
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Vanessa Brischi Olivatto

Analysis of LDPC decoders for DVB-S2 using LLR
approximations

Análise de decodificadores LDPC do padrão DVB-S2
utilizando aproximações de LLR

Campinas
2016

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Vanessa Brischi Olivatto

Analysis of LDPC decoders for DVB-S2 using LLR
approximations

Análise de decodificadores LDPC do padrão DVB-S2
utilizando aproximações de LLR

Thesis presented to the School of Electrical and Computer En-
gineering in partial fulfillment of the requirements for the de-
gree of Master in Electrical Engineering. Concentration area:
Telecommunications and Telematics

Dissertação apresentada à Faculdade de Engenharia Elétrica e
de Computação da Universidade Estadual de Campinas como
parte dos requisitos exigidos para a obtenção do t́ıtulo de Mes-
tra em Engenharia Elétrica, na Área de Telecomunicações e
Telemática.

Supervisor: Prof. Dr. Renato da Rocha Lopes

Co-Supervisor: Dr. Eduardo Rodrigues de Lima

Este exemplar corresponde à versão final
da dissertação defendida pela aluna, e
orientada pelo Prof. Dr. Renato da Rocha
Lopes

Campinas
2016

Agência(s) de fomento e no(s) de processo(s): Não se aplica.

Ficha catalográfica
Universidade Estadual de Campinas

Biblioteca da Área de Engenharia e Arquitetura
Luciana Pietrosanto Milla - CRB 8/8129

Olivatto, Vanessa Brischi, 1991-
OL4a Analysis of LDPC decoders for DVB-S2 using LLR approximations / Vanessa

Brischi Olivatto. – Campinas, SP : [s.n.], 2016.

Orientador: Renato da Rocha Lopes.
Coorientador: Eduardo Rodrigues de Lima.
Dissertação (Mestrado) – Universidade Estadual de Campinas, Faculdade
de Engenharia Elétrica e de Computação.

1. Códigos corretores de erros (Teoria da Informação). 2. Teoria da
codificação. 3. Modulação digital. 4. Televisão digital. I. Lopes, Renato da
Rocha,1972-. II. Lima, Eduardo Rodrigues de. III. Universidade Estadual de
Campinas. Faculdade de Engenharia Elétrica e de Computação. IV. T́ıtulo.

Informações para Biblioteca Digital

T́ıtulo em outro idioma: Análise de decodificadores LDPC do padrão DVB-S2 utilizando
aproximações de LLR
Palavras-chave em inglês:
Error-correcting codes (Information Theory)
Coding theory
Digital modulation
Digital television
Área de concentração: Telecomunicações e Telemática
Titulação: Mestra em Engenharia Elétrica
Banca Examinadora:
Renato da Rocha Lopes [Orientador]
Cristiano Magalhães Panazio
Michel Daoud Yacoub
Data da defesa: 01-07-2016
Programa de Pós-Graduação: Engenharia Elétrica

COMISSÃO JULGADORA - DISSERTAÇÃO DE
MESTRADO

Candidata: Vanessa Brischi Olivatto RA: 096002
Data da Defesa: 1o de julho de 2016
T́ıtulo da Tese: “Analysis of LDPC decoders for DVB-S2 using LLR approximations”

Prof. Dr. Renato da Rocha Lopes (Presidente, FEEC/UNICAMP)
Prof. Dr. Cristiano Magalhães Panazio (EPUSP/USP)
Prof. Dr. Michel Daoud Yacoub (FEEC/UNICAMP)

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Julgadora, encontra-se
no processo de vida acadêmica da aluna.

To André Fioravanti, with

all my love and admiration.

Acknowledgments

First, I would like to express my gratitude to my supervisor, Prof. Dr. Renato Lopes, who gave
me a lot of helpful advices along this work. His support was essential for the conclusion of my
work.

I would also like to thanks all my colleagues from Instituto de Pesquisas Eldorado. A special
thanks to Dr. Eduardo R. de Lima from DHW, for his valuable guidance and for his compelling
willingness to work.

My thanks to my family who always inspires me showing the way of kindness and generosity.
To my parents, my brother, my grandmothers, my grandfather and my uncles, for their engaging
trajectory of strength and perseverance.

My thanks to all my teachers from School of Electrical and Computer Engineering, above
all, Prof. Romis Attux, who was the first to introduce me into the research world. I appreciate
all the skills they passed me along these years and sincerely thank them all.

Finally, I am deeply thankful to my beloved boyfriend, André, for his constant patience and
support, for his endless love and encouragement. More than anyone, he always know how to
drive me forward when I need to be driven. Without him, this work would certainly not have
been finally concluded. For all he has been for me, I totally dedicate this thesis to him.

No one wants to learn by mistakes, but we cannot
learn enough from successes to go beyond the state
of the art.

Henry Petroski

Abstract

As one of the most powerful error-correcting codes, Low-Density Parity Check

(LDPC) codes are widely used in many digital communication systems. The en-

coding scheme of the Digital Video Broadcast Satellite, Second Generation (DVB-

S2) systems is based on the concatenated LDPC code and the Bose-Chaudhuri-

Hocquenghem (BCH) code. Together, they are responsible for delivering excellent

performance, coming close to the Shannon limit. The actual complexity of these

LDPC decoders depends on the algorithm chosen as well as on several implemen-

tation aspects such as the floating-point representation and the estimation of the

reliability values from the channel, i.e., the probabilistic arguments that optimise

the channel decoder decisions. Here, we are more interested in providing alterna-

tive simplified methods for calculating the approximated channel information and

evaluating their performances at the output of soft-decision DVB-S2 LDPC decoders.

The DVB-S2 systems require very large LDPC block sizes. This results in a huge

number of mathematical operations, decoding delays and the increasing of the re-

quired hardware area. Because of this, it becomes necessary to investigate alternative

approximations for reducing the number and the complexity of the operations that

are involved in each step of the decoding flow. This work specially addresses the sim-

plification of the input parameters for soft-decision LDPC decoding algorithms. Two

original proposals for simplified approximation of the channel Log-Likelihood Ratio

(LLR) in higher-order modulation are investigated and compared to a consolidated

method commonly referred to as Max-Log.

Keywords: Error-correcting codes (Information Theory), Coding Theory, Digital

modulation, Digital Television.

Resumo

Um dos códigos corretores de erros mais poderosos, os códigos Low-Density Par-

ity Check (LDPC) são amplamente utilizados em diversos sistemas de comunicação

digital. O esquema de codificação dos sistemas Digital Video Broadcast Satellite da

Segunda Geração (DVB-S2) baseia-se em uma estrutura LDPC concatenada à es-

trutura Bose-Chaudhuri-Hocquenghem (BCH). Juntos, este códigos são responsáveis

por um excelente desempenho, aproximando-se do limite de Shannon. A complexi-

dade real desses decodificadores LDPC depende do algoritmo escolhido bem como

de vários outros aspectos de implementação, tais como a representação de ponto

flutuante e a estimativa dos valores de confiabilidade do canal, isto é, os argumentos

probabiĺısticos que otimizam as decisões do decodificador de canal. Neste trabalho,

estamos mais interessados em fornecer métodos simplificados para o cálculo aproxi-

mado da informação do canal, avaliando seus respectivos desempenhos na sáıda dos

soft-decoders LDPC.

Os sistemas DVB-S2 utilizam blocos de codificação e decodificação LDPC de

comprimento longo. Isso resulta em um grande número de operações matemáti-

cas, atrasos de decodificação e no aumento da área de hardware necessária. Por

estas razões, torna-se necessário investigar aproximações alternativas que reduzam

o número e a complexidade das operações envolvidos em cada etapa do fluxo de

descodificação. Este trabalho aborda especialmente a simplificação dos parâmetros

de entrada para algoritmos de decodificação LDPC baseados em soft-decision. Duas

propostas originais de aproximação simplificada das Razões Logaŕıtmicas de Ve-

rossimilhança (Log-Likelihood Ratio, LLR) em modulações de ordem superior são

investigados e comparados com uma simplificação bem consolidada, usualmente de-

nominada Max-Log.

Palavras-Chave: Códigos corretores de erros (Teoria da Informação), Teoria da Co-

dificação, Modulação digital, Televisão digital.

List of Figures

1.1 Basic elements of a digital communication system. 19

1.2 General system configuration for continuous-time analysis. 23

1.3 General system configuration for discrete-time analysis. 24

1.4 Correlator structure. 26

1.5 The sampled Matched Filter, whose time-response m(t) is being derived in order

to maximise the SNR and minimise the probability of error on demodulation. . . 26

1.6 Simulation results for a 4-QAM baseband system: From left to right, from top to

bottom, (a) NRZ and baseband signal at the output of the transmitter pulse shape

filter (RRC); (b) Received constellation at the output of the discrete-time AWGN

model with Eb
N0

= 6dB; (c) MF Output and sampled values; (d) Theoretical and

Simulated bit-error rate. 29

1.7 Functional block diagram of the DVB-S2 transmitter 47

1.8 General structure of the DVB-S2 receiver. 48

2.1 The bit nodes b6 and b7 are both connected to the check nodes c3 and c2. The

four red edges represent a 4-cycle . 56

2.2 Binary Symmetric Channel model . 60

2.3 Bit-error rate performance of LDPC decoding algorithms for short FECFRAME

transmission and code rate r = 3/4 under QPSK modulation. 67

3.1 Decision areas for bit b2. Note that each symbol is represented as an ordered

triplet of bits (b2b1b0) . 71

3.2 Decision areas for bit b1. 72

3.3 Decision areas for bit b0 (Right - LSB) . 72

3.4 Decision areas for bit b3. 75

3.5 Decision areas for bit b2. 76

3.6 Geometrical configuration of the symbols in 16-APSK constellation as a reference

to the bit b1. 77

3.7 Geometrical configuration of the symbols in 16-APSK constellation as a reference

to the bit b0. 77

3.8 Results from the original Voronoi decomposition applied for 32-APSK constellation. 79

3.9 Decision areas for bit b3. 82

3.10 Decision areas for bit b2. 84

3.11 Reference of decomposition for the bit b1 in 16-APSK constellation. 86

3.12 Reference of decomposition for the bit b0 in 16-APSK constellation. 87

3.13 General diagram containing the edges (blue) and vertices(red) indices for the

splitting of the symbols for which bit b2 = 0 in the 32-APSK constellation. . . . 90

3.14 From the top to the bottom: Energy level along the 90 samples in the first edge

collapsing; Energy level along the 90 samples in the second edge collapsing. Both

graphs are limited a priori (red line) by the maximum energy level which is

achieved through the calculation of J in the original Voronoi configuration. . . . 92

3.15 Contour Graph of the normal probability density functions for which b2 = 0

after collapsing the edges 8 and 10, in the second step of optimisation. The

edges obtained from the Voronoi decomposition are represented in red and the

new edges obtained after optimisation are represented in blue. Note that after

collapsing edge number 8, the edges number 1, 4, 7, 12 were also modified.

Similarly, after collapsing edge number 10, the edges number 2, 5, 11, 14 were

modified. 92

3.16 Probability Density Functions from the approximated LLRs based on the adapted

Voronoi decomposition of 16-APSK constellation. The red curves represent the

GMM from the modes of each Multimodal Gaussian. The blue bars represent the

real obtained distribution of the LLR values. Note that the resulting PDF profiles

from the Max-Log approximation and from the proposed method are very close

to each other. 96

4.1 Bit error rate performance of the hard-decision. 98

4.2 Bit-error rate at the output of LDPC decoder under 8-PSK and 16-APSK. . . . 98

4.3 The LLR levels of one single bit calculated through Max-Log and Ad Hoc method

under 16-APSK constellation. 100

4.4 BER Performance at the output of LDPC decoder under 8-PSK and 16-APSK. . 101

4.5 Bit error rate performance at the output of LDPC decoder for the LLR approxi-

mation based on adapted Voronoi decomposition and based on Max-Log approach

for code rate r = 3/4, 32-APSK constellation. 102

List of Tables

1.1 Representation of the non-zero elements in the finite field GF(3) in terms of its

primitive element. 33

1.2 Irreducible polynomials over GF(25). 34

1.3 Representation of the field GF(25) . 34

1.4 Primitive polynomials over GF(25). 35

1.5 Cyclotomic cosets over GF(25). 36

3.1 Constants for LLR estimation under 8-PSK constellation. 73

3.2 Constants for LLR estimation under 16-APSK constellation. 85

3.3 Fixed vertices and their respective coordinates in the first and second steps of

optimisation. 91

3.4 Results obtained after collapsing both edges. 91

4.1 Computational complexity for computing the soft-information on the i-th bit in

8-PSK constellation. 99

4.2 Computational complexity for computing the soft-information on the i-th bit in

16-APSK constellation. 99

4.3 Computational complexity for computing the soft-information on the i-th bit in

8-PSK constellation. 101

4.4 Computational complexity for computing the soft-information on the i-th bit in

16-APSK constellation. 101

4.5 Elapsed CPU time comparison for the LLR calculation involving one single bit

in one single signal-to-noise ratio . 103

D.1 Constant values for µi used in the approximation of LLR(b2). Each column is

associated to a sector obtained from the splitting to b2 = 0 and each row is

associated to a sector obtained from the splitting to b2 = 1. 114

D.2 Constant values for µq used in the approximation of LLR(b2). Each column is

associated to a sector obtained from the splitting to b2 = 0 and each row is

associated to a sector obtained from the splitting to b2 = 1. 115

D.3 Constant values for c used in the approximation of LLR(b2). Each column is

associated to a sector obtained from the splitting to b2 = 0 and each row is

associated to a sector obtained from the splitting to b2 = 1. 115

D.4 Constant values for µi used in the approximation of LLR(b1). Each column is

associated to a sector obtained from the splitting to b1 = 0 and each row is

associated to a sector obtained from the splitting to b1 = 1. 116

D.5 Constant values for µq used in the approximation of LLR(b1). Each column is

associated to a sector obtained from the splitting to b1 = 0 and each row is

associated to a sector obtained from the splitting to b1 = 1. 116

D.6 Constant values for c used in the approximation of LLR(b1). Each column is

associated to a sector obtained from the splitting to b1 = 0 and each row is

associated to a sector obtained from the splitting to b1 = 1. 117

Contents

Introduction 16

1 Background 18

1.1 Digital Communications . 18

1.2 Optimum Receiver for digitally modulated signal in AWGN channels 20

1.2.1 AWGN Discrete-time Model . 20

1.2.2 Matched Filter . 25

1.3 Galois Fields . 28

1.4 Linear Block Codes . 36

1.4.1 BCH Codes . 41

1.4.2 Low-Density Parity Check Codes . 44

1.5 DVB-S2 standard . 46

2 LDPC Codes 49

2.1 Hard-Decision Decoders and Soft-Decision Decoders 50

2.1.1 Bit-Flipping . 51

2.1.2 Sum-Product . 57

2.2 Sub-optimal Soft-decision Decoding Algorithms 65

2.2.1 Min-Sum and its variants algorithms . 65

3 Simplified Soft-Demappers for Higher-Order Modulation Schemes 68

3.1 Introduction to the Ad Hoc Simplification . 68

3.1.1 Channel Output LLR via Ad Hoc Approximation under 8-PSK 70

3.1.2 Channel Output LLR via Ad Hoc Approximation under 16-APSK 73

3.2 Introduction to the Approximation based on the Voronoi Decomposition 78

3.2.1 LLR calculation for 16-APSK constellation using the Voronoi decomposition 81

3.2.2 LLR calculation for 32-APSK constellation using the Voronoi decomposition 87

3.3 On the LLR Statistics . 93

4 Results 97

4.1 Results from the Ad Hoc approximation for 8-PSK and 16-APSK 97

4.2 Results from the approximation based on the adapted Voronoi criterion for 8-PSK

and 16-APSK . 100

4.3 Results from the approximation based on the adapted Voronoi criterion for 32-

APSK . 102

5 Conclusion 104

References 106

Appendix A 110

Appendix B 112

Appendix C 113

Appendix D 114

16

Introduction

L
ow-Density Parity-Check (LDPC) codes were first discovered by Robert G. Gallager in

1962 in his doctoral dissertation [1]. For almost 30 years, the LDPC codes had not drawn

enough attention until MacKay and Neal rediscovered them in the 1990s [2]. Given its

excellent decoding capability, the performance of LDPC codes allows the noise threshold to be

set very close to the Shannon limit. Moreover, compared to the Turbo Codes, LDPC codes have

a higher error correcting performance, better error floor and lower complexity. These advances

boosted LDPC codes to be applied in the Digital Video Broadcast Satellite Second Genera-

tion (DVB-S2) [3]. In fact, LDPC codes have also been used in many other standards, such as

WiMAX (802.16e) and WiFi (802.11n and 802.11ac).

In the particular case of DVB-S2, LDPC is designed for two very long frame lengths: the

normal frame length, which contains 64800 bits and the short frame length, which contains

16200 bits. These frame lengths entail a computational effort that requires decoding algorithms

someway adapted and simplified in order to reduce their complexity without significant per-

formance loss. In this sense, there are many LDPC decoding algorithms to be exploited. The

Belief Propagation is a message passing family of algorithms that operates over the messages

associated with edges of bipartite graphs, and recursively updates them through calculations

done at the vertices of the graph. In the context of coding-theory, this algorithm, which is also

known as the sum-product message passing [4], achieves good performance but still demands

high computation complexity. On the other hand, the suboptimal Min-Sum [5] and its vari-

ants [6] achieve a slightly worse performance but demand less computational efforts.

This thesis will not straightly focus on the decoding algorithms but instead, on the simplified

estimation of their required inputs, i.e., the soft-information from the channel in the form of

Log-Likelihood ratios (LLRs). Computing the LLR may also demand high computational cost,

especially for higher-order constellations. For this reason, one of the main purposes of this work

is to study and describe new and efficient methods for estimation of LLR approximations.

This thesis is organized as follows:

• Chapter 1: the notation is introduced and a small review is presented for the understand-

ing of this work. Selected topics on the theory of the digital communication systems are

17

discussed and some concepts on the Galois Theory are highlighted. The most important

theorems from this theory are presented in order to address the concepts and properties

involving the Linear Block Codes such as the BCH and the LDPC codes. At the end of

this chapter, an overview on the DVB-S2 standard functional blocks are presented, as well

as the general scheme of the proposed and implemented Matlab model.

• Chapter 2: the most important LDPC decoding algorithms are presented. The Belief-

Propagation algorithms and the sub-optimal algorithms such as the Min-Sum and its

variants are exploited.

• Chapter 3: explains the contribution of this work. Two new approaches for the LLR simpli-

fication are introduced. These approaches are based on splitting the DVB-S2 constellations

and the design of suitable and optimised areas of decision. We will show how the choice

of convenient areas can significantly reduce the number of symbols taken into account for

the approximated calculations.

• Chapter 4: this chapter is dedicated to the presentation of results, discussion and compar-

ison of performance and complexity between the proposed methods of simplification.

• Chapter 5: this chapter is about the conclusion and the perspectives at the end of this

work.

18

Chapter 1
Background

This chapter presents an overview of the main foundations required for the understanding of

this thesis. First, a brief review on the basic concepts involving digital communication systems

is presented. These concepts are essentially found in [7] and [8]. Then we provide a general

presentation of the linear block codes. We also present the fundamentals of Galois Theory [9],

which is an essential topic for discussing the subjects that come next: the BCH [9] and LDPC [10,

11, 2] codes. The last section from this chapter sketches the basic structure of the DVB-S2

standard [3], as well as some general features from a Matlab implemented model for simulations.

1.1 Digital Communications

In 1948, Claude Shannon developed the first mathematical theory of information [12] which

established fundamental boundaries within which the communication systems can operate.

Thanks to his contribution, nowadays we can compare the performance of proposed codes by

using these limits.

Figure 1.1 depicts a general diagram containing the basic elements in a digital communica-

tion system. In this diagram, the source may be either an analog signal, such as video and audio,

or a digital signal, such as the signals exchanged between digital devices. The first step is to

convert the source of data into a binary sequence through the source encoder. In this step, the

data may be compressed by using the entropy of the source as the measure of information. The

source encoding aims to somehow reduce the redundancy in the source. In other words, the main

idea is to minimise the amount of bits required for representing the source, keeping the fidelity

on the original information. The Huffman algorithm [7] is an example of optimal source encoder

when the input symbols are independent and identically distributed random variables whose

probabilities are dyadic [13], i.e., the probabilities pi are given by 2−u, where u is a positive

integer. The process of data compression involved on the Huffman algorithm is straightly based

on the set of probabilities of each source element. Nevertheless, there are enhanced algorithms

that can extract more valuable aspects from the particular structure of the source than only

the probabilities associated to the alphabet when the source is not dyadic, independent and

identically distributed [13].

19

Source Encoder Channel Encoder Modulation

Information

Channel

Source Decoder Channel Decoder Demodulation

Output

Figure 1.1: Basic elements of a digital communication system.

The channel encoder, on the other hand, aims to introduce some redundancy in the binary

sequence in order to overcome the effects of the channel and the noise. In this case, the final

goal is to approach the information rate that the channel is able to transmit (the channel capac-

ity) with sufficient reliability, i.e, with the smallest probability of error. The encoding process

involves the mapping of k information bits into a new bit sequence of length n that is called

codeword. The code rate of a channel code is defined by r = k/n.

A reliable communication system is not achievable with information rate R greater than the

channel capacity C [13]. The information rate is defined as the product between the code rate

and the gross bit rate, i.e., R = rRb. As usual, the gross bit rate is defined as the quotient be-

tween the number of bits per symbol, b, and the symbol duration such that Rb = b/Tr = 1/Tb.

This remarkable result was demonstrated by Shannon in 1948 [12]. In other words, he showed

that there will always exist an error-correction code of any rate r < C/Rb, that will be able to

provide arbitrarily reliable communication or small probability of failure to recover the informa-

tion bits. It still remains unclear how to find such codes and how to encode and especially decode

them in practice with reasonable complexity. However, some modern codes, such as LDPC, offer

some promise that Shannon’s limits may be achieved.

The digital modulator provides the interface to the communication channel by mapping

the binary information into signal waveforms. An M-ary modulation (M > 2) transmits b

bits/symbol by using M = 2b distinct signal waveforms si(t), i = 0, 1, 2, · · · , M− 1.

The channel is the physical medium that is used to transmit the signal, such as cable, optical-

fiber and broadcast radio. The digital demodulator estimates the transmitted data symbols

based on the channel parameters as well as the channel output. These symbols are demapped to

an associated sequence of b bits. This sequence of bits is passed to the channel decoder, which

attempts to recover the original bit sequence from the redundancy contained in the received data.

Finally, the source decoder decompresses the data to recover the original information provided

20

by the source. Next section explores the digital demodulator by focusing on the generation and

detection of digital modulated signals.

1.2 Optimum Receiver for digitally modulated signal in

AWGN channels

In this section, we define the optimum receiver and the discrete-time model of AWGN chan-

nels by adopting the quadrature amplitude modulation (QAM) along the particular demonstra-

tions. Through the derivations presented next, we also describe the steps of the digital simulation

platform we developed, implementing the basic principles of an optimal receiver. Our main goal

is to review the discrete AWGN features as well as the demodulation approach based on the

matched filter [14]. In our system, the transmitted signal is corrupted by AWGN, whose two-

sided power spectral density Sn is defined as Sn(f) = N0

2
. From a received signal r(t) (real

and complex signal are both treated in parallel) and a noise signal n(t), we aim to show the

structure of an optimum filter which is capable of recovering the transmitted symbols ak by

minimising the probability of error on reception.

Subsection 1.2.1 presents a discrete-time model for Additive White Gaussian Noise. The time

and frequency response of the matched filter, which is derived in subsection 1.2.2, is assumed

to be known in advance. Thus, the matched filter is denoted as the conjugated time-reversed

version of the transmitter pulse shape filter. The main purpose of this subsection is to derive

an equivalent AWGN discrete-time model, despite of the continuous-time AWGN models that

are intensively discussed in most of references on the digital communications theory [8] [7].

1.2.1 AWGN Discrete-time Model

The Additive White Gaussian Noise model is frequently included in wireless communications

and terrestrial channels for representing the effects of general random processes. The AWGN is

characterised by the following properties:

• Additive channel: the noise is added to the information sent from the transmitter;

• White: the noise has uniform power across the system spectrum;

• Gaussian: the noise has a normal probability distribution in the time domain.

The noise is characterised as a white Gaussian random process with zero mean and two-sided

power spectral density N0

2
.

Several important system parameters can be explicitly calculated in terms of discrete-time

(digital) parameters of an AWGN. To see this, note that in a continuous-time model with AWGN,

as represented in Figure 1.2, the received signal is given by r(t) = s(t) + n(t). We define the

SNR, at the output of the receiver, as the ratio between the received signal power Pr and the

noise power, limited by the system band, which in turn depends on the channel bandwidth and

21

spectral properties of n(t). Remind that a baseband channel has the frequency response of a

low-pass filter, whereas a passband channel has the frequency response of a bandpass filter [8].

The continuous-time transmitted signal of a PAM baseband system is given by

s(t) =

∞∑

k=−∞

akg(t− kTr) (1.1)

where Tr is the inverse of the symbol rate R, g(t) is the transmitter pulse shape filter and ak
is a real value referred to as a symbol. For arbitrary QAM modulations of order M > 2 Equa-

tion (1.1) remains the same but in this case we would have ak ∈ C. The bandwidth of the

complex envelope from baseband modulation will be referred to as B, also corresponding to the

bandwidth of g(t). Thus, the corresponding passband signal bandwidth will be referred to as

2B. Mathematical derivations presented next are related to one single dimension of the symbols

(the real or imaginary).

To retrieve the symbols ak from a continuous-time PAM baseband transmitted signal, s(t),

one might sample s(t) at multiples of the symbol period Tr so that

s(kTr) = ak ⋆ g(kTr) =

∞∑

m=−∞

amg(kTr −mTr) (1.2)

Splitting the discrete-time convolution into two parts yields

s(kTr) = g(0)ak +
∑

m 6=k
amg(kTr −mTr) (1.3)

Equation (1.3) is our first step of transition from continuous to discrete-time model, which

is illustrated in Figure 1.3. The first term of this equation is the desired information whereas

the second term represents the interference from the adjacent symbols (ISI). Clearly, this last

term must be zero so that we can fully eliminate the interference. This constraint imposes that

g(kTr) = δ(k) so that, in the frequency domain, we must have

1

Tr

∞∑

m=−∞

G

(

f−
m

Tr

)

= 1 (1.4)

Equation (1.4) is the Nyquist criterion in the frequency domain. This result implies the ex-

istence of a minimum bandwidth, B, at a certain symbol rate R or, equivalently, a maximum

symbol rate for a given bandwidth for an ISI free transmission.

As seen in Equation (1.3), the sampling of g(t) places a replica of G(f) at multiples of

R. Hence, in order to ensure the condition of no ISI in (1.3), we must always keep the pulse

shape bandwidth less than the half of the symbol rate, i.e, B 6
1

2Tr
. The minimum bandwidth

pulse is a sinc function in the time domain. This satisfies the bandwidth constraint as well

as Equation (1.3), though the pulse filter design becomes impractical. For this reason, the

22

bandwidth usually adopted for real applications is larger than its minimum by a factor of 1+α

so that

B 6
1+ α

2Tr
(1.5)

The most important overall pulse response that satisfies the Nyquist criterion and addition-

ally may have a non-zero excess of band is called the raised cosine (RC) pulse. For α = 0, this

pulse is a sinc, in the time domain, and a rectangular window, in the frequency domain. This is

the case of the ideally bandlimited pulse. These pulses can be approximated using FIR filters by

truncating the pulse at some multiple of Tr. Note that the Nyquist criterion must be satisfied for

the overall system response, i.e., H(f) = G(f)C(f)G(−f), which is the frequency response from

the transmitter pulse shape filter, the channel and the receiver pulse shape filter, respectively.

Since we assume C(f) = 1, the transmitter and receiver filters can be obtained by splitting the

RC filter response into two parts, so that the entire system response is in accordance to the

Nyquist criterion. As a result, the combination of a transmitter pulse shape filter known as root

raised cosine (RRC) and a receiver pulse shape filter with the same response yields the expected

overall response.

The pulse shaping choice is related to the required spectral characteristics and occupied

bandwidth of the baseband modulated signal. There are some well-known family of baseband

pulses such as the RRC, the rectangular pulse (unfiltered modulation) and the RC pulse. Their

individual responses or their combined responses fulfill the Nyquist criterion. In real systems,

the RRC filter is usually preferred due to its configurable excess bandwidth. This feature allows

an interesting tradeoff between a more complex filter implementation and the desired system

bandwidth efficiency. It is often implemented as a FIR structure, where a more complex imple-

mentation stands for an increase in the number of coefficients. Additionally, we note that only

the effective response of this filter, (i.e., g(t) ⋆ g∗(−t), not g(t)) indeed exhibits zero crossings

at the symbol instants.

Figure 1.2 shows a general continuous system configuration scheme. Assuming the trans-

mitter pulse shape filter response g(t) is, in fact, an RRC or any other filter whose combined

responses result in an overall system response which is in accordance to the criterion presented

in Equation (1.4), we intend to derive the SNR for discrete-time model, at the receiver output.

First of all, we introduce the average transmitted symbol energy, which is given by

E ′
s = E[|ak|

2]

∫∞

−∞

|G(f)|2df (1.6)

and the average received symbol energy, i.e, the energy obtained from the output of the re-

ceivers’s pulse shape filter, so that

Es = E[|ak|
2]

∫∞

−∞

(

|G(f)|2
)2
df (1.7)

Equation (1.7) results from the assumption that the signal in the output of matched filter is

given by akg(t) ⋆ g
∗(−t). As we mentioned before, subsection 1.2.2 is dedicated to the analysis

23

of the matched filter response. On the other hand, the convolution, in the frequency domain, is

simply given by |G(f)|2 and the equivalent average energy is
∫∞

−∞
(|G(f)|2)

2
df.

Channel

r(t)

Transmitter Receiver

g(t)
ak

g∗(−t)

n(t)

t = Tr

+

Matched Filter

Figure 1.2: General system configuration for continuous-time analysis.

For complex signals, there are two independent noise channels. The variance in each inde-

pendent dimension (the power of a real signal when the signal mean is zero) is given in terms

of N0, the spectral density (power per unit bandwidth), and B, the bandwidth. In the case of

real noise, σ2 = N = N0B
2

. Similarly, in the case of complex noise, the corresponding random

variable has variance 2σ2 = N = N0B
2

+ N0B
2

= N0B.

Typically, for continuous-time signals, we define SNR = S/N, where S is the signal power

and N is the noise power. For a complex and discrete signal, the SNR might be calculated in

terms of the average energy per symbol, Es and the sample rate, Fs. For M-ary modulations

with b bits per symbol without using any channel coding, we assume Es = bEb

SNR =
S

N
=
EsFs

N0B
=
EbbFs

N0B
(1.8)

In the case of real signals, we obtain

SNR =
S

N
=
EsFs
N0

2
B

=
EbbFs
N0

2
B

(1.9)

On the other hand, if a channel code with code rate r is included to the system, Equa-

tions (1.8) and (1.9) must incorporate the product between the code rate r and the number of

bits per symbol of the constellation, b = log2M . In these cases, a typical equivalence between

the bit and the symbol energy is Es = brEb.

The SNR is usually adopted as a simple reference measure of channel quality. It compares

the level of a desired signal to the level of background noise. But so far, we have only derived its

parameters in the continuous-time scenario, i.e., in accordance to our initial goal, it still remains

necessary to show how to make the transition to the discrete-time scenario which is represented

in Figure 1.3. The continuous-time AWGN model demands the use of signal waveforms when

implemented in a digital simulation. By using this model we would certainly increase simulation

time since the processing of these waveforms represents a high computational cost. A complete

24

description of a discrete AWGN model would require the use of the signal space theory. For con-

venience, in this thesis, we adopt the equivalent discrete-time vectors rather than the waveforms.

n ′[n]

ak

âk
g∗[−n]g[n]

Transmitter Receiver

Tr → Ts Ts → Tr

Upsampler Downsampler

+

Figure 1.3: General system configuration for discrete-time analysis.

We aim to define Eb
N0

at the output of the discrete-time receiver model. To do so, we start

by defining the received signal for one single symbol at t = 0 (output of the downsampler) as

r(0) = akh(0) + n(0) (1.10)

where

h(0) = g(t) ⋆ g∗(−t)|t=0 =

∫∞

−∞

|g(t)|2dt (1.11)

in which g(t) is the transmitter pulse shape filter response, g∗(−t) is the matched filter response

and ak is the transmitted symbol. Similarly, the noise signal at the output of the downsampler

is defined as

n(0) = n ′(t) ⋆ g∗(−t)|t=0 (1.12)

If the complex signal is discrete, the SNR might be defined in terms of the discrete symbol

energy. If energy per complex symbol is Es and the sample rate is Fs, then the power of the

complex signal is S = EsFs[15]. Furthermore, if we assume a bandwidth B, then the complex

noise power is given by N = N0B. Once we define Fs = B, we obtain the following

SNR =
S

N
=
EsFs

N0B
=
Es

N0

(1.13)

In the case of real signals

SNR =
Es
N0

2

(1.14)

It follows, from a simple analysis of the discrete-time system in Figure 1.3, that the received

signal power at the output of the downsampler is given by

S = Es = E[|akh(0)|
2] (1.15)

as well as the noise power for a real signal is

E[|n2(0)|] = E[| n ′(t) ⋆ g∗(−t)|t=0 |
2] (1.16)

= E

[∫∞

−∞

|n ′(t)g∗(−t)|2dt

]

= E

[

N0

2

∫∞

−∞

|g(t)|2dt

]

(1.17)

= E

[

N0

2
h(0)

]

=
N0

2
h(0) (1.18)

25

Thus we can finally obtain the SNR for a discrete-time system with real signals as

Es

N0

=
E[|ak|

2]h2(0)
N0

2
h(0)

=
2E[|ak|

2]h(0)

N0

(1.19)

Note that for the family if systems which do not include any channel encoder, such as the one

represented in Figure 1.3, b = log2 (M) is the final equivalent number of bits per symbol for a

constellation of order M. Therefore,

Eb

N0

=
E[|ak|

2]h2(0)

bN0

2
h(0)

=
2E[|ak|

2]h(0)

bN0

(1.20)

On the other hand, if we include an error-correction code whose code rate is r, we must take

into account that the final equivalent number of information bits per symbol of will become br,

i.e., r log2M. Thus, the variance of the noise we need to generate per dimension in a discrete-

time system can be determined from the parameters Es
N0

or Eb
N0

, the average power of the symbols,

and the power of the discrete coefficients from the overall pulse response, h(t), such that

σ2 =
N0

2
=
E[|ak|

2]h(0)
Es
N0
2

=
E[|ak|

2] 1
L

∑L
i=1 g

2
i

2Es
N0

=
E[|ak|

2] 1
L

∑L
i=1 g

2
i

2br Eb
N0

(1.21)

where gi corresponds to the i-th coefficient of the employed transmitter pulse shape filter and

L is the total number of filter coefficients. Note that if no channel code block is included, we

can simply consider r = 1 in Equation (1.21).

1.2.2 Matched Filter

The primary purpose of a receiver is to guess, from the signal r(t), what symbol ak ∈ A ⊂ C

was originally sent by the transmitter. The minimum distance criterion chooses the alphabet

symbol that best suits to the received waveform signal in the sense of minimum distance (ℓ2
norm) between them. The ℓ2 norm consists on estimating the energy between the difference

signal given by

âk = argmin
ak∈A

∫∞

−∞

|r(t) − akm(t)|2dt (1.22)

where m(t) is the unknown receiver pulse shape filter.

Deriving the cost function, J =
∫∞

−∞
|r(t)−akm(t)|2dt, yields the minimisation of one single

term y, at the sample output indicated in Figure 1.5, that is given by y =
∫∞

−∞
r(t)h∗(t)dt.

It follows that y is a sufficient statistic to determine the transmitted symbol ak. This term

might be interpreted as the inner product or a simple correlator from which the slicer can take

a decision. Figure 1.4 shows the final structure of the correlator.

26

h∗(t)

r(t) y∫
×

Figure 1.4: Correlator structure.

The Matched Filter (MF) and the correlator are equivalent structures. Nevertheless, the

latter presents some disadvantages on its implementation so that, in practice, MF is usually

preferred. From now on, we focus on the derivation of the matched filter depicted in the Figure

(1.5). According to this scheme, the output of the MF is sampled at each multiple of the symbol

period, t = kTr and then these samples pass through a decision block which selects the most

suitable signal. The optimum filter has also another important feature, as the structure respon-

sible for maximising the SNR at the output of the presented discrete-time AWGN model. Our

math development is mainly based on this property. We dedicate the next calculations to find

the unknown time-response of the filterm(t), from Figure 1.5, that results in this maximisation.

m(t)

r(t) y(t)
T = Tr

Figure 1.5: The sampled Matched Filter, whose time-response m(t) is being derived in order to
maximise the SNR and minimise the probability of error on demodulation.

We start deriving the MF response by taking as an example an hypothetical modulation

system for which the probability of error is given by

Pe = Q

(
√

A

σ2n

)

(1.23)

where Q(.) is the normal cumulative distribution function given by Q(x) = P(X > x) or

Q(x) = 1 − P(X 6 x), A is the energy of the desired signal at the output of the receiver

filter and σ2n is the variance of the noise. In contrast to the probability density function (PDF),

Q(x) is a decreasing function of its argument. For a more convenient notation, we refer to the

argument of Pe by simply A
σ2
n
. We note that, in order to minimise Pe, we must maximise its

argument.

The output of the filter, y(t), can be written in terms of the time convolution between the

27

unknown receiver filter response and the received signal as

r(t) = akg(t) + n(t) (1.24)

y(t) =

∫ t

0

s(u)m(t− u)du+

∫ t

0

n(u)m(t− u)du (1.25)

Thus, the argument A
σ2
n
might be written as

A

σ2n
=

[∫Tr
0
s(u)m(t− u)du

]2

E
[∫Tr

0
n(u)m(t− u)du

]2

=

[∫Tr
0
s(u)m(t− u)du

]2

E
[∫Tr

0
n(u)m(t− u)du

∫Tr
0
n(v)m(t− v)dv

]

=

[∫Tr
0
s(u)m(t− u)du

]2

∫Tr
0

∫Tr
0
E [n(u)n(v)]m(t− u)m(t− v)dudv

=

[∫Tr
0
s(u)m(t− u)du

]2

∫Tr
0

∫Tr
0

N0

2
δ(u− v)m(t− u)m(t− v)dudv

=

[∫Tr
0
s(u)m(t− u)du

]2

N0

2

∫Tr
0
m2(t− u)du

By handling the statements above we need to obtain an impulse response m(t) such that

the SNR, i.e., A
σ2
n
, is maximised, as mentioned before. The classical approach is obtained by

applying the Cauchy-Schwarz inequality theorem, which is stated in Theorem 1

Theorem 1 (Cauchy-Schwarz Inequality). Let γ and ψ be any two real integrable functions in

[a,b]. The Cauchy-Schwarz inequality is given by

[∫

γ(x)ψ(x)dx

]2

6

∫

γ2(x)dx

∫

ψ2(x)dx

The equality is only reached when, for a constant c, we have ψ(x) = cγ(x)

Hence, the numerator of the SNR derived above may be maximised if m(t − u) = cs(u).

Applying this result to the SNR numerator, we obtain

[∫Tr

0

s(u)m(t− u)du

]2

=

∫Tr

0

s2(u)

∫Tr

0

c2s2(u)du (1.26)

for any constant c.

28

If s(t) has a finite duration of Tr (one symbol period), then the SNR is maximised by simply

setting t = Tr. In this scenario, we have

A

σ2n
=

[

c
∫Tr
0
s2(u)du

]2

N0

2

∫Tr
0
c2s2(u)du

=

∫Tr
0
s2(u)du
N0

2

(1.27)

Finally, the filter impulse response derived from the Cauchy-Schwarz inequality theorem is

given by

m(t− u) = cs(u)

m(u) = cs(t− u)

while the sampled MF impulse response is

m(Tr − u) = cs(u)

m(u) = cs(Tr − u)

The output of the matched filter is the time convolution between m(t) and r(t). On the other

hand, the output after the sampling at t = Tr is given by the following

y ′(Tr) =

∫Tr

0

m(u)r(Tr − u)du

=

∫Tr

0

cs(Tr − u)r(Tr − u)du

= c

∫Tr

0

s(u)r(u)du

= c〈s(u), r(u)〉

For a complex signal, the conjugate is required so that the impulse response of the MF has

the conjugate and the time flipping response of s(t). We can ideally interpret the signal s(t) as

the output of the transmitter pulse shape filter g(t) such that s(t) = ak ⋆g(t). In this case, the

MF response would be g∗(−t) while the overall response of the system would be g(t) ⋆ g∗(−t)

following the permanent assumption that channel response C(f) = 1, ∀f.

Figure 1.6 illustrates the theoretical aspects covered in the last two subsections. This figure

results from a discrete-time simulation involving the implementation of a digital MF filter and

the generation of an AWGN in a 4-QAM baseband system. Note that the M-QAM systems

can be viewed as two independent PAM systems in quadrature to each self. For example, the

4-QAM system mentioned before may be treated as two 2-PAM independent systems.

1.3 Galois Fields

The general theory of finite fields began with the work of Carl Friedrich Gauss (1777-1855)

and Evariste Galois (1811-1832) [16]. Nevertheless, it only became of interest for engineers in re-

cent decades because of its many applications in communication theory. This section introduces

29

0 1 2 3 4 5 6 7

x 10
−3

−1

−0.5

0

0.5

1
Transmitted Signal

t[s]

A
m

p
lit

u
d
e

0 1 2 3 4 5 6 7

x 10
−3

−1.5

−1

−0.5

0

0.5

1

1.5
MF Output

t[s]

A
m

p
lit

u
d
e

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5

−2

−1

0

1

2

0

1

2

3

I

Q

Received Constellation

0 2 4 6 8 10 12 14 16
10

−20

10
−15

10
−10

10
−5

10
0

4−QAM

Eb/N0 (dB)

B
it
 E

rr
o
r

ra
te

MF output

Sampled output

Baseband (real)

NRZ

Simulated

Theoretical

Figure 1.6: Simulation results for a 4-QAM baseband system: From left to right, from top to
bottom, (a) NRZ and baseband signal at the output of the transmitter pulse shape filter (RRC);
(b) Received constellation at the output of the discrete-time AWGN model with Eb

N0
= 6dB; (c)

MF Output and sampled values; (d) Theoretical and Simulated bit-error rate.

the key definitions and properties from the general theory of finite fields. These mathematical

concepts will be relevant for the next chapters, where we will present the Bose-Chaudhuri-

Hocquenghem (BCH) and the LDPC codes. We start by the fundamental definitions of Groups,

Rings and Fields.

The number of elements in a set is called cardinality and this parameter can be either finite

or infinite. In the context of algebraic theory, two operations, heretofore undefined, can be ap-

plied over the elements of a given set: the multiplication and the addition. Depending on the

conditions imposed over this set, we can classify it into some well-defined algebraic structures

as follows:

• Group: A group is a nonempty set for which only the multiplicative operations are defined.

Multiplying any two elements in a group must result in a third element that also belongs

to the same group. This property is known as closure. Furthermore, a group must satisfy

the following conditions:

1. Associativity under multiplication: For any elements a,b, c in the group, it follows

that (a× b)× c = a× (b× c)

30

2. Identity under multiplication: For any element a in the group, there must exist an

element b, such that: a× b = a

3. Inverse: For any element a in the group, there must exist an inverse element a−1

such that: a× a−1 = b, where b is the identity element.

The group may also present the commutativity under multiplication i.e., a × b = b × a.
In this case, the set is called Abelian group or Commutative group

• Rings: Rings are sets for which the operations of addition and multiplication are both

defined. A ring must also satisfy the following three sets of properties:

1. A ring must be an abelian group under addition, meaning that

– Associativity under addition: For any elements a,b, c in the ring, it follows that

(a+ b) + c = a+ (b+ c).

– Commutativity under addition: For any two elements a,b in the ring, it follows

that (a+ b) = (b+ a).

– Additive identity: There must exist an element 0 in the set such that a+ 0 = a

for all a in the set.

– Additive inverse: For each element a in the set there must exists a second element

−a in the set such that a+ (−a) = 0

2. A ring must satisfy the following property under multiplication:

– Associativity under multiplication: For any elements a,b, c in the ring, it follows

that (a × b) × c = a × (b × c). A ring satisfying this property is sometimes

denoted as an associative ring.

3. A ring must satisfy the distributivity under multiplication, i.e.:

– Distributivity under multiplication with respect to addition: For any elements

a,b, c in the ring, it follows that a×(b+c) = (a×b)+(a×c) and (b+c)×a =

(b× a) + (c× a).

A ring may also present the property of commutativity under multiplication i.e., a× b =

b×a. In this case, the set will be called Commutative Ring. Additionally, if a ring presents

a multiplicative identity, then this set will be called Ring with Identity. Nevertheless, some

authors depart from the presented properties and define, under their definition, additional

properties. For example, in [17] the multiplicative identity is added as a necessary condi-

tion.

Example 1.3.1: Ring of integers

An example of ring is the ring of integers, Z6, defined by the set {0, 1, 2, 3, 4, 5} under
modulo-6 operations. It is often convenient to describe these algebraic structures
in terms of an addition and a multiplication table. Such tables are called Cayley
tables. In our example we include both tables.

31

Through the tables presented below, we can easily note that {Z6,+,×} obeys the
three basic conditions of a ring. This set also satisfies the properties of commutativity
under addition and multiplication. Besides, the identity element of this ring is 1,
meaning that Z6 shall be classified as a Commutativity-Identity Ring.

+ 0 1 2 3 4 5
0 0 1 2 3 4 5
1 1 2 3 4 5 0
2 2 3 4 5 0 1
3 3 4 5 0 1 2
4 4 5 0 1 2 3
5 5 0 1 2 3 4

Table of addition

× 0 1 2 3 4 5
0 0 0 0 0 0 0
1 0 1 2 3 4 5
2 0 2 4 0 2 4
3 0 3 0 3 0 3
4 0 4 2 0 4 2
5 0 5 4 3 2 1

Table of multiplication

We remark that {Z6,×} can not be a group since the element 0 has no inverse
element. The set of elements {2, 3, 4} are called zero divisor in Z6 because they also
do not present inverse elements. On the other hand, the elements 1 and a 5 have
inverses 1 and 5, respectively.

• Fields: As well as the algebraic structure of the rings, the fields are also defined for opera-

tions of addition and multiplication. This structure also satisfies the following conditions,

in addition to those of the rings:

1. Commutativity under addition: for any two elements a and b, a+ b = b+ a.

2. Commutativity under multiplication for all elements but 0: for any two non-zero

elements a and b, a× b = b× a
3. Distributivity: for any three elements a, b and c of the set, it follows that a×(b+c) =

(a× b) + (a× c).
4. Identity: for any element a in the set, there is an multiplicative identity element b,

such that a × b = a and also an additive identity element c, such that a + c = a.

The additive identity and the multiplicative identity are required to be distinct, i.e.,

c 6= b.

32

5. Inverse: for any element a in the field, the element a−1 must be in the set such that

a× a−1 = b, where b is the multiplicative identity element defined before.

6. Commutativity under multiplication: when the additive identity element 0 is removed,

the set must be commutative so that for any two elements a,b in the field, we have

a× b = b× a.

Some set of integers can not be classified as a field because they include integers which do

not present a multiplicative inverse, as illustrated in the previous example.

A finite field, which is also known as a Galois Field, is commonly represented as GF(q). It

can be shown that, for a finite set to be a field, the parameter q, which represents the car-

dinality, can only be a prime number or even a power of a prime number greater than 1 [9].

It can also be shown that, to be a finite field, the elements {1, 2, 3, · · · , q−1} must form a

group under multiplication modulo-q. For instance, the integers {0, 1, 2, 3, 4, 5, 6} form

a field in GF(7) with the operations of sum and product defined as modulo-7, and indeed,

also form a group under the product modulo-7. On the other hand, the set of integers from

zero to nine is not an example of a finite field since the subset {1, 2, 3, 4, 5, 6, 7, 8, 9}

is classified as group over the multiplication modulo-10. For instance, there are some non-

zero elements in the set {0, 2, · · · , 9} whose multiplication results in 0, such as 5× 6.

We call GF(pm) an extension field of GF(p) for any positive integer m > 1 where pm = q.

Additions and multiplications between the elements in the field GF(p) from the base of

these fields are defined modulo-p. The rest of the elements have these operations defined

from a primitive polynomial, that we will define next.

Every element in a finite field has a parameter called order. The order of a given element

β is the number of times it must be multiplied by itself until we obtain the element 1, i.e.,

the order, o, is such that βo = 1. The elements which present their order equal to q − 1 are

known as the primitive elements. For instance, in GF(3) the element 2 is a primitive element

because all the non-zero elements in this finite field can be written in terms of the powers of 2, as

presented in the Table 1.1. We note that every finite field contains at least one primitive element.

A key property involving the primitive elements stems from the fact that all the non-zero

elements in a finite field can be expressed in terms of the powers of the primitive elements.

All finite fields of order given by a prime number p have the same properties to the field

{0, 1, 2, · · · , p − 1} with modulo-p addition and multiplication. All the non-zero elements

from these fields have order p. The finite fields of order pm are called extension fields, and

their elements can also be represented in terms of primitive elements. In other words, if α is a

primitive element, then the full set is

{0 1 α α2 · · · αpm−2} (1.28)

33

Table 1.1: Representation of the non-zero elements in the finite field GF(3) in terms of its
primitive element.

Element Representation (Primitive Element)
1 22

2 21

The elements in GF(pm) shall be represented as an m-tuple vector in terms of the elements

from GF(p). In this case, addition and multiplication are called ordinary addition and multipli-

cation modulo-p, respectively. The addition of any two m-tuple is obtained by the element-wise

addition in GF(p).

To better represent the extension field GF(pm), we need to introduce two important in-

stances from the field theory: the irreducible and the primitive polynomials. A polynomial f(x)

is said to be irreducible if it has a degree m with coefficients defined over GF(p), and it can not

be factored into a product of polynomials of lower degree. In other words, f(x) can not have

any root in the set GF(p), {0, 1, 2, · · · , p− 1}. On the other hand, an irreducible polynomial

g(x) of degree m defined over a base field GF(p) is said to be primitive if the smallest integer

n for which g(x) divides xn − 1 is n = pm − 1. A primitive polynomial is a polynomial that is

able to generate all the elements of a given extension field from its base field [18].

Considering a polynomial with coefficients in GF(p), the addition of any two polynomials

corresponds to the usual polynomial addition in GF(p). On the other hand, the scalar multipli-

cation of this polynomial by a field element of GF(p) corresponds to the multiplication of each

polynomial coefficient by the field element, carried out in GF(p).

Theorem 2. The roots of an m-th degree primitive polynomial, p(x) ∈ GF(p)[x], are primitive

elements in GF(pm), i.e., any root can be used in order to generate the non-zero elements of the

extension field GF(pm).

For further clarification, we will present an example by building up an extension field from a

base field GF(2). In order to completely describe and define the extension field GF(25), we need

to obtain their irreducible and at least one of its primitive polynomial. The irreducible polyno-

mials are obtained by choosing those polynomials which have no roots over the set GF(2). For

didactic purposes, as a first step, we might simply select those polynomials which contemplate

this constraint from an entire list containing all the possible polynomials with degree m and

coefficients over the base field GF(2).

In our case, we must evaluate the elements {0, 1} by replacing them into the list of each

possible polynomial of degree 5 and apply the operations in GF(2). If the evaluation results in

zero for any element of the set {0, 1}, then that polynomial can not be classified as an irreducible

34

polynomial since it could be factored in terms of these root elements. After testing the full list of

polynomials of degree 5, we obtain the irreducible polynomials list which is given by Table 1.2.

Table 1.2: Irreducible polynomials over GF(25).

x5 x4 x3 x2 x 1

1 0 0 0 1 1
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 1 1
1 1 0 0 0 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1

In order to obtain the primitive polynomials based on the list of irreducible’s, we can explore

the aspect of the representation of each element of GF(pm). For instance, we can take the first

irreducible polynomial from the Table 1.2, i.e., x5 + x + 1. If we assume this is a primitive

polynomial, the roots would be expressed in terms of a generic primitive element, α, so that

α5 = α+ 1. This would lead to an specific representation of the field elements as shown in the

Table 1.3

Table 1.3: Representation of the field GF(25)

Elements in GF(25) Representation in terms of m-tuple vector over GF(2)
lower power of α

0 0 00000
1 1 00001
α α 00010
α2 α2 00100

α3 α3 01000
α4 α4 10000
α5 α+ 1 00011
α6 α2 + α 00110

α7 α3 + α2 01100
α8 α4 + α3 11000
α9 α4 + α+ 1 10011
α10 α2 + 1 00101

α11 α3 + α 01010
α12 α4 + α2 10100
α13 α3 + α+ 1 01011
α14 α4 + α2 + α 10110

α15 α2 + 1 00101
α16 α3 + α 01010
...

...
...

35

As we can note in Table 1.3, this polynomial is not able to define all the elements of our

extension field since the representation of the elements within the set starts to repeat for distinct

elements. This repetitive behaviour is a sufficient proof that the polynomial under evaluation is

not primitive. The key point in this toy-example refers to the straightforward observation that

the element α25−2 × α, which is expected to result in 1 ∈ GF(25) since the non-zero elements

of a finite field must form a cyclic group, in this case will not (check (1.28)). This observa-

tion might be useful every time we need to identify the primitive polynomials from a list of

irreducible polynomials. Therefore, as a first verification, we can test primitive polynomials for

any extension field by simply selecting those polynomials which lead to the element 1 when

we evaluate αp
m−2 × α. Note that this verification is necessary but not sufficient to determine

if polynomial is actually primitive. Nevertheless, through this observation, we are able easily

check the primitive polynomials in GF(25), for instance. The coefficients of these polynomials

are listed in the Table 1.4 for illustrative purposes.

Table 1.4: Primitive polynomials over GF(25).

x5 x4 x3 x2 x 1
1 0 0 1 0 1
1 0 1 0 0 1
1 0 1 1 1 1
1 1 0 1 1 1
1 1 1 0 1 1
1 1 1 1 0 1

The main motivation of using finite fields to construct error correcting codes is that we

can prove several important and practical properties of the resulting codes, such as their error-

correcting capabilities. Furthermore, the parallel with finite field theory allows the implemen-

tation of very efficient decoding algorithms. One particularly important class of codes that

arise from finite field theory is the BCH code, which will be discussed in the subsection 1.4.1.

Proceeding in the same illustrative case, we can adopt the first primitive polynomial from the

Table 1.4 in order to introduce an example involving the definition of the minimal polyno-

mial and the cyclotomic cosets. For any element β ∈ GF(2m), we define its conjugates by

β2i, i = 1, 2, 3, · · · , (m− 1). Henceforth, we will keep p = 2 to become easier the association

with the binary information. For any element β ∈ GF(2m), the minimal polynomial of β is

defined as

M(x) = (x+ β)(x+ β2)(x+ β4) · · · (x+ β2(m−1)

) (1.29)

The conjugates of a given finite field GF(q) compose a set known as cyclotomic coset. The

cyclotomic cosets and its associated minimal polynomial of GF(25) are shown in the Table 1.5.

36

Table 1.5: Cyclotomic cosets over GF(25).

Finite field elements Minimal Polynomial

0 x

1 x+ 1
{α, α2, α4, α8, α16} x5 + x2 + 1

{α3, α6, α12, α17, α24} x5 + x4 + x3 + x2 + 1
{α5, α9, α10, α18, α20} x5 + x4 + x2 + x+ 1
{α7, α14, α19, α25, α28} x5 + x3 + x2 + x+ 1
{α11, α13, α21, α22, α26} x5 + x4 + x3 + x+ 1
{α15, α23, α27, α29, α30} x5 + x3 + 1

Being β ∈ GF(2m) a root of the polynomial g(x) ∈ GF(2)[x], i.e., the polynomial which has

coefficients in the base field GF(2) and the roots from the extension field GF(2m), then β2n is also

a root of g(x). Hence, the conjugates of β with respect to a subfield GF(q), β, β2, β22 , β23 , · · · ,
also form a class of roots from g(x). For convenience, we state this well-known result by the

following theorem:

Theorem 3. If β ∈ GF(pm) is a root of g(x) ∈ GF(p)[x], then βpn is also a root of g(x). The

conjugates of β with respect to GF(p) form a set called the conjugacy class of β.

The proof of this theorem can be found in [18]. In the next section, we discuss an important

class of error-correcting codes, the linear block codes, and show how the concepts of finite field

theory introduced in this section can be used to construct an important family of the linear

block codes.

1.4 Linear Block Codes

In this section we will present the most relevant properties from the linear block codes. In

practice, this is the most important class of codes and includes LDPC, BCH and also Reed

Solomon codes.

A block code is a code in which k bits of information are encoded into n bits that are called

codeword. These codes are referred to as an (n, k) code. Assuming a binary message in GF(2), for

each k bits in the input of an encoder, there will exist 2k different possible messages. Historically,

these codes were intensively studied in the specific case of Binary Symmetric Channels (BSC).

The BSC channel is defined from a probability p of bit in error, which corresponds to the power

noise density N0

2
and a BPSK modulator, whose symbol energy is Es. Therefore, the crossover

probability p becomes p = Q
(√

2Es
N0

)

, which in turn corresponds to the error probability of the

equivalent AWGN channel. The BSC reduces the possible values from the channel output to only

two symbols and due to this, the BSC is a hard-decision model for the underlying of AWGN [19].

37

Definition 1.4.1. A block code with 2k codewords of length n is a linear (n, k) code if and

only if the collection of codewords form a k-dimensional subspace of the vector space of the

n-tuples over the field GF(2). More generally, for a field with q elements, a block code C of

length n with qk codewords is called a linear (n, k) code if, and only if, its qk codewords form

a k-dimensional subspace in the vector space of all n-tuples over the field GF(q).

Corollary 3.1. The sum of any two codewords in the block code C will also result in a new

codeword of C.

The characteristic of linear vector space also ensures that there will always exist a vector

base from which all the codewords can be represented as linear combinations of these vectors. In

this sense, the encoding operation requires a simple matrix multiplication. We shall introduce

a generator matrix G from the linearly independent base vectors {g1 g2 · · · gk} of dimension

1× n given by

G =

g1

g2

.

.

.
gk

(1.30)

where G is a k× n matrix. If the message we expect to encode is u = (u1 u2 ... uk), the asso-

ciated codeword of length n is given by c = uG = u1g1 + u2g2 + ...+ ukgk.

We remark that performing elementary row operations in G does not change the row span

and thus, the same code is produced. If two columns of G are interchanged, the correspond-

ing codewords indices are interchanged the same way. Nevertheless, the distance between the

codewords from this new structured code is kept, as stated in Theorem 4, which underlies the

equivalent codes.

Theorem 4. Two k × n generator matrices generate equivalent codes if one can be obtained

from the other by a sequence of operations of the following types:

1. Permutation of rows

2. Multiplication of a row by a non-zero scalar

3. Addition of a scaled multiple of one row to another

4. Permutation of columns

5. Multiplication of any fixed column by a non-zero scalar

Proof. The items 1, 2 and 3 preserve the linear independence of the rows ofG by simply replacing

one basis by another from the original code. In fact, item 1 merely reorders the basis of C. Items

4 and 5 are both permutations of the code, i.e., it still keeps the same structure and preserves

38

the minimum distance from the original code. Indeed, the set of codewords remains the same

as before the matrix operations. Nevertheless, these operations will result in a new mapping

between a given message, u, and its corresponding codeword. We note that equivalent codes

will also keep its original performance.

The generator matrix G of a linear block code is also related with a parity check matrix H,

whose rows are orthogonal to every codeword, i.e.,

cHT = 0 (1.31)

This implies that

GHT = 0 (1.32)

It is often convenient to have the original data explicitly embedded in the final generated code-

word. This sort of structure can be seen in what we call systematic code. The codewords from

this sort of codewords present the following sequence

c = uG =
(

p1 p2 ... p(n−k−1) u1 u2 ... uk
)

(1.33)

where u is the set of bits from the message to be encoded and p is the incorporated set of parity

check bits.

For a systematic code, it is always possible to obtain a convenient matrix G for which it

becomes easy to obtain the parity check matrix H. In fact, performing row operations and

column reordering on G, we can write it equivalently as

G =

(

P Ik

)

(1.34)

where Ik is an identity matrix of dimension k × k and P is a matrix of dimension k × n − k

which distinguishes one code from another of the same dimension, i.e., it represents the identity

of the code. As a straightforward consequence, obtaining the parity check matrix for systematic

codes is simply write

H =

(

In−k − PT
)

(1.35)

Note that, due to the nature of binary fields, −P = P for fields of the form GF(2m).

The syndrome vector of a linear block code is given by the product between a binary received

vector x ′ and the parity check matrix H, i.e.,

s = x ′H
T

(1.36)

For all the codewords which belong to C, the syndrome is equal to a zero vector. This way, it is

possible to determine if any received codeword is a valid codeword c ∈ C. The Example (1.4.1)

illustrates the structure of a systematic code.

39

Example 1.4.1: Hamming Code

A Hamming code (7, 4) is generated by the following matrix

G =

0 1 1 1 0 0 0
1 0 1 0 1 0 0
1 1 0 0 0 1 0
1 1 1 0 0 0 1

(1.37)

For a message sequence u = (u1 u2 u3 u4), the codeword is

c = (p1 p2 p3 u1 u2 u3 u4) (1.38)

where pi corresponds to the i-th parity check bit given by

p1 = u2 ⊕ u3 ⊕ u4 (1.39)

p2 = u1 ⊕ u3 ⊕ u4 (1.40)

p3 = u1 ⊕ u2 ⊕ u4 (1.41)

(1.42)

Since we know this is a systematic code, the parity check matrix, H, which is orthogonal
to the generator matrix G, might be easily obtained from the observation of G and
identification of P from Equation (1.34). Thus, the parity check matrix can be reordered
according to Equation (1.35) so that we obtain

H =

1 0 0 0 1 1 1
0 1 0 1 0 1 1
0 0 1 1 1 0 1

 (1.43)

Theorem 5. For a linear block code C, the minimum hamming distance dmin among their

codewords, ci, i ∈ {0, 2, · · · , 2k − 1}, is equal to the minimum weight wmin of its non-zero

codeword [18]. The weight of a codeword is given by the number of non-zero elements.

Proof. This result relies on the fact that for any linear combination of codewords from C, the

resulting codeword still resides in the same set of codewords from C. The hamming distance

calculation of any linear combination a1ci+a2cj, i, j ∈ {0, 1, · · · , 2k−1} might be reassigned

to the origin, i.e.,

dmin = min
ci,cj∈C,ci 6=cj

dH(ci, cj) = min
ci,cj∈C,ci 6=cj

dH(a1ci + a2cj) = min
c∈C,c 6=0

w(c) (1.44)

The minimum distance, dmin, is sometimes included in the code notation as an (n, k,dmin)

code. This metric quantifies the minimum number of bit flips required to change a binary

message into other, i.e., the minimum number of errors that could transform one codeword into

other. Intuitively, a code with minimum Hamming distance dmin between its codewords can de-

tect at most dmin−1 errors. The Theorem (7) presents the relationship between dmin,n and k.

40

Theorem 6. For a linear block code C with parity check matrix H, the minimum distance

between the codewords is given by the smallest positive number of linearly dependent columns

of H.

Proof. Adopting h0, h1, · · · , hn−1 the collection of columns from H, since cHT = 0, for any

codeword c = (c0, c1, · · · , cn−1), we have

c0h0 + c1h1 + · · ·+ cn−1hn−1 = 0 (1.45)

Being c the codeword of smallest weight w(c) = dmin = w, as stated in Theorem (5), let us

consider the non-zero position at indices i1, i2, · · · , iw such that

ci1hi1 + ci2hi2 + · · ·+ ciwhiw = 0 (1.46)

In this case, the columns of H corresponding to the non-zero indices of c are linearly dependent,

i.e., if we had a linear set of columns u < w, there would be a codeword of weight u, which

contradicts the Theorem (5).

Theorem 7 (The Singleton Bound). The minimum distance for a (n, k) linear code is bounded

by

dmin 6 n− k+ 1 (1.47)

Proof. The parity check matrix of a (n, k) linear code has n−k linearly independent rows. The

row rank of a matrix is equal the column rank. Hence, any set of n− k+ 1 columns is expected

to be linearly dependent, according to the Theorem (6).

When Equation (1.47) is an equality, the code is called Maximum Distance Separable (MDS)

code [18].

Obtaining the original collection of codewords from a given matrix G transformed by a row

and a column permutation given by the matrices η and Ω respectively, might be useful when,

for some reason, we need to create a more convenient structure for this matrix. For instance, we

can write an equivalent code, G ′, by using the set of operations listed in the Theorem (4), as

G ′ = η

(

P I

n−k k

k

) (

I 0

0 Ω

n−k k

n−k

k

)

For convenience, we state that our transformation over the matrix G = (P I) will generate

a new matrix G ′ still in the usual form G ′ = (P ′ I) by enforcing that η = ΩT . From this

assumption we can note that

c = u

(

P I

)

=

(

uP uI

)

(1.48)

and the equivalent codeword ĉ is

ĉ = u

(

ηPI ηIΩ

)

(1.49)

41

Thus, when the process of encoding is performed from the matrix G ′, we know how to reassign

the codewords, ĉ, for those from the original equivalent code associated to G by simply applying

the following transformation:

c = u

(

ηPIT2 ηIΩT1

)

(1.50)

where T1 and T2 are the transformation matrices given by

T1 = I (1.51)

T2 = P−1η−1P (1.52)

1.4.1 BCH Codes

The BCH codes are named for their creators Bose, Ray-Chaudhuri and Hocquenghem, who

published their work in 1959 and 1960. Binary BCH codes were firstly proposed by Hoc-

quenghem [20], in 1959 and independently by Bose and Chaudhuri, in 1960 [21]. The first

decoding algorithm was devised by Peterson in 1960 [22] Peterson’s algorithm was then gener-

alised and improved by Chien [23], Forney [24], Berlekamp [25], Massey [26] and others.

These codes introduced, for the first time, a mean for designing codes over GF(2) from

specified minimum distances [18]. As we will see next, they can be specified by a generator

polynomial whose coefficients come from the finite field of two elements, GF(2). Nonetheless,

the computation used by the error correction algorithms is usually performed over a larger finite

field, GF(2m). The two most important parameters for a binary BCH code are usually referred

to as k and t. The parameter k expresses the number of data bits to be encoded. The parameter

t establishes the maximum number of bit errors this code is capable of correcting.

Encoding

A BCH code over GF(q) is usually defined by a generator polynomial g(x). A binary BCH

code of length n is capable of correcting at least t errors. The generator polynomial of this

code is specified in terms of its roots in a finite field GF(2m). Being α a primitive element of

GF(2m), the generator polynomial g(x) for a t-error correcting BCH code of length n = 2m− 1

is the lowest degree polynomial over GF(2) that has α,α2, · · · ,α2t as its roots, i.e., g(αi) =

0, i ∈ {1, 2, · · ·2t}. LetMi(x) be the minimal polynomial of αi. Then the generator polynomial,

g(x), is given by the least common multiple (LCM) ofM1(x), M2(x), · · · , M2t(x). Due to the

repetition of conjugate roots, it can be shown that g(x) is formed by only the odd indices of

the minimal polynomials, i.e, every even power of α in {α, α2, · · · , α2t} has the same minimal

polynomial as the preceding odd power of α. As a result, g(x) is reduced to

g(x) = LCM{M1(x), M3(x), · · · , M2t−1(x)} (1.53)

and the codeword is obtained from c(x) = g(x)m(x).

42

Because the minimal polynomial has degree at most m, the generator polynomial has degree

at most mt, i.e., a t-error correcting BCH code requires n− k 6 mt parity check bits.

For any positive integer m > 3 and t 6 2m−1, there always exists a binary BCH code (n, k)

with the following parameters [18]:

• n = 2m − 1 code length

• n − k 6 mt number of parity check bits

• dmin > 2t+ 1 minimum Hamming distance

• error correcting capacity t errors/codeword

Example 1.4.2: BCH code design

In this example we aim to design a binary BCH code for a codeword length n = 30,
i.e, we will adopt the extension field GF(25), for this code. Given the code capacity,
t = 3, the set of roots is originally given by {α, α2,α3, α4, α5, α6} and then reduced
to {α,α3, α5}, due to the reasons described before. By taking the minimal polynomials
from the Table 1.5, we are able to design the following generator polynomial.

g(x) = (x5 + x2 + 1)(x5 + x4 + x3 + x2 + 1)(x5 + x4 + x2 + x + 1)

= x15 + x11 + x10 + x9 + x8 + x7 + x5 + x3 + x2 + x+ 1

The length of the message is given by k = n − degree{g(x)}+ 1. In this case, k = 16 and
the code rate is r = k

n
= 16

30
= 0.533.

Decoding

Let us define a codeword polynomial c(x) = c0 + c1x + · · · + cn−1x
n−1, where the set

{c0, c1, · · · , cn−1} corresponds to the polynomial coefficients in GF(2). This codeword is trans-

mitted over a channel impaired by noise. Because of that, some errors are introduced in the

original polynomial and, as a consequence, the received polynomial becomes

r(x) = r0 + r1x + r2x
2 + · · ·+ rn−1x

n−1

The introduction of errors by the channel can be modelled as the addition of a general error

polynomial e(x). Then

r(x) = c(x) + e(x)

The first step for decoding a BCH code is to compute the syndrome polynomial s(x) from

the received signal r(x). For a t-error correcting BCH code, the syndrome has 2t elements

s = (s1, s2, · · · , s2t)

43

Assuming e(x) contains ν errors (ν < t) at the hypothetical locations specified by
(

xj1 , xj2 , · · · , xjν
)

, then

e(x) = xj1 + xj2 + · · ·+ xjν

The relationship between the components of the syndrome and the error location is expressed

by the following set of equations

s1 = e(α) = αj1 + αj2 + · · ·+ αjν

s2 = e(α2) = α2j1 + α2j2 + · · ·+ α2jν

...

s2t = e(α2t) = α2tj1 + α2tj2 + · · ·+ α2tjν

where
(

αj1, αj2, · · · , αjν
)

are unknown a priori. The method for decoding a BCH code is any

method for solving the presented set of equations. Once we have determined
(

αj1, αj2, · · · , αjν
)

,

the exponents (j1, j2, · · · , jν) will tell us the error positions from the codeword, according to

the method described next.

The second step for decoding corresponds to the computation of an error locator polynomial.

This step is accomplished through an algorithm such as the Berlekamp-Massey or the Euclid’s

algorithm [18]. Let βu = αju, u ∈ {1, 2, · · · , ν}. Then we can redefine the syndrome as

s1 = β1 + β2 + · · ·+ βν
s2 = β2

1 + β
2
2 + · · ·+ β2

ν

...

s2t = β2t
1 + β2t

2 + · · ·+ β2t
ν

In order to decode a binary BCH code, it is convenient to define the error locator polynomial,

which is given by

λ(x) = (1+ β1x)(1+ β2x) · · · (1+ βνx) =

ν∏

i=1

(1+ βix)

= λ0 + λ1x + λ2x
2 + · · ·+ λνxν

The roots of λ(x) are {β−1
1 , β−1

2 , · · · , β−1
ν } which correspond to the inverse of the error

location number. The coefficients λi are related to the syndrome components by the Newton’s

identity

s1 + λ1 = 0

s2 + λ1s1 + 2λ2 = 0

s3 + λ1s2 + λ2s1 + 3λ3 = 0 (1.54)
...

sν + λ1sν−1 + · · ·+ λν−1s1 + νλν = 0
...

44

Berlekamp-Massey algorithm is an iterative routine for finding the coefficients from the error

locator polynomial that satisfy the Newton’s identity from Equations (1.54). For more details

about this algorithm, refer to [25].

The third step aims to find the roots of the error locator polynomial. In this thesis we will not

describe the algorithm details, but only remark, in the next paragraph, the expected behavior

from this routine. More details about this algorithm are found in [23].

The classical algorithm for the root finding step is the Chien Search. Through this algo-

rithm, the roots of λ(x) can be obtained by substituting {1, α, α2, · · · , α2m−1} into λ(x). Since

αn = 1, then α−1 = αn−1 and hence, being α1 a root of λ(x), αn−1 is an error location number.

In this case, the received bit at position n − 1 is supposed to be flipped. Chien’s Search is

considered a fast algorithm for determining polynomial roots. This approach has a significantly

reduced complexity when compared to a brute-force approach.

1.4.2 Low-Density Parity Check Codes

The LDPC codes belong to the class of linear block codes defined by a sparse parity check

matrix H. As seen in Equation (1.31), each row of this matrix is assigned to a constraint of

parity checking, while each column is associated to a bit of the codeword. The number of rows

of H is given by the difference among the length of the codeword and the length of the message,

i.e., m = n − k. A received codeword vector, r, is considered a valid codeword, c, if it satisfies

all the parity check constraints, i.e., if the syndrome vector is equal to zero, as follows

HrT = 0 (1.55)

These codes can be defined from a parity check matrix H as long as G can be obtained from

permutations and combinations in the elements of H, as seen in Equations (1.34) and (1.35). For

a given source message u of length k, the encoded string will be the product in GF(2) between

the message and the generator matrix G

c = uG (1.56)

The parameters of sparsity of H are known as degrees of distribution of the code. The num-

ber of non-zero elements in a row or in a column of H is the weight i. Usually, we define the

fraction of columns with weight i by vi and, the fraction of rows with weight i by ζi. In general,

it follows that

m
∑

i

ζii = n
∑

i

vii (1.57)

A regular-LDPC code is one in which both, row and column weights, are constant. It means

that Equation (1.57) can be reduced to Equation (1.58) since the fraction of 1s in columns and

45

rows of H, v and ζ respectively, are constant too

mζ = nv (1.58)

The LDPC decoding can be accomplished with either of two decision methods: hard-decision

and soft-decision. The input to a hard-decision decoder consists of two levels of the binary bits

0 and 1. In this decoding method, statistical information from the channel that is available in

the received signal is lost. However, the lower complexity involving hard-decision decoding is

widely used in the scenarios where complexity is strongly limited.

On the other hand, the input to a soft-decision decoder is a multilevel quantised signal. In

other words, to fully employ the information in a received waveform and thus, enhance the de-

cision accuracy of the decoder, a quantisation is performed in the signal, improving the system

performance. As a result, at the same rate, soft-decision methods use to bring a higher cod-

ing gain than hard-decision. However, this requires a high-speed Analog-to-Digital Converter

(ADC) to perform sampling and quantisation. Additionally, the soft-decision algorithms are

very complex because they must consider the changes in noise probability distribution caused

by channel performance deterioration. Due to that, this method uses to greatly increase the

processing complexity.

The LDPC codes can be iteratively decoded using Belief propagation algorithms that will

be discussed in the next chapter. These algorithms are based on soft-values which provide esti-

mates of the confidence of each individual symbol and the parity check matrix, which establishes

relationships between the information bits and the parity bits within a codeword. There are sev-

eral well-known ways of obtaining these soft-decoder output values, starting with the method

developed by Gallager [1], in 1963. All the A Posteriori Probability (APP) and Maximum a

Posteriori (MAP) algorithms proposed later, such as the sum-product and the min-sum, are

based on the channel statistics, i.e., they use probabilities or Log-Likelihood Ratios (LLR) as

a decoding metric. In this thesis, we will present more details about the LLR estimation of

a priori probability from channel in Chapter 3, where two new simplification methods will be

described.

A Tanner graph is an effective graphical representation for an LDPC code. This is charac-

terised as a bipartite graph with vertex set V = V1 ∪ V2. Each edge has one endpoint in V1 and

one in V2. The graph is split into two distinctive sets whereas the edges are connecting nodes of

two different types. For an LDPC code with parity check matrix H, this representation has one

vertex in V1 for each row of H and one vertex in V2 for each column of H. An edge connects

two vertices i and j when the element from H is hij = 1. The two types of nodes in a Tanner

graph are usually called check-nodes (V1) and variable nodes (V2).

The decoding complexity of each iteration of a decoding algorithm is proportional to the

number of edges in the Tanner graph. The sparseness is a distinguished characteristic that can

make the code more tractable to many iterative decoding algorithms, which are able to provide

46

near optimum performance. This is why sparsity of the parity check matrix is of great impor-

tance, and explains the value of LDPC codes.

The effectiveness of an iterative decoder depends on many structural properties of the Tanner

graph. For instance, one of these structural properties may be described as a sequence of edges

that form a closed path of length n, usually called n-cycles. These cycles and their consequences

will be discussed with more details in Chapter 2.

1.5 DVB-S2 standard

The DVB-S2 is a digital broadcast standard developed in 2003 for satellite broadband appli-

cations such as TV and sound broadcasting, interactivity (Internet access) and other services.

Channel coding and modulation are based on the inner LDPC code plus the outer BCH code

serially concatenated and four modulation schemes: QPSK, 8-PSK, 16-APSK and 32-APSK [27].

The DVB-S2 transmitter system is organised as a sequence of functional blocks, schematically

represented in Figure 1.7. The transmission is based on two levels of framing structures:

• BBFRAME at baseband (BB) level holds a variety of signaling bits, to configure the

receiver according to the channel scenario;

• PLFRAME at physical layer (PL) level holds a few highly protected signaling bits to

provide synchronisation robustness and signaling.

The Forward Error Correction (FEC) and modulation subsystems in DVB-S2 are the key

stages in terms of the excellent performance achieved by this standard in the presence of high

levels of noise and interference. This is based on LDPC code with a very powerful error cor-

rection capability which is increased by an outer BCH code with low additional overhead. The

main purpose of the BCH code is to avoid eventual error floors from LDPC at very low error

rates or equivalently, very high SNRs. The FEC approach is described as a concatenated coding

although the error correction capability of LDPC dominates the performance by far. The BCH

error correction is limited to 8, 10 or 12 bits, depending on the LDPC code rate configuration.

There are eleven possible code rates (1/4, 1/3, 2/5, 1/2, 3/5, 2/3, 3/4, 4/5, 5/6, 8/9, and 9/10)

that can be chosen depending on the modulation mode and the system application.

Error rate requirements for DVB-S2 are very strict. The system may operate with a residual

packet error rate (PER) of less than 10−7 [3]. For MPEG transport streams, which are char-

acterised by a 188-byte packet, this rate corresponds to approximately less than one erroneous

packet per hour for a service bit rate of 5Mb/s. In practice, the distance from the modulation-

constrained Shannon limit usually ranges from 0.7 to 1.2dB [27].

The Physical Layer (PL) frame is either composed of 64800 bits in normal length configura-

tion or 16200 bits in short length configuration. The header contains 90 BPSK symbols which

precedes the frame’s payload. They hold synchronisation and signaling information which allows

47

Input

Interface
CRC-8

Encoder

BBHEADER

Insertion

BB

SCRAMBLER

BCH

Encoder
LDPC

Encoder

Bit

Interleaver
Mapper

INPUT MODE ADAPTATION

FEC Encoding

Stream Adaptation

rates: 1/4, 1/3, 2/5, 1/2, 3/5,

2/3, 3/4, 4/5, 5/6, 8/9, 9/10

roll-off: 0.35, 0.25 and 0.2

Data

CCM/

ACM

Mode

PL Signalling

and Pilot Insertion
PL Scrambler Pulse Shape

Filter

PL Framing

To the RF system

Mapper

Filtering

Figure 1.7: Functional block diagram of the DVB-S2 transmitter

the receiver to synchronise (carrier and phase recovery, frame synchronisation) and to detect

the modulation and coding parameters.

The first 26 BPSK symbols (18D2E82[HEX]) of the PL header indicate the start of the

frame. This fixed sequence of symbols are known as SOF (start of frame). The remaining 64

symbols are employed for signaling the system configuration. Since the PL Header is the first

entity to be decoded by the receiver it can not be protected by the FEC scheme as it contains

header information that are required for decoding (e.g. adopted modulation scheme and code

rate). Nevertheless, the header must be well decodable under the worst-case link conditions [27].

Therefore the main signaling information at this level is reduced to 7 bits (5 bits used to indi-

cate the modulation and coding configuration, 1 bit for frame length (normal or short) and 1

bit for presence/absence of pilots to facilitate synchronisation). These bits are highly protected

by an interleaved first-order Reed-Muller [18] block code with the parameters rate (64, 7, t = 32).

This thesis employs a full digital simulator developed in Matlab which combines the transmit-

ter structure from Figure 1.7 and the receiver structure from Figure 1.8. The DVB-S2 simulator

48

collects the error rate at each functional block output as well as the number of iterations per-

formed by the LDPC decoder. The designed transmitter can generate random data or read data

from a given file. The simulator is fully compliant with all the available configurations from nor-

mal and short frame, all the code rates and modulations. The receiver is able to be configured

for three different methods of soft-demapping [28] [29] [30]. The calculations can be performed

from Max-Log or any proposed simplification that will be introduced in Chapter 3. There are

also four different algorithms available for LDPC decoding (the sum-product, the Min-Sum and

two other variants algorithms). These algorithms as well as the maximum number of iterations

and the desired signal-to-noise ratio level can be set according to the simulation purposes. All

the simulations performed in this thesis employed this tool.

Frame

Slicer
CRC-8

Decoder

BBHEADER

Processing

BB

DESCRAMBLER

BCH

Decoder

LDPC Decoder
Bit

Deinterleaver

Soft

Demapper

FEC Decoding

Stream Adaptation

rates: 1/4, 1/3, 2/5, 1/2, 3/5,

2/3, 3/4, 4/5, 5/6, 8/9, 9/10

roll-off: 0.35, 0.25 and 0.2

Data

PL Signalling

Processing
PL Descrambler

Pulse Shape

Filter

PL Framing Processing

From the RF system

Demapper

Filtering

(MaxLog, Ad Hoc,

Voronoi)

Min-Sum + Offset

in CN Processing

Figure 1.8: General structure of the DVB-S2 receiver.

49

Chapter 2
LDPC Codes

The LDPC codes are linear codes over GF(2n) (n = 1 for binary LDPC, n > 1 for non-

binary LDPC codes) whose constraint graph is sparse. They were introduced and analysed by

Gallager [31] in a paper that was forgotten for several years and recalled only in the 1990s, after

LDPC codes were rediscovered by MacKay [32]. Aside from the sparsity requirement of H, the

fact that these codes can make use of soft-information from the channel output and also allow

the use of very long codewords, the LDPC codes are not different from any other block code.

Block codes are usually shorter and algebraically designed to be as less complex as possible.

On the other hand, LDPC decoding is based on an iterative exchange of information (Message

Passing) among bit nodes and check nodes in order to determine the transmitted information

(bit values). Message passing decoding algorithms are based on a messages exchange along the

edges of a corresponding Tanner graph. Therefore an LDPC code is usually designed based on

the properties of its parity check matrix, H.

In this thesis we will only consider binary LDPC codes. The decoding algorithms for these

codes may be classified into hard-decision and soft-decision algorithms. The hard decision al-

gorithms quantise the received signal into two numerical levels stated by a threshold. If the

received signal is below this threshold, the decoder output is set to 0. Otherwise, if the signal

is above the threshold, the decoder output is set to 1. On the other hand, the soft-decision

decoders calculate a graded soft-decision confidence measurement related to the probability of

the bit to be one or zero. The Maximum Likelihood (ML) soft-decision decoding algorithms

provide a significant performance gain in comparison to the hard-decision decoding methods. In

this chapter we will describe both types of decoding. We also focus on the Belief Propagation

(essentially the sum-product algorithm, which uses highly nonlinear operations) and the Min-

Sum algorithm. We aim to exploit the theoretical concepts by presenting some toy examples

and small simulations along the chapter.

50

2.1 Hard-Decision Decoders and Soft-Decision Decoders

The first step of hard-decision algorithms is made over each component of the received signal,

r, resulting in a vector

x ′ =
(

x̂1 x̂2 · · · x̂n
)

For instance, for a BPSK baseband real signal {−1, +1} we would have

x ′j = sign(rj)

If the vector x ′ is a valid codeword that belongs to C, then the decoder selects x̂ = x ′,

otherwise the structure of the error correction code is exploited to correct it.

The optimal decision rule, in this case, becomes the minimum Hamming distance. In other

words, this sot of algorithm decodes r as the nearest codeword ĉ to x ′. We can use this method

when the number of codeword is small. However, as the number of codewords increases, it

becomes expensive to search and compare all the codewords. The decoder must compare a de-

modulated codeword x ′ to m = 2k possible codewords cℓ ∈ C deciding for the codeword ĉ

which is closer to x ′ in terms of the Hamming distance. If there is more than one codeword with

the same Hamming distance, the decoder takes a random decision. In this sense, an iterative

decoding algorithm is much more proper and less computationally expensive.

Instead of using the Hamming distance, the soft-decision algorithms are based on the Eu-

clidean distances. For an AWGN channel, N(0, 2σ2) whose the variance per dimension is σ2, the

probability density function of r ∈ C conditioned to sℓ ∈ C is given by

fR|S(r|sℓ) =
1

2πσ2
e−

||r−sℓ ||
2

2σ2 (2.1)

Since the transmitted information is equally likely, the MAP rule and the ML decision rule are

both equivalent [8]. Thus the optimal soft-decision estimated symbol is defined by the following

criterion

ŝ = argmax
sℓ∈C

(

fR|S(r|sℓ)
)

(2.2)

As the Equation (2.1) is a monotonically decreasing function, we may have the soft-decision

estimation of ŝ in terms of the minimisation of a distance, as follows

ŝ = argmin
sℓ∈C

(

||r− sℓ||
2
)

(2.3)

The estimated symbol ŝ and the codeword ĉ are systematically associated to each other accord-

ing to the bit mapping from the adopted modulation.

The most important message passing algorithm based on hard-decision is known as bit-

flipping decoding. The use of this algorithm does not require to compare the hard estimated

codeword vector x ′ to the m possible codewords from C. Instead, the messages exchanged

51

between the Tanner nodes of the code are formatted as binary information. Essentially, the bit-

flipping algorithm consists of an interactive decoding algorithm that exchange binary messages

passed over bit-nodes and check-nodes and toggles bits in error according to the majority vote

of the messages exchanged until it finds a valid codeword. The method is sub-optimal as it

discards potentially useful information from the received signal r.

The soft-decision algorithms exchanges messages in the format of probabilities or Log-

Likelihood Ratios, that represent the level of confidence involved in the estimation. As seen

before, the confidence is not taken into account on hard-decision decoding algorithms. For bet-

ter illustrating these differences, the bit-flipping algorithm and the most important soft-decision

decoding algorithms will be detailed in the next dedicated subsections.

2.1.1 Bit-Flipping

This iterative decoding algorithm is based on exchanging messages between the bit nodes and

the parity-check nodes. Initially, the decoder takes the results from the hard channel outputs.

Consider a baseband BPSK signal {−1,+1} and a received vector

r =
(

1.22 −0.44 −1.21 0.4 1.47
)

in the output of an AWGN channel. The hard decoder detects

x ′ =
(

1 0 0 1 1
)

Intuitively we may realise this decision was taken with different levels of confidence for each

bit since some of the received values are closer to the transmitted levels than others. In other

words, the uncertainty over these bits is clearly lower, given their closeness to the threshold level.

Nevertheless, this information is not taken into account on hard-decision algorithms. As we will

see next, this is the most remarkable difference between the hard and soft-decision decoders.

After the first stage of hard-decision applied over the channel output values, the stage of

bit-flipping decoding algorithm begins. As a visual interpretation based on the Tanner graph, we

can imagine that from the input x ′, the bit-nodes send the received bits for all the parity-check

nodes they are connected. Thenceforth, each parity-check node evaluates the local response by

calculating the corresponding syndrome si. The expected response at the end of the check-node

processing is si =
∑n
j=1 hi,jx

′
j = 0 ∀ j ∈ {1, · · · , n}, i ∈ {1 · · · , n − k} as we already stated

in section (1.4). If all the parity-check equations are satisfied, i.e., s = 0, the algorithm ends.

Otherwise, the check-node sends back a message to each bit-node, telling it if the parity check

equation is currently satisfied. Then the bit-nodes use the messages processed by the check-

nodes in order to decide the bit value by majority vote, i.e., it tells a check node that it will

flip its decision if most of the connected check-nodes tell it to do so. The bit-nodes send the

processed messages once again to the connected parity-check nodes and the decoding process

restarts either until a maximum number of iterations or until a successful decoding based on

the result of the syndrome vector.

52

The Algorithm (1) described next is a concise statement of the bit-flipping (BF) steps. There

are three required inputs: the binary vector x ′, corresponding to the output of the hard decoder,

the parity check matrix, H, and the maximum number of iterations allowed, IMAX. One refers

to M(j) as the set of check nodes connected to a bit node j and to N(i) as the set of bit nodes

connected to a check node i.

The BF is an iterative hard-decision decoder for the Binary Symmetric Channel proposed

in [1]. Bit-flipping is sub-optimal in terms of performance, but is still surprisingly good, given

the extreme simplicity of the algorithm. As mentioned before, the bit-flipping decoder, also

known as the Gallager B decoder, works on the Tanner graph of the parity-check matrix by

exchanging binary messages over the edges [33]. Since the input and output alphabets are

binary, all operations of the decoder are defined over GF(2).

53

Algorithm 1 - Bit-Flipping Decoding

Require: x ′

Require: H
Require: IMAX

Iiter = 0

for j = 1 : n do
Mj = x

′
j

end for

repeat

for i = 1 : m do
for j = 1 : n do
Ei,j =

∑
j ′∈Ni

⊕(Mj ′)
1

⊲ Check node processing
end for

end for

for j = 1 : n do
if the majority of the check-node messages Ei,j are failing then ⊲ Bit node processing
Mj =Mj ⊕ 1 ⊲ Mj is flipped

end if
end for

for i = 1 : m do ⊲ Syndrome Calculation
si =

∑
j ′∈Ni

⊕(Mj ′)

end for

if all (si = 0) or (Iiter = IMAX) then
FINISHED

else
Iiter = Iiter + 1 ⊲ Increment iteration counter

end if

until FINISHED

The intuitive thinking behind the bit-flipping is that the greater the number of unsatisfied

parity check nodes connected to a particular bit, the higher the belief that this bit is in er-

ror. However, since such a bit-flipping algorithm uses binary signals from a hard decoder with

probabilities and belief information ignored, the decoding algorithm only performs well in high

signal-to-noise ratio scenarios.

1The operator ⊕ is defined as the addition in GF(2). Therefore, the notation
∑
j⊕Mj refers to the summation

of Mj in GF(2)

54

Example 2.1.1: Bit-flipping

In this example we will use the parity check matrix presented below and a valid codeword
c =

(

0 1 1 1 1 0 0 0 1 0
)

. Aside from the requirement that H be sparse, as LDPC
code is not different to any other block code, such as the one represented by the
parity-check matrix in (2.4). Indeed, existing block-codes can be employed with any
LDPC iterative decoding algorithm [34], including bit-flipping. Typical block-codes are
generally decoded with ML decoding algorithm and due to that, they are generally
short and specially designed for making this task less complex. LDPC codes are al-
ways iteratively decoded and therefore they are designed with focus on the properties ofH.

The bit-flipping algorithm is based on the idea that a codeword bit embedded in a large
number of unsatisfied parity-check equations is more likely to be incorrect. The sparseness
of H is only useful for spreading the codeword bits into the existing parity check equations
so that these equations are unlikely to involve the same set of codeword bits. We will show
the effect of overlapping the parity-check equations out of this example.

H =

1 0 1 0 0 0 0 1 1 0
0 1 0 0 0 0 1 0 1 0
0 0 1 1 0 0 1 0 0 1
0 1 0 1 0 1 0 1 0 0
0 0 0 0 1 1 0 0 1 1

(2.4)

Lets assume that this codeword is modulated using a baseband BPSK signal {−1, +1}.
The passband signal is sent and corrupted by AWGN. It follows that the last bit is in error
after the hard-decision demapping taken over the received vector y. Thus, the received
codeword is

x ′ =
(

0 1 1 1 1 0 0 0 1 1
)

(2.5)

and therefore, the input of the bit-flipping decoder is initialisated as

M =
(

0 1 1 1 1 0 0 0 1 1
)

(2.6)

In the first step of the algorithm, the check-node messages (parity-check equations) are
evaluated and the results are placed into the check-node matrix E, in all the positions for
which Hi,j = 1. At the end of this step we obtain

E =

0 . 0 0 0 .
. 0 0 . 0 .
. . 1 1 . . 1 . . 1
. 0 . 0 . 0 . 0 . .
. . . . 1 1 . . 1 1

(2.7)

As we can see in (2.4), the check-node 1, i.e., the first row of the parity-check matrix, is
connected to the bit-nodes N1 = {1, 3, 8, 9}. The messages E1,j are evaluated with respect
to the check-node 1 and bit-nodes j ∈ N1. In this case, these messages are obtained as

55

follows

E1,1 = E1,3 = E1,8 = E1,9

= M1 ⊕M3 ⊕M8 ⊕M9

= 0

The message updates from second, third, fourth and fifth check-node can be evaluated
by following the same procedure.

The second step of bit-flipping consists on the update of new bit-node messages. Note
that the first column of E, in (2.7), has a single message from check-node 1 (the first
parity-check equation). As the message from this check no is 0, i.e., the only parity-check
equation connected to the bit-node 1 is satisfied, this bit is kept the same (no flipping).
The fifth column of E has also a single message from check-node 5. As the message from
this check-node is 1, the bit-node 5 is flipped. The same occurs in the tenth column of
E in the first iteration. The majority of the check-nodes connected to the bit-node 10 is
unsatisfied. At the end of this step of iteration 1, the bit-node messages are updated to

M =
(

0 1 1 1 0 0 0 0 1 0
)

(2.8)

The third step of this iteration consists on the calculation of the syndrome vector. If this
is an all zero vector, there is no unsatisfied constraint and therefore, the messages from
M will be returned as a valid codeword. Otherwise, the algorithm would return to the
first step of the algorithm in order to update the matrix E. At the end of this iteration,
the syndrome is calculated as

s1 = M1 ⊕M3 ⊕M8 ⊕M9 = 0

s2 = M2 ⊕M7 ⊕M9 = 0

s3 = M3 ⊕M4 ⊕M7 ⊕M10 = 0

s4 = M2 ⊕M4 ⊕M6 ⊕M8 = 0

s5 = M5 ⊕M6 ⊕M9 ⊕M10 = 1

As the result is a non-zero syndrome vector, we start a new iteration. The first step of the
second iteration follows the same procedure described in the first iteration. The matrix
E is now updated from the most recent bit-node messages, calculated in iteration 1 and
shown in (2.8). The calculations result in

E =

0 . 0 0 0 .
. 0 0 . 0 .
. . 0 0 . . 0 . . 0
. 0 . 0 . 0 . 0 . .
. . . . 1 1 . . 1 1

(2.9)

From the updated check-node messages in (2.9), we can now update the bit-node messages
by following the same procedure described in step 2 of the algorithm. Thus, at the second
iteration, we obtain the following

M =
(

0 1 1 1 1 0 0 0 1 0
)

(2.10)

56

Updating the syndrome we obtain s =
(

0 0 0 0 0
)

. As mentioned before, this result is
a stop-condition that ends the algorithm and return M as the final (valid) codeword.

Many LDPC codes are pseudo-randomly designed, i.e., the first step of construction is based

on a random placement of 1s. Some bad configurations, such as the cycles of length 4 called 4-

cycles, are either avoided during the design or removed afterwards. It is important to highlight

the negative effect of the 4-cycles on the bit-flipping algorithm (not only for hard-decision

algorithms but also for the soft-decision ones). This configuration can be identified by checking

each pair of columns in H verifying if they overlap in two different check-node positions. A

4-cycle may also be graphically identified through the corresponding Tanner graph, as shown in

Figure 2.1. The cycles lies in a sequence of 2 bit-nodes connected to two coincident check-nodes.

The general length of a cycle is given by the number of edges it contains.

c1

c2

c3

b1

b2

b3

b4

b5

b6

b7

Figure 2.1: The bit nodes b6 and b7 are both connected to the check nodes c3 and c2. The four
red edges represent a 4-cycle

Two different configurations of 4-cycles in the matrix H are illustrated below. This parity-

check matrix has two columns that overlap 1s in two different rows, as emphasised in red and

green.

H =

1 0 1 0 0 0 1 0 1 1
0 1 0 1 0 0 0 0 1 0
0 0 0 0 1 0 1 1 0 0
1 1 0 1 0 0 1 0 1 1
1 1 0 0 0 1 0 1 0 0

(2.11)

From the decoding point of view, a 4-cycle can involve two different bits in the same two

parity check constraints. In this case, both equations are going to be unsatisfied and thus, it

will not be possible to identify which bit is incorrect. Therefore the algorithm will not easily

converge since the bits involved in the cycle will be flipped at the same time. When both of

the parity-check equations are unsatisfied, it is not possible to determine which bit is erroneous.

57

For long codes, randomly choosing a parity-check matrix almost always produces a good code.

Nevertheless, for practical applications the created codes may not be long enough and due to

that, the matrix must be checked a posteriori to ensure it does not contain any 4-cycles. On the

contrary, the whole decoding efforts might be to no avail [34].

2.1.2 Sum-Product

The sum-product is a soft-decision LDPC decoding algorithm. Rather than flipping bits,

such as the hard-decision decoders, the class of soft-decision algorithms process the information

from the bit probabilities coming from the channel statistics for each bit j, Ppj , also called a

priori probabilities. The aim of this algorithm is to compute the a posteriori probability for

each bit, which consists on the probability that the j-th codeword bit is 0 or 1, conditional on

the received channel output and also on the event s = HcT = 0, i.e., that all the parity-check

constraints are satisfied if cj assumes the adopted binary value. The sum-product chooses the

bit value cj = 0 or cj = 1 associated to the maximum value of the a posteriori probability, i.e.,

P(cj = {0, 1} | rj, HcT = 0).

As mentioned before, the decoding complexity for the true optimum decoding is exponen-

tial in k, since it requires an exhaustive search over all m = 2k possible codewords. Instead of

doing this, the sum-product iteratively seeks for a codeword whose bits cj ∈ {0, 1} maximise

each probability, P(cj = {0, 1} | rj, HcT = 0). This is an equivalent measure of confidence on

the established value of the bit j, under the condition that all the parity check constraints are

satisfied with this decision.

The sum-product algorithm is an instance of message passing algorithm. For each edge

(i, j) ∈ C that connects a check-node i to a bit-node j, the sum-product operates through

two distinct sorts of message which operate in to two possible directions along the edges. As

well as in the bit-flipping algorithm, these messages are exchanged through the Tanner graphs

toward to the check-node or to the bit-nodes. In sum-product, the exchanged messages repre-

sent probabilities, i.e., the amount of reliability for a certain bit of the codeword. In what we

call sum-product horizontal step, the probabilities from a bit-node are passed toward to the

check-nodes it is connected. These messages are combined so that we obtain the probability

that each check-node is satisfied, given the current state of the considered bit-node. In what we

call vertical step, the messages are passed from a check-node toward to the bit-nodes connected

to it. For each bit, the associated check-nodes probabilities are used to update the bit-node

probability message. In the absence of cycles, such message passing algorithm compute exact

probabilities. However, when the structure of cycles are present in the code, the sum-product

algorithm is able to computes only approximated solutions [35].

In this thesis we will derive the sum-product exchanged messages in terms of log-likelihood

ratios (LLR). This derivation will emphasise some of the likelihood arithmetic and highlight the

calculations of extrinsic probabilities, a priori probabilities and a posteriori probabilities. We

note that the LLR is only applicable to binary codes. For a binary variable x ′i at the output of any

58

type of soft-decoder, it is easy to find P(x ′i = 1) given P(x ′i = 0), since P(x ′i = 1) = 1−P(x ′i = 0)

and so we only need to store one probability value for x ′i. Log-likelihood ratios are used to

represent this sort of metric by one single value. For any modulation of order M, the LLR of

these probabilities, L(x ′i), is given by the ratio

L(x ′i) = ln

(

P(x ′i = 0)

P(x ′i = 1)

)

, i ∈ {0, 1, · · · , log2 (M) − 1} (2.12)

where L(x ′i) is positive if P(x ′i = 0) > P(x ′i = 1) and negative if P(x ′i = 0) < P(x ′i = 1). Thus

the sign of L(x ′i) has direct consequence over the binary hard-decision of x ′i. In other words, if

L(x ′i) < 0, x ′i will be set to one. Similarly, if L(x ′i) > 0, x ′i will be set to zero. On the other

hand, the modulo |L(x ′i)| is related to the reliability of the binary decision over x ′i. The greater

the magnitude of L(x ′i), the more confidence on the hard-decision involving this particular bit.

Furthermore, this sort of metric has a significant weight on the reduction of decoder complexity

since this replaces the multiplicative operations by additions.

The sum-product algorithm is an special case of the forward/backward algorithm, sometimes

referred to as the BCJR or APP algorithm [36] in coding theory. This involves combination of

behavioural (the graph) and probabilistic modeling. From the probabilistic model, we have the

vectors Poj , which consists on the a posteriori probability and Ppj , which consists on the a priori

probability. This algorithm involves recursions on the calculation of two matrices of the same

dimension of H: one to compute the extrinsic messages as a function of the last update of

Pexti,j ′ as well as the value of Ppj , and one to compute the intrinsic messages as a function of the

last update of Pinti,j ′ as well as the value of Ppj . Both recursions do not interact, so they can be

computed in parallel [36]. The extrinsic probability is the probability that bit j makes the parity

check i to be satisfied if bit j is 1, i.e.,

Pexti,j =
1

2
−

1

2

∏

j ′∈N(i),j ′ 6=j

1− 2Pinti,j ′ (2.13)

where Pinti,j ′ is the intrinsic probability, i.e., the current estimation, available for the check-node

i, of the probability that bit j ′ is a one. Appendix A shows the mathematical proof of the

Equation (2.13). The corresponding LLR of Pexti,j , sent from the check-node i to the bit-node j

is given by

Ei,j = LLR(Pexti,j) = ln

(

1− Pexti,j
Pexti,j

)

(2.14)

Keeping focus on the manipulation of Equation (2.14), for a generic variable a, we can use

the relationship

tanh

(

1

2
ln

(

1− a

a

))

= 1− 2a (2.15)

to write this equation as

Ei,j = ln

1+
∏
j ′∈N(i),j ′ 6=j tanh

(

Mi,j ′

2

)

1−
∏
j ′∈N(i),j ′ 6=j tanh

(

Mi,j ′

2

)

 (2.16)

59

On the other hand, the term Mi,j ′ corresponds to the LLR of Pinti,j ′ , i.e.,

Mi,j ′ = ln

(

1− Pinti,j ′

Pinti,j ′

)

(2.17)

The term Lj = LLR(Poj) is given by the sum of the LLR of its a priori probability, LLR(Ppj), and

the LLRs of the extrinsic probabilities associated to the set of connected parity check-nodes.

Thus, for each iteration, the soft-output of the sum-product is

Lj = LLR(Ppj) +
∑

i∈M(j)

Ei,j (2.18)

From the backward stage, the message sent from a bit-node to all its connected parity check-

nodes,Mi,j, can not consider the total LLR, Lj for each bit-node. Instead of that, it must exclude

the portion of LLRs coming from the parity check node which is being updated. This will ensure

not sending back an information that was already computed. The LLR of intrinsic probability

is then calculated at each iteration as

Mi,j = LLR(Ppj) +
∑

i∈M(j)i ′ 6=i

Ei ′,j (2.19)

From now on, we focus on the derivation of the exact a priori LLR expression for a BPSK

constellation onto Binary Symmetric Channel (BSC) and in AWGN. This is a mere introduc-

tion on this topic since we dedicate Chapter 3 for proposing, explaining and providing results

of lower-complexity to approximate LLR expressions for higher order constellations.

As mentioned before, one input of the sum-product algorithm is the a priori probability LLR,

which is calculated from the channel output, according to the channel model and the employed

constellation. Thus, for a BSC, the corresponding LLR is defined as

LLR(Ppj) = ln

(

P
(

cj = 0|x ′j
)

P
(

cj = 1|x ′j
)

)

= ln

(

P
(

x ′j|cj = 0
)

P (cj = 0)P
(

x ′j
)

P
(

x ′j|cj = 1
)

P (cj = 1)P
(

x ′j
)

)

(2.20)

Considering that the binary source is identically distributed, i.e, P(cj = 0) = P(cj = 1), this

LLR is reduced to

LLR(Ppj) = ln

(

P(x ′j|cj = 0)

P(x ′j|cj = 1)

)

(2.21)

where cj is the bit originally transmitted by the source (before being corrupted). For real chan-

nel outputs, x ′j is replaced by the received real symbol r and cj is replaced by the original

transmitted symbol sk, as we will see later.

A BSC model is graphically illustrated in Figure 2.2, also recognised as an equivalent model

to an AWGN channel with quantised output. We denote p as the probability of crossover.

The event of crossover occurs when the decoder receives a flipped version of the bit originally

60

sent by the source. Therefore, the probability of no flipping is given by 1 − p. According to

Equation (2.21), the LLR of a priori probability for this binary channel model is given by

LLR(Ppj) =

ln
(

p

1−p

)

if rj = 1

ln
(

1−p
p

)

if rj = 0
(2.22)

p

1 − p

1 − p

p

Source Decoder

11

00

Figure 2.2: Binary Symmetric Channel model

Now considering the AWGN model and a BPSK baseband signal, the received vector r is

modelled as r = s + n. The signal s ∈ R is the BPSK modulated symbol, which is defined as

s = −1 for cj = 0 and s = +1 for cj = 1. The signal, n, is the channel noise, which corresponds

to a real random Gaussian variable n ∼ N(0,σ2).

From the general definition of the a priori probability in Equation (2.21), we can derive an

equivalent expression of this metric assuming the AWGN and a BPSK modulated real signal s.

The probability density function of the Gaussian random received variable r ∈ R conditioned

to the symbol si, i ∈ {0, 1} is

P(r | si) =
1√
2πσ2

e−
(r−si)

2

2σ2 (2.23)

The final a priori LLR for any bit j from this constellation is therefore given by

LLR(Ppj) = ln

e
−(r+1)2

2σ2

e
−(r−1)2

2σ2

 =
−(r+ 1)2 + (r− 1)2

2σ2
(2.24)

LLR(Ppj) = −
2r

σ2
(2.25)

The sum-product decoding is presented in Algorithm (2). There are three required inputs:

the log-likelihood ratio of the a priori probabilities, LLR(Ppj), the parity check matrix H and

the maximum number of iterations allowed for the decoding process, IMAX.

61

Example 2.1.2: Sum-Product

This example presents an illustrative description of the the sum-product algorithm. We
use the same parity check matrix from Example (2.1.1). Also the same assumptions from
that example with respect to H can be replicated in this.

This time the codeword c =
(

0 1 1 1 1 0 0 0 1 0
)

is sent from a QPSK mapper, whose

modulated symbols s ∈ {−
√
2

2
− i

√
2

2
, −

√
2

2
+ i

√
2

2
,

√
2

2
− i

√
2

2
,

√
2

2
+ i

√
2

2
} are associated to

the binary set of strings b1b0 =
(

00 01 10 11
)

, in this order. For simplicity, lets assume
the QPSK modulation as a BPSK constellation per dimension so that Equation (2.25)
can be applied independently over the real and the imaginary part of the received symbol
r. Thus, the a priori LLR message can be estimated as

LLR(Pp1) =
2Re{r}

σ2
(2.26)

LLR(Pp0) =
2 Im{r}

σ2
(2.27)

Chapter 3 will be dedicated to present in details the other methods of estimation of these
LLRs at higher order modulations.

In this example, consider that the baseband signal is corrupted by AWGN with Eb
N0

con-
figured to 0dB. Assume that the transmitter pulse shape filter is a normalised RRC filter,
i.e., 1

L

∑L
i=1 g

2
i = 1. From Equation (1.21) we obtain

Eb =
E[|si|

2] 1
L

∑L
i=1 g

2
i

br
= 1 (2.28)

σ2 =
N0

2
=
Eb

2 Eb
N0

=
1

2
(2.29)

White Gaussian noise can be generated using randn function in Matlab. This function
generates a random sequence λ that follows a Gaussian distribution λ ∼ N(0, 1). For
adjusting the variance of λ to σ2, we multiply the random vector by the corresponding
standard deviation. Thus the complex received noisy signal with Eb

N0
= 0dB is given by

r = si +
√
σ2λ+ ı̇

√
σ2λ (2.30)

After adding noise, consider that we have the following vector at the channel output

r = (−0.8407+ 1.1990ı̇ 0.9945− 0.2480ı̇ 0.9824− 1.2560ı̇ −0.8789+ 1.5415ı̇ −1.1730− 0.5069ı̇)

The standard sum-product algorithm begins its first iteration so that the obtained matrix
of bit to check-node messages, M, initialised with the values of LLR(Ppj), is

M =

−3.3629 . 3.2883 7.1244 −6.1135 .

. 5.7682 −2.8092 . −5.7357 .

. . 7.0597 −5.0702 . . −7.5653 . . 1.3139

. 8.0432 . 0.7286 . −3.1906 . 8.9393 . .

. . . . 3.9295 −5.9923 . . −10.8556 −1.1403

62

At the same iteration, the check to bit-node messages, E, are evaluated from Equa-
tion (2.16). The resulting matrix is

E =

−3.5071 . 3.0816 2.7732 −2.8929 .

. 3.2471 −4.0496 . −3.2707 .

. . −0.6898 1.7206 . . 0.7064 . . 0.8871

. 0.9721 . −4.0782 . −0.9683 . 0.9583 . .

. . . . −1.9165 1.8333 . . 1.8492 3.3414

The final a posteriori probability LLR results is

L = (−6.8700 9.0154 6.3699 −3.3496 2.0129 −4.1590 −6.8588 9.8976 −9.0063 2.2010)

and the binary decision at the end of this iteration, which is based on the sign of these
LLRs, results in the following estimated codeword

ĉ =
(

1 0 0 1 0 1 1 0 1 0
)

For block codes, there are three general ways in which the decoding algorithm may ter-
minate [37]:

• Decoder successful: The decoder has found a valid codeword ĉ equals to c.

• Decoder error: The decoder has found a valid codeword ĉ that differs from c.

• Decoder failure: The decoder was unable to find a valid codeword using the resources
specified.

For the error and the failure cases, the decoder has been unable to find the correct sent
codeword c. The main difference between them is that decoder failures are detectable
whereas decoder errors are not.

In this case, ĉ results in a null syndrome vector, i.e., at the end of this single iteration, ĉ
converges to a valid codeword. But unfortunately this valid codeword does correspond to
the exactly transmitted codeword c ∈ C.

If we had no successful decoding at the end of this iteration, the bit to check-node mes-
sages, M, would be updated from Equation (2.19) and the routine would return to the
calculation of a new matrix E. However, due to the decoder error, the sum-product algo-
rithm will terminate at this current state of M and E.

63

Algorithm 2 - Sum-Product Decoding

Require: H

Require: IMAX
Require: LLR(Pp)

Iiter = 0

for j = 1 : n do
for i = 1 : m do
Mi,j = LLR(Ppj)

end for
end for

repeat

for i = 1 : m do
for j ∈ Ni do

Ei,j = ln

(

1+
∏
j ′∈N(i),j ′ 6=j tanh

(

M
i,j ′
2

)

1−
∏
j ′∈N(i),j ′ 6=j tanh

(

M
i,j ′
2

)

)

⊲ Calculate extrinsic messages

end for
end for

for j = 1 : n do
Lj =

∑
i∈Mj

Ei,j + LLR(Ppj) ⊲ Calculate A Posteriori Probability LLR

ĉj =

{
1 , Lj 6 0
0 , Lj > 0

⊲ Decode the codeword based on the A Posteriori Probability

LLR
end for

for i = 1 : m do
si =

∑
j ′∈Ni

⊕(ĉj ′) ⊲ Calculate Syndrome vector
end for

if all si = 0 or Iiter = IMAX then
FINISHED

else
for j = 1 : n do

for i ∈ Mj do
Mi,j =

∑
i ′∈Mj,i ′ 6=i Ei ′,j + LLR(Ppj) ⊲ Calculate the Intrinsic Probability LLR

end for
end for
Iiter = Iiter + 1 ⊲ Increment iteration counter

end if

until FINISHED

64

The calculation of extrinsic probability LLR message Ei,j, which measures the probability

of the parity check constraint i to be satisfied given that the bit j is 1, can be modified in order

to achieve lower complexity [11]. By taking the identity

2 tanh−1(s) = ln

(

1+ a

1− a

)

(2.31)

and assuming

a =
∏

j ′∈N(i),j ′ 6=j

tanh

(

Mi,j ′

2

)

(2.32)

we can write Equation (2.16) in a simpler manner as

Ei,j = 2 tanh−1
∏

j ′∈N(i),j ′ 6=j

tanh

(

Mi,j ′

2

)

(2.33)

Moreover, the LLR message, Mi,j ′, which regards to the intrinsic probability can also be

reshaped in terms of two factors: the signal factor ρi,j ′, which is given by

ρi,j ′ = sign(Mi,j ′) (2.34)

and the magnitude factor τi,j ′, that is

τi,j ′ = |Mi,j ′ | (2.35)

Thus we can write

Mi,j ′ = ρi,j ′τi,j ′ (2.36)

and Equation (2.33) becomes

Ei,j =

∏

j ′∈N(i),j ′ 6=j

ρi,j ′

 2 tanh−1

∏

j ′∈N(i),j ′ 6=j

tanh
(τi,j ′

2

)

 (2.37)

Additionally, the manipulation of Equation (2.37) yields

Ei,j =

∏

j ′∈N(i),j ′ 6=j

ρi,j ′

 2 tanh−1

ln−1

∑

j ′∈N(i),j ′ 6=j

ln
[

tanh
(τi,j ′

2

)]

 (2.38)

As a benefit, the product from Equation (2.37) is replaced by a sum. Finally, the last step

of this simplification relies on the following identity [34]

φ(x) = − ln
(

tanh
(x

2

))

= ln
ex + 1

ex − 1
(2.39)

65

which has the property φ−1 = φ since φ(φ(x)) = x.

From this result, Equation (2.16) becomes

Ei,j =

∏

j ′∈N(i),j ′ 6=j

ρi,j ′

φ

∑

j ′∈N(i),j ′ 6=j

φ(τi,j ′)

 (2.40)

These small, yet effective simplifications presented so far can reduce the check-node compu-

tation complexity compared to the same costly step from the optimal sum-product algorithm.

Furthermore, the simplified sum-product also uses to achieve great performance.

2.2 Sub-optimal Soft-decision Decoding Algorithms

The extrinsic LLR message calculation is usually the hardest step to implement an LDPC

decoder. This step can be more efficiently implemented by using one of the sub-optimal algo-

rithms which significantly reduce the hardware complexity at the cost of acceptable performance

degradation. Oftenly, these algorithms correspond to enhanced versions of the so-called Min-

Sum [5] algorithm. This section is dedicated to the Min-Sum, the Normalised Min-Sum [6] and

the Offset Min-Sum algorithm [6], which are able to perform at least as well as the original

sum-product algorithm when finite message precision is considered. We begin with a description

of the classic Min-Sum algorithm.

2.2.1 Min-Sum and its variants algorithms

The substantial simplification employed in the min-sum algorithm arises from the remark

that the product in Equation (2.16) is essentially dominated by the minimum term of |Mi,j|. In

other words, the term corresponding to the smallest τi,j ′ well approximates the summation from

Equation (2.40). The Min-Sum algorithm is nothing more than the standard log domain Sum-

Product algorithm (SPA) with the extrinsic probability LLR calculation update step replaced by

Ei,j =

∏

j ′∈N(i),j ′ 6=j

ρi,j ′

 min
j ′∈N(i),j ′ 6=j

τi,j ′ (2.41)

For a certain pair EIi,j and E
II
i,j which are computed from Equations (2.16) and (2.41), respec-

tively, it can be proved that EIi,j and E
II
i,j have the same sign and EIIi,j > E

I
i,j [38]. As a consequence

of this, we note that this approximation introduces a sort of overestimation of the reliability

magnitude. The approximation causes a small degradation on the decoding performance. In the

Normalised Min-Sum algorithm, the output of the check-node is simply multiplied by a factor

of normalisation, 0 < α < 1, as shown in the next equation. This small change compensates the

66

overestimation introduced by the original min-sum approximation.

Ei,j = α

∏

j ′∈N(i),j ′ 6=j

ρi,j ′

 min
j ′∈N(i),j ′ 6=j

(τi,j ′) (2.42)

A second alternative simplification can also reduce the overestimation of the outgoing extrin-

sic message by simply adding an offset constant. The Offset Min-Sum algorithm is implemented

through the replacement of Equation (2.41) by

Ei,j =

∏

j ′∈N(i),j ′ 6=j

ρi,j ′

max

(

min
j ′∈N(i),j ′ 6=j

(τi,j ′) − β, 0

)

(2.43)

Figure 2.3 depicts the comparative performance among the Sum-Product algorithm (SPA),

the Min-Sum (MS) and its variant algorithms: the Normalised Min-Sum and the Offset Min-

Sum. These simulations were evaluated from DVB-S2 Matlab model, described in Chapter 1 of

this thesis, configured as short FECFRAME transmission (N = 16200) under QPSK scheme,

LDPC code rate r = 3/4 and maximum number of iterations limited to 50. Offset constant

and normalisation constant were fixed to β = 0.14 and α = 0.57 for the Offset MS and Nor-

malised MS, respectively. The bit-error rate is computed at the output of LDPC decoder and

the received signal at the channel output is corrupted by additive white Gaussian noise. As

shown in this figure, the SPA achieves better performance than the other algorithms. Offset MS

offers the second best BER performance, but as we know that it holds a lower complexity than

SPA, one can say this algorithm provides the best trade-off between performance and complexity.

Defining η = br as the spectral efficiency or information rate of the system, for reliable

transmissions in our system configuration, we must have

Eb

N0

SHANNON > 10 log10

(

2η − 1

η

)

= 0.86dB (2.44)

where η = br is the product between the number of bits per symbol (2 bits under QPSK scheme)

and r is the code rate. Reliable communication in the information-theoretic context means that

error probability tends to zero as the codeword lengths get large. A practical system is said to

be reliable if it operates at some desired non-zero, but very small error probability level. DVB-

S2 standard denotes this practical state of small error probability as Quasi Error Free (QEF)

condition, achieved by computer simulation limited to 50 LDPC decoding iterations, perfect

carrier and synchronisation recovery, no phase noise and AWGN channel. At our current system

configuration, (Es/N0) QEF > 4.03dB is suggested on the expected standard error performance.

Thus we have,

Eb

N0

QEF =
Es

N0

QEF − 10 log10 (η) > 4.03dB− 10 log10

(

2× 3

4

)

= 2.2691dB (2.45)

For short FECFRAMEs an additional degradation of 0.2dB to 0.3dB has to be taken into

account [3]. Therefore, adopting (Es/N0) QEF > 4.03+ 0.25dB for the short FECFRAME trans-

mission, we obtain
Eb

N0

QEF∗ > 2.5191dB (2.46)

67

which is perfectly in accordance to our results in Figure 2.3.

0.5 1 1.5 2 2.5 3
10

−5

10
−4

10
−3

10
−2

10
−1

BER QPSK, r=3/4

E
b
/N

0
 [dB]

B
E

R

S
h

a
n

n
o

n
 L

im
it
 Q

P
S

K
 r

 =
 3

/4

P
e

rf
o

rm
a

n
c
e

 a
t

Q
E

F
 (

s
h

o
rt

 F
E

C
F

R
A

M
E

)

Normalised Min−Sum α = 0.57

Offset Min−Sum β = 0.14

Sum−Product

Min−Sum

Figure 2.3: Bit-error rate performance of LDPC decoding algorithms for short FECFRAME
transmission and code rate r = 3/4 under QPSK modulation.

68

Chapter 3
Simplified Soft-Demappers for Higher-Order

Modulation Schemes

Chapter 2 presented the soft-decision decoders as a class of algorithms that outperform the

family of hard-decision decoders. As remarked before, for soft-decision decoding algorithms,

the reliability metrics are calculated based on the channel outputs and also on the channel

estimated parameters (e.g., for AWGN, the SNR). These decoders employ the reliability mea-

sures to gain knowledge over the transmitted codewords. Nevertheless, the performance power

from soft-decision comes at the expense of higher complexity. As opposed to hard-decision,

Log-Likelihood Ratios at the channel output have been shown to be very efficient metrics for

soft-decoding of many powerful codes such as the turbo codes [39] and Low-Density Parity check

codes [1]. The LLRs offer practical advantages in many steps along decoding process, as we will

see next.

Regarding the LLR derivation for AWGN, we will see that, as the modulation order increases,

the calculations becomes more complex. This increase in terms of complexity may cause decoding

delays, extra power dissipation at the receiver as well as increasing the required hardware area.

But for high speed wireless transmissions, the decoder might not be able to support these

effects. The LLR approximations for DVB-S2 standard will be introduced in this Chapter as an

efficient implementation of this sort of decoder. First we will present an Ad Hoc solution, based

on intuitive constellation splitting for which we derive LLR expressions expressed in terms

of constant values. Then we present a second solution based on the analytical derivation of

constellation boundaries using the Voronoi [40] criterion in order to find an optimal polyhedral

decomposition of sectors.

3.1 Introduction to the Ad Hoc Simplification

The calculation of Log-Likelihood Ratios at the channel output may impose great demand

of memory and hardware area, especially for high-order modulations. As a part of this research,

one introduces a new possible approach for the LLR approximation under AWGN. This is based

on the splitting of the original constellation into smaller sectors where our assumptions are valid.

69

Each new sector has a less complex configuration in which it is possible to take into account only

two symbols from the constellation besides the received one. The proposed solution is applied

under 8-PSK and 16-APSK constellations adopted in the DVB-S2 standard.

As already mentioned before, LDPC codes provide excellent bit error rates in AWGN chan-

nels [1]. Nowadays design techniques for LDPC generation enable the construction of codes

which approach the Shannon’s capacity [41] to within hundredths of a decibel. However, the

channel codes such as LDPC require a soft-demapper [8] for the calculation of a soft-metric for

each bit from the constellation. The LLRs offer practical advantages such as numerical stabil-

ity [42] (low dynamic range) as well as the simplification of many decoding algorithms. They

are defined as the logarithmic ratio between the probability of the bit to be 0 (bj = 0) and the

probability of the bit to be 1 (bj = 1) conditioned to a given received complex symbol, r, i.e,

LLR(bj)
∆
= ln

(

P(bj = 0 | r)

P(bj = 1 | r)

)

(3.1)

= ln

(

P(r | bj = 0)P(bj = 0)/P(r)

P(r | bj = 1)P(bj = 1)/P(r)

)

(3.2)

= ln

(

P(r | bj = 0)

P(r | bj = 1)

)

(3.3)

Note that Equation (3.3) is obtained as a consequence of the Bayes’ rule application and the

assumption that we have an equiprobable binary source.

The event bj = 0 is a consequence of the sum of disjoint events from the transmission of any

symbol, si, from the constellation whose bj = 0. Due to this, through the marginalisation rule,

we may obtain the channel LLR in terms of the received and transmitted symbols associated

to bj = 0. Thus, the exact calculation of the channel LLR for an M-ary complex modulation

under AWGN is defined as

LLR(bj) = ln

(
∑
i∈{Abj=0}

Vi
∑
i∈{Abj=1}

Vi

)

(3.4)

where A is the alphabet of symbols, Abj=x is the set of symbols which present the j-th bit equal

to x ∈ {0, 1} and Vi is the Gaussian probability density function of the received complex symbol

given that si was transmitted, which in this case yields

Vi =
1

2πσ2
e

−|r−si|
2

2σ2 i = 0, 1 · · ·M− 1 (3.5)

In Equation (3.5), σ2 is the variance per dimension, r is the received symbol and si is the

i-th symbol from the constellation.

Equations (3.4) and (3.5) require a high computational cost and hardware complexity exem-

plified by the large number of multiplications, exponential and logarithm operations in addition

to the memory requirements, mainly observed in high order modulations. In this sense, the

Max-Log approach [28] brings a significant reduction in the amount of operations through the

70

elimination of the exponentials and logarithm computations. According to this method, the LLR

calculations rely on the Jacobian Logarithm [28] identity, which is approximated by

ln(ex1 + ex2) ≈ max(x1, x2) (3.6)

Appendix B provides the Jacobian identity as well as its proof.

Next subsections briefly present a new alternative [29] approximation to the computation

of the LLRs. The presented simplification is tailor-made to the constellations defined in the

DVB-S2 [3]. Our main concern consists in avoiding the unnecessary operations involving mul-

tiplications, additions and the comparisons. Subsection 3.1.1 analyses the Max-Log approach

for the 8-PSK scheme and then introduces the proposed Ad Hoc approximation, the involved

assumptions and the final LLR expressions. In subsection 3.1.2 an extension of this approxi-

mation is presented under 16-APSK scheme. The numerical results, simulations of performance

and gains in terms of complexity reduction will be presented in Chapter 4.

3.1.1 Channel Output LLR via Ad Hoc Approximation under 8-PSK

From the Max-Log approximation it is possible to achieve a substantial reduction in the

amount of operations required by the soft-decision decoders. To see this, we begin by detailing

the Max-Log approximation under 8-PSK constellation of DVB-S2, shown in Figure 3.1. Note

that, for instance, symbols s0, s1, s2 and s3 all correspond to the most significant bit b2 = 0,

while symbols s4, s5, s6 and s7 correspond to b2 = 1. As a consequence of this remark and

applying Equation (3.6) in (3.4), the Max-Log approximation yields

LLR(b2) ≈ max(D0,D1,D2,D3) −max(D4,D5,D6,D7) (3.7)

Following the same reasoning, the LLRs corresponding to the remaining bits are derived as

LLR(b1) ≈ max(D0,D1,D4,D5) −max(D2,D3,D6,D7) (3.8)

LLR(b0) ≈ max(D0,D2,D4,D6) −max(D1,D3,D5,D7) (3.9)

where

Di = −
|r− si|

2

2σ2
i = 0, 1 · · ·7 (3.10)

b2 is the Most Significant Bit (MSB) and b0 is the Least Significant Bit (LSB).

The proposed simplification stems from the observation that each LLR is calculated from

four Euclidean distances and six comparisons (three for each max function) when, in fact, both

terms from the max function are always obtained from the symbol si that is the closest to the

received symbol r. Proceeding from this point, one may approximate the LLR by designing deci-

sion areas for each bit, neglecting the probability that the noise corrupts the symbol such that it

reaches another sector outside the original one. Thus, each sector will contain only two symbols

from which the LLRs of a corresponding bit will be approximated. The sector to be employed

in this approach is that in which r resides. In other words, the simplification introduced by

71

Max-Log approach uses all the constellation symbols for the LLR calculations. Nonetheless, as

we are aiming at reduce the number of operations and their complexity, the proposed method

splits the constellation into smaller regions of decision such that the number of symbols to be

considered in each sector is reduced to only two of them.

In order to obtain appropriate decision areas, a rotation φ = −π/8 is applied over the

original defined 8-PSK constellation. This transformation will lead to convenient sector bounds,

i.e., one sector per quadrant. As we can see in Figure 3.11, each sector contains a symbol in

which b2 = 1 and a symbol in which b2 = 0. We propose to approximate the LLR in each sector

through the two corresponding symbols

LLR(b2) ≈

D0 −D4; I > 0, Q > 0
D1 −D5; I > 0, Q < 0
D2 −D6; I < 0, Q > 0
D3 −D7; I < 0, Q < 0

(3.11)

where I (in-phase) is the real value of the rotated received symbol, r, and Q (quadrature) is the

imaginary value of this symbol.

s
0
 (000)

s
1
 (001)

s
2
 (010)

s
3
 (011)

s
4
 (100)

s
5
 (101)

s
6
 (110)

s
7
 (111)

(b)

8−PSK Constellation − Rotation φ = −π/8

Figure 3.1: Decision areas for bit b2. Note that each symbol is represented as an ordered triplet
of bits (b2b1b0)

The sectors splitting for the bit b1 is even simpler due to the geometrical symmetry of

this constellation. The symbols in which b1 = 0 and those in which b1 = 1 are symmetrically

located with respect to the vertical axis. Figure 3.2 shows the symbol partitions for which this

approximation is valid. The LLR for bit b1 is approximatef by Equation (3.12).

LLR(b1) ≈

D4 −D6; Q > 0, |Q| > |I|

D0 −D2; Q > 0, |I| > |Q|

D1 −D3; Q < 0, |I| > |Q|

D5 −D7; Q < 0, |Q| > |I|

(3.12)

Similarly, the symbols in which b0 = 0 and those in which b0 = 1 are symmetrically located

with respect to the horizontal axis. Figure 3.3 depicts the symbol sectors for which this approx-

72

s
0
 (000)

s
1
 (001)

s
2
 (010)

s
3
 (011)

s
4
 (100)

s
5
 (101)

s
6
 (110)

s
7
 (111)

(b)

8−PSK Constellation − Rotation φ = −π/8

Figure 3.2: Decision areas for bit b1.

imation yields valid results. The LLR approximation for this bit is given by Equation (3.13).

s
0
 (000)

s
1
 (001)

s
2
 (010)

s
3
 (011)

s
4
 (100)

s
5
 (101)

s
6
 (110)

s
7
 (111)

(b)

8−PSK Constellation − Rotation φ = −π/8

Figure 3.3: Decision areas for bit b0 (Right - LSB)

LLR(b0) ≈

D2 −D3; I < 0, |I| > |Q|

D6 −D7; I < 0, |Q| > |I|

D4 −D5; I > 0, |Q| > |I|

D0 −D1; I > 0, |I| > |Q|

(3.13)

By writting the LLRs in each sector one can derive a general expression as a function of the

real and imaginary parts of the complex received symbol, the variance per dimension and two

constants µi and µq. These constants can be calculated offline and then plugged to the equation

according to where r resides. The final obtained equation is

LLR(bj) ≈
1

σ2
(Iµi +Qµq) (3.14)

where µi = IAbj=0
− IAbj=1

and µq = QAbj=0
− QAbj=1

are the constant values we are able to

determine in advance, given the constellation symbols associated to each sector. The symbols

sAbj=0
= IAbj=0

+ ı̇QAbj=0
and sAbj=1

= ISAbj=1
+ ı̇QSAbj=1

are, respectively, the symbol within

73

the sector for which bj = 0 and the symbol within the sector for which bj = 1.

In the context of hardware implementations, the constants µi and µq can be easily calcu-

lated and stored in memories. Table 3.1 shows the obtained values, µi and µq, under 8-PSK

constellation defined in DVB-S2.

Table 3.1: Constants for LLR estimation under 8-PSK constellation.

LLR µi µq Bound

0.5412 −0.5412 I > 0,Q > 0

b2 0.5412 0.5412 I > 0,Q < 0

−0.5412 −0.5412 I < 0,Q > 0

−0.5412 0.5412 I < 0,Q < 0

0.7654 0 Q > 0, |Q| > |I|

b1 1.8478 0 Q > 0, |I| > |Q|

1.8478 0 Q < 0, |I| > |Q|

0.7654 0 Q < 0, |Q| > |I|

0 0.7654 I < 0, |I| > |Q|

b0 0 1.8478 I < 0, |Q| > |I|

0 1.8478 I > 0, |Q| > |I|

0 0.7654 I > 0, |I| > |Q|

3.1.2 Channel Output LLR via Ad Hoc Approximation under 16-
APSK

The 16-APSK scheme counts on two additional aspects beyond those we presented on last

subsection under a PSK constellation: the natural symmetry of the constellation symbols with-

out the need of rotation, as opposed to the 8-PSK constellation, and the possibility of mapping

any received symbol to the first quadrant. Due to this latter aspect, we are able to reduce the

number of sectors to be considered, i.e., we can further reduce the efforts on the classification

of r in the sector where it resides.

The main distinction between both schemes is that, in the PSK modulations, all the con-

stellation symbols have the same energy or the same radius. Hence, for any sector where two

symbols reside, sAbj=0
and sAbj=1

, the LLRs are approximated by

LLR ≈ −
(I− IAbj=0

)2 + (Q−QAbj=0
)2 + (I− IAbj=1

)2 + (Q−QAbj=1
)2

2σ2
(3.15)

74

For 8-PSK, the terms −(I2Abj=0
+Q2

Abj=0
) + (I2Abj=1

+Q2

Abj=1
), and −(I2 +Q2) + (I2 +Q2) in Equa-

tion (3.15) cancel each other such that all the quadratic terms in the LLR equation are removed.

But the same is not true for the APSK constellations since the symbols sAbj=0
and sAbj=1

might

not have necessarily the same level of energy.

To overcome the amplitude variation and the resulting loss of performance due to ignore

the quadratic terms, we suggest to create Equivalent Received Symbols that will be referred to

as ERS from now on. They are defined by a pair of two real gains which either multiply the

real and imaginary part of the received symbol or simply multiply the radius of one of the

constellation rings, when the ERS is fixed. In both cases these gains represents a phase shift on

the symbol which is being converted to an ERS. These gains are not necessarily equal to each

other and they can be heuristically determined so that we can properly adjust the soft-decoder

performance. In summary, we can have two different types of ERSs: those which are variant and

therefore dependent on the received symbol through the pair of gains GI and GQ, i.e.,

rERS = GII + ı̇GQQ

and those that are simply given by the product between the gains and a fixed radius from an

specific ring Ri, i.e.,

rERS = GIRi + ı̇GQRi

where i corresponds to the ring index, i ∈ {0, 1, 2}. These indices are associated to the middle

radius, the inner radius and outer radius from the constellation, in this order. The middle ra-

dius is not defined by the standard and does not contain any original constellation symbol. This

simply represents an intermediate distance among the inner and the outer radius, both defined

by DVB-S2.

An illustrative scheme of the adopted sectors for the LLR estimation of bit b3 is shown in

Figure 3.4. As early mentioned, in this 16-APSK constellation the approximation can be estab-

lished by only taking the first quadrant, given the symmetry among the others. Each sector will

have approximated LLRs based on two original constellation symbols or on the family of ERS

symbols we create. In the same figure we refer to sξ as the fixed created ERS and sχ as the

variant ERS associated to the received symbol. The approximations of LLR(b3) in each sector

are derived as follows:

Region 1: Bounds: |r| < R0, π/6 6 θ 6 π/2

LLR(b3) ≈ −
|r2 − s0|

2

2σ2
+

|r1 − s12|
2

2σ2

=
(R2

1 − R
2
2) + I2Is0 +Q2Qs0

σ2
−
I1Is12 +Q1Qs12

σ2

As we can see in the calculation above, the approximate LLR is obtained by multiplying the

real and imaginary parts of the received symbol by two constant values. As well as in the 8-PSK

scheme, in hardware implementation context, all these constants can be stored in memories,

75

First quadrant of 16−APSK

I

Q

s
8
 (1000)

s
0
 (0000)

s
4
 (0100)s

12
 (1100)

Sector 1

r
x

Sector 2

Sector 3

sξ

sχ

Figure 3.4: Decision areas for bit b3.

making the process of calculation much less complex.

Region 2: Bounds: |r| > R0, π/6 6 θ 6 π/2

LLR(b3) ≈ −
|r2 − s0|

2

2σ2
+

|r2 − s8|
2

2σ2

=
I2 (Is0 − Is8)

σ2
+
Q2 (Qs0 −Qs8)

σ2

Similarly to the sector 1, the approximation for the sector 2 may be obtained by simply

storing a set of constants.

Region 3: Bounds: 0 < θ 6 π/6

This sector present a significant higher occurrence of bit errors than the other sectors due to

sector boundary issues. Inside this sector, the closest symbol in which the bit b3 has the value

1 may not have always the same radius neither the same phase than all the possible received

symbols within this sector. The same occurs for the associated symbols in which bit b3 is 0. As an

attempt to overcome this limitation, the insertion of a fixed ERS, sξ = R0 cos(π/6)+iR0 sin(π/6)

and a variant ERS sχ = |r| cos(π/6) + i|r| sin(π/6) is proposed. As a consequence of this, the

approximate expression of LLR(b3) in this sector is calculated as

LLR(b3) ≈ −
|r0 − sξ|

2

2σ2
+

|r− sχ|
2

2σ2

=
(|r|2 − R2

0) + I0Isξ +Q0Qsξ
σ2

−
IIsχ +QQsχ

σ2

Similar remarks can be made over the corresponding sectors of the bit b2. However, the ERS

gains of sξ and sχ must be updated to GI = cos(π/3) and GQ = sin(π/3). The sector bounds

of each sector for the approximation of LLR(b2) are depicted in Figure 3.5.

76

First quadrant of 16−APSK

I

Q

s
8
 (1000)

s
0
 (0000)

s
4
 (0100)

s
12

 (1100)

Sector 1

Sector 2

Sector 3

r
x

sξ

sχ

Figure 3.5: Decision areas for bit b2.

Region 1: Bounds: |r| < R0, 0 6 θ 6 π/3

LLR(b2) ≈ −
|r2 − s0|

2

2σ2
+

|r1 − s12|
2

2σ2

=
(R2

1 − R
2
2) + I2Is0 +Q2Qs0

σ2
−
I1Is12 +Q1Qs12

σ2

Region 2: Bounds: |r| > R0, 0 6 θ 6 π/3

LLR(b2) ≈ −
|r2 − s0|

2

2σ2
+

|r2 − s4|
2

2σ2

=
I2 (Is0 − Is4)

σ2
+
Q2 (Qs0 −Qs4)

σ2

Region 3: Bounds: π/3 < θ 6 π/2

LLR(b2) ≈ −
|rO − sξ|

2

2σ2
+

|r− sχ|
2

2σ2

=
(|r|2 − R2

0) + IOIsξ +QOQsξ
σ2

−
IIsχ +QQsχ

σ2

The LLRs for the two least significant bits of 16-APSK are obtained in a similar way to the

bit b1 and bit b0 from 8-PSK constellation. Fortunately for bit b1 of 16-APSK, the symbols

sAbj=0
and sAbj=1

are symmetric with respect to the vertical axis, as illustrated in Figure 3.6.

Hence, the LLR for bit b1 is given by

LLR(b1) ≈ −
|r− sAbj=0

|2

2σ2
+

|r− sAbj=1
|2

2σ2

=
2IISAbj=0

2σ2

77

s
8

s
10

s
2

s
0

s
4

s
5

s
1

s
9

s
11

s
3

s
7

s
14

s
12

s
13

s
15

s
6

b
1
 = 0b

1
 = 1

Figure 3.6: Geometrical configuration of the symbols in 16-APSK constellation as a reference
to the bit b1.

In order to avoid many sectors and as a consequence to reduce the efforts on the classification

of the received symbol, we propose to approximate the LLR by a general expression assumed

to be valid for any point of the complex plane and with no dependence on any constellation

symbol. In other words,

LLR(b1) ≈
I

2σ2
(3.16)

The same idea can be applied to the bit b0 (LSB). But in this case, the symmetry occurs

with respect to the horizontal axis, as we can note in Figure 3.7. Hence, the LLR(b0) can be

similarly approximated as

LLR(b0) ≈
Q

2σ2
(3.17)

s
12

s
13

s
15

b
0
 = 0

b
0
 = 1

s
0

s
8

s
10

s
5

s
4

s
1

s
9

s
11

s
3

s
7

s
6

s
2

s
14

Figure 3.7: Geometrical configuration of the symbols in 16-APSK constellation as a reference
to the bit b0.

The results obtained from the Ad Hoc approximation method will be presented and discussed

in Chapter 4. In the next section we will present a new method of channel output LLR estimation

based on the Voronoi polyhedral decomposition.

78

3.2 Introduction to the Approximation based on the Vo-

ronoi Decomposition

In this section we exploit an alternative proposal for the step of constellation splitting. Un-

like the Ad Hoc splitting proposal from Section 3.1, this method consists of adopting optimal

and deterministic bound limits which arise from the Voronoi [43, 40] criterion for polyhedral

decomposition. We aim to introduce the general structure for sector classification as well as its

formal mathematical definition in the context of the Log-Likelihood Ratio simplified calculation.

The resulting method can be applied to any constellation. Figure 3.8 illustrates, in advance, the

results of this approach for the step of symbol’s partitioning in the particular case of a rotated

version of 32-APSK constellation from DVB-S2 standard.

The splitting depicted in Figure 3.8 is obtained from the minimisation of the distance be-

tween each constellation symbol or seed and a corresponding set of points that reside in a given

region of the complex plane, S [8]. The seeds are specified by the coordinates of the original

constellation symbols and each region of the complex plane correspond to a constellation sector

that we aim to determine. As we can note in Figure 3.8, we are able to only take into account

the seeds from one or two quadrants of the plane due to the opportune geometrical configuration

of symbols in this constellation. This symmetry allows us to save unnecessary calculations in

the sense that it reduces the final number of sectors to be considered. For each constellation

symbol, s, there exists a corresponding area containing all the symbols closer to this symbol

than to any other one. Each one of these areas corresponds to a Voronoi cell.

The main idea behind the LLR simplification is similar to the employed in Ad Hoc method,

i.e., we wish to estimate the reliability magnitudes through two constellation symbols only.

However, in this new proposal we devote more attention to the partitioning algorithm. As a

consequence of our simplification approach, the sectors might be determined through an optimal

splitting criterion, which in this case must establish that the distance from each point which

resides in the sector to the constellation symbol associated to this sector be necessarily smaller

than its distance to any other constellation symbol. In other words, the received symbol r must

be closer to a given seed, s, than to any other seed, si. The correspondent linear inequality

system for an alphabet length M is given by

|r− s|22 6 |r− si|
2
2 i ∈ {0, 1, · · · , M − 1} (3.18)

or

r(si − s)T 6
|si|

2 − |s|2

2
(3.19)

We have used Equation (3.18) to figure out a linear approach for classifying the received

symbols into the correct sector since the bounds may not always be easily specified through

angles and radius such as exploited in Ad Hoc proposal. Keeping in mind the criterion and

the approach of our LLR estimation method based on two distinct constellation symbols, the

solution for the sector boundaries emerges from the intersection between two linear inequality

79

0 0.5 1 1.5
0

0.5

1

1.5

9

25

8

2416

0

1

17

b
0
 (LSB)

0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

9

25

8

24
16

0

1

17

11

27

10

26
18

2

3

19

b
1

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.5

1

1.5

9

25

8

2416

0

1

17

13

29

12

28 20

4

5

21

b
2

0 0.5 1 1.5
0

0.5

1

1.5

9

25

8

2416

0

1

17

b
3

0 0.5 1 1.5
0

0.5

1

1.5

9

25

8

2416

0

1

17

b
4
 (MSB)

NOTE:
Red Edges: b

j
 = 1

Blue Edges: b
j
 = 0

Figure 3.8: Results from the original Voronoi decomposition applied for 32-APSK constellation.

80

systems that are given by Equation (3.19). The first system must be defined for the set of the

constellation symbols Abj=0, where the bit of interest, bi, is zero. The second system is defined

in the set of symbols Abj=1, where the bit bi is one. For each received symbol we obtain a

pair of associated seeds, sAbj=0
and sAbj=1

, being the first one associated with a symbol where

bi = 0 and the second one associated with a symbol where bi = 1. As remarked earlier, the

corresponding LLR approximation is obtained by taking into account these two symbols.

We can obtain a general inequality expression which allows us to define both associated seeds

for any received symbols r. Our aim is to find these two symbols for which all the respective

inequalities are satisfied. From the established optimal criterion and the derivation from Equa-

tion (3.19), the classification is simply reduced to the accomplishment of the following linear

inequality system, defined for each set of symbols

rA−B 6 0 (3.20)

where r = (I Q) is the vector of the received symbol. The matrices A and B are obtained for

each seed in the corresponding set of symbols. For the system which represents bi = 0, we have

Aj =

I0Abi=0
− IjAbi=0

· · · IjAbi=0
− IjAbi=0

· · · InAbi=0
− IjAbi=0

Q0
Abi=0

−QjAbi=0
· · · QjAbi=0

−QjAbi=0
· · · QnAbi=0

−QjAbi=0

Bj =

(

|s0
Abi=0

|2−|sjAbi=0
|2

2
· · ·

|sjAbi=0
|2−|sjAbi=0

|2

2
· · ·

|snAbi=0
|2−|sjAbi=0

|2

2

)

where j is the superscript index which denotes the constellation symbol in the set Abi=0 (con-

stellation symbols for which bi = 0) and n is the index of the last symbol from the set Abi=0.

Note that Aj and Bj delimit the edges for the sector containing the constellation symbol

sj = (IjAbi=0
QjAbi=0

). Similarly, the system which represent bi = 1 is obtained by

Ak =

I0Abi=1
− IkAbi=1

· · · IkAbi=1
− IkAbi=1

· · · ImAbi=1
− IkAbi=1

Q0
Abi=1

−QkAbi=1
· · ·QkAbi=1

−QkAbi=1
· · ·QmAbi=1

−QkAbi=1

Bk =

(

|s0
Abi=1

|2−|skAbi=1
|2

2
· · ·

|skAbi=1
|2−|skAbi=1

|2

2
· · ·

|smAbi=1
|2−|skAbi=1

|2

2

)

where k is the superscript index for the constellation symbols in the set Abi=1 (which includes

the constellation symbols for which bi = 1) and m is the index of last symbol from the set

Abi=1. Note that Ak and Bk delimit the edges for the sector containing the constellation sym-

bol sk = (IkAbi=1
QkAbi=1

).

81

The employed linear systems might be implemented in hardware by storing M matrices, A,

andM vectors, B, without the need of computing either the angles or the quadratic norm of the

received symbols such as in the Ad Hoc proposal. Therefore, obtaining the pairs of constellations

symbols sAbj=0
and sAbj=1

that will be used on the LLR approximation for each received symbols

is reduced to verify if all the inequalities from Equation (3.20) are satisfied. As a consequence,

we avoid the use of the most obvious approach, i.e, the calculation of the minimum Euclidean

distances from the received symbol to each one of the constellation symbols. Besides, once a

constraint of any linear inequality system assumes a positive value, the checking process can be

terminated in advance and we can discard the evaluated symbol as a possible seed associated

to the received symbol. In other words, the number of operations involved in the process of

obtaining each pair of seeds can be further reduced, since one single unsatisfied inequality is

sufficient to terminate the evaluation of the corresponding constellation symbol and to discard

it as one of the seeds associated to r.

The original edges that arise from the Voronoi decomposition might be a little bit modified

in order to make even less complex the process of verifying the pairs of seeds associated to each

received symbol. Next subsection will present these small approximations by taking 16-APSK

scheme as a toy example. Afterwards we will also introduce an optimised method for eliminating

unnecessary edges and thus reduce the number of constraints in the inequality systems for higher

constellations by taking the 32-APSK scheme as an illustrative case.

3.2.1 LLR calculation for 16-APSK constellation using the Voronoi
decomposition

The 16-APSK constellation from DVB-S2 is composed of two concentric rings with 4 and 12

PSK uniformly spaced symbols in the inner radius R1 and the outer radius R2, respectively. The

ratio between the outer radius and the inner radius is γ = R2/R1. For the next calculations, we

will assume γ = 3.15. This ratio is compliant with the DVB-S2 standard for code rate r = 2/3.

Figure 3.9 shows the result of the Voronoi decomposition and the suggested simplifications as

a reference to the LLR calculation of bit b3. Note that, given the constellation symmetry, we

can estimate these LLRs by taking into account only the first quadrant of the complex plane,

i.e., we can consider the absolute values of real and imaginary part of the received symbols with

the purpose of reducing the number of sectors and the operations required to the classification.

According to the formulations introduced in section 3.2, we obtained two Voronoi edges which

split the 4 symbols that are located in the first quadrant. The blue edge – above which the seed

is s0 and below which the seed is s4 – splits the symbols associated to b3 = 0 whereas the red

edge – above which the seed is s8 and below which the seed is s12 – splits the symbols associated

to b3 = 1.

As opposed to the empirical bounds we proposed in the Ad Hoc method, now we introduce a

more formal criterion from which it is easier to achieve the sector boundaries for any constella-

tion scheme. With this criterion we can be sure that our approximation has the same precision

as the Max-Log approximation. As mentioned earlier, the splitting of bit b3 must be firstly taken

82

s
8

s
0

s
4

s
12

b
3
 − (MSB)

3

1

2

Voronoi b
3
=0

b
3
=0

Voronoi b
3
=1

b
3
=1

Approximation

Figure 3.9: Decision areas for bit b3.

over the set of symbols for which this bit is 0 and then over the set of symbols for which b3 is 1.

But fortunately, the bounds of the sectors associated to the bit b3 obtained through the original

Voronoi decomposition criterion may be even more simplified as we include small adjustments

to the Voronoi edges. These approximation can be included in order to make even easier both

classification processes in which the received symbols must pass through. Nevertheless, as will

be seen in Chapter 4, these introduced approximations come at the expense of a small perfor-

mance degradation. In this example, one single edge had a small and arbitrated adjustment in

its slope. Generally, these small adjustments can be wisely (but non-systematically) determined

such that the symbols classifications become less complex.

Note that, in Figure 3.9, the sector 3 actually corresponds to the intersection between two

Voronoi sectors. In this case, one of the intersected Voronoi sectors is associated to the seed s0
and the other one is associated to the seed s8, i.e., as a form of simplifying the stage of clas-

sification of r, we may define new sectors which represent an intersection (or an approximated

intersection) of both liner classifiers: the one for b3 = 0 and the other for b3 = 1. Equivalently,

sector 2 is associated to the seeds s0 and s12. See that, for obtaining perfect intersections, the

sector 1 should be, indeed, separated into two different sub-sectors. If we had aimed at defining

the perfect intersection between the two remaining Voronoi sectors, we should have actually had

one sub-sector associated to the intersection of the sectors with seeds s4 and s12 and another

sub-sector associated to the intersection of the sectors with seeds s4 and s8. Instead of that,

and as an additional form of approximation, we joined these sub-sectors into a single region.

As a result, determining the pair of seeds associated to r is now reduced to the following sim-

plified steps: (1) one single comparison between Q and a constant value which represents the

limit of sectors 2 and 3 and; (2) one single comparison between the arc tangent of Q/I with a

constant angle which represents the limit between sector 1 and sectors 2 and 3. Note that the

edge simplification and the approximated merges between the original Voronoi sectors (in sector

3) will introduce some imprecision to the final LLR estimation. Due to this, we can not expect

to obtain the same performance as the Max-Log anymore.

83

Let θ = arctan
(

Q
I

)

be the angle between the imaginary and real part. Assuming the ab-

solute values of I and Q, the LLRs for the bit b3 can be approximated, in each sector, by the

following equations:

Region 1: Bounds: 0 6 θ 6 π/6

LLR(b3) ≈ −
|r− s4|

2

2σ2
+

|r− s12|
2

2σ2

=
I [2R2 cos(π/12) − 2R1 cos(π/4)]

2σ2
+

+
Q [2R2 sin(π/12) − 2R1 sin(π/4)]

2σ2

+
R2
1 − R

2
2

2σ2

Region 2: Bounds: π/6 < θ 6 π/2, Q 6 R2 sin (π/6)

LLR(b3) ≈ −
|r − s0|

2

2σ2
+

|r− s12|
2

2σ2

=
I [2R2 cos(π/4) − 2R1 cos(π/4)]

2σ2
+

+
Q [2R2 sin(π/4) − 2R1 sin(π/4)]

2σ2

+
R2
1 − R

2
2

2σ2

Region 3: Bounds: π/6 < θ 6 π/2, Q > R2 sin (π/6)

LLR(b3) ≈ −
|r− s0|

2

2σ2
+

|r− s8|
2

2σ2

=
I [2R2 cos(π/12) − 2R2 cos(5π/12)]

2σ2
+

+
Q [2R2 sin(π/12) − 2R2 sin(5π/12)]

2σ2

The general LLR expression for bits b3 and b2 from 16-APSK is given by

LLR(bj) ≈
1

σ2

[

I(IAbj=0
− IAbj=1

) +Q(QAbj=0
−QAbj=1

)
]

+
R2
Abj=1

− R2
Abj=0

2σ2
(3.21)

where R2
Abj=0

= I2Abj=0
+Q2

Abj=0
and R2

Abj=1
= I2Abj=1

+Q2
Abj=1

refer to the symbol energy (or

the squared radius from the constellation symbol) for which the bit bj is equal to 0 and the

symbol energy for which the bit bj is equal to 1, respectively. Note that in the context of

hardware implementation, the constants µi = (IAbj=0
− IAbj=1

), µq = (QAbj=0
− QAbj=1

) and

c = (R2
Abj=1

− R2
Abj=0

)/2 can be calculated offline and later stored in memories.

Equivalently, the Voronoi decomposition for b2 is taken over the set of symbols for which

b2 = 0 as well as over the set of symbols for which b2 = 1. The sectors originally obtained

84

through this decomposition can also be wisely simplified by taking approximated Voronoi edges

and by also merging the original Voronoi sectors into approximated sectors associated to two

different seeds (one for b2 = 0 and another for b2 = 1), as explained before. This can be made

for the same reasons and with the same purposes presented to b3. Figure 3.10 illustrates the

results of the original Voronoi decomposition as well as the included simplifications. From the

absolute values of I and Q, the LLRs of bit b2 can be estimated, in each sector, accordingly to

the following equations:

s
8

s
0

s
4

s
12

b
2

3

2

1

Voronoi b
2
=0

b
2
=0

Voronoi b
2
=1

b
2
=1

Approximation

Figure 3.10: Decision areas for bit b2.

Region 1: Bounds: π/3 6 θ 6 π/2

LLR(b2) ≈ −
|r− s8|

2

2σ2
+

|r− s12|
2

2σ2

=
I [2R2 cos(5π/12) − 2R1 cos(π/4)]

2σ2
+

+
Q [2R2 sin(5π/12) − 2R1 sin(π/4)]

2σ2

+
R2
1 − R

2
2

2σ2

Region 2: Bounds: 0 6 θ < π/3, I 6 R2 cos (π/3)

LLR(b2) ≈ −
|r − s0|

2

2σ2
+

|r− s12|
2

2σ2

=
I [2R2 cos(π/4) − 2R1 cos(π/4)]

2σ2
+

+
Q [2R2 sin(π/4) − 2R1 sin(π/4)]

2σ2

+
R2
1 − R

2
2

2σ2

85

Region 3: Bounds: 0 6 θ < π/3, I > R2 cos (π/3)

LLR(b2) ≈ −
|r− s0|

2

2σ2
+

|r− s4|
2

2σ2

=
I [2R2 cos(π/4) − 2R2 cos(π/12)]

2σ2
+

+
Q [2R2 sin(π/4) − 2R2 sin(π/12)]

2σ2

Table 3.2 presents the obtained values of µi, µq and c for bits b3 and b2, as we configure

γ = 3.15.

Table 3.2: Constants for LLR estimation under 16-APSK constellation.

Bit µi µq c Bound

0.8421 0.0390 −0.5800 θ 6 π/6

b3 0.5482 0.5482 −0.5800 θ > π/6, Q 6 R2 sin (π/6)

0.5092 −0.2940 0 θ > π/6, Q > R2 sin (π/6)

0.0390 0.8421 −0.5800 θ > π/3

b2 0.5482 0.5482 −0.5800 θ < π/3, I 6 R2 cos (π/3)

−0.2940 −0.5092 0 θ < π/3, I > R2 cos (π/6)

The LLRs for the two least significant bits from 16-APSK can be coincidentally obtained in

a similar way to the Ad Hoc approximation that was applied over the bits b1 and b0 from the

8-PSK constellation. Note that the approximated LLR expressions assume the closest comple-

mentary symbols sAbj=0
and sAbj=1

as those that are symmetric with respect to the vertical or

the horizontal axis of the complex plane. For the bit b1, given the symmetry of these symbols

with respect to the vertical axis of the plane, we can assume that |IAb1=0
| = |IAb1=1

|. In other

words, we are considering that the symbols sAbj=0
and the closest symbol sAbj=1

are always

in opposite sides of the vertical axis, even knowing that this association is not true for every

received symbol. From this assumption, we obtain the following expressions

LLR(b1) ≈ −
|r− sAb1=0

|2

2σ2
+

|r− sAb1=1
|2

2σ2
(3.22)

=
2IIAb1=1

σ2
(3.23)

=
2IIAb0=1

σ2
(3.24)

Note that this extrapolation is a perfect sense approximation for some particular cases but

not for all. For instance, the symbols which reside in the sector associated to the the symbol

s8 will be always correctly associated by the second classifier system to the complementary

symbol s10 with respect to the bit b1. The converse is true and therefore, the symbols which

86

reside in the sector associated to the symbol s10 will also be always correctly associated to the

complementary symbol s8 of this bit. In fact, given that we transmit one of these symbols, the

closest complementary constellation symbol is, indeed, in the opposite side of the real axis (with

the same modulo of the real component). The same situation occurs for the sectors associated to

the symbols s14 and s12, s15 and s13, s11 and s9. On the other hand, note that this assumption is

not valid for the sectors associated to the symbols s4 and s6, for instance. In this case, the closest

complementary symbol with respect to the bit b1 might be not exactly symmetric with respect

to the vertical axis, i.e., |IAb1=0
| 6= |IAb1=1

|. As we can see in the Figure 3.11, the symbols which

reside in the sector associated to the symbols s4 should be correctly associated to the closest

complementary symbol s14 instead of s6. But in order to avoid complex steps for handling

this sort of impairment, we choose to simply extrapolate our first assumption for the entire

constellation, assuming that these pairs of symbols will also be always associated to the symbols

in opposite side of the horizontal axis (even not being the closest complementary symbol).

Therefore, the LLR estimation would be given by Equation (3.24), without need of any further

classification steps or additional constellation sectors. We remark that the elimination of the

constant values which multiply the real part from the received symbol do not have huge impact

over the final performance of this soft-decoder. Hence, we can take following approximation

LLR(b1) ≈
I

σ2
(3.25)

s
0
 (0000)

s
15

 (1111)

s
14

 (1110)

s
13

 (1101)

s
12

 (1100)

s
11

 (1011)

s
10

 (1010)

s
9
 (1001)

s
7
 (0111)

s
6
 (0110)

s
5
 (0101)

s
4
 (0100)

s
3
 (0011)

s
2
 (0010)

s
1
 (0001)

s
8
 (1000)

b
1

Figure 3.11: Reference of decomposition for the bit b1 in 16-APSK constellation.

The same can be asserted in regard to the bit b0 (LSB). But in this case, the symbols are

symmetric with respect to the horizontal axis, as depicted in Figure 3.12. Hence, the approxi-

mated LLR is given by

87

LLR(b0) ≈ −
|r− sAb0=0

|2

2σ2
+

|r− sAb0=1
|2

2σ2

=
2QQAb0=0

σ2

=
2QQAb0=1

σ2

≈ Q

σ2

b
0
 − (LSB)

s
0
 (0000)

s
1
 (0001)

s
2
 (0010)

s
3
 (0011)

s
4
 (0100)

s
5
 (0101)

s
6
 (0110)

s
7
 (0111)

s
8
 (1000)

s
9
 (1001)

s
10

 (1010)

s
11

 (1011)

s
12

 (1100)

s
13

 (1101)

s
14

 (1110)

s
15

 (1111)

Figure 3.12: Reference of decomposition for the bit b0 in 16-APSK constellation.

The results from this example will be further discussed in Chapter 4. In next subsection we

will present an enhanced method for simplifying the original Voronoi sectors without relying

on ad hoc merges employed in this example or on the non-systematic approximations and the

intuitive edge adjustments. We aim to show a new formulation for optimising the approximations

made over the Voronoi edges in the sense of minimising the performance effects caused by the

simplifications.

3.2.2 LLR calculation for 32-APSK constellation using the Voronoi
decomposition

In this subsection we boost the decomposition uniquely based on the Voronoi criterion by

adding two supplementary steps of optimisation which aim to reduce the complexity of both

linear classifier systems. For a clearer understanding of the proposed optimisations, we will focus

on a single illustrative constellation 32-APSK. Note that in principle, the Voronoi decomposition

and the additional optimisations could be applied to any APSK or PSK constellation. The first

decomposition, described in section 3.2 as much as the second steps, which include the offline

optimisations, are both shown to be also very adaptable to other schemes.

The 32-APSK constellation is composed of three concentric rings with 4, 12 and 16 PSK

uniformly spaced symbols in the inner ring (radius R1), in the intermediate ring (radius R2)

88

and in the outer ring (radius R3). Each one of these parameters are defined by DVB-S2 stan-

dard in terms of two ratios, γ1 = R2/R1 and γ2 = R3/R1. These ratios can vary according to

the code rate. In our practical example, we are going to fix r = 3/4 such that γ1 = 2.85 and

γ2 = 5.27. Note that the example treated in this subsection is actually developed for a modified

version of the original constellation defined in DVB-S2. We keep the same bit mapping from

this standard applying a counterclockwise rotation of φ = π/16 to the symbols placed in outer

ring. This rotation is proposed in order to obtain symmetries with respect to the coordinate

axis. These symmetries are very important for achieving a significant reduction in the number of

sectors to be considered along both stages of classification. In this case, not making this change

would negatively affect the number of quadrants from the complex plane to be considered in the

Voronoi decomposition. Instead of using one or two quadrants, we would have to create sectors

for the entire constellation, i.e., in the four quadrants. Moreover, the second part document

that includes the new DVB-S2 extensions, the DVB-S2X [44], already includes this important

change as the default configuration, that is fortunately in accordance to what we propose in this

example.

In section 3.2.1, we adopted approximated edges for 16-APSK scheme in order to simplify

the optimal bounds obtained via the standard Voronoi criterion. As will be shown in the chapter

of results from 16-APSK, this strategy does not cause much negative impact in terms of perfor-

mance at the LDPC decoder output. On the other hand, it brought a significant reduction in

terms of the amount of operations even not being either an optimal criterion of simplification

or generalisable. In this section we introduce an analytical strategy for obtaining suitable and

well-defined Voronoi a posteriori simplifications based on an energy function J. This function

will be defined as a reference parameter and a measure of quality which will guide us to the new

optimal simplified sectors. Note that this criterion of simplification will be employed after the

standard Voronoi decomposition whose results are shown in the Figure 3.8.

The steps of optimisation are built from the specific geometrical features that we obtain

previously, as a result of the Voronoi decomposition, and the handling of the energy function

J, that includes the sum of bivariate normal probability density functions. The means of each

bivariate function is placed at the exact coordinates of the constellation symbols of each sector.

The basic goal of each optimisation step is to collapse a given selected edge, from the original

decomposition, into a single vertex placed somewhere along the original edge. The optimum

vertex is the one for which we obtain the maximum value of J. The search of this vertex will also

iteratively modify the slopes of the edges previously connected to the collapsed edge. For each

evaluated vertex vi, these slopes will be adjusted such that the connected edges can terminate

at the exact position of vi, in which the eliminated edge is being collapsed.

Note that each edge from a Voronoi sector represents an inequality to be verified for the

classification of each received symbol. The removal of an edge leads to one less inequality to

that particular classifier system and consequently, further complexity reduction. The fact that

the vertex search be limited to the points within the edges that are being collapsed turns out

89

to be reasonable since our optimisations are being included over the results of the Voronoi de-

composition, which is already optimal according to our first (main) splitting criterion. At this

point, it becomes acceptable to state that an optimal vertex obtained from the second criterion

(the optimisation steps) must also be valid within the set of values fixed by the first optimal

criterion (the Voronoi decomposition).

The energy function J is defined by the sum of bivariate normal probability density functions,

whose means are given by the coordinates of each constellation symbol associated to a Voronoi

sector. Note that for J, each bivariate PDF is unvalued in the outside of the sector for which

it is associated. The function J is the sum of the surface integrals evaluated in each bivariate

PDF, of each Voronoi sector with index P ∈ {1, · · · N},N < M, i.e.,

J =
∑

P

∫ ∫

A

f(x, sP,ψ)dS (3.26)

where x and sP are 1-by-2 vectors and ψ is a 2-by-2 symmetric positive definite covariance

matrix. The vector x corresponds to the In-Phase and Quadrature coordinates from any point

within the plane and sP is the vector of coordinates of the constellation symbol (seed) from

the sector P. The region A includes the set of points from the complex plane which belong

to P. The diagonal elements of ψ contain the variances in each dimension of the plane (real

and complex), whereas the off-diagonal elements contain the cross correlation between each

dimension. Assuming the noise in each dimension is uncorrelated, the off-diagonal elements of

ψ are null. Thus the function f(x, sP,ψ) is given by

f(x, sP,ψ) =
1

√

|ψ|(2π)2
e−

1
2
(x−sP)

Tψ−1(x−sP) (3.27)

and ψ is

ψ =

(

σ2 0
0 σ2

)

(3.28)

The choice of the edges to be collapsed can be based on their relative length. In this case, we

are assuming that the edges of shorter relative lengths can be eliminated at first since they will

represent less impact in terms of the energy function, J. From now on we will take as example

the edge collapsing for the set of sectors from the Voronoi decomposition for the bit b2 of 32-

APSK. First, we will focus on the set of sectors (and symbols) for which b2 = 0, i.e, the Voronoi

bounds defined from the constellation symbols (s9, s25, s8, s24, s16, s17, s0, s20). Figure 3.13

is a reference of indices for edges, vertices and sectors employed along the next optimisation

steps. The first step of our optimisation aims to collapse the edge number 8 from the original

Voronoi bounds to a given optimal vertex within this edge. In Figure 3.8, note the symmetry

with respect to the vertical axis between the sectors associated to b2 = 0 and those associated

to b2 = 1. See that b1 also shares a similar geometrical configuration to the sectors of b2. The

sectors associated to b1 = 0 and those associated to b1 = 1 have symmetry with respect to

the horizontal axis. These relations of symmetry can save us a lot of work since we can take

advantage of the optimal vertices calculated for many distinct set of the Voronoi sectors at once.

90

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

General Diagram − bit b
2
, 32−APSK

In−Phase

Q
u
a
d
ra

tu
re

7

1

4
8

12

11

10

2

5
14

13

3

9

6

3

4
5

6

7

1

2

V
1

V
2

V
3

V
4

1

2

3

4

5

6

7

8

Figure 3.13: General diagram containing the edges (blue) and vertices(red) indices for the split-
ting of the symbols for which bit b2 = 0 in the 32-APSK constellation.

The optimal vertex from the first step of the optimisation was chosen by comparing the

values of J for the 90 samples (coordinates) of the edge number 8. The closer Ji from the i-th

coordinate sample is from the maximum possible energy value, JMAX, which is obtained by

calculating the energy function over the original Voronoi sectors, the better and more oppor-

tune the vertex vi under evaluation. In other words, we choose to eliminate the least significant

portions of the Voronoi sectors by maximising the result of the sum of integrals of the normal

probability density functions calculated over each surface, according to Equation (3.26). Fig-

ure 3.14 shows the energy function behaviour along the samples evaluated over this edge.

In the second step of the optimisation, we focus on the search of an optimal vertex along

90 samples of the edge number 10, the second shorter edge from the original Voronoi edges.

The number of samples for the first and second steps of optimisation was arbitrarily set. The

contour lines resulting from both steps can be seen in the Figure 3.15, where both edges are

already collapsed into their respective optimal vertex.

The vertices V1, V2, V3 and V4 were kept fixed, as indicated in Figure 3.13. Fixing vertices

is required whenever the edges connected to the collapsed edge are not connected to any other

Voronoi edge beyond. In this case, these vertices were arbitrated in advance, as an auxiliary

point around which we could adjust the the new slopes of the respective edges. The coordinates

of these fixed vertices are presented in the Table 3.3.

The results from both optimisation steps are shown in Table 3.4, which includes the optimal

vertices and the values of their respective energy J.

91

Table 3.3: Fixed vertices and their respective coordinates in the first and second steps of opti-
misation.

Edges Coordinates Fixed Vertex

1 [0.2413 0.4179] 2

4 [0.7255 0.7255] 5

7 [0.0000 0.9847] V1

12 [0.5000 1.2070] V2

2 [0.4179 0.2413] 1

5 [0.7255 0.7255] 5

11 [0.9847 0.0000] V3

14 [1.5000 0.6213] V4

Table 3.4: Results obtained after collapsing both edges.

Optimisation Step J (Energy Function) Optimal Vertices Edge

– 5.9081 – –

1 5.8915 [0.4282 0.8847] 8

2 5.8733 [0.8960 0.4198] 10

92

0 10 20 30 40 50 60 70 80 90

5.88

5.89

5.9

5.91

Samples

J
 (

E
n

e
rg

y
 F

u
n

c
ti
o

n
)

0 10 20 30 40 50 60 70 80 90

5.86

5.87

5.88

5.89

5.9

5.91

Samples

J
 (

E
n

e
rg

y
 F

u
n

c
ti
o

n
)

J

J
MAX

J

J
MAX

Figure 3.14: From the top to the bottom: Energy level along the 90 samples in the first edge
collapsing; Energy level along the 90 samples in the second edge collapsing. Both graphs are
limited a priori (red line) by the maximum energy level which is achieved through the calculation
of J in the original Voronoi configuration.

−0.5 0 0.5 1 1.5
0

0.5

1

1.5
Constellation splitting after the second optimization

In−Phase

Q
u

a
d

ra
tu

re

Figure 3.15: Contour Graph of the normal probability density functions for which b2 = 0 after
collapsing the edges 8 and 10, in the second step of optimisation. The edges obtained from the
Voronoi decomposition are represented in red and the new edges obtained after optimisation
are represented in blue. Note that after collapsing edge number 8, the edges number 1, 4, 7, 12
were also modified. Similarly, after collapsing edge number 10, the edges number 2, 5, 11, 14
were modified.

93

From the point of view of the symbol’s classification, introduced in section 3.2, the matrices

of classification Aj, Ak and the vectors Bj, Bk from Equation (3.20) can be obtained from a

final optimised matrix A which includes the adapted and remaining Voronoi edges. Matrix A

has dimension L-by-2 and contains the factors that multiply the real part of the symbols in the

first column and the imaginary part of these symbols in the second column. The ratio between

the second and first column of this matrix represents the slope of each edge. For each sector P of

the classifier system associated to b2 = 0, the elements APi,j and B
P
i from the matrices Aj, Ak

and the vectors Bj, Bk can be extracted from A by the following equation

APi,j =
(

Ai,j ⊙
(

F(i,P) F(i,P)
))T

(3.29)

BPi = (Bi ⊙ F(i,P))T (3.30)

where ⊙ is the Hadamard (element-wise) matrix multiplication and F is the binary matrix whose

columns are responsible for selecting the line coefficients (or the edges) from the matrix A. Each

column of the matrix F contains non-zero unitary elements at the row postions associated to

the edges of the sector defined by this column. The final optimised matrices A, F and the vec-

tor B, from which we derive each matrix and vector of the classification systems, are found in

Appendix C of this thesis.

In summary, for verifying if the received symbol r indeed resides in the sector P, from the

linear inequality system associated to b2 = 0 we need to ensure that

APr−BP 6 0 (3.31)

If this inequality is satisfied, then the symbol sP will be one of the two symbols included to this

LLR approximation.

Due to the symmetries, the matrices of classification for the sectors from the classification

system associated to b2 = 1 can be obtained as we simply reverse the sign of the first col-

umn of A, i.e., A ′
i,1 = −Ai,1. By doing this, Equation (3.29) becomes also valid for the sectors

of b2 = 1. Note that the matrices of classification for the sectors from the classifier system

associated to b1 = 0 are the same as from the system of b2 = 0. Also, the sectors of the asso-

ciated to b1 = 1 can obtained by reversing the sign of the second column of A, i.e., A ′′
i,2 = −Ai,2.

The general LLR expression for b2 and b1 is given by Equation (3.21). The tables of constants

µi, µq and c for b2 and b1 at the configuration γ1 = 2.85 and γ2 = 5.27 (code rate r = 3/4)

were attached to Appendix D. The results from this applied example will be discussed in the

next Chapter.

3.3 On the LLR Statistics

In this section we define a statistical model to the channel LLRs obtained from the soft-

demappers based on the adapted Voronoi method proposed in this thesis. We derive the first

94

and second moments from a Gaussian Mixture Model that describes the statistical distributions

that arises from this method.

First, consider a real valued BPSK constellation {−1, +1}, which maps a single bit b0 to

{0, 1}, respectively. The LLR for this scheme of modulation is given in terms of the received

real symbol r = s + n and the constellation symbols sAb0=1
= +1 and sAb0=0

= −1. Therefore,

the LLR expression for this constellation is given by

LLR(b0) = −
|r− sAb0=0

|2

2σ2
+

|r− sAb0=1
|2

2σ2
(3.32)

= −
2r

σ2
(3.33)

where σ2 is the noise variance per dimension. We are assuming that s and n are independent

random variables, n ∼ N(0, 2σ2), E[.] is the expected value operator, E[s] = 0 and E[s2] = 1.

We may approximate this LLR distribution with a Gaussian Mixture Model (GMM). For

BPSK constellations, this can be made from a bimodal normal distribution. We are interested

in calculating the expected values, i.e., the means of each mode from the mixture, conditional to

the transmitted symbol. If the symbol sAb0=0
is transmitted, we know that E

[

r | sAb0=0

]

= −1.

Thus, the expected value of the channel LLR distribution, given that sAb0=0
was transmitted,

can be derived from Equation (3.33) as

E

[

LLR(b0 = 0 | sAb0=0
)

]

= −
2

σ2
E

[

r | sAb0=0

]

(3.34)

=
2

σ2
(3.35)

Similarly, if the symbol sAb0=1
is transmitted, we know that E

[

r | sAb0=1

]

= +1. Thus, the

expected value of the LLR distribution is

E

[

LLR(b0 = 1 | sAb0=1
)

]

= −
2

σ2
E

[

r | sAb0=1

]

(3.36)

= −
2

σ2
(3.37)

The LLR variance is also derived from Equation (3.33) as follows

Var

(

LLR

)

= E

[

(

−
2r

σ2

)2
]

− E2
[(

−
2r

σ2

)]

(3.38)

=
4

σ4
E

[

(

s2 + 2sn+ n2
)2

]

−
4

σ4
E2
[

(s+ n)

]

(3.39)

=
4

σ2
(3.40)

Equation (3.40) yields the following important relationship between the variance and the ex-

pected value of the output channel LLR:

Var

(

LLR

)

= 2E

[

LLR(b0) | s

]

(3.41)

95

ForM-ary PSK or APSK constellations, according to our proposed LLR simplification that

is built from two constellation symbols, we can extend Equation (3.32) as an LLR approximation

based on the complex symbols sAbj=0
and sAbj=1

. Therefore, for a general constellation of order

M, as derived in section 3.2, we obtain the following expression

LLR(bj) ≈
1

σ2

(

I(IAbj=0
− IAbj=1

) +Q(QAbj=0
−QAbj=1

)
)

(3.42)

The corresponding expected values from the LLR Gaussian Mixture Model we propose in

this section can be calculated conditional to each symbol that is associated to a corresponding

constellation sector. For a sector P = i, whose associated constellation symbol is sAbj=0
, we have

E

[

LLR(bj | P = i)

]

=
|sAbj=0

− sAbj=1
|

2σ2
(3.43)

where sAbj=1
is a symbol that resides in a neighbor sector P = u. This is also the closest symbol

for which bj = 1. Obviously, we can note that the expected LLR value for bit bj conditional to

the transmitted symbol from the sector P = u has the same modulo than E [LLR(bj | P = i)]

but different sign, given that the neighbor sector is, now, P = i, i.e.,

E

[

LLR(bj | P = u)

]

= −
|sAbj=0

− sAbj=1
|

2σ2
(3.44)

Each Gaussian mean value from the Mixture can be calculated by simply analysing the

available combinations among the proposed sectors. The LLR values that result from a received

symbol which resides in one of the sectors whose associated seed is in the set of symbols for which

bj = 0 are always positive. Although, the LLR values from a received symbol that resides in one

of the sectors whose associated seed is in the set of symbols for which bj = 1 are always negative.

The LLR variance from each Gaussian function resulting from M-ary constellations is also

given by twice its associated mean, as stated in Equation (3.41). Figure 3.16 shows the Prob-

ability Density Functions (PDFs) of the LLRs calculated from the adapted Voronoi and the

Max-Log approximation for 16-APSK. The PDF that result from our approximation can be

modelled through the statistics which are derived from the sector neighborhood.

The mean values of each Gaussian from the PDF of LLR(b0) can be calculated as the imag-

inary part of the constellation symbols from the first quadrant, weighted by the inverse of σ2.

Similarly, the mean values of each Gaussian from the PDF of LLR(b1) can be calculated as the

real part of the same constellation symbols weighted by the inverse of σ2. On the other hand,

the mean values from the LLRs of the bits b3 and b2 can be calculated as described above. From

the analysis of each possible sector combination and according to their corresponding seed, we

obtain the following expected LLR values:

96

E

[

LLR(b2)

]

=

|s0−s4|
2

2σ2

−
|s0−s4|

2

2σ2

|s8−s12|
2

2σ2

−
|s0−s12|

2

2σ2

E

[

LLR(b3)

]

=

−
|s0−s12|

2

2σ2

−
|s0−s8|

2

2σ2

|s4−s12|
2

2σ2

|s0−s8|
2

2σ2

−2000 −1000 0 1000 2000 3000
0

0.5

1

1.5

2
x 10

−3 Probability Density Function − Voronoi

LLR(b
3
)

P
D

F

−2000 −1000 0 1000 2000 3000
0

0.5

1

1.5

2
x 10

−3 Probability Density Function − Voronoi

LLR(b
2
)

P
D

F

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
0

5

10
x 10

−4 Probability Density Function − Voronoi

LLR(b
1
)

P
D

F

−6000 −4000 −2000 0 2000 4000 6000
0

2

4

6

8
x 10

−4 Probability Density Function − Max−Log

LLR(b
1
)

P
D

F

−8000 −6000 −4000 −2000 0 2000 4000 6000 8000
0

5

10
x 10

−4 Probability Density Function − Voronoi

LLR(b
0
)

P
D

F

−6000 −4000 −2000 0 2000 4000 6000
0

2

4

6

8
x 10

−4 Probability Density Function − Max−Log

LLR(b
0
)

P
D

F

Figure 3.16: Probability Density Functions from the approximated LLRs based on the adapted
Voronoi decomposition of 16-APSK constellation. The red curves represent the GMM from the
modes of each Multimodal Gaussian. The blue bars represent the real obtained distribution of
the LLR values. Note that the resulting PDF profiles from the Max-Log approximation and
from the proposed method are very close to each other.

97

Chapter 4
Results

This work has the main objective of creating reliable and suitable soft-decoders with low

complexity for LLR estimations under AWGN channel. In Chapter 3, we presented the key steps

of two different solutions for simplified LLR estimation. We took the constellations from DVB-

S2 standard as a practical application example. In this chapter we will focus on the simulations

and results obtained from the implemented DVB-S2 model. These aspects will be presented

and interpreted from the point of view of performance and complexity reduction. Therefore, the

performance of both proposed simplifications as well as their complexity will be compared to

the Max-Log approximation, the Shannon limit and the expected QEF condition. Results of the

next Monte Carlo simulations were obtained for a fixed maximum number IMAX = 50 of LDPC

decoding iterations.

4.1 Results from the Ad Hoc approximation for 8-PSK

and 16-APSK

The performance of the Ad Hoc soft-demapper was evaluated in two separate parts. First,

we verified the performance from the point of view of the resulting hard-decisions, i.e., by tak-

ing into account only the sign of the LLRs. Second, we evaluated the LLRs in terms of their

magnitude (reliability), i.e., the obtained LLRs were connected to the block of LDPC decoder.

Figure 4.1 shows the bit error rate from the hard-decision only. As we can note in this fig-

ure, for 8-PSK the estimation of sign performed very close to the Max-Log. However, the sign

estimation for the Ad Hoc method in 16-APSK constellation is slightly worse than the Max-Log.

The performance at the output of the LDPC decoder is shown in Figure 4.2. The offset term

of the Offset Min-Sum [6] decoding algorithm is set to β = 0.14. Bit error rate was estimated for

both constellations, in short FECFRAME configuration from DVB-S2 (16200 bits), code rate

r = 3/5 for 8-PSK and r = 2/3 for 16-APSK.

These simulations confirm that the proposed LLR calculation has a low degradation of per-

formance compared to the well-known Max-Log simplification. In addition, the method provides

98

0 5 10 15
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

S
h
a
n
n
o
n
 L

im
it
 8

−
P

S
K

S
h
a
n
n
o
n
 L

im
it
 1

6
−

A
P

S
K

Soft−Decoders

8−PSK Ad Hoc Soft−Decoder

8−PSK Max−Log Soft−Decoder

16−APSK Max−Log Soft Decoder

16−APSK Ad Hoc Soft−Decoder

Figure 4.1: Bit error rate performance of the hard-decision.

1 2 3 4 5 6
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

E
b
/N

0
 [dB]

B
E

R

P

e
rf

o
rm

a
n
c
e
 a

t
Q

E
F

 1
6
−

A
P

S
K

P
e
rf

o
rm

a
n
c
e
 a

t
Q

E
F

 8
−

P
S

K

S
h
a
n
n
o
n
 L

im
it
 1

6
−

A
P

S
K

S
h
a
n
n
o
n
 L

im
it
 8

−
P

S
K

16−APSK Ad Hoc

16−APSK Max−Log

8−PSK Ad Hoc

8−PSK Max−Log

Figure 4.2: Bit-error rate at the output of LDPC decoder under 8-PSK and 16-APSK.

a significant reduction in hardware and software complexity since the LLRs are essentially ob-

tained by the multiplication between the real and imaginary part of the received symbol by a

set of constants that can be previously calculated and stored.

The computational complexity is shown in Tables 4.1 and 4.2. Note that, according to our

criterions, the proposed soft-demapper has a lower complexity than the Max-Log since the num-

ber of operations of each type is much smaller.

The results reveal a good performance for applications under 8-PSK. On the other hand, a

99

Table 4.1: Computational complexity for computing the soft-information on the i-th bit in
8-PSK constellation.

Proposed 8-PSK Max-Log 8-PSK

Additions 1 −→M/2− 3 25 −→ (3M+ 1)

Multiplications 2 −→M/2− 2 16 −→ (2M)

Comparisons 4 −→ (M/2) 6 −→ (M− 2)

Table 4.2: Computational complexity for computing the soft-information on the i-th bit in
16-APSK constellation.

Proposed 16-APSK Max-Log 16-APSK

Additions 7 −→M/2− 1 49 −→ (3M+ 1)

Multiplications 16 −→M 32 −→ (2M)

Comparisons 8 −→ (M/2) 14 −→ (M− 2)

degradation nearly 0.6dB with respect to the Max-Log approach is observed in Ad Hoc proposal

under 16-APSK constellation. These analyses confirm that the proposed soft-demapper presents

a satisfactory performance as well as low complexity.

The loss of performance in 16-APSK can be certainly justified by the adopted sector bounds

due to these parameters do not include any optimised criterion. The Ad Hoc sectors include

some points in the complex plane whose the corresponding LLRs should not be approximated

by the constellation symbols associated to the sector we proposed given that these points are in-

deed, closer to other symbols from the constellation. Apparently, for APSK schemes, this wrong

association proved to be a more critical aspect for the approximation.

The isolated results from the soft-demapper are much less affected than the results from

LDPC decoder output. One possible explanation for this arises from the lack of scaling factors

for adjusting the calculated LLRs levels, making them unsuitable or numerically unstable for

the employed LDPC decoding algorithm. Figure 4.3 shows the scenarios where the lack of these

scaling factors become unbearable. For received symbols whose real part is smaller than R0, the

proposed LLR values and Max-Log values are still quite close to each other. Above the limit

R0, the proposed approximation and Max-Log LLR values quickly move away from each other.

Apart from the need of finding these factors, we conclude that the proposed splitting, even being

reasonable and valid for the tested configurations, is not easily generalisable for higher order

modulations since it is not tied to any formal and well-defined mathematical criterion. More

details will be discussed in chapter 5.

100

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−20

0

20

40

60

80

100

real(y)

L
L
R

LLR b
3

R2 R2R1 R1Ro Ro

Proposed LLR EbN0=3dB

Max−Log LLR EbN0=3dB

Proposed LLR EbN0=4dB

Max−Log LLR EbN0=4dB

Proposed LLR EbN0=5dB

Max−Log LLR EbN0=5dB

Figure 4.3: The LLR levels of one single bit calculated through Max-Log and Ad Hoc method
under 16-APSK constellation.

4.2 Results from the approximation based on the adapted

Voronoi criterion for 8-PSK and 16-APSK

In this section the performance evaluation of the soft-demapper based on adapted Voronoi

method is built from a single analysis at the output of LDPC decoder. Simulations were config-

ured to short FECFRAME transmission (16200 bits), code rate r = 3/5 for 8-PSK and r = 2/3

for 16-APSK. We performed the LDPC decoding using the Offset-Min-Sum [6] algorithm (offset

term is kept on β = 0.14). The obtained results are shown in the Figure 4.4.

Note that, as well as in earlier simulations, the adopted code length is far from infinity. Due

to the short code length, it is actually expected that the algorithm performs about 3dB away

from Shannon limit. The normal FECFRAME configuration would outperform this result to

less than 1dB away from the limit at cost of much higher computational cost and much more

time of simulation.

The details about the Voronoi decomposition for the constellation 8-PSK were not described

in any previous sections of this work given the simplicity of this application. Our implementa-

tion relies on the application of the original Voronoi criterion without any further simplification.

Coincidentally, the final result of the constellation splitting, the calculated constants and the

performance, were very close to what had been proposed and obtained in the Ad Hoc method.

Furthermore, for 16-APSK scheme we can observe much less degradation of performance in

Voronoi method than in Ad Hoc method. Remind that we obtained a degradation nearly 0.6dB

at the output of LDPC decoder based on the Ad Hoc. On the other hand, the method based on

the adapted Voronoi decomposition presents a degradation close to 0.1dB.

101

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

E
b
/N

0
 [dB]

B
E

R

P
e
rf

o
rm

a
n
c
e
 a

t
Q

E
F

 1
6
−

A
P

S
K

P
e
rf

o
rm

a
n
c
e
 a

t
Q

E
F

 8
−

P
S

K

S
h
a
n
n
o
n
 L

im
it
 1

6
−

A
P

S
K

S
h
a
n
n
o
n
 L

im
it
 8

−
P

S
K

8−PSK Max−Log

8−PSK Voronoi

16−APSK Max−Log

16−APSK Voronoi

Figure 4.4: BER Performance at the output of LDPC decoder under 8-PSK and 16-APSK.

The results from Tables 4.3 and 4.4 confirm that the soft-demapper based on the adapted

Voronoi criterion has a lower complexity than the Max-Log approximation since the number of

operations is significantly reduced.

Table 4.3: Computational complexity for computing the soft-information on the i-th bit in
8-PSK constellation.

Proposed 8-PSK Max-Log 8-PSK

Additions 1 25 −→ (3M+ 1)

Multiplications 2 16 −→ (2M)

Comparisons 4 6 −→ (M− 2)

Table 4.4: Computational complexity for computing the soft-information on the i-th bit in
16-APSK constellation.

Proposed 16-APSK Max-Log 16-APSK

Additions 6 49 −→ (3M+ 1)

Multiplications 6 32 −→ (2M)

Comparisons 5 14 −→ (M− 2)

102

4.3 Results from the approximation based on the adapted

Voronoi criterion for 32-APSK

This section aimed at analysing the bit error rate performance at the output of LDPC

decoder by comparing two different approaches of LLR approximation. The simulations were

configured to use Offset-Min-Sum decoding algorithm (offset term is kept on β = 0.14 under

short FECFRAME transmission, 32-APSK constellation and code rate r = 3/4. The bit error

rate on AWGN channel is shown in Figure 4.5. Note that for 32-APSK constellation, the perfor-

mance is almost the same as from the Max-Log approximation. Remind that for 16-APSK, we

could observe a difference of about 0.1dB among Max-Log and adapted Voronoi bit error rate

curve. This small variation of performance between 16-APSK and 32-APSK can be justified,

since the adaptations suggested to the Voronoi edges of 32-APSK were built from an optimised

criterion of adjustment, as opposed to what was made to the original Voronoi edges of 16-APSK

constellation.

4.5 5 5.5 6 6.5 7 7.5 8
10

−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

0
 [dB]

B
E

R

S
h
a
n
n
o
n
 L

im
it
 3

2
−

A
P

S
K

P
e
rf

o
rm

a
n
c
e
 a

t
Q

E
F

 (
s
h
o
rt

 F
E

C
F

R
A

M
E

)
r = 3/4 (Voronoi)

r = 3/4 (Max−Log)

Figure 4.5: Bit error rate performance at the output of LDPC decoder for the LLR approximation
based on adapted Voronoi decomposition and based on Max-Log approach for code rate r = 3/4,
32-APSK constellation.

We note that both methods present a quite similar nature regarding their capacities of LLR

approximation. We also found out no relevant difference among the statistical distributions built

from each type of approximation. Instead of counting the number of each required operation, we

chose to analyse the gains in terms of complexity reduction for both algorithms by comparing

the elapsed time of simulation. This new metric is required due to the significant growth on the

final number of operations to be computed in both methods. We emphasise that the estimations

based on the counting of operations becomes increasingly difficult as the order of the modula-

103

tion increases. At this point we believe to be more convenient changing the paradigm of our

complexity metric in order to simply avoid unnecessary efforts. Table 4.5 summarises the results

from the both complexity evaluations obtained from Matlab. Specifically with this purpose,

adapted Voronoi and Max-Log algorithms were implemented without including any compiled

Matlab functions to the respective scripts. Particularly with this measure, we can expect to

approximate the metric of hardware complexity by restricting the way the codes are built. As

a result, we can obtain a very simple software metric that is also supposed to well represent an

equivalent metric in terms of the final hardware design.

Table 4.5: Elapsed CPU time comparison for the LLR calculation involving one single bit in one
single signal-to-noise ratio

Method Elapsed Time[s]

Max-Log 6.0533

Voronoi + Optimisation 0.6263

104

Chapter 5
Conclusion

The ultimate goal of this thesis is to show and compare the performances of two proposed

low-complexity methods of channel LLR approximation under AWGN. Our proposals are based

on the splitting of the symbols, from either PSK or APSK constellations, into smaller sectors of

decision. Due to this approach, the LLRs can always be approximated by using only two con-

stellation symbols. Both methods are mainly aimed at simplifying hardware implementations of

DVB-S2 receivers with low performance degradation and low dependence on the constellation

order.

In Chapter 1, we discussed the relationships and reinterpretations on selected topics of the

Digital Communication Theory, the Galois Theory and the Linear Block Codes properties. First

we discussed the AWGN discrete-time model and presented some particular derivations which

lead to the matched filter structure. Both subjects were very important for the implementation

of the DVB-S2 model, employed as a test platform for the proposed simplification methods. We

also discussed the Galois theory focusing on the relevant aspects to the implementation of the

BCH and the LDPC encoder and decoder. Finally, we presented the DVB-S2 standard main

features and the block structure adopted to the simulator.

In Chapter 2, we studied the LDPC codes focusing on the most important decoding algo-

rithms. First we presented the BP sum-product algorithm and the min-sum. Then we introduced

the min-sum variant algorithms which improve the trade-off between performance and decoder

complexity. At the end of this chapter, we fix the offset min-sum as a very suitable algorithm

for DVB-S2 in terms of performance and complexity.

In Chapter 3, we addressed the simplified soft-demappers tailor-made for DVB-S2 constella-

tions. We described the Ad-Hoc solution for the constellation splitting and applied the method

under 8-PSK and 16-APSK constellations. We also showed that the main issues involving this

proposal resides on the infeasibility for creating generalisations at higher-order modulation as

well as in the loss of performance due to the non-optimised sector boundaries. By taking these

conclusions into account, we proposed an optimised splitting method based on the adaptation of

the Voronoi decomposition. In addition, we showed the derivation of the simplified linear classifi-

105

cation systems, the general expressions and the obtained constants for the LLR approximation.

We applied this approach for 8-PSK, 16-APSK and a modified version of DVB-S2 32-APSK

constellations.

Finally, in Chapter 4, we presented the results from both approaches and remarked the ben-

efits in terms of reduction on the number of operations and the good performance of bit error

rate when the simplified LLRs were embedded on the LDPC decoder.

The Hardware Description Language (HDL) code for the adapted Voronoi solution as well

as the Ad-Hoc solution is yet to be implemented. Our initial results obtained via software imple-

mentation has indicated a significant reduction in the number of operations and revealed good

perspectives regarding to the final decoder performance.

It would be interesting to investigate the results of the proposed algorithms from a real hard-

ware implementation. The analyses made until here are still incomplete to definitely establish

these approaches as a possible best choice of simplification in terms of the hardware design.

For a better consolidation of these simplifications, it would be important to start working with

the hardware implementation such that the final logic area of these soft-demappers could be

compared.

106

References

[1] R. G. Gallager, “Low-Density Parity Check Codes,” Ph.D. dissertation, MIT, 1963.

[2] D. MacKay and R. Neal, “Good error-correcting codes on very sparse matrices,”Proc. IMA

Conf. Cryptography, vol. 1025, pp. 100–111, 1995.

[3] E. ETSI, “Digital Video Broadcasting (DVB); Second generation framing structure, channel

coding and modulation systems for Broadcasting, Interactive Services, News gathering and

other broadband satellite applications (DVB-S2),” Tech. rep., ETSI, Tech. Rep., 2013.

[4] T. J. Richardson and R. L. Urbanke, “The capacity of Low-Density Parity-Check codes un-

der message-passing decoding,” Information Theory, IEEE Transactions on, vol. 47, no. 2,

pp. 599–618, 2001.

[5] M. P. Fossorier, M. Mihaljević, and H. Imai, “Reduced complexity iterative decoding of

Low-Density Parity Check codes based on belief propagation,” Communications, IEEE

Transactions on, vol. 47, no. 5, pp. 673–680, 1999.

[6] J. Chen and M. P. Fossorier, “Density evolution for two improved BP-based decoding

algorithms of LDPC codes,” Communications Letters, IEEE, vol. 6, no. 5, pp. 208–210,

2002.

[7] J. G. Proakis, M. Salehi, N. Zhou, and X. Li, Communication systems engineering.

Prentice-hall Englewood Cliffs, 1994, vol. 1.

[8] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, Digital communication. Springer Science

& Business Media, 2003.

[9] R. A. Carrasco and M. Johnston, Non-binary error control coding for wireless communica-

tion and data storage. The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ,

United Kingdom: John Wiley & Sons, 2008.

[10] D. J. MacKay, Information theory, inference and learning algorithms. Cambridge univer-

sity press, 2003.

107

[11] S. J. Johnson, “Reported thresholds and BER performance for LDPC and LDPC-Like

codes,”Department of Electrical and Computer Engineering, University of Newcastle, Aus-

tralia, Tech. Rep., December 2012.

[12] C. E. Shannon, “A mathematical theory of communication,” The Bell System Technical

Journal, vol. 27, pp. 379–423, 1948.

[13] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley & Sons,

2012.

[14] G. D. Forney Jr and G. Ungerboeck, “Modulation and coding for linear Gaussian channels,”

Information Theory, IEEE Transactions on, vol. 44, no. 6, pp. 2384–2415, 1998.

[15] H. Malepati, Digital media processing: DSP algorithms using C. Newnes, 2010.

[16] S. Ling and C. Xing, Coding theory: a first course. Cambridge University Press, 2004.

[17] G. Birkhoff and S. Mac Lane, A survey of modern algebra. Universities Press, 1965.

[18] T. K. Moon, Error Correction Coding: Mathematical Methods and Algorithms. Wiley-

Interscience, 2005.

[19] J. B. Anderson, Digital transmission engineering. John Wiley & Sons, 2006, vol. 12.

[20] A. Hocquenghem, “Codes correcteurs d’erreurs,” Chiffres (paris), vol. 2, no. 147-156, p.

116, 1959.

[21] R. C. Bose and D. K. Ray-Chaudhuri, “On a class of error correcting binary group codes,”

Information and control, vol. 3, no. 1, pp. 68–79, 1960.

[22] W. W. Peterson, “Encoding and error-correction procedures for the Bose-Chaudhuri codes,”

Information Theory, IRE Transactions on, vol. 6, no. 4, pp. 459–470, 1960.

[23] R. T. Chien, “Cyclic decoding procedures for Bose-Chaudhuri-Hocquenghem codes.” IEEE

Transactions on Information Theory, vol. 10, no. 4, pp. 357–363, 1964.

[24] G. Forney, “On decoding BCH codes,” IEEE Transactions on Information Theory, vol. 11,

no. 4, pp. 549–557, 1965.

[25] E. R. Berlekamp, “On decoding binary Bose-Chadhuri-Hocquenghem codes,” Information

Theory, IEEE Transactions on, vol. 11, no. 4, pp. 577–579, 1965.

[26] J. L. Massey, “Step-by-step decoding of the Bose-Chaudhuri-Hocquenghem codes,” Infor-

mation Theory, IEEE Transactions on, vol. 11, no. 4, pp. 580–585, 1965.

[27] A. Morello and V. Mignone, “DVB-S2: The second generation standard for satellite broad-

band services,” Proceedings of the IEEE, vol. 94, no. 1, pp. 210–227, 2006.

108

[28] P. S. M. P. G. F. Martina M., Masera G., “On Practical Implementation and Generalization

of max* Operator for Turbo and LDPC Decoders.” IEEE Trans. on Instrumentation and

Measurement, vol. 61, no. 4, pp. 888–895, 2012.

[29] S. Ryoo, S. Kim, and S. P. Lee, “Efficient soft demapping method for high order modulation

schemes,” CIC 2003, 2003.

[30] J. W. Park, C. D. Ryu, M. H. Sunwoo, P. S. Kim, and D.-I. Chang, “Simplified soft-

decision demapping algorithm for DVB-S2,” in SoC Design Conference (ISOCC), 2009

International. IEEE, 2009, pp. 444–447.

[31] R. G. Gallager, “Low-density parity-check codes,” Information Theory, IRE Transactions

on, vol. 8, no. 1, pp. 21–28, 1962.

[32] M. Davey and D. MacKay, “Low-density parity check codes over GF(q),”Communications

IEEE Lett., vol. 2, no. 6, pp. 4165–167, 1998.

[33] S. Sankaranarayanan, S. K. Chilappagari, R. Radhakrishnan, and B. Vasic, “Failures of the

Gallager B decoder: Analysis and applications,” in Proc. Information Theory and Applica-

tions Workshop UCSD, vol. 17, 2006.

[34] S. J. Johnson, “Introducing low-density parity-check codes,”University of Newcastle, Aus-

tralia, 2006.

[35] M. J. Wainwright, T. Jaakkola, and A. S. Willsky, “Tree-based reparameterization for ap-

proximate inference on loopy graphs,”in Advances in neural information processing systems,

2001, pp. 1001–1008.

[36] F. R. Kschischang, B. J. Frey, and H.-A. Loeliger, “Factor graphs and the sum-product

algorithm,” Information Theory, IEEE Transactions on, vol. 47, no. 2, pp. 498–519, 2001.

[37] “Early-decision decoding of LDPC] codes, author=Blad, Anton, year=2009, pub-

lisher=Linköping University Electrnoic Press.”

[38] J. Chen and M. Fossorier, “Near optimum universal belief propagation based decoding

of low density parity check nodes,” Communications, IEEE Transactions on, vol. 50, pp.

406–414, 2002.

[39] C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: Turbo-

codes.”Communications, IEEE Transactions on, vol. 44, no. 10, pp. 1261–1271, 1996.

[40] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.

[41] C. E. Shannon, “Probability of error for optimal codes in a Gaussian channel,”Bell System

Technical Journal, vol. 38, no. 3, pp. 611–656, 1959.

[42] A. Balatsoukas-Stimming, M. B. Parizi, and A. Burg, “LLR-based successive cancellation

list decoding of polar codes,” IEEE Transactions on Signal Processing, vol. 63, no. 19, pp.

5165–5179, 2015.

109

[43] M. G. M. Rodriguez and V. V. de Serio, “Voronoi cells via linear inequality systems,”Linear

Algebra and its Application, vol. 436, no. 7, pp. 2169–2186, 2012.

[44] E. ETSI, “ETSI EN 302307-2, Digital Video Broadcasting (DVB); Second generation fram-

ing structure, channel coding and modulation systems for Broadcasting, Interactive Ser-

vices, News Gathering and other broadband satellite applications; Part II: S2-Extensions

(S2-X),” Tech. rep., ETSI, Tech. Rep., 2014.

110

Appendix A

The messages exchanged between check and bit nodes in the course of the decoding algo-

rithm is defined as a conditional probability that the received bit is a 1 or a 0, given the received

entry, Pintj = p(cj = 1 | y), that is conditional probability of cj is 1, given the received symbol

y. Obviously, p(cj = 0 | y) = 1− Pintj .

Consider the message qLi,j as the probability sent by the bit node cj to the check node fi
at iteration L. In particular, q0i,j(1) = P

int
j and q0i,j(0) = 1 − Pintj . Similarly, define rLi,j = P

ext
i,j

as the message sent by check node fi to bit node cj at iteration L. The message rLi,j(0) is also

associated to the probability that there is an even number of 1s in all the bit nodes but cj
connected to the check node fi.

First of all, lets consider the probability that there is an even number of 1s in two bit nodes

connected to a parity check node. Let q1 being the probability that the bit node c1 is 1 and q2
being the probability that the bit node c2 is 1 too. It follows that

p(c1 ⊕ c2 = 0) = q1q2 + (1− q1)(1− q2)

= 1− q1 − q2 + 2q1q2

=
1

2
[1+ (1− 2q1)(1− 2q2)]

∆
= q

Thus, (1 − q) is the probability that there is an odd number of 1s in the bit nodes c1 and

c2. Now, lets extend our assumption by considering that there is an even number of 1s in the

set of 3 bit nodes connected to one single check node. In this case, we have

p(c1 ⊕ c2 ⊕ c3 = 0) = q(1− q3) + (1− q)q3

= q − qq3 + q3 − qq3 = q + q3 − 2qq3

=
1

2
[2(q+ q3) − 4qq3] =

1

2
[1+ (1− 2(1− q))(1− 2q3)]

=
1

2
[1+ (1− 2q1)(1− 2q2)(1− 2q3)]

By induction, the probability that the i-th check node is satisfied is given by

p(c1 ⊕ c2 ⊕ ...⊕ cn = 0) =
1

2
+

1

2

n∏

i=1

(1− 2qi)

111

In other words,

Pexti,j =
1

2
+

1

2

∏

j ′∈N(i) 6=j

(1− 2Pitri,j ′)

Therefore, the message that i-th check node sends to the j-th bit node at iteration L is

Ei,j = LLR

(

Pexti,j

1− Pexti,j

)

= ln

(

1
2
+ 1

2

∏
j ′∈N(i) 6=j (1− 2P

itr (L−1)

i,j ′)

1
2
− 1

2

∏
j ′∈N(i) 6=j (1− 2P

itr (L−1)

i,j ′)

)

112

Appendix B

The Jacobian logarithm identity is given by

ln(ex1 + ex2) = max(x1, x2) + ln(1+ e−|x1−x2|) (B.1)

From

ln(ex1 + ex2) = ln

(

emax (x1,x2)

emax (x1,x2)
(ex1 + ex2)

)

= ln

(

emax (x1,x2)

emax (x1,x2)
ex1 +

emax (x1,x2)

emax (x1,x2)
ex2
)

= max(x1, x2) + ln
(

ex1−max(x1,x2) + ex2−max(x1,x2)
)

• if max(x1, x2) = x1

ln(ex1 + ex2) = max(x1, x2) + ln(1+ ex2−x1)

• if max(x1, x2) = x2

ln(ex1 + ex2) = max(x1, x2) + ln(1+ ex1−x2)

that yields

ln(ex1 + ex2) = max(x1, x2) + ln(1+ e|x1−x2|) (B.2)

The so-called Max-Log approximation uses only the first term of the Equation (B.2).

113

Appendix C

The final matrices A, F and the vector B obtained from the adaptation steps applied over

the original Voronoi classifier are presented below. From these matrices we are able to derive

each optimised matrix of classification, as described in the section 3.2.2.

A =

−2.4972 1.0000
−0.3734 1.0000
−0.3167 −0.3167
0.5357 1.0000
1.7930 1.0000

−0.0074 −0.4953
0.2336 1.0000

−0.4953 −0.0074
4.7314 1.0000

−4.4889 1.0000
0.3521 −0.3521

−0.3336 1.0000

B =

−0.1846
0.0853

−0.2088
1.1141
2.0263

−0.2088
0.9847

−0.2088
4.6592

−1.0374
0.0000
0.1209

F =

1 −1 0 0 0 0 0 0
−1 0 1 0 0 0 0 0
1 0 0 −1 0 0 0 0
1 0 0 0 0 −1 0 0
1 0 0 0 0 0 −1 0
0 1 0 −1 0 0 0 0
0 1 0 0 −1 0 0 0
0 0 1 −1 0 0 0 0
0 0 1 0 0 0 0 −1
0 0 0 0 −1 1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 −1 1

114

Appendix D

The next tables organise the constants µi, µq and c from the bits b2 and b1 for the con-

figuration γ1 = R2/R1 = 2.85 and γ2 = R3/R1 = 5.27, code rate r = 3/4 and modulation

32-APSK.

Table D.1: Constant values for µi used in the approximation of LLR(b2). Each column is asso-
ciated to a sector obtained from the splitting to b2 = 0 and each row is associated to a sector
obtained from the splitting to b2 = 1.

P
P
P
P
P
P
PP

b2 = 1
b2 = 0

1 2 3 4 5 6 7 8

1 – 0.6665 – 0.6592 – – – –

2 0.6665 0.3572 0.8451 0.3498 0.4275 0.8875 1.2396 1.4301

3 – 0.8451 – 0.8378 – – – –

4 0.6592 0.3498 0.8378 0.3424 – – 1.2322 1.4227

5 – 0.4275 – – 0.4979 0.9579 1.3099 –

6 – 0.8875 – – 0.9579 – – –

7 – 1.2396 – 1.2322 1.3099 – – –

8 – 1.4301 – 1.4227 – – – –

115

Table D.2: Constant values for µq used in the approximation of LLR(b2). Each column is
associated to a sector obtained from the splitting to b2 = 0 and each row is associated to a
sector obtained from the splitting to b2 = 1.

P
P
P
P
P
P
PP

b2 = 1
b2 = 0

1 2 3 4 5 6 7 8

1 – 0.1786 – −0.3167 – – – –

2 −0.1786 0 −0.4879 −0.4953 0.5849 0.3944 0.0424 −0.4176

3 – 0.4879 – −0.0074 – – – –

4 0.3167 0.4953 0.0074 0 – – 0.5377 0.0777

5 – −0.5849 – – 0 −0.1905 −0.5426 –

6 – −0.3944 – – 0.1905 – – –

7 – −0.0424 – −0.5377 0.5426 – – –

8 – 0.4176 – −0.0777 – – – –

Table D.3: Constant values for c used in the approximation of LLR(b2). Each column is asso-
ciated to a sector obtained from the splitting to b2 = 0 and each row is associated to a sector
obtained from the splitting to b2 = 1.

P
P
P
P
P
P
PP

b2 = 1
b2 = 0

1 2 3 4 5 6 7 8

1 – 0 – 0.2088 – – – –

2 0 0 0 0.2088 −0.5760 −0.5760 −0.5760 −0.5760

3 – 0 – 0.2088 – – – –

4 −0.2088 −0.2088 −0.2088 0 – – −0.7848 −0.7848

5 – 0.5760 – – 0 0 0 –

6 – 0.5760 – – 0 – – –

7 – 0.5760 – 0.7848 0 – – –

8 – 0.5760 – 0.7848 – – – –

116

Table D.4: Constant values for µi used in the approximation of LLR(b1). Each column is asso-
ciated to a sector obtained from the splitting to b1 = 0 and each row is associated to a sector
obtained from the splitting to b1 = 1.

P
P
P
P
P
P
PP

b1 = 1
b1 = 0

1 2 3 4 5 6 7 8

1 – – 0.1786 −0.3167 – – – –

2 – – – −0.0074 – – – –

3 −0.1786 −0.4880 0 −0.4953 −0.4176 0.0424 0.3944 0.5849

4 0.3167 0.0074 0.4953 0 0.0777 0.5377 – –

5 – – 0.4176 −0.0777 – – – –

6 – – −0.0424 −0.5377 – – – 0.5426

7 – – −0.3944 – – – – 0.1905

8 – – −0.5849 – – −0.5426 −0.1905 0

Table D.5: Constant values for µq used in the approximation of LLR(b1). Each column is
associated to a sector obtained from the splitting to b1 = 0 and each row is associated to a
sector obtained from the splitting to b1 = 1.

P
P
P
P
P
P
PP

b1 = 1
b1 = 0

1 2 3 4 5 6 7 8

1 – – 0.6665 0.6592 – – – –

2 – – – 0.8378 – – – –

3 0.6665 0.8452 0.3572 0.3498 1.4301 1.2396 0.8875 0.4275

4 0.6592 0.8378 0.3498 0.3424 1.4227 1.2322 – –

5 – – 1.4301 1.4227 – – – –

6 – – 1.2396 1.2322 – – – 1.3099

7 – – 0.8875 – – – – 0.9579

8 – – 0.4275 – – 1.3099 0.9579 0.4979

117

Table D.6: Constant values for c used in the approximation of LLR(b1). Each column is asso-
ciated to a sector obtained from the splitting to b1 = 0 and each row is associated to a sector
obtained from the splitting to b1 = 1.

P
P
P
P
P
P
PP

b1 = 1
b1 = 0

1 2 3 4 5 6 7 8

1 – – 0 0.2088 – – – –

2 – – – 0.2088 – – – –

3 0 0 0 0.2088 −0.5760 −0.5760 −0.5760 −0.5760

4 −0.2088 −0.2088 −0.2088 0 −0.7848 −0.7848 – –

5 – – 0.5760 0.7848 – – – –

6 – – 0.5760 0.7848 – – – 0

7 – – 0.5760 – – – – 0

8 – – 0.5760 – – 0 0 0

	Introduction
	Background
	Digital Communications
	Optimum Receiver for digitally modulated signal in AWGN channels
	AWGN Discrete-time Model
	Matched Filter

	Galois Fields
	Linear Block Codes
	BCH Codes
	Low-Density Parity Check Codes

	DVB-S2 standard

	LDPC Codes
	Hard-Decision Decoders and Soft-Decision Decoders
	Bit-Flipping
	Sum-Product

	Sub-optimal Soft-decision Decoding Algorithms
	Min-Sum and its variants algorithms

	Simplified Soft-Demappers for Higher-Order Modulation Schemes
	Introduction to the Ad Hoc Simplification
	Channel Output LLR via Ad Hoc Approximation under 8-PSK
	Channel Output LLR via Ad Hoc Approximation under 16-APSK

	Introduction to the Approximation based on the Voronoi Decomposition
	LLR calculation for 16-APSK constellation using the Voronoi decomposition
	LLR calculation for 32-APSK constellation using the Voronoi decomposition

	On the LLR Statistics

	Results
	Results from the Ad Hoc approximation for 8-PSK and 16-APSK
	Results from the approximation based on the adapted Voronoi criterion for 8-PSK and 16-APSK
	Results from the approximation based on the adapted Voronoi criterion for 32-APSK

	Conclusion
	References
	Appendix
	Appendix
	Appendix
	Appendix

