel coefficients can be obtained by substituting the vector of re-

ceived samples, given by (4.67), in the MMSE smoothing filter, given by (2.40). Therefore,

the estimated channel coefficient for the link between the the kth UT and the ith BS an-

tenna for the ℓth symbol time interval is given by:

ĥi,kpℓq “ Rhi,kpℓqy̌i
R´1

y̌iy̌i
y̌i, (4.68)

where:

Rhi,kpℓqy̌i
“ 1

2
pxp ` xdq˚Rhi,kpℓqȟi,k

Φ̌H
k , (4.69)

and

Ry̌iy̌i
“

Kÿ

j“1

1

4
|xp|2Φ̌jRȟi,j ȟi,j

Φ̌H
j `

Kÿ

j“i
α2

1

4
|xd|2IL ` σ2

wIL. (4.70)

where Rhi,kpℓqȟi,k
is the 1ˆL channel correlation vector. Notice that Rȟi,j ȟi,j

is the channel

autocorrelation matrix with dimension LˆL, given by (4.17) and
řK

j“i α
2 |xd|2IL{4 is the

interference introduced by the superimposed data symbols.

The estimated channel coefficients are complex Gaussian random variables with mean

Etĥi,kpℓqu “ 0 and variance:

̺i,kpℓq “ E
!
ĥi,kpℓqĥ˚

i,kpℓq
)

“ Rhi,kpℓqy̌i
R´1

y̌iy̌i
RH
hi,kpℓqy̌i

(4.71)

where ĥi,kpℓq is given by (4.68). By using (4.69) and (4.70) in (4.71), the variance can be

rewritten as:

̺i,kpℓq “ Rhi,kpℓqȟi,k
Φ̌H
k S

´1Φ̌kR
H
hi,kpℓqȟi,k

, (4.72)
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where:

S “ 4

|xp|2
Ry̌iy̌i

“
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` α2K

|xd|2
|xp|2

IL ` 4σ2
w

|xp|2
IL

“
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` α2K

Ed

Ep
IL ` N0

Ep
IL

“
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` α2

K

µs
IL ` p1 ` µsqIL

µs
Eb

N0

log2pMq
, (4.73)

Ep and Ed are given by (4.40) and (4.41), respectively, for SPE, and µs is given by (4.39).

The matrix S is also a symmetric Toeplitz and its inverse is bisymmetric. Additionally,

̺i,jpℓq “ ̺pℓq, @i, j.
Furthermore, for L “ K, the variance given by (4.72) can be approximated by:

̺pℓq ď
α2

2řK

j“1 J
2
0 r2πfd,maxTspℓ ´ jqs

α2K ` α2 K
µs

` p1`µsq
µsEb{N0 log2pMq

, (4.74)

where the same considerations for obtaining (4.66) were made. Notice that the expression

is simple, but it is restricted to short blocks.

4.4.1.3 CSI for HPE

From (4.14), the received pilot samples matrix for HPE is:

Ys “ ryp1q ¨ ¨ ¨ypℓq ¨ ¨ ¨ ypLsqs , (4.75)

where Ls is the number of superimposed symbols.

Pilot symbols are superposed to data symbols, then, from (4.16) the vector of length

Ls of received superimposed samples at the ith antenna, can be rewritten as:

y̌s,i “
Kÿ

j“1

1

2

`
X̌p,j ` X̌d,j

˘
ȟi,j ` w̌i, (4.76)

where ȟi,j is the channel vector and w̌i is the noise vector, both of dimension Ls ˆ 1. The

pilot symbols matrix is equal to X̌p,j “ xpΦ̌j where Φ̌j “ diagpϕjq and ϕj is the jth row

vector of the K ˆ Ls matrix Φ.

Using (4.76) on the MMSE estimator, the estimated channel coefficient for the link
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between the kth UT and the ith BS antenna for the ℓth time interval is given by:

ĥi,kpℓq “ Rhi,kpℓqy̌s,i
R´1

y̌s,iy̌s,i
y̌s,i, (4.77)

where the autocorrelation matrix and the correlation vector can be obtained using the

same procedure of MPE. Notice that (4.77) estimates the channel for 1 ď ℓ ď Lp and

predicts the channel for Lp ` 1 ď ℓ ď L.

The estimated channel coefficient ĥi,kpℓq has complex Gaussian distribution with mean

Etĥi,kpℓqu “ 0 and variance:

̺i,kpℓq “ Etĥi,kpℓqĥ˚
i,kpℓqu

“ Rhi,kpℓqȟi,k
Φ̌H
k H

´1Φ̌kR
H
hi,kpℓqȟi,k

, (4.78)

where

H “
Kÿ

j“1

Φ̌jRȟi,j ȟi,j
Φ̌H
j ` α2

K

µh,s
ILs

` p1 ` µh,sqp1 ` ηhµh,mq
µh,sµh,mp1 ` ηhqEb

N0

log2pMq
ILs

, (4.79)

where ηh, µh,m and µh,s are given by (4.47), (4.48) and (4.49), respectively. Notice that

H, given by (4.79), can be obtained in a similar form of S, given by (4.73), by assuming

that L “ Ls, that Ep is given by (4.50) and that Ed is given by (4.51). Finally, due to the

uncorrelated antennas assumption, ̺i,jpℓq “ ̺pℓq..
Additionally, for Ls “ K the variance given by (4.78) can be approximated to:

̺i,kpℓq ď
α2

2řK

j“1 J
2
0 r2πfd,maxTspℓ ´ jqs

α2K ` α2 K
µh,s

` p1`µh,sqp1`ηhµh,mq
µh,sµh,mp1`ηhqEb{N0 log2pMq

, (4.80)

where the same considerations of (4.66) were assumed.

4.4.2 Channel Coefficients Estimation in TICs

In this section, the channel coefficients are estimated/predicted for each estimation

technique assuming TICs. Moreover, as the channel is time-invariant, only one channel

coefficient is estimated for each block. Thus, the CSI for TICs is simpler than for TVCs.

4.4.2.1 CSI for MPE

The matrix and vector of pilot samples are similar to the TVC case, given by (4.53)

and (4.54), respectively. However, for TICs, the vector of received pilot samples can be

rewritten as:

y̌p,i “
Kÿ

j“1

1

2
X̌p,j1hi,j ` wi, (4.81)
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where 1 is an all-ones vector of dimension Lp ˆ 1, hi,j is the channel coefficient and

wi “ rwip1q wip2q ¨ ¨ ¨ wipLpqsT is the noise vector. Additionally, X̌p,j “ diagpxp,jq is the

diagonal matrix that contains the pilot symbols transmitted by the jth UT.

By applying the received vector in (4.81) to the MMSE estimator given by (2.40), the

estimated channel coefficient for the link between the kth UT and the ith BS antenna is

given by:

ĥi,k “ Rhi,ky̌p,i
R´1

y̌p,iy̌p,i
y̌p,i

“ 2α2xHp,k

˜
Kÿ

j“1

α2xp,jx
H
p,j ` 4σ2

wILp

¸´1

y̌p,i, (4.82)

where Rhi,ky̌p,i
“ 1

2
α2xHp,k, Ry̌p,i,j y̌p,i,j

“ řK

j“1
1
4
α2xp,jx

H
p,j ` σ2

wILp
and xp,j of dimension

1 ˆ Lp is the vector of pilot symbols transmitted by the jth UT. Notice that there is no

dependence on time and therefore this expression is simpler than that for TVC.

Furthermore, the estimated channel coefficient is a complex Gaussian random vari-

able, due to the channel coefficient and the noise be complex Gaussian random variables.

Therefore, the mean of the estimated channel coefficient is Etĥi,ku “ 0 and the variance

is given by:

̺i,k “ Etĥi,kĥ˚
i,ku

“ α2
2
xp,k

˜
Kÿ

j“1

α2xHp,jxp,j ` 4σ2
wILp

¸´1

xHp,k. (4.83)

By applying the inversion lemma given by (A.14) and considering the orthogonality

between the pilot sequences, the variance given by (4.83) can be written as a function of

the average symbol as:

̺ “ α2
2
Lp

˜
α2Lp ` 1 ` µη

µEb

N0

log2pMq

¸´1

, (4.84)

where η and µ are given by (4.27) and (4.30), respectively. Besides, the pilot symbol energy

given by (4.31) was employed. Additionally, due to the uncorrelated antennas assumption,

the variance obtained in (4.84) is the same for any estimated channel coefficient, i.e.,

̺i,j “ ̺, @i, j.
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4.4.2.2 CSI for SPE

The vector of received pilot samples given by (4.67) for TVCs, can be rewritten for

TICs as:

y̌i “
Kÿ

j“1

1

2

`
X̌p,j ` X̌d,j

˘
1hi,j ` w̌i, (4.85)

where X̌d,j are data symbols. The definitions are similar to MPE, but with different

dimension. Therefore, the vector 1 has dimension of L ˆ 1 and X̌p,j “ diagpxp,jq of

dimension L ˆ L represents the transmitted pilot sequences.

By applying the MMSE smoothing filter given by (2.40) to the received vector given

by (4.85), the estimated channel coefficient for the link between the kth UT and the ith

BS antenna is given by:

ĥi,k “ Rhi,ky̌i
R´1

y̌iy̌i
y̌i

“ 2α2xp,k

˜
Kÿ

j“1

α2xHp,jxp,j ` α2K|xd|2IL ` 4σ2
wIL

¸´1

y̌i, (4.86)

where Rhi,ky̌i
“ α2xp,k and Ry̌iy̌i

“ řK

j“1 α
2xHp,jxp,j ` α2K|xd|2IL ` 4σ2

wIL.

Furthermore, the estimated channel coefficient ĥi,k is a complex Gaussian random

variable with mean Etĥi,ku “ 0 and variance given by:

̺i,k “ Etĥi,kĥ˚
i,ku

“ α2
2
xp,k

˜
Kÿ

j“1

α2xHp,jxp,j ` α2K|xd|2IL ` 4σ2
wIL

¸´1

xHp,k, (4.87)

As for MPE, by applying the inversion lemma in (A.14) and considering the orthogo-

nality among pilot sequences, the variance in (4.87) can be rewritten as:

̺ “ α2
2
L

˜
α2L ` α2

K

µs
` 1 ` µs

µs
Eb

N0

log2pMq

¸´1

, (4.88)

where µs is given by (4.39), the pilot symbols energy is given by (4.40) and the data

symbol energy is given by (4.41).

4.4.2.3 CSI for HPE

The vector of received pilot samples given by (4.76) can be rewritten for TICs as:

y̌s,i “
Kÿ

j“1

1

2

`
X̌p,j ` X̌d,j

˘
1hi,j ` w̌i. (4.89)
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where ȟi,j “ 1hi,j, 1 is an all-ones vector of dimension Lsˆ1, hi,j is the channel coefficient

and w̌i is the noise vector. The matrix X̌p,j “ diagpxp,jq of dimension Ls ˆ Ls contains

the vector of transmitted pilot symbols. The received vector is similar to (4.85), but with

different dimension. Thus, by applying MMSE channel estimation on the received vector,

the estimated coefficients are similar to that of SPE, that is:

ĥi,k “ Rhi,ky̌s,i
R´1

y̌s,iy̌s,i
y̌s,i

“ 2α2xp,k

˜
Kÿ

j“1

α2xHp,jxp,j ` α2K|xd|2ILs
` 4σ2

wILs

¸´1

y̌i. (4.90)

As the estimated channel coefficient is a complex Gaussian random variable, the mean

is given by Etĥi,ku “ 0 and the variance is given by:

̺ “ Etĥi,kĥ˚
i,ku

“ α2
2
Ls

˜
α2Ls ` α2

K

µh,s
` p1 ` µh,sqp1 ` ηhµh,mq
µh,sµh,mp1 ` ηhqEb

N0

log2pMq

¸´1

, (4.91)

where ηh, µh,m and µh,s are given by (4.47), (4.48) and (4.49), respectively. Besides the

pilot symbol energy given by (4.50), the superimposed data symbol energy given by (4.51)

and the multiplexed data symbol energy given by (4.52) were employed to derive (4.91).

4.5 Channel Estimation Error

The channel estimation process is not perfect and errors are introduced. Therefore,

the channel coefficient at the ℓth time interval is given by:

hi,kpℓq “ ĥi,kpℓq ` h̃i,kpℓq, (4.92)

where ĥi,kpℓq is the estimated channel coefficient and h̃i,kpℓq is the channel estimation

error introduced by the channel estimation process. Moreover, the channel matrix can

be rewritten as Hpℓq “ pHpℓq ` rHpℓq or the kth channel vector as hkpℓq “ phkpℓq ` rhkpℓq,
whose entries are given by (4.92).

According to the MMSE estimator principles, ĥi,kpℓq and h̃i,kpℓq are orthogonal random
variables. Therefore, they are independent and uncorrelated and have the same distribu-

tion of hi,kpℓq. Furthermore, due to the orthogonality principle the MSE can be minimized.

Once hi,kpℓq is a complex Gaussian random variable, h̃i,kpℓq has same distribution with
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mean Eth̃i,kpℓqu “ 0 and variance:

˜̺i,jpℓq “ Eth̃i,jpℓqh̃˚
i,jpℓqu

“ α2 ´ ̺pℓq, (4.93)

where ̺pℓq is the variance of the estimated channel, which depends on the channel estima-

tion technique. Besides, the variance of the channel estimation error is ˜̺i,jpℓq “ ˜̺pℓq @i, j.
Notice that the variance of the estimated channel is bounded by 0 ă ̺pℓq ď α2, where

the upper bound is the perfect channel estimation and the lower bound is the completely

imperfect channel estimation.

A similar analysis with resembling results can be made for TICs, without the temporal

variable ℓ, i.e., hi,k “ ĥi,k ` h̃i,k, where the channel estimation error has complex Gaussian

distribution with mean Eth̃i,ku “ 0 and variance:

˜̺i,j “ Eth̃i,jh̃˚
i,ju

“ α2 ´ ̺, (4.94)

Finally, the channel estimation quality is measured by the variance of the channel

estimation error given by (4.93) for TVCs and (4.94) for TICs, that is equivalent to

the MSE [103]. Furthermore, by normalizing the MSE by α2, the estimation quality is

measured by the NMSE.

4.6 Numerical Results and Discussion

In this section, the channel estimation techniques are evaluated in terms of the NMSE,

using the derived expressions. Additionally, for some cases, simulations employing the

Monte Carlo method are performed in order to validate our expressions. The simulation

parameters are detailed in Tab. 4.1, which have been chosen based on the long term

evolution (LTE) and the proposals of the 5G standard [81].

Table 4.1: Simulation parameters.

Parameter Value

Bandwidth - B 15 kHz

Carrier Frequency - fc 3.5 GHz

Fading Mean Power - α2 1

UT Speed - v 6 km/h and 60 km/h

As shown in Tab. 4.1, once the fading mean power is normalized, the NMSE is the

metric employed for the estimation quality in the next subsections. Additionally, as the

NMSE expressions are a function of the modulation order, M “ 4 is used in this chapter.
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performance is achieved for Ls “ 128. Additionally, notice for Ls “ 64 that the NMSE

for ℓ “ 1 and ℓ “ 64 are coincident. This can be justified by the symmetry of the

superimposed region.

Fig. 4.17b shows the NMSE as a function of Eb{N0 for HPE, L “ 256, K “ 16,

Ls “ 128 and µh,s “ 1, parameterized by µh,m, and ℓ. As on TICs, increasing µh,m

has no effects over the NMSE floor and the NMSE is improved only in the low Eb{N0

region. Furthermore, Fig. 4.17c shows the NMSE as a function of Eb{N0 for µh,m “ 1,

parameterized by µh,s and by the same parameters of the last figure. In this case, by

increasing µs the NMSE floor is relieved because the pilot symbols energy is increased.

Therefore, as on TICs, it is more attractive to increase µh,s instead µh,m.

Fig. 4.17d shows the NMSE as a function of Eb{N0 for L “ 256, Ls “ 128, µh,s “ 1

and µh,m “ 1, parameterized by K and ℓ. As expected, by increasing K the NMSE is

reduced.

4.6.2.2 Vehicular Velocity

For the vehicular speed of 60 km/h, the channel coherence time interval is Tc “ 2.6 ms.

Thus, for a bandwidth of B “ 15 kHz, the number of time slots during this time interval

is L “ 39. However, due to the orthogonality restriction of pilot sequences, L “ 32 time

slots should be employed for SPE and HPE. Thus, the block duration is TB “ 2.1 ms. For

a fair comparison, L “ 32 ` Lp time slots should be employed for MPE a the same block

time interval of TB “ 2.1 ms, which introduces bandwidth expansion. The block duration

should be shorter at higher speeds, which limits the number of pilot symbols. Therefore,

the NMSE is worse for vehicular speed than for pedestrian speed.

Fig. 4.18a, 4.18b and 4.18c shows the NMSE as a function of time for MPE, SPE and

HPE for L “ Ld “ 32 symbols and µ “ µs “ µh,s “ µh,m “ 1, parameterized by Eb{N0

and K. Furthermore, for MPE and HPE Lp “ Ls “ 16 is used. Notice that in order to

improve the NMSE, it is recommendable to use the maximum number of pilot symbols

and to reduce the number of UTs, as can be seen for K “ 4 and K “ 16. For comparison

purposes the NMSE on TICs are also plotted. Notice that the results are similar to that

of pedestrian speed.

Additional results for vehicular speed can be obtained for NMSE by modifying µ, µs,

µh,s and µh,m. However, to avoid being redundant, these figures will not be presented.
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CHAPTER 5

Performance of Linear Detectors in

M-MIMO Systems

5.1 Introduction

The linear detection techniques presented in Section 2.6 are widely used in M-MIMO

systems due to its low complexity and efficiency [24]. Furthermore, due to the M-MIMO

channel properties, they present a near-optimal performance when perfect CSI is available

at the receiver [33–35].

However, CSI can be obtained from an estimation process that is not perfect, thus, it

introduces errors and limits the linear detectors performance. In Chapter 4, some practical

channel estimation techniques were presented. They introduce different types of estimate

errors as can be seen in TVCs and TICs.

In this chapter, the BER of M-MIMO systems is evaluated for linear detectors such as

the MRC, ZF and MMSE using the MPE, SPE and HPE channel estimation techniques

on TVCs and TICs. The uplink of a single cell system is considered, where the BS has N

antennas serving K UTs that transmit M -QAM symbols.

The M-MIMO system model considering the estimation techniques is detailed in Sec-

tion 5.2. The linear detectors and their SNIRs are analyzed for TICs and TVCs in Section

5.3. The exact average BER of M-MIMO systems is derived in Section 5.4 and the simpler

BER bounds considering the M-MIMO properties are derived in Section 5.5. Finally, the

numerical results and discussions are presented in Section 5.6.

5.2 System Model with Imperfect Estimation

The system model of M-MIMO systems was presented in Section 4.2. The three blocks

between the matched filter and the linear detector shown in Fig. 4.1b are fundamental

for the BER analysis. The first block is a buffer that stores the samples required on the

channel estimation process. The second block performs the channel estimation itself, and
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finally, the third block executes a pre-processing of the data and sends these samples to

the linear detector.

In this Section, the interaction between these three blocks is detailed in order to define

the samples sent to the linear detector for each estimation technique.

5.2.1 System Model for PCE

PCE is an ideal model where perfectly the channel is known. In this case, there are

no pilot symbols and the samples are sent directly to the linear detector. Therefore, the

linear detector input for the ℓth time interval is given by (4.13), that can be rewritten as:

ydpℓq “
Kÿ

j“1

hjpℓq
xd,jpℓq

2
` wpℓq, (5.1)

for 1 ď ℓ ď L. Notice that yd represents the data samples vector.

5.2.2 System Model for MPE

For MPE, the data pre-processing block eliminates the pilot samples. Therefore, the

linear detector input for the ℓth time interval is given by:

ydpℓq “
Kÿ

j“1

ĥjpℓq
xd,jpℓq

2
`

Kÿ

j“1

h̃jpℓq
xd,jpℓq

2
` wpℓq, (5.2)

for Lp`1 ď ℓ ď L. Additionally, the channel vector at the ℓth time interval can be written

as hjpℓq “ ĥjpℓq ` h̃jpℓq, where ĥjpℓq is the estimated channel and h̃jpℓq is the channel

estimation error. In this case before sending the data samples to the linear detector, Lp

samples are discarded, introducing a delay of Lp time interval.

5.2.3 System Model for SPE

For SPE, the ℓth sample is given by:

ypℓq “
Kÿ

j“1

ĥjpℓq
rxp,jpℓq ` xd,jpℓqs

2
`

Kÿ

j“1

h̃jpℓq
rxp,jpℓq ` xd,jpℓqs

2
` wpℓq, (5.3)

for 1 ď ℓ ď L. All the block samples are pre-processed. Furthermore, as ĥjpℓq and xp,jpℓq
are known at the receiver, they can be subtracted by the pre-processing stage. Therefore,
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the linear detector input at the ℓth time interval is given by:

ydpℓq “ ypℓq ´
Kÿ

j“1

ĥjpℓq
xp,jpℓq

2

“
Kÿ

j“1

ĥjpℓq
xd,jpℓq

2
`

Kÿ

j“1

h̃jpℓq
rxp,jpℓq ` xd,jpℓqs

2
` wpℓq, (5.4)

for 1 ď ℓ ď L. Notice that the data pre-processing block introduces a delay of L time

intervals.

5.2.4 System Model for HPE

For HPE, the samples at the linear detector input are divided into two intervals. The

first interval, for 1 ď ℓ ď Ls, are the superimposed data samples, given by:

yd,spℓq “
Kÿ

j“1

ĥjpℓq
xd,s,jpℓq

2

`
Kÿ

j“1

h̃jpℓq
rxp,s,jpℓq ` xd,s,jpℓqs

2
` wpℓq, (5.5)

where the term
řK

j“1 ĥjpℓq
xp,s,jpℓq

2
was subtracted. Notice that for obtaining (5.5), an

analogous pre-processing stage to the SPE is implemented, resulting in an expression

similar to (5.4).

The second interval, Ls ` 1 ď ℓ ď L, contains the multiplexed data symbols. This

case is similar to the MPE scenario, given by (5.2), that is:

yd,mpℓq “
Kÿ

j“1

ĥjpℓq
xd,m,jpℓq

2
`

Kÿ

j“1

h̃jpℓq
xd,m,jpℓq

2
` wpℓq. (5.6)

The data pre-processing introduces a delay of Ls time intervals, which is less than the

delay of SPE, once Ls ă L.

5.3 Linear Detection and SNIR

The linear detectors presented in Section 2.6 are evaluated for M-MIMO systems with

imperfect channel estimation. Hence, the SNIR for each linear detector on TICs and

TVCs is derived.
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5.3.1 Maximal Ratio Combining Detector

The data symbol of the kth UT at the output of the MRC detector, given by (2.29),

can be rewritten as:

x̂d,kpℓq “ ĥHk pℓqydpℓq, (5.7)

where ydpℓq is the ℓth data sample at the input of the MRC detector. The MRC perfor-

mance depends on the estimation technique and the type of channel, therefore, several

expressions of SNIR can be derived in the next sections.

5.3.1.1 SNIR for MPE on TVCs

By replacing (5.2) in (5.7), the detected data symbol of the kth UT is given by:

x̂d,kpℓq “ ĥHk pℓqĥkpℓqxd,kpℓq
2loooooooooomoooooooooon

Signal

`
Kÿ

j“1
j‰k

ĥHk pℓqĥjpℓq
xd,jpℓq

2

loooooooooooomoooooooooooon
MAI

`
Kÿ

j“1

ĥHk pℓqh̃jpℓq
xd,jpℓq

2loooooooooooomoooooooooooon
CEEI

` ĥHk pℓqwpℓqlooooomooooon
Noise

, (5.8)

where the first term is the kth user signal, the second term is the MAI, the third term is

the CEEI and the last term is the noise.

The SNIR at the detector output conditioned on the kth user estimated channel for

the ℓth time interval is given by [66]:

γs|ĥk
pℓq “ |Signalk|2

Var
!
MAI ` CEEI ` Noise

ˇ̌
ˇĥkpℓq

) . (5.9)

Notice that the elements in the denominator corresponds to variances of complex

random variables.

From (5.8), the kth user signal power is given by:

|Signalk|2 “
ˇ̌
ˇ̌ĥHk pℓqĥkpℓq

xd,kpℓq
2

ˇ̌
ˇ̌
2

“
›››ĥkpℓq

›››
4 |xd,kpℓq|2

4
. (5.10)

Once perfect power control is considered, all UTs signals arrive with same power.
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Therefore, the MAI variance is given by:

Var
!
MAI|ĥkpℓq

)
“ Var

$
’&
’%

Kÿ

j“1
j‰k

ĥHk pℓqĥjpℓq
xd,jpℓq

2









ĥkpℓq

,
/.
/-

“ ̺pℓq
4

›››ĥkpℓq
›››
2

|xd|2 pK ´ 1q , (5.11)

where ̺pℓq is the variance of the estimated channel given by (4.64). The variance of the

interference due to the imperfect channel estimation is given by:

Var
!
CEEI|ĥkpℓq

)
“ Var

#
Kÿ

j“1

ĥHk pℓqh̃jpℓq
xd,jpℓq

2









ĥkpℓq
+

“

”
α2 ´ ̺pℓq

ı

4

›››ĥkpℓq
›››
2

|xd|2K. (5.12)

Finally, the noise variance is given by:

Var
!
Noise



ĥkpℓq
)

“ Var

"
ĥHk pℓqwkpℓq









ĥkpℓq
*

“
›››ĥkpℓq

›››
2

σ2
w, (5.13)

where σ2
w is the noise variance given by (4.10).

By using (5.10)-(5.13) in (5.9), the instantaneous SNIR conditioned on the kth user

estimated channel vector is given by:

γs|ĥk
pℓq “ |xd,kpℓq|2‖ĥkpℓq‖2

|xd|2̺pℓq pK ´ 1q `
”
α2 ´ ̺pℓq

ı
|xd|2K ` 4σ2

w

, (5.14)

where }ĥkpℓq}2 and the SNIR follows a chi-square distribution with 2N degrees of freedom.

See Appendix B.1 for more information about the chi-square distribution.

The SNIR can be unconditioned of ĥkpℓq by applying the mean operation, that is:

γspℓq “ E
!
γs|ĥk

pℓq
)

“
ż 8

0

γs|ĥk
pℓqppγs|ĥk

qdγs|ĥk
, (5.15)

where ppγs|ĥk
q is the PDF of the SNIR conditioned on ĥk. Observe that the mean of the

numerator of (5.14) is given by:

E
!

|xd,kpℓq|2}ĥkpℓq}2
)

“ |xd|2N̺pℓq. (5.16)
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Therefore, the average SNIR at the ℓth symbol time interval is given by:

γspℓq “ |xd|2N̺pℓq
|xd|2̺pℓq pK ´ 1q `

”
α2 ´ ̺pℓq

ı
|xd|2K ` 4σ2

w

“ N̺pℓq
̺pℓq pK ´ 1q `

”
α2 ´ ̺pℓq

ı
K ` N0

Ed

“ Nρpℓq
#
α2K ´ ρpℓq ` p1 ` µηq

log2pMqEb

N0

+´1

. (5.17)

where the data symbol energy for the MPE scenario given by (4.32) was employed. Be-

sides, η is given by (4.27) and µ is given by (4.30).

Notice that the SNIR varies with time, once the variance of the estimated channel is

time-variant. Thus, the average SNIR in a block can be evaluated by:

γs “
Ldÿ

ℓ“Lp`1

γspℓq
Ld

. (5.18)

For obtaining the average SNIR on TVCs, two averages were employed. The first

average for unconditioning the SNIR of the estimated channel vector and the second for

averaging the SNIR in a block.

5.3.1.2 SNIR for MPE in TICs

TICs are a special case of the TVCs, where ĥjpℓq “ ĥj and h̃jpℓq “ h̃j, for ℓ ď L.

Therefore, the detected data symbol given by (5.8), can be rewritten as:

x̂d,k “ ĥHk ĥk
xd,k

2loooomoooon
Signal

`
Kÿ

j“1
j‰k

ĥHk ĥj
xd,j

2

loooooomoooooon
MAI

`
Kÿ

j“1

ĥHk h̃j
xd,j

2loooooomoooooon
CEEI

` ĥHk wloomoon
Noise

. (5.19)

Furthermore, the SNIR conditioned on the kth user estimated channel is similar to

(5.9), that is:

γs|ĥk
“ |Signalk|2

Var
!
MAI ` CEEI ` Noise

ˇ̌
ˇĥk

) . (5.20)

Hence, by employing the same procedure as that used for TVCs, the instantaneous

SNIR conditioned on the kth user estimated channel is given by:

γs|ĥk
“ |xd,k|2‖ĥk‖2

|xd|2̺ pK ´ 1q `
”
α2 ´ ̺

ı
|xd|2K ` 4σ2

w

, (5.21)
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where ̺ is given by (4.84) and ‖ĥk‖
2 is a chi-square random variable with 2N degrees of

freedom. Therefore, the average SNIR is given by:

γs “ N̺

#
α2K ´ ̺ ` p1 ` µηq

log2pMqEb

N0

+´1

. (5.22)

The SNIR is independent of time, then, the average SNIR per block is γs “ γs. Thus,

only one average is required for the SNIR on TICs.

As the SNIR derivation for TICs is similar to TVCs, in the next sections, for simplicity,

the average SNIR for TICs is presented directly without derivation. The average SNIR is

necessary in the BER analysis.

5.3.1.3 SNIR for SPE on TVCs

By replacing (5.4) in (5.7), the detected data symbol of the kth user for the ℓth time

interval can be rewritten as:

x̂d,kpℓq “ ĥHk pℓqĥkpℓq
xd,kpℓq

2loooooooooomoooooooooon
Signal

`
Kÿ

j“1
j‰k

ĥHk pℓqĥjpℓq
xd,jpℓq

2

loooooooooooomoooooooooooon
MAI

`
Kÿ

j“1

ĥHk pℓqh̃jpℓq
„
xp,jpℓq ` xd,jpℓq

2



loooooooooooooooooooomoooooooooooooooooooon
CEEI

` ĥHk pℓqwpℓqlooooomooooon
Noise

. (5.23)

The first term is the kth user signal, the second term is the MAI, the third term is

CEEI and the last term is the noise. Notice that the CEEI is enhanced by the pilot

symbols.

The instantaneous SNIR conditioned by the kth user estimated channel at the ℓth

time interval was defined in (5.9). For SPE, it can be rewritten as:

γs|ĥk
pℓq “ |xd,kpℓq|2‖ĥkpℓq‖2

|xd|2̺pℓq pK ´ 1q `
”
α2 ´ ̺pℓq

ı ´
|xp|2 ` |xd|2

¯
K ` 4σ2

w

, (5.24)

where |Signalk|2, Var
!
MAI|ĥkpℓq

)
and Var

!
Noise



ĥkpℓq
)
are given by (5.10), (5.11) and

(5.13), respectively. Additionally, the CEEI variance is given by:

Var
!
CEEI|ĥkpℓq

)
“
”
α2 ´ ̺pℓq

ı
‖ĥkpℓq‖2

´
|xp|2 ` |xd|2

¯
K, (5.25)

where ̺pℓq is given by (4.72) and ‖ĥkpℓq‖2 is a chi-square random variable with 2N degrees

of freedom. Notice that the SNIR is also a chi-square random variable.
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The average SNIR for the ℓth symbol time interval can be obtained by using (5.24) in

(5.15), that is:

γspℓq “ |xd|2N̺pℓq
|xd|2̺pℓq pK ´ 1q `

”
α2 ´ ̺pℓq

ı ´
|xp|2 ` |xd|2

¯
K ` 4σ2

w

“ N̺pℓq
̺pℓq pK ´ 1q `

”
α2 ´ ̺pℓq

ı ´
Ep

Ed
` 1

¯
K ` N0

Ed

“ N̺pℓq
#
α2K p1 ` µsq ´ ̺pℓq p1 ` Kµsq ` p1 ` µsq

log2pMqEb

N0

+´1

, (5.26)

where the pilot symbols energy given by (4.40) and the data symbols energy given by

(4.41) are employed and µs is given by (4.39). Besides, the average SNIR per block is

given by:

γs “
Ldÿ

ℓ“1

γspℓq
Ld

. (5.27)

5.3.1.4 SNIR for SPE on TICs

Using the same reasoning as for TVCs, the average SNIR is given by:

γs “ N̺

#
K

´
α2 ` µs

¯
´ ̺ p1 ` Kµsq ` p1 ` µsq

log2pMqEb

N0

+´1

, (5.28)

where ̺ is given by (4.88).

5.3.1.5 SNIR for HPE on TVCs

From Section 5.2.4, the received data samples can be divided into two intervals. There-

fore, two SNIRs should be evaluated, the first for the superimposed data and the second

for multiplexed data.

For the superimposed data, the kth detected data symbol at the output of the MRC

detector can be obtained by replacing (5.5) in (5.7) as:

x̂d,s,kpℓq “ ĥHk pℓqĥkpℓqxd,s,kpℓq
2looooooooooomooooooooooon

Signal

`
Kÿ

j“1
j‰k

ĥHk pℓqĥjpℓq
xd,s,jpℓq

2

looooooooooooomooooooooooooon
MAI

`
Kÿ

j“1

ĥHk pℓqh̃jpℓq
„
xp,s,jpℓq ` xd,s,jpℓq

2



loooooooooooooooooooooomoooooooooooooooooooooon
CEEI

` ĥHk pℓqwpℓqlooooomooooon
Noise

. (5.29)
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Observe that (5.29) is similar to (5.23), both represent the superimposed data. Thus,

the conditioned SNIR for the superimposed data using HPE is similar to the SPE case,

that is given by (5.24).

By applying the mean operator given by (5.15) in (5.24) and employing the symbol en-

ergy of superimposed pilots, given by (4.50) and the energy of superimposed data symbols,

given by (4.51), the average SNIR for the ℓth symbol time interval is given by:

γsd,spℓq “ N̺pℓq
#
α2K p1 ` µh,sq ´ ̺pℓq p1 ` Kµh,sq ` p1 ` µh,sqp1 ` ηhµh,mq

µh,mp1 ` ηhq log2pMqEb

N0

+´1

,

(5.30)

where ̺pℓq, ηh, µh,m and µh,s are given by (4.78), (4.47), (4.48) and (4.49), respectively.

For the multiplexed data, the kth detected data symbol at the output of the MRC

detector can be obtained by replacing (5.6) in (5.7) as:

x̂d,m,kpℓq “ ĥHk pℓqĥkpℓqxd,m,kpℓq
2looooooooooomooooooooooon

Signal

`
Kÿ

j“1
j‰k

ĥHk pℓqĥjpℓq
xd,m,jpℓq

2

looooooooooooomooooooooooooon
MAI

`
Kÿ

j“1

ĥHk pℓqh̃jpℓq
xd,m,jpℓq

2looooooooooooomooooooooooooon
CEEI

` ĥHk pℓqwpℓqlooooomooooon
Noise

. (5.31)

The detected symbol, given by (5.31), is similar to the MPE scenario, given by (5.8).

Thus, the conditioned SNIR for HPE multiplexed data is similar to the MPE case, and it

is given by (5.14). Hence, the average SNIR for HPE multiplexed data can be obtained by

(5.15) in (5.14) and employing the energy of multiplexed data symbols, given by (4.52).

Therefore, the average SNIR for the ℓ symbol time interval is given by:

γsd,mpℓq “ N̺pℓq
#
α2K ´ ̺pℓq ` p1 ` ηhµh,mq

p1 ` ηhq log2pMqEb

N0

+´1

, (5.32)

where ̺pℓq, ηh and µh,m are given by (4.78), (4.47) and (4.48), respectively.

Furthermore, the average SNIR for HPE is given by:

γs “ 1

Ld

«
Lsÿ

ℓ“1

γsd,spℓq `
Ldÿ

ℓ“Ls`1

γsd,mpℓq
ff
. (5.33)

5.3.1.6 SNIR for HPE on TICs

For the superimposed data symbols, the average SNIR is given by:
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γsd,s “ N̺

#
α2K p1 ` µh,sq ´ ̺ p1 ` Kµh,sq ` p1 ` µh,sqp1 ` ηhµh,mq

µh,mp1 ` ηhq log2pMqEb

N0

+´1

, (5.34)

where ̺ is given by (4.91). On the other hand, average SNIR for the multiplexed data

symbols is given by:

γsd,s “ N̺

#
α2K ´ ̺ ` p1 ` ηhµh,mq

p1 ` ηhq log2pMqEb

N0

+´1

. (5.35)

Notice that the estimated channel variance is the same for both superimposed and

multiplexed data symbols.

The average SNIR in a block is given by:

γs “ Lsγsd,s ` Ld,mγsd,m

Ld
. (5.36)

5.3.1.7 SNIR for PCE

The PCE is the simplest case, which can be seen as a special case of the aforementioned

estimation techniques. For PCE, the detected data symbol of the kth UT at the MRC

output can be obtained by replacing (5.1) in (5.7), that is:

x̂d,k “ ĥHk ĥk
xd,k

2loooomoooon
Signal

`
Kÿ

j“1
j‰k

ĥHk ĥj
xd,j

2

loooooomoooooon
MAI

` ĥHk wloomoon
Noise

, (5.37)

where the first term is the kth UT signal, the second is the MAI and the last term is

the noise. Notice that there is no channel estimation interference, nor temporal channel

variation issues, thus, ĥj “ hj.

For PCE, the SNIR conditioned on the kth UT channel vector can be obtained from

(5.20), that is:

γs|hk
“ |xd,k|2‖hk‖2

|xd|2 α2 pK ´ 1q ` 4σ2
w

, (5.38)

where |Signalk|2 “ }hk}4 |xd,k|2
4

, VartMAI|hku “ α2

4
}hk}2 |xd|2 pK ´ 1q, VartCEEI|hku “ 0

and VartNoise|hku “ }hk}2 σ2
w, was employed. By using (5.38) in (5.15), considering that

‖hk‖
2 has chi-square distribution and employing the data symbol energy given by (4.20),
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for the PCE, the average SNIR is given by:

γs “ Nα2

#
α2pK ´ 1q ` 1

log2pMqEb

N0

+´1

. (5.39)

For PCE, the average SNIR per block is also given by (5.39). Additionally, the SNIR

can be obtained from the SNIR expressions with imperfect channel estimation. For ex-

ample, the SNIR for MPE given by (5.22) is equal to the SNIR for PCE given by (5.39),

by considering that ̺ “ α2 and that η “ 0

5.3.2 Zero Forcing Detector

The detected data symbol of the kth UT at the output of the ZF detector, given by

(2.32) can be rewritten as:

x̂d,kpℓq “ ĥ`
k pℓqydpℓq, (5.40)

where ydpℓq is the ℓth data sample at the input of the ZF detector that depends on the

estimation technique.

5.3.2.1 SNIR for MPE on TVCs

By replacing (5.2) in (5.40), the detected data symbol of the kth UT for the ℓth symbol

time interval can be rewritten as:

x̂d,kpℓq “ xd,kpℓq
2loomoon

Signal

`
Kÿ

j“1

ĥ`
k pℓqh̃jpℓq

xd,jpℓq
2loooooooooooomoooooooooooon

CEEI

` ĥ`
k pℓqwpℓqloooomoooon

Noise

, (5.41)

where the MAI is eliminated according to (2.33), but the CEEI is still present.

In this case, the SNIR at the detector output conditioned on the estimated channel

vector of the kth UT is given by:

γs|ĥk
pℓq “ |Signalk|2

Var
!
CEEI ` Noise

ˇ̌
ˇĥkpℓq

) . (5.42)

From (5.41), the kth user signal power is given by:

|Signalk|2 “
ˇ̌
ˇ̌xd,kpℓq

2

ˇ̌
ˇ̌
2

“ |xd,kpℓq|2
4

, (5.43)
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the variance of the CEEI is given by:

Var
!
CEEI|ĥkpℓq

)
“ Var

#
Kÿ

j“1

ĥ`
k pℓqh̃jpℓq

xd,jpℓq
2









ĥkpℓq
+

“

”
α2 ´ ̺pℓq

ı

4

›››ĥ`
k pℓq

›››
2

|xd|2K, (5.44)

where ̺pℓq is the estimated channel variance and the noise variance is given by:

Var
!
Noise



ĥkpℓq
)

“ Var

"
ĥ`
k pℓqwkpℓq









ĥ`
k pℓq

*

“
›››ĥ`

k pℓq
›››
2

σ2
w, (5.45)

where σ2
w is the noise variance given by (4.10).

By using (5.43)-(5.45) in (5.42), the instantaneous SNIR conditioned on the estimated

channel vector of the kth UT is given by:

γs|ĥk
pℓq “ |xd,kpℓq|2

}ĥ`
k pℓq}2

”´
α2 ´ ̺pℓq

¯
|xd|2K ` 4σ2

w

ı , (5.46)

where 1

}ĥ`
k

pℓq}2 and the conditioned SNIR follows a chi-square distribution with 2pN´K`1q
degrees of freedom for Rayleigh fading [68].

By employing the average given by (5.15) in (5.46), it is possible to show that:

γspℓq “ |xd|2pN ´ K ` 1q̺pℓq”´
α2 ´ ̺pℓq

¯
|xd|2K ` 4σ2

w

ı . (5.47)

Hence, by employing the data symbol energy for the MPE scenario given by (4.32),

the average SNIR for the ℓth symbol time interval is given by:

γspℓq “ pN ´ K ` 1q̺pℓq
«
K

´
α2 ´ ̺pℓq

¯
` p1 ` µηq

log2pMqEb

N0

ff´1

, (5.48)

where ̺pℓq is given by (4.64). Furthermore, the average SNIR per block can be found by

substituting (5.48) in (5.18).
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5.3.2.2 SNIR for MPE on TICs

Following a similar procedure presented in the previous section, it is possible to show

that the average SNIR for TICs is given by:

γs “ pN ´ K ` 1q̺
«
K

´
α2 ´ ̺

¯
` p1 ` µηq

log2pMqEb

N0

ff´1

, (5.49)

where ̺ is given by (4.84) and the average SNIR per block is also given by (5.49).

5.3.2.3 SNIR for SPE on TVCs

For SPE, by using (5.4) in (5.40), the detected data symbol of the kth user for the ℓth

time interval can be rewritten as:

x̂d,kpℓq “ xd,kpℓq
2loomoon

Signal

`
Kÿ

j“1

ĥ`
k pℓqh̃jpℓq

xp,jpℓq ` xd,jpℓq
2loooooooooooooooooomoooooooooooooooooon

CEEI

` ĥ`
k pℓqwpℓqloooomoooon

Noise

. (5.50)

Notice in (5.50) that the MAI is eliminated by the channel inversion matrix given by

(2.33) and that the CEEI has effects on the superimposed pilot symbols.

The instantaneous SNIR conditioned on the kth UT estimated channel vector is given

by:

γs|ĥk
pℓq “ |xd,kpℓq|2

}ĥ`
k pℓq}2

”´
α2 ´ ̺pℓq

¯´
|xp|2 ` |xd|2

¯
K ` 4σ2

w

ı , (5.51)

that is obtained by substituting in (5.42), the signal power given by (5.43), the noise

variance given by (5.45) and the CEEI variance given by:

Var
!
CEEI|ĥkpℓq

)
“
”
α2 ´ ̺pℓq

ı
‖ĥ`

k pℓq‖2
´

|xp|2 ` |xd|2
¯
K. (5.52)

Moreover, in (5.51), 1

}ĥ`
k

pℓq}2 and the SNIR follows a chi-square distribution with 2pN´
K ` 1q degrees of freedom. Thus, by using (5.51) in (5.15), the average SNIR is given by:

γspℓq “ pN ´ K ` 1q̺pℓq
#

p1 ` µsq
«
K

´
α2 ´ ̺pℓq

¯
` 1

log2pMqEb

N0

ff+´1

, (5.53)

where the pilot symbols energy given by (4.40) and the data symbols energy given by

(4.41) are employed. Besides, ̺pℓq is given by (4.72). Notice that the average SNIR per

block can be obtained by substituting (5.53) in (5.27).
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5.3.2.4 SNIR for SPE on TICs

The average SNIR for TICs is given by:

γs “ pN ´ K ` 1q̺
#

p1 ` µsq
«
K

´
α2 ´ ̺

¯
` 1

log2pMqEb

N0

ff+´1

, (5.54)

where ̺ is given by (4.88) and the average SNIR is also given by (5.54).

5.3.2.5 SNIR for HPE on TVCs

As in the MRC detector analysis, there are two SNIRs to be evaluated, for the super-

imposed data and for the multiplexed data.

For the superimposed data the kth detected data symbol at the output of the ZF

detector for the ℓth time interval is obtained by replacing (5.5) in (5.40) as:

x̂d,s,kpℓq “ xd,s,kpℓq
2looomooon

Signal

`
Kÿ

j“1

ĥ`
k pℓqh̃jpℓq

xp,s,jpℓq ` xd,s,jpℓq
2loooooooooooooooooooomoooooooooooooooooooon

CEEI

` ĥ`
k pℓqwpℓqloooomoooon

Noise

. (5.55)

Observe that (5.55) is similar to (5.50). Therefore, the conditioned SNIR for the

superimposed data symbol of HPE is similar to the SPE given by (5.51). By using (5.51)

in (5.15) and employing the energy of the superimposed data symbols given by (4.51) and

the energy of superimposed pilot symbols given by (4.50), the average SNIR is given by:

γsd,spℓq “ pN ´ K ` 1q̺pℓq
#

p1 ` µh,sq
«
K

´
α2 ´ ̺pℓq

¯
` 1 ` µh,mηh

µh,mp1 ` ηhq log2pMqEb

N0

ff+´1

,

(5.56)

where ̺pℓq is given by (4.78).

For the multiplexed data, the kth detected data symbol at the output of the ZF

detector is given by replacing (5.6) in (5.40), that is:

x̂d,m,kpℓq “ ĥHk pℓqĥkpℓq
xd,m,kpℓq

2looooooooooomooooooooooon
Signal

`
Kÿ

j“1
j‰k

ĥHk pℓqĥjpℓq
xd,m,jpℓq

2

looooooooooooomooooooooooooon
MAI

`
Kÿ

j“1

ĥHk pℓqh̃jpℓq
xd,m,jpℓq

2looooooooooooomooooooooooooon
CEEI

` ĥHk pℓqwpℓqlooooomooooon
Noise

. (5.57)

The detected symbol, given by (5.57) is similar to the detected symbol of MPE, given

by (5.41). Thus, the conditioned SNIR for the multiplexed data of HPE is similar to the
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conditioned SNIR of MPE, given by (5.46). Furthermore, by employing the energy of the

multiplexed data, given by (4.52), the average SNIR is given by:

γsd,mpℓq “ pN ´ K ` 1q̺pℓq
«
K

´
α2 ´ ̺pℓq

¯
` 1 ` µh,mηh

p1 ` ηhq log2pMqEb

N0

ff´1

, (5.58)

where ̺pℓq is given by (4.78). The average SNIR per block can be obtained by substituting

(5.56) and (5.58) in (5.33).

5.3.2.6 SNIR for HPE on TICs

For TICs, the average SNIR of the superimposed data is given by:

γsd,s “ pN ´ K ` 1q̺
#

p1 ` µh,sq
«
K

´
α2 ´ ̺

¯
` 1 ` µh,mηh

µh,mp1 ` ηhq log2pMqEb

N0

ff+´1

, (5.59)

where ̺ is given by (4.91). On the other hand, the average SNIR of the multiplexed data

is given by

γsd,m “ pN ´ K ` 1q̺
«
K

´
α2 ´ ̺

¯
` 1 ` µh,mηh

p1 ` ηhq log2pMqEb

N0

ff´1

, (5.60)

where ̺ is also given by (4.91). The average SNIR per block can be obtained by substi-

tuting (5.59) and (5.60) in (5.36).

5.3.2.7 SNIR for PCE

The detected data symbol of the kth UT at the ZF output can be obtained by replacing

(5.1) in (5.40), that is:

x̂d,k “ xd,k

2loomoon
Signal

` ĥ`
kwloomoon

Noise

, (5.61)

where the MAI is eliminated according to (2.33) and in this case there is no CEEI. Thus,

the SNIR conditioned on the kth UT channel vector is obtained from (5.42) as:

γs|ĥk
“ |xd,k|2

‖h`
k ‖

24σ2
w

, (5.62)
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where |Signalk|2 “ |xd,k|2
4

, VartMAI|hku “ 0, VartCEEI|hku “ 0 and VartNoise|hku “››h`
k

››2 σ2
w, are employed. By using (5.62) in (5.15), the average SNIR is given by:

γs “ pN ´ K ` 1qα2 log2pMqEb
N0

. (5.63)

Notice that the average SNIR per block is also given by (5.63).

5.3.3 Minimum-Mean-Square Error Detector

The detected data symbol for the kth UT at the MMSE detector output is given by:

x̂d,kpℓq “ akpℓqydpℓq, (5.64)

where akpℓq is the kth row of the compensation matrix Apℓq, given by (2.35). The matrix

Apℓq “ Cxk,dpℓqydpℓqC
´1
ydpℓqydpℓq, where ydpℓq is the data sample of the ℓth time interval at

the input of the MMSE detector, given by (5.2).

5.3.3.1 SNIR for MPE on TVCs

By replacing (5.2) in (5.64), the detected data symbol of the kth UT during at the ℓth

time interval is given by:

x̂d,kpℓq “ akpℓqĥkpℓqxd,kpℓq
2looooooooomooooooooon

Signal

`
Kÿ

j“1
j‰k

akpℓqĥjpℓq
xd,jpℓq

2

looooooooooomooooooooooon
MAI

`
Kÿ

j“1

akpℓqh̃jpℓq
xd,jpℓq

2looooooooooomooooooooooon
CEEI

` akpℓqwpℓqloooomoooon
Noise

.

(5.65)

The compensation channel vector akpℓq can be rewritten as [85]:

akpℓq “ ĥHk pℓq
´
C

pkq
ydpℓqydpℓq

¯´1

, (5.66)

where C
pkq
ydpℓqydpℓq “ E

!
yd,kpℓqyd,kHpℓq

)
and yd,kpℓq is the received signal vector yd without

the kth user entry given by:

ydpℓq “ pHkpℓqxd,kpℓq ` rHkpℓqxd,kpℓq ` wpℓq, (5.67)

where pHkpℓq is the estimated channel matrix and rHkpℓq is the channel estimation error

matrix without the kth column vector. Besides, xd,kpℓq is the vector of data symbols

without the kth UT entry. Therefore, the covariance matrix C
pkq
ydpℓqydpℓq can be rewritten
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as:

C
pkq
ydpℓqydpℓq “ |xd|2

4
pHkpℓq pHH

k pℓq `
«

|xd|2
4

´
α2 ´ ̺pℓq

¯
K ` σ2

w

ff
IN . (5.68)

The product of matrices pHkpℓqpHH
k pℓq can be eigen-decomposed [83]:

pHkpℓqpHH
k pℓq “ UHpℓqDpℓqUpℓq, (5.69)

where Upℓq is an orthonormal matrix that contains the eigen-vectors of pHkpℓqpHH
k pℓq and

Dpℓq “ diagrλ1pℓq λ2pℓq ¨ ¨ ¨ λK´1pℓq
N´K`1hkkikkj
0 ¨ ¨ ¨ 0s is a diagonal matrix that contains the

eigenvalues of pHkpℓqpHH
k pℓq. Notice in the diagonal matrix that there are K ´ 1 random

eigenvalues and N ´ K ` 1 null eigenvalues [85]. Substituting the eigen-decomposition,

given by (5.69), in (5.68), the covariance matrix can be rewritten as:

C
pkq
ydpℓqydpℓq “ |xd|4

4
UHpℓqDpℓqUpℓq `

«
|xd|2
4

´
α2 ´ ̺pℓq

¯
K ` σ2

w

ff
IN . (5.70)

The conditioned SNIR is given by (5.9), where the kth UT signal power is given by:

|Signalk|2 “ |xd,kpℓq|2
4

ĥHk pℓq
´
C

pkq
ydpℓqydpℓq

¯´1

ĥkpℓqĥHk pℓq
´
C

pkq
ydpℓqydpℓq

¯´1

ĥkpℓq, (5.71)

that was obtained by using (5.66) in (5.65). Besides, the sum of the variances on the

denominator is given by:

Var
!
MAI ` CEEI ` Noise







ĥkpℓq
)

“ ĥHk pℓq
´
C

pkq
ydpℓqydpℓq

¯´1

ĥkpℓq. (5.72)

Therefore, by replacing (5.71) and (5.72) in (5.9), the conditioned SNIR is given by:

γs|ĥk
pℓq “ |xd,kpℓq|2

4
ĥHk pℓq

´
C

pkq
ydpℓqydpℓq

¯´1

ĥkpℓq. (5.73)

Furthermore, by using (5.70) in (5.73), and considering that the product of orthonor-

mal matrices do not change the statistics of a random matrix, the conditioned SNIR can

be rewritten as:

γs|ĥk
pℓq “

Nÿ

j“1

|xd,kpℓq|2 |ĥj,kpℓq|2

|xd|2λjpℓq `
”
α2 ´ ̺pℓq

ı
|xd|2K ` 4σ2

w

, (5.74)
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or as:

γs|ĥk,λj
pℓq “

K´1ÿ

j“1

|xd,kpℓq|2 |ĥj,kpℓq|2

|xd|2λjpℓq `
”
α2 ´ ̺pℓq

ı
|xd|2K ` 4σ2

w

`
Nÿ

j“K

|xd,kpℓq|2 |ĥj,kpℓq|2”
α2 ´ ̺pℓq

ı
|xd|2K ` 4σ2

w

, (5.75)

where λjpℓq is the jth eigenvalue of pHkpℓqpHH
k pℓq. In (5.75) notice that the first summation

depends on the K ´ 1 random eigenvalues and the second summation on the remaining

N ´ K ` 1 eigenvalues that are equal to zero.

The SNIR, given by (5.74), can be averaged over the eigenvalues distribution. In [83],

the authors have derived the eigenvalues distribution, that resulted in a tricky expression.

Thus, averaging the SNIR is a quite complex task as shown in [33]. However, for M-

MIMO, the eigenvalues distribution ppλjq can be well approximated by the Marchenko-

Pastur distribution, whose PDF is given by (2.23). Therefore, the SNIR can be well

approximated by:

γs|ĥk
pℓq “

ż b

a

γs|ĥk,λj
ppλjqdλj

“ |xd,kpℓq|2
|xd|2

˜
Ωpℓq

K´1ÿ

j“1

|ĥj,kpℓq|2 ` 1

Λpℓq
Nÿ

j“K
|ĥj,kpℓq|2

¸
, (5.76)

where Ωpℓq is given by:

Ωpℓq “
ż b

a

1

λj ` Λpℓqppλjqdλj

“ 1

2Λpℓq

„b
ra ` Λpℓqsrb ` Λpℓqs ´ pΛpℓq `

?
abq


, (5.77)

and Λpℓq is given by:

Λpℓq “
”
α2 ´ ̺pℓq

ı
K ` 1 ` ηµ

log2pMqEb

N0

, (5.78)

where the data symbols energy, given by (4.32), was employed. Besides, ̺pℓq is given by

(4.64), a “
`
1 ´

?
β
˘2
, b “

`
1 `

?
β
˘2

and β “ K{N .

The SNIR conditioned on the kth UT estimated channel vector, given by (5.76), is the

sum of two chi-square random variables with different variances. The sum of chi-square

random variables with different variances produces a random variable with the generalized

chi-square distribution, shown in Appendix B.2. The generalized chi-square PDF for two
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different variances can written as:

ppγsq “
2ź

m“1

1

ς2rmm

2ÿ

k“1

rkÿ

n“1

ψk,n,r

prk ´ nq!p´γsqrk´ne
´ γs

ς2
k , (5.79)

where r “ rr1 r2s is a vector containing the degrees of freedom of each sum in (5.76). Thus,

the first chi-square random variable has r1 “ K ´ 1 degrees of freedom with variance

ς21 “ Ωpℓq and the second chi-square random variable has r2 “ N ´ K ` 1 degrees of

freedom with variance ς22 “ 1{Λpℓq. Finally, ψ1,n,r and ψ2,n,r are given by:

ψ1,n,r “ p´1qr1´1

˜
n ` r2 ´ 2

n ´ 1

¸ˆ
1

ς22
´ 1

ς21

˙´pr2`n´1q
, (5.80)

ψ2,n,r “ p´1qr2´1

˜
n ` r1 ´ 2

n ´ 1

¸ˆ
1

ς21
´ 1

ς22

˙´pr1`n´1q
. (5.81)

By using (5.75) and (5.79) in (5.15), the average SNIR for the ℓth time interval is

given by:

γspℓq “ ̺pℓqΩpℓqpK ´ 1q ` ̺pℓq
ΛpℓqpN ´ K ` 1q. (5.82)

Moreover, as N " K, the contribution of the first term of (5.82) is negligible. As the

second term of (5.82) is dominant, the SNIR of the MMSE detector is similar to the SNIR

of the ZF detector, given by (5.48).

A similar result can be obtained in the following by considering that the first sum of

(5.75) is negligible. Thus, by considering only the second summation, the SNIR has a

chi-square distribution γs „ χ2r2pN ´ K ` 1qs, which is equal to the SNIR distribution

of the ZF detector. Hence, the SNIR for the MMSE detector can be well approximated

by the SNIR of the ZF detector, given by (5.48). Finally, the average SNIR per block for

MPE can be obtained by substituting (5.82) in (5.18).

5.3.3.2 SNIR for MPE on TICs

The derivation of Λ is fundamental on the evaluation of the average SNIR. Hence, by

performing a similar procedure as for TVCs, Λ is given by:

Λ “
”
α2 ´ ̺

ı
K ` 1 ` ηµ

log2pMqEb

N0

, (5.83)



5.3. Linear Detection and SNIR 118

where ̺ is given by (4.84). Hence, the average SNIR is similar to (5.82), that can be

rewritten as:

γs “ ̺ΩpK ´ 1q ` ̺

Λ
pN ´ K ` 1q, (5.84)

where Λ is given by (5.83) and Ω is given by (5.77).

The average SNIR per block is also given by (5.84). Furthermore, the SNIR of the

MMSE detector can also be approximated by the SNIR of the ZF, given by (5.49).

5.3.3.3 SNIR for SPE on TVCs

For SPE, the detected data symbol of the kth UT at the output of the MMSE detector

is obtained by substituting (5.4) in (5.64), that is:

x̂d,kpℓq “ akpℓqĥkpℓqxd,kpℓq
2looooooooomooooooooon

Signal

`
Kÿ

j“1
j‰k

akpℓqĥjpℓq
xp,jpℓq ` xd,jpℓq

2

loooooooooooooooooomoooooooooooooooooon
MAI

`
Kÿ

j“1

akpℓqh̃jpℓq
xp,jpℓq ` xd,jpℓq

2loooooooooooooooooomoooooooooooooooooon
CEEI

` akpℓqwpℓqloooomoooon
Noise

. (5.85)

As for MPE, the SNIR conditioned on the kth user estimated channel vector and the

eigenvalues is given by:

γs|ĥk,λj
pℓq “

K´1ÿ

j“1

|xd,kpℓq|2 |ĥj,kpℓq|2”
|xp|2 ` |xd|2

ı
λj `

”
α2 ´ ̺pℓq

ı ”
|xp|2 ` |xd|2

ı
K ` 4σ2

w

`
Nÿ

j“K

|xd,kpℓq|2 |ĥj,kpℓq|2”
α2 ´ ̺pℓq

ı ”
|xp|2 ` |xd|2

ı
K ` 4σ2

w

. (5.86)

By considering the Marchenko-Pastur approximation in (5.86) the average SNIR in

relation to the eigenvalues can be written as:

γs|ĥk
pℓq “ |xd,kpℓq|2

|xp|2 ` |xd|2

˜
Ωpℓq

K´1ÿ

j“1

|ĥj,kpℓq|2 ` 1

Λpℓq
Nÿ

j“K
|ĥj,kpℓq|2

¸
, (5.87)

where Ωpℓq is given by (5.77) and Λpℓq is given by:

Λpℓq “
”
α2 ´ ̺pℓq

ı
K ` 1

log2pMqEb

N0

, (5.88)
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where ̺pℓq is given by (4.72). In (5.88) it was used that the pilot symbols energy is given

by (4.40) and the data symbols energy is given by (4.41).

Notice that (5.87) follows a generalized chi-square distribution. Therefore, by using

(5.87) and (5.79) in (5.15), the average SNIR can be rewritten as:

γspℓq “ 1

1 ` µs

„
̺pℓqΩpℓqpK ´ 1q ` ̺pℓq

ΛpℓqpN ´ K ` 1q

. (5.89)

The average SNIR per block can be obtained by substituting (5.89) in (5.27). The

SNIR of the MMSE detector can be well approximated by the SNIR of the ZF detector,

given by (5.53).

5.3.3.4 SNIR for SPE on TICs

For SPE on TICs, Λ is given by:

Λ “
”
α2 ´ ̺

ı
K ` 1

log2pMqEb

N0

, (5.90)

where ̺ is given by (4.88). Furthermore, the average SNIR is similar to (5.89), that can

be rewritten as:

γs “ 1

1 ` µs

”
̺ΩpK ´ 1q ` ̺

Λ
pN ´ K ` 1q

ı
, (5.91)

where Λ is given by (5.90) and Ω is given by (5.77).

The average SNIR per block is also given by (5.91). Furthermore, the average SNIR

can be well approximated by the ZF SNIR, given by (5.54).

5.3.3.5 SNIR for HPE on TVCs

As for MRC and ZF detectors, the SNIR for HPE is evaluated in two intervals. For the

superimposed data symbols, the kth detected data symbol at the output of the MMSE

detector can be obtained by substituting (5.5) in (5.64), resulting in an equivalent expres-

sion to (5.85). The conditioned SNIR for the superimposed data is similar to SPE, given

by (5.86). Therefore, the average SNIR is given by (5.89), by employing Ωpℓq given by

(5.77), Λpℓq given by:

Λd,spℓq “
”
α2 ´ ̺pℓq

ı
K ` 1 ` µh,mηh

µh,mp1 ` ηhq log2pMqEb

N0

, (5.92)

and ̺pℓq given by (4.78). Furthermore, the pilot symbols energy given by (4.50) and the

data symbols energy given by (4.51) were used in (5.92).
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For the multiplexed data symbols, the conditioned SNIR is similar to the MPE, given

by (5.75). Hence, the average SNIR is similar to (5.82), by employing Ωpℓq given by (5.77),

Λpℓq given by:

Λd,mpℓq “
”
α2 ´ ̺pℓq

ı
K ` 1 ` µh,mηh

p1 ` ηhq log2pMqEb

N0

, (5.93)

and ̺pℓq given by (4.78). For obtaining (5.92), the multiplexed data symbols energy, given

by (4.52), was employed.

The average SNIR per block can be obtained by substituting (5.89), (5.92), (5.82) and

(5.93) in (5.33). Besides, the SNIR can be approximated by the SNIR of the ZF detector,

given by (5.56), for the superimposed data and given by (5.58), for the multiplexed data.

5.3.3.6 SNIR for HPE on TICs

For HPE on TICs, Λ for the superimposed data is given by:

Λd,s “
”
α2 ´ ̺

ı
K ` 1 ` µh,mηh

µh,mp1 ` ηhq log2pMqEb

N0

, (5.94)

and for the multiplexed data is given by:

Λd,m “
”
α2 ´ ̺

ı
K ` 1 ` µh,mηh

p1 ` ηhq log2pMqEb

N0

, (5.95)

where ̺ is given by (4.91).

The average SNIR for superimposed data symbols is similar to SPE, it can be obtained

by employing (5.94) in (5.91). On the other hand, the average SNIR for multiplexed data

is similar to MPE, it can be obtained by employing (5.95) in (5.84).Notice that the average

SNIR in a block is obtained by using (5.36).

Moreover, the SNIR approximation by the SNIR of the ZF detector is given by (5.59)

for the superimposed data symbols and (5.60) for the multiplexed data symbols.

5.3.3.7 SNIR for PCE

The detected data symbol of the kth UT at the MMSE detector output is obtained

by substituting (5.1) in (5.64) that is:

x̂d,k “ akĥk
xd,k

2looomooon
Signal

`
Kÿ

j“1
j‰k

akĥj
xd,j

2

loooooomoooooon
MAI

` akwloomoon
Noise

, (5.96)

where the MAI was compensated by ak. Notice that there is also no CEEI. It is easy

to show that the SNIR conditioned on the kth UT estimated channel vector and on the
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eigenvalues is given by:

γs|ĥk,λj
“

K´1ÿ

j“1

|xd,k|2 |ĥj,k|2
|xd|2λj ` 4σ2

w

`
Nÿ

j“K

|xd,k|2 |ĥj,k|2
4σ2

w

. (5.97)

Therefore, by using the Marchenko-Pastur distribution, the average SNIR in relation

to the eigenvalues is similar to that given by (5.76), by employing Ω given by (5.77) and

Λ given by:

Λ “ 1

log2pMqEb

N0

, (5.98)

where the data symbol energy given by (4.20) was employed.

Thus, by considering the generalized chi-square distribution, the average SNIR is given

by:

γs “ α2ΩpK ´ 1q ` α2

Λ
pN ´ K ` 1q. (5.99)

The SNIR can be approximated by the SNIR of the ZF detector, given by (5.62) and

the average SNIR per block is also given by (5.99).

5.4 Average BER for M-MIMO

An exact expression to evaluate the average BER per block is derived. Once the SNIR

and its PDF are known, it is possible to obtain the BER for the ℓth time interval by [73]:

BERpℓq “ E
!
P
´
b|γs|ĥk

pℓq
¯)

“
ż 8

0

P
´
b|γs|ĥk

pℓq
¯
p
´
γs|ĥk

¯
dγs|ĥk

, (5.100)

where P
´
b|γs|ĥk

pℓq
¯
is the bit error probability for the ℓth time interval conditioned on

the SNIR and p
´
γs|ĥk

¯
is the PDF of the SNIR conditioned on the estimated channel.

Notice that BERpℓq changes at each time slot, cause the SNIR changes in time. Thus,

the average BER per block can be defined as:

BER “ 1

Ld

Ldÿ

ℓ“1

BERpℓq, (5.101)

where Ld is the the number of data symbols6 and BERpℓq is the BER at the ℓth time slot.

For TICs, the SNIR is the same in all time slots for PCE, MPE and SPE, and the BER

does not change in a block, that is BERpℓq “ BER. For HPE, there are two SNIRs. Hence,

6Notice that for SPE Ld “ L and for HPE Ld “ Lsd ` Lmd “ L.
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BER “ pLd,sBERd,s ` Ld,mBERd,mq{Ld, where BERd,s is the BER of the superimposed

data symbols and BERd,m is the BER of the multiplexed data symbols.

For M -QAM modulation, the exact bit error probability using Gray mapping is pre-

sented in [104]. By considering that the noise, the MAI and the CEEI were modeled as

complex Gaussians, the exact bit error probability conditioned to the SNIR can be written

as:

P
´
b|γs|ĥk

pℓq
¯

“ 1

log2
?
M

log2
?
Mÿ

κ“1

1?
M

p1´2´κq?M´1ÿ

i“0

"
p´1q

Y
i¨2κ´1

?
M

]ˆ
2κ´1 ´

Z
i ¨ 2κ´1

?
M

` 1

2

^˙

erfc

«
p2i ` 1q

d
3

2 pM ´ 1q γs|ĥk
pℓq

ff+
, (5.102)

where erfcpxq “ 2?
π

ş8
x
e´t2dt is the complementary error function and txu is the greatest

integer less than or equal to x [69].

The BER for the ℓth time interval can be obtained by using (5.102) in (5.100), that

is:

BERpℓq “ 2

log2
?
M

log2
?
Mÿ

κ“1

1?
M

p1´2´κq?M´1ÿ

i“0

"
p´1q

Y
i¨2κ´1

?
M

]ˆ
2κ´1 ´

Z
i ¨ 2κ´1

?
M

` 1

2

^˙

1

2

ż 8

0

erfc

»
–
d

3 p2i ` 1q2
2 pM ´ 1q γs|ĥk

fi
fl p

´
γs|ĥk

pℓq
¯
dγs|ĥk

,
.
- . (5.103)

Hence, the solution of (5.103) rely on the integral:

Ipℓ, νiq “ 1

2

ż 8

0

erfc

»
–
d
γs|ĥk

pℓq
νi

fi
fl p

´
γs|ĥk

¯
dγs|ĥk

, (5.104)

where νi “ 2pM´1q
3p2i`1q2 .

5.4.1 BER of MRC Detector

The BER of the MRC detector can be obtained by substituting the PDF of the SNIR,

with chi-square distribution with 2N degrees of freedom, in (5.104). Thus, the solution

of the integral (5.104) is given by [105]:

Ipℓ, νiq “ ρpℓqN
N´1ÿ

j“0

˜
N ´ 1 ` j

j

¸
r1 ´ ρpℓqsj , (5.105)

where p nx q “ n!
x!pn´xq! is the binomial expansion, ρpℓq “ 1

2

´
1 `

b
γspℓq

Nνi`γspℓq

¯
is the BER

with no diversity and γspℓq is the average SNIR for the PCE, MPE, SPE or HPE derived
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in Section 5.3. Finally, the BER for the ℓth time interval is given by replacing (5.105) in

(5.103).

5.4.2 BER of ZF Detector

The BER of the ZF detector can be obtained by substituting the PDF of the SNIR,

that is a chi-square with 2pN ´K ` 1q degrees of freedom, in (5.104). Thus, the solution

of (5.104) is given by:

Ipℓ, νiq “ ρpℓqN´K`1

N´Kÿ

j“0

˜
N ´ K ` j

j

¸
r1 ´ ρpℓqsj , (5.106)

where ρpℓq “ 1
2

´
1 `

b
γspℓq

pN´K`1qνi`γspℓq

¯
is the BER with no diversity and γspℓq is the

average SNIR for the PCE, MPE, SPE or HPE, derived in Section 5.3. As for the MRC

detector, the BER for the ℓth time interval is obtained by replacing (5.106) in (5.103).

5.4.3 BER of MMSE Detector

For the MMSE detector, the exact solution of (5.104) is quite complex, because the

SNIR has a generalized chi-square distribution. In [33], the authors have obtained a exact

closed-form expression. However, a simpler solution for (5.104) is presented in [106] using

the channel reliability approach for MC-CDMA systems. Since the solution presented in

[106] is simpler than that of [33], it can be modified for M-MIMO systems, that is:

Ipℓ, νiq “ 1

2

#
1 ´

c
1

2νi

«
N´K`1ÿ

j“1

1

Γpjq

ˆ
N ´ K ` 1

γspℓq

˙j´1

J

ˆ
j ´ 1

2
,
1

νi
` N ´ K ` 1

γspℓq

˙

`
Nÿ

j“N´K`2

1

Γpjq

ˆ
N ´ K ` 1

γspℓq

˙j´1 N´jÿ

l“0

˜
K ´ 1

l

¸

ˆ L

ˆ
j ` l ´ 1

2
, K ´ 1,

1

νi
` N ´ K ` 1

γspℓq

˙  *
, (5.107)

where:

J px, yq “ Γpxqy´x, (5.108)

Lpx, y, zq “ Γpxq
„
Γpy ´ xq
Γpyq 1F1px; x ´ y ` 1; zq ` zy´xΓpx ´ yq

Γpxq 1F1py; y ´ x ` 1; zq

,

(5.109)

Γpxq is the gamma function, 1F1px; y; zq is the confluent hyper-geometric function [98]

and γspℓq is the average SNIR of the ZF detector for PCE, MPE, SPE and HPE, derived
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in Section 5.3.

5.5 BER Bounds

Lower and upper bounds for the BER can be derived to avoid the complexity of the

exact closed-form expression, obtained in the former section.

5.5.1 Lower Bounds

For M-MIMO systems, due to N is large, the channel becomes deterministic as estab-

lished by the channel hardening property, shown in Section 2.5.4.2. The BER becomes a

negative exponential function and the Jensen’s inequality7 can be employed to obtain a

simple lower bound of the BER. By applying the Jensen’s inequality in (5.100), the BER

lower bound for the ℓth time interval is given by:

BERLBpℓq “ P
”
b|E

!
γs|ĥk

pℓq
)ı

ď E
!
P pb|γs|ĥk

pℓqq
)
. (5.110)

Hence, by considering the lower bound in (5.102), the BER lower bound of M-MIMO

systems can be rewritten as:

BERLBpℓq “ 1

log2
?
M

log2
?
Mÿ

κ“1

1?
M

p1´2´κq?M´1ÿ

i“0

"
p´1q

Y
i¨2κ´1

?
M

]

ˆ
2κ´1 ´

Z
i ¨ 2κ´1

?
M

` 1

2

^˙

erfc

«
p2i ` 1q

d
3

2 pM ´ 1q γspℓq
ff+

, (5.111)

where γspℓq “ E
!
γs|ĥk

pℓq
)
is the average SNIR, derived in Section 5.3.

For M-MIMO, the BER lower bound of the ZF detector is a good approximation to

the BER lower bound of the MMSE detector.

5.5.2 Upper Bound

The BER upper bound is obtained by considering that Eb{N0 Ñ 8 in (5.103).

7f pEtxuq ď Etfpxqu.
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5.5.2.1 MRC Detector

For the MRC detector, the upper bound of (5.103), depends on the solution of (5.104),

that can be approximated by:

Ipℓ, νiq «
ˆ

N

4νiγspℓq

˙N
˜

2N ´ 1

N

¸
, (5.112)

where series expansion of ρpℓq is employed, that is8:

ρpℓq “ 1

2

˜
1 ´

d
γspℓq

Nνi ` γspℓq

¸
« N

4νiγspℓq
, (5.113)

and it was considered that 1 ´ ρpℓq » 1 and that
řN´1

j“0

`
N´1`j

j

˘
“
`
2N´1
N

˘
.

By using (5.112) in (5.103) and taking the first term of its sum over i, the BER upper

bound is given by:

BERUBpℓq “ 2p
?
M ´ 1q?

M log2pMq

˜
2N ´ 1

N

¸
ˆ
„pM ´ 1q

6

N

γspℓq

N
. (5.114)

5.5.2.2 ZF Detector

By applying similar procedure used for the MRC detector, the solution of the integral

expression given by (5.104), can be approximated to:

Ipℓ, νiq «
ˆ
N ´ K ` 1

4νiγspℓq

˙N´K`1
˜

2pN ´ K ` 1q ´ 1

N ´ K ` 1

¸
, (5.115)

Hence, by using (5.115) in (5.103) and considering the first term of its sum over i, the

BER upper bound is given by:

BERUBpℓq “ 2p
?
M ´ 1q?

M log2pMq

˜
2pN ´ K ` 1q ´ 1

N ´ K ` 1

¸
ˆ
„pM ´ 1q

6

pN ´ K ` 1q
γspℓq

N´K`1

.

(5.116)

5.5.2.3 MMSE Detector

The upper bound of the MMSE detector can be well approximated by the ZF upper

bound. However, other tighter upper bound can be obtained by using the Marchenko-

Pastur PDF [67].

8Maclaurin series of the function
b

1

1`x
“ 1 ´ x

2
` 3x2

8
´ 5x3

16
` ¨ ¨ ¨ .
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The solution of (5.104) is obtained by using the SNIR and the PDF approximated

by the Marchenko-Pastur distribution, derived in Section 5.3.3. Thus, (5.104) can be

rewritten as:

Ipℓ, νiq “
2ź

m“1

1

ς2rmm pℓq
2ÿ

k“1

rkÿ

n“1

ψk,n,rpℓqp´1qrk´nς
2prk´n`1q
k pℓq

ρrk´n`1
k pℓq

rk´1ÿ

j“0

˜
rk ´ n ` j

j

¸
r1 ´ ρkpℓqsj , (5.117)

where ρkpℓq “ 1
2

´
1 ´

b
ς2
k

pℓq
νi`ς2kpℓq

¯
is the BER without diversity and ς2kpℓq are the variances

of the chi-square random variables of the MMSE detector.

5.6 Numerical Results and Discussions

The SNIR and the BER of M-MIMO systems for TICs and TVCs considering PCE,

MPE, SPE and HPE, employing MRC, ZF and MMSE detectors are evaluated. Further-

more, Monte Carlo simulations are performed in order to check the accuracy of the SNIR

and BER expressions9.

Subsection 5.6.1 presents the SNIR curves and Subsection 5.6.2 presents the BER

curves. The parameters of Tab. 4.1 are used in the evaluations.

5.6.1 SNIR Evaluation

The SNIR is a useful parameter that gives an insight of the system performance.

Besides, BER is a function of the SNIR. Hence, as a first approach, all SNIRs obtained

in Section 5.3 are evaluated.

5.6.1.1 SNIR on TICs

Fig. 5.1, shows the average SNIR as a function of Eb{N0 for TICs by considering

that M “ 4, N “ 256, K “ 16 and Ld “ 256. Furthermore, Lp “ 16 and µ “ 1 are

used for MPE, Lp “ 256 and µs “ 1 for SPE and Lp “ 128 and µh,s “ µh,m “ 1 for

HPE. PCE is also considered for comparison purposes. MRC, ZF and MMSE detectors

are considered. Notice that the SNIR of the MMSE detector is slightly better than

that of the ZF detector and both outperform the SNIR of the MRC detector. These

performance results are expected, because MMSE and ZF detectors eliminate the MAI.

Besides, the complexity of MMSE detector is higher than the other detectors. In fact, the

SNIR expressions of MMSE detector are more tricky than the SNIR expressions of MRC

and ZF detectors. On the other hand, as Eb{N0 increases, MPE presents better SNIR

9For simplicity, only BER simulations where realized.
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CHAPTER 6

Conclusions and Future Works

This final chapter summarizes the conclusions of this thesis and provides the research

directions for future works.

6.1 Conclusions

In this thesis, the IRF and the BER of the uplink of single cell M-MIMO systems

are investigated. The first topic is the IRF, which relates the interference reduction of

antennas array to the M-MIMO channel properties and links the antennas array to theo-

retical channel models. The second topic focuses on the BER of M-MIMO systems with

imperfect channel estimation. Some channel estimation techniques and linear detectors

were employed at the BS receiver by considering time-invariant and time-variant channel

models.

For both topics, closed-form expressions were obtained. For IRF, the expressions are

function of the number of BS antennas N , the number of UTs K and the array length

L, that depends on the carrier frequency fc. For BER, the expressions are function of

the number of BS antennas N , the number of UTs K, the modulation order M , the

block length L, the number of pilot symbols Lp, the number of data symbols Ld and

the ratio of pilot and data energies. Moreover, for TVCs, the BER depends also on the

maximum Doppler shift fD,max and the system bandwidth B. The accuracy of the derived

expressions was verified by Monte Carlo simulations in representative scenarios.

The main contributions and conclusions obtained in each chapter of this thesis are

summarized.

� In Chapter 2, the basic concepts were presented. The basis of M-MIMO systems

and their properties were detailed. The principles of channel models, linear detec-

tion and channel estimation were introduced as a framework for the system model

presented in the next chapters.
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� In Chapter 3, exact closed-form expressions of the IRF for ULAs and UPAs were

derived in 2-D and 3-D scenarios. The results show that better IRF is presented

in 3-D scenarios, because the elevation angle can be exploited as an additional

degree of freedom. If the number of antennas goes to infinity in unlimited physical

space, then, the IRF goes to zero on UR-LOS and Rayleigh fading channel models.

Therefore, the IRF is effectively related to the favorable propagation, because as the

interference goes to zero, the channel vectors become asymptotically orthogonal.

However, in a limited physical space, if the number of antennas increases, the spacing

among antennas can be less than λc{2, resulting in saturation of the IRF. This is due

the spatial correlation among antennas. Of course, in this case favorable propagation

can not be reached. The lost of this condition depends on the separation among

antennas in any frequency band (e.g., sub-6 GHz or mmWave frequency bands).

Finally, the favorable propagation of M-MIMO depends on the channel model.

� In Chapter 4, the estimation techniques MPE, SPE and HPE were analyzed on

TICs and TVCs using the MMSE estimator/predictor. These techniques are com-

pared to PCE in terms of average symbol energy and spectral efficiency. Further-

more, the estimation quality of each technique is evaluated in terms of the NMSE,

which is a function of the variance of the estimated channel coefficients.

For TICs, MPE outperforms SPE and HPE, because it does not present a floor in

the NMSE. Furthermore, SPE outperforms HPE, since it uses more pilot symbols.

For TVCs, two analysis were made: for pedestrian speeds and for vehicular speeds.

In general, as the speed increases, the block duration TB should be shortened, due

to the reduction of the coherence time interval. The increased speeds reduces the

number of pilot symbols worsening the NMSE. The shortened block duration and

the bandwidth B limit the number of time slots L. On the other hand, TICs could

use infinite block size, but for a fair comparison, TICs should use the same TVCs

block size.

Furthermore, for a fair comparison of all estimation techniques, L should be a power

of two in order to fulfill the requirement of orthogonal pilot symbol sequences. Ad-

ditionally, they should transmit the same number of data symbols Ld in a block,

reducing the spectral efficiency of MPE by a factor of 1{p1 ` ηq. SPE and HPE do

not experience reduction in spectral efficiency and then they are considered band-

width efficient estimation techniques. Moreover, the channel estimation techniques

introduces a delay. The delay of MPE is of Lp symbol intervals, which is smaller

than the delay of SPE, which is L symbol intervals. For HPE, the delay is Ls symbol

intervals.
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The derived expressions on TVCs are more complex than the expressions in TICs,

because they consider the time-correlation between the channel coefficients of a

block. The simplicity of the expressions on TICs is justified because only one chan-

nel coefficient must be estimated during each block, while Ld must be estimated on

TVCs. Moreover, for TVCs, each estimation technique presents a particular NMSE

shape, that is, a result of the MMSE estimation. As a consequence of the temporal

channel correlation in TVCs, channel aging is introduced in the NMSE of MPE and

HPE. For SPE and HPE, a U-shape is introduced in the NMSE. To improve the

NMSE, the inequality Lp ą K has to be satisfied. This condition limits the spec-

tral efficiency. An alternative to overcome this restriction, without loss in spectral

efficiency, is to use µ ą 1, µs ą 1 and µh,s ą 1, which is more effective because

more energy is available for channel estimation. Notice for µh,m ą 1 that there is a

limited improvement in low Eb{N0.

The relationships between the parameters of the estimation techniques and their

effects on the system performance can not be seen only in terms of the NMSE.

Therefore, the estimation error effects on the BER of M-MIMO are analyzed in

Chapter 5. Notice that channel estimation is a significant challenge, further stressed

in M-MIMO systems, because at the BSNK channel coefficients should be estimated

on TICs and NKLd on TVCs.

� In Chapter 5, the BER of M-MIMO systems was evaluated on TICs and TVCs for

MPE, SPE and HPE techniques, employing MRC, ZF and MMSE detectors. For

this purpose, exact-closed form expressions of the BER were derived. BER lower

bounds considering the M-MIMO ideal channel properties and BER upper bounds

in the high Eb{N0 region were obtained. The BER is a function of the SNIR of each

linear detector. Furthermore, the SNIR includes the interference produced by the

channel estimation process, which is different for each estimation technique. The

SNIR is a useful reference for the system performance, whose results are reflected

on the BER.

For TICs, the BER and average BER per block are equal, because the same es-

timated channel coefficients are employed for the linear detection in a block. On

the other hand, the BER and the average BER per block are different for TVCs

because the estimated channel coefficients are different at each time slot of a block.

Notice that both the BER and NMSE have a similar shape as a function of time

during a block. Moreover, the average BER per block of TVCs is near to the worse

BER of a block, while the average BER of TICs is near the best BER of a block on

TVCs. Hence, the average BER of M-MIMO on TVCs is far from the average BER

on TICs. However, as fd,maxTs Ñ 0, the channel becomes slow and the average BER

is similar to the average BER of the TICs.
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Among the analyzed detectors, MMSE and ZF detectors outperform the MRC de-

tector in terms of the BER on TICs and TVCs for any estimation technique. As

expected MMSE detector outperforms slightly ZF detector and the BER difference

is negligible for M-MIMO. Thus, the BER of ZF detector is a good approximation

to MMSE detector in M-MIMO. Lower bounds of the BER were derived for the

linear detectors considering the channel hardening property of M-MIMO. The lower

bounds are tight for low Eb{N0 and, upper bounds in the high Eb{N0. The upper

bounds are not attractive, because the BER is extremely small on the region of con-

vergence to the exact expression due to the high diversity of M-MIMO. Moreover,

an upper bound using the Marchenko Pastur distribution was derived for MMSE

detector.

The average BER on TICs outperforms the average BER on TVCs. However, there

are some differences between TICs and TVCs that deserve attention. Among the

estimation techniques, the best average BER for TICs, is shown by MPE, while on

TVCs is shown by SPE. HPE presents the worst average BER on TICs, but an

intermediate average BER on TVCs. For MPE the channel aging on TVCs is so

detrimental that ZF and MRC detectors have similar average BER. On the other

hand, there is no channel aging on TICs, then, the average BER of ZF detector is

superior than MRC. Furthermore, MPE does not have a BER floor on TICs, but has

on TVCs. Indeed, the BER of MPE is strongly affected by the channel aging, even

a huge increment in the number of BS antennas does not improve the BER. This

observation shows that the channel aging effects limit the favorable propagation of

M-MIMO systems for MPE and HPE. On the other hand, the effects of channel

aging for SPE on TVCs are limited. Thus, in this case the block duration can even

be larger than the coherence time interval without increasing the BER, which is not

possible for MPE or HPE.

Many parameters can be modified in order to improve the performance of M-MIMO.

The spectral efficiency can be improved by increasing the modulation order at the

cost of reducing the BER. On the other hand, the BER can be improved by reducing

the number of UTs, which reduces the spectral efficiency. For MPE, it is desirable

to use Lp ą K, which also reduces the spectral efficiency. However, the BER can

be improved without effects on the spectral efficiency by modifying the energy ratio

between pilot and data symbols, that is given by µ for MPE, µs for SPE and µh,s and

µh,m for HPE. There is a trade-off between channel estimation and BER because

increasing the energy of pilot symbols could be good for the channel estimation but

not for BER. Hence, there is an optimum η and µ for each one of the estimation

techniques, that depends on each system configuration and can be obtained after an
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optimization process. The optimization process goes beyond the scope of this work

but is an interesting topic for future works.

6.2 Future Works

In this section, some proposals for future research on M-MIMO systems and related

topics, based on the contributions and results of this thesis, are presented.

� Generalized Channel Models. The loss of favorable propagation condition opens

new questions about M-MIMO, such as the requirement to evaluate the effects of

spatial correlation and interference among users on the performance of wireless net-

works [107]. The extension from 2-D to 3-D M-MIMO systems through the elevation

angle deserves attention due to various strategies that can be implemented to exploit

this additional degree of freedom [108].There is no channel model for M-MIMO in

the literature that includes all impairments of signal propagation. Therefore, sev-

eral M-MIMO models for particular scenarios could be analyzed [109]. Among them,

there are the mmWaves channel model and the spatially correlated scenarios. Bands

in mmWaves have been proposed for 5G systems and beyond [93]. On the other

hand, it is attractive to study the spatially correlated scenario, once a recent work

shows that some advantages can be obtained on the performance of M-MIMO [96].

� Antennas Arrays. ULAs and UPAs were analyzed, but other uniform arrays de-

serve attention, such as circular and cylindrical arrays [110]. Nonuniform and mimic

arrays are useful for avoiding the visual pollution introduced by the antennas at the

BS and their characteristics in M-MIMO should be studied [111, 112]. Moreover,

there is a new topic in M-MIMO named extremely large aperture arrays or large

intelligent surfaces [113], which could be analyzed in terms of the IRF.

� Channel Estimation. Since channel estimation is critical in M-MIMO, this topic

deserves attention to further studies. One of the options is to exploit some channel

properties, such as the channel sparsity and the spatial correlation [96]. Another

option is to study suboptimal channel estimation in order to reduce the overload of

this process, which increases with N . Finally, an option that requires much attention

due to its potential is machine learning for the channel estimation [114].

� M-MIMO Downlink. The performance of the uplink of M-MIMO systems was

presented in this dissertation. However, M-MIMO is also attractive for the downlink,

once simple linear precoding and the channel reciprocity of time-division duplexing

systems can be exploited. Therefore, evaluating the BER of precoders, such as

the maximal-ratio-transmitter or the regularized zero-forcing considering imperfect

channel estimation are also interesting options for future works [31].



6.2. Future Works 147

� Multicell M-MIMO. A single cell scenario was considered in this work. In the

literature, many studies claim that channel estimation is contaminated by pilots in

multicell systems. They have even determined that the pilot contamination can be a

performance limiting factor of M-MIMO systems [39]. However, a recent work con-

siders that pilot contamination can be overcome in M-MIMO systems with channel

correlation [96]. Hence, the study of multicell systems considering correlated chan-

nels is an interesting extension for a future development of this thesis.

� Error Correcting Codes. In this work, error correcting codes were not employed

in the analysis. However, in practical wireless systems, these codes are essential

to improve the performance. Furthermore, error correcting codes could be advan-

tageous for both channel estimation and data detection [115]. Hence, analyzing

channel estimation techniques with error correcting codes is an attractive topic for

future works.

M-MIMO is a vast with high-impact topic for 5G systems and beyond. Hence, it

requires further development in different areas. In the future, M-MIMO will be imple-

mented in several wireless communication standards enabling many practical applications

[116].
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APPENDIX A

Matrix Definitions

A.1 Hermitian and Positive Definite Matrix

A N ˆ N complex square matrix A is Hermitian, if it is equal to its own conjugate

transpose, that is [83]:

A “ AH , (A.1)

where AH is the conjugate transpose of matrix A. A Hermitian matrix is said to positive-

definite if:

bHAb ą 0, (A.2)

for any complex vector b ‰ 0 of dimension N ˆ 1.

A.2 Eigen-decomposition

The eigen-decomposition of a N ˆ N square matrix A is given by [76, 83]:

A “ VΛV, (A.3)

where the matrix V is composed by the eigenvectors of A, and Λ “ diagrλ1, λ2, ¨ ¨ ¨ λN s
is a diagonal matrix that contains the eigenvalues of A. If A is Hermitian, then V is

invertible. Furthermore, if A is Hermitian and positive-definite (HPD), then all of its

eigenvalues are positive and real.

A.3 Inverse

The inverse A´1 of A of dimension N ˆ N satisfies that:

AA´1 “ A´1A “ IN (A.4)
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where IN is the NˆN identity matrix. IfA´1 exists, A is said to be invertible. Otherwise,

A is said to be singular or non-invertible.

A.4 Pseudoinverse

The pseudoinverse or Moore-Penrose inverse A` of A of dimension N ˆ K assumes

that A is full rank. Thus, if rankpAq “ N , then it is called right-inverse that is given by:

A` “ AHpAAHq´1. (A.5)

If rankpAq “ K, then it is named left-inverse that is given by:

A` “ pAHAq´1AH . (A.6)

Finally, if N “ K the pseudoinverse is equal to the inverse given by (A.4).

A.5 Orthogonal Matrix

A N ˆ N matrix A is said to be orthogonal, if [83]:

AHA “ mIN (A.7)

where IN is the N ˆ N identity matrix and m ą 0 is a scalar. If m “ 1, A is said to

be orthonormal. To satisfy the orthogonality, all column vectors of A must be pairwise

orthogonal; likewise for the row vectors. Moreover, the eigenvalues of an orthogonal matrix

are equal, i.e., λ1 “ λ2 “ ¨ ¨ ¨ “ λK . Therefore, an orthogonal matrix is always invertible,

where its inverse is given by:

A´1 “ AH . (A.8)

In particular, orthogonal matrices can be constructed from Hadamard matrices. Hadamard

matrices Xn have dimension 2n ˆ 2n for n “ 1, 2, ¨ ¨ ¨ . They are defined by the following

recursive relation [69]:

X0 “
”
1
ı
,

Xn`1 “
«

Xn Xn

Xn ´Xn

ff
. (A.9)
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A.6 Condition Number

The condition number is a measure of how singular a matrix is. The condition number

of a matrix A is given by [83]:

κpAq “ λmax

λmin

(A.10)

where λmax and λmin are the greatest and the smallest nonzero eigenvalues of A, respec-

tively. A condition number of one, κpAq “ 1, means that A is orthogonal and therefore

λmax “ λmin. On the other hand, a large condition number, κpAq " 1, means that A is

highly non-orthogonal or ill-conditioned.

A.7 Vector Norm

The Euclidean norm of a vector b of dimension N ˆ 1 is given by:

}b} “
`
bHb

˘1{2
(A.11)

A.8 Matrix Norm

A N ˆ K complex matrix A has matrix norm }A} that is a non-negative number

associated with A. In the literature some kind of matrix norms are discussed, among

them, the maximum absolute column sum norm or 1-norm }A}1, the maximum absolute

row sum norm or infinite-norm }A}8, the spectral norm or 2-norm }A}2 and the Frobenius

norm }A}F . In particular, the Frobenius norm is given by:

}A}F “
a
TrpAHAq, (A.12)

where Trp¨q denotes the matrix trace.

A.9 Inversion Lemma

Let a matrix A of dimension N ˆ K, then the following identity holds:

AH
`
AAH ` IN

˘´1 “
`
AHA ` IK

˘´1
AH , (A.13)

where IN and IK are identity matrices of dimension N ˆN and K ˆK, respectively. An

special case of the inversion lemma for vectors is given by:

z
`
zHz ` IN

˘´1
zH “

`
zzH ` 1

˘´1
zzH , (A.14)
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where z is a vector of dimension 1ˆN and IN is a identity matrix of dimension N ˆN .
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APPENDIX B

Chi-square Random Variable

In this appendix, the chi-square random variable and the generalized chi-square ran-

dom variable are described. Additionally, their PDFs are written based on the results of

[69] and [117].

B.1 Chi-square Random Variable

Let X be a chi-square random variable, given by:

X “ ς2
`
|h1|2 ` ¨ ¨ ¨ ` |hi|2 ` ¨ ¨ ¨ |hu|2

˘
,

“ ς2
uÿ

i“1

|hi|2 (B.1)

where ς2 is a real number and hi are zero-mean complex Gaussian random variables with

unit variance. Thus, the factor ς2 modifies the variance of each complex Gaussian random

variables. Moreover, X has 2u degrees of freedom.

From [69], the PDF of this random variable can be written as:

ppxq “ 1

Γpuqς2ux
u´1 exp

ˆ
´ x

ς2

˙
(B.2)

where Γpuq “ pu ´ 1q! is the gamma function of u.

B.2 Generalized Chi-square Random Variable

Let X be a generalized chi-square random variable. Thus, it can be obtained from:

X “ ς21

u1ÿ

i“1

|hi|2 ` ¨ ¨ ¨ ς2κ
uκÿ

i“1

|hi|2 ` ¨ ¨ ¨ ` ς2K

uKÿ

i“1

|hi|2

“ σ2
1χ

2
u1

` ¨ ¨ ¨ ` σ2
κχ

2
uκ

` ¨ ¨ ¨ ` σ2
Kχ

2
uK
, (B.3)
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where ςκ is a real number and hi are zero-mean complex Gaussian random variables with

unit variance. Thus, the factors ς2κ modify the variances of the complex Gaussian random

variables. Moreover, χ2
uκ

is a chi-square random variable with 2uκ degrees of freedom.

From [117], the PDF of X can be written as:

ppxq “ ΩK

Kÿ

κ“1

uκÿ

ℓ“1

Ψpκ, ℓq
puκ ´ ℓq!p´1quκ´1p´xquκ´ℓexp

ˆ
´ x

ς2κ

˙
, x ě 0, (B.4)

where

ΩK “
Kź

κ“1

ς´2uκ
κ (B.5)

and

Ψpκ, ℓq “
ÿ

@pPζκ,ℓ

Kź

m“1
m‰κ

˜
ρm ` um ´ 1

ρm

¸ˆ
1

ς2m
´ 1

ς2κ

˙´pum`ρmq
, (B.6)

where ζκ,ℓ is a set defined by ζκ,ℓ “
!
p P Z

K ;
řK

n“1 ρn “ ℓ ´ 1, ρκ “ 0, ρn ě 0, @n
)
, where

ρn is the nth element of p. Hence, ζκ,ℓ is the set of all partitions of length K of the integer

ℓ ´ 1, where the κ-th element is equal to zero. The integer partition of a positive integer

x, is a way of writing x as a sum of positive integers. As example consider K “ 3, κ “ 2

and ℓ “ 3. The set of partitions of length K “ 3 of the integer ℓ´ 1 “ 2 is the following:

Position Position Position
κ “ 1 κ “ 2 κ “ 3

0 0 2
0 1 1
0 2 0
1 0 1
1 1 0
2 0 0

Therefore, the partitions whose second element (κ “ 2) is equal to zero are the partitions

of the first, fourth and sixth rows of the above table. Consequently, the set ζ2,3 can be

written as ζ2,3 “
!

r0, 0, 2s, r1, 0, 1s, r2, 0, 0s
)
.
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