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ABSTRACT 

In this work, we consider signal processing techniques that aim to improve the resolution 

of images of the subsurface of the Earth generated from seismic data. One such technique is uni-

dimensional deconvolution, which aims to eliminate distortions caused by limitations in the seis-

mic source frequency band, as well as distorting effects caused by frequency components absorp-

tion and phase changes during seismic propagation. We analyze both supervised methods, in 

which reference signals are used in addition to the seismic measurements to determine the decov-

olution filter, as well as unsupervised methods, in which only the seismic measurements are used. 

Particularly, we analyze Wiener filtering and least squares methods on the supervised case. As 

for the unsupervised algorithms, we discuss the hypotheses that underlie these methods, which 

are based on the statistics of the reflectivity of the subsurface and the phase spectrum of the 

wavelet pulse. We analyze especially the use of the prediction error filter, which uses second or-

der statistics (SOS) and requires a minimum phase wavelet, and we show our contribution on a 

method that uses higher order statistics (HOS) called banded independent component analysis (B-

ICA), which does not requires that the wavelet be minimum phase. We also present a case study 

using log data measured in a borehole and seismic data in order to illustrate our analysis. In bidi-

mensional deconvolution, we consider, besides the seismic source distortions considered in the 

1D approach, distortions in seismic imaging caused by the acquisition geometry and velocity 

model complexity associated with the geological structure of the subsurface. These distortions 

can be quantified in seismic images created through the technique called prestack depth migration 

(PSDM) using a 2D convolution model between the reflectivity of the subsurface and the so-

called resolution function. Under appropriate hypotheses, the resolution function can be seen as a 

point spread function (PSF). Thus, the objective of 2D deconvolution is to attenuate the effect of 

these PSFs. In this work, we review the basic aspects of the 2D convolutional model and PSF 

estimation, as well as the imaging process, and we show our contribution on 2D deconvolution 

using an inverse filtering approach.         

        

Keywords: Signal processing - Digital techniques;  
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RESUMO 

Neste trabalho consideramos técnicas de processamento de sinais que têm como objetivo 

aumentar a resolução de imagens da subsuperfície geradas com dados sísmicos.  Uma das técni-

cas consideradas é a deconvolução unidimensional, que tem como finalidade eliminar distorções 

causadas pelas limitações em banda de frequência da fonte sísmica, bem como pela absorção de 

componentes e distorções de fase ocorridas durante a propagação da onda sísmica. Nesta tese, 

analisamos tanto métodos chamados supervisionados, em que estão disponíveis medidas adicio-

nais às medidas sísmicas, que podem guiar o processo de deconvolução, quanto os métodos não 

supervisionados, em que apenas as medidas sísmicas são consideradas. Em particular, tratamos 

dos métodos de filtragem de Wiener e mínimos quadrados para os métodos supervisionados. Em 

relação aos métodos não supervisionados, discutimos as hipóteses para o funcionamento dos mé-

todos envolvendo as estatísticas referentes à refletividade de subsuperfície e do espectro de fase 

do pulso sísmico. Em particular, analisamos principalmente o uso do filtro de erro de predição, 

que utiliza estatísticas de segunda ordem (SOS) e requer um pulso de fase mínima, e mostramos 

nossa contribuição sobre um método que utiliza estatísticas de ordem superior (HOS) chamado de 

“banded independent component analysis” (B-ICA) e que não exige que o pulso seja de fase mí-

nima. Por fim, realizamos um estudo de caso envolvendo dados obtidos em um poço e dados 

sísmicos com fim de ilustrar nossa análise. Na deconvolução bidimensional são tratadas, além das 

distorções pela fonte sísmica consideradas na abordagem unidimensional, distorções causadas 

pela geometria de aquisição de dados e de variações de velocidade de propagação sísmica causa-

das por complexidades geológicas.  Tais distorções podem ser quantificadas em imagens sísmicas 

obtidas pela técnica de imageamento chamada migração em profundidade pré-empilhamento 

(PSDM) por meio de uma relação de convolução bidimensional entre a refletividade da subsuper-

fície e uma função de resolução. Sob hipóteses adequadas, a função de resolução pode ser mode-

lada como uma função de espalhamento pontual (PSF) e a deconvolução bidimensional, portanto, 

consiste em atenuar o efeito dessas PSFs. Neste trabalho revisamos os aspectos básicos desta mo-

delagem e da estimação das PSFs, bem como do processo de imageamento, e mostramos a nossa 

contribuição para a deconvolução bidimensional por meio de um método de filtragem inversa. . 

 

Palavras-chave: Processamento digital de sinais;  
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1 INTRODUCTION 

An increase in the number of discoveries of hydrocarbon reserves has been observed in 

Brazil in the last years. The potential of hydrocarbon exploration in the country can be exempli-

fied by the success of the 11th bidding round of oil and gas exploration areas made by the nation-

al regulator (ANP) in 2013. In this round, 12 domestic and 18 foreign companies invested 2.8 

billion reais (US$1.4 billion) for exploration rights, setting a new national record [ANP, 2013; 

THE ECONOMIST, 2013]. Nevertheless, the exploration of these resources is far from trivial, as 

illustrated by the case of OGX, an oil company owned by one of the richest men in the country, 

which lost nearly 90% of its value during 2013. This fact is partly explained by the fact that this 

company failed to meet its production targets at its wells located in offshore Brazil [THE 

ECONOMIST, 2013b; FOLHA DE S.PAULO, 2013]. The difficulties in hydrocarbon explora-

tion stem from the fact that, especially in offshore Brazil, the reservoirs are buried below many 

kilometers of rocks and sea water. This fact generates challenges in all steps of hydrocarbon ex-

ploration process, from the discovery of promising areas to the extraction of oil from deep waters, 

which require constant research and innovation in many fields. 

In this context, this thesis is focused on digital signal processing theory, in particular to its 

use to enhance images obtained by the seismic method. The seismic method [YILMAZ, 2001] 

has applications especially on the discovery of new oil and gas fields and on monitoring reser-

voirs that are already producing. In this chapter, we provide brief rudiments of the seismic meth-

od in Section 1.1 in order to familiarize the reader with the terms that are used throughout the 

thesis. Then, in Section 1.2 we will present the contents and organization of this document and in 

the end, in Section 1.3, we will list the works published by the author as a PhD candidate.  

1.1 ELEMENTS OF SEISMIC IMAGING 

In this subsection we will describe some rudiments of seismic imaging, with the aim of 

familiarizing the reader of this work to the terms of the area. For a formal introduction to the 

field, we ask the reader to refer to books in geophysics such as [YILMAZ, 2001]. 
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The seismic method is the main tool used by geologists and geophysicists to obtain 

information about the subsurface [YILMAZ, 2001]. In this technique, seismic waves are 

generated in a controlled fashion in the surface by seismic sources, such as explosive 

loads or vibroseis, in the case of terrestrial acquisitions, or airguns, in the case of marine 

acquisitions. The reflected waves are measured by a set of receivers called geophones or 

hydrophones, depending on the environment in which the seismic acquisition is made. An 

example in the marine case is shown in Figure 1. The obtained data is later processed, of-

ten with intense human labor and computational cost in order to produce a bi or tri-

dimensional image, such as the one shown in Figure 2, which is then interpreted by a ge-

ologist. The main steps of a typical workflow in marine seismic data acquisition and pro-

cessing will be described with more detail in the following. The marine case is focused 

here both because of its relevance on the Brazilian scenario, where many of the known re-

serves are located in the coastal regions of the country, and because the terrestrial case 

imposes the consideration of more issues that are not the scope of this thesis such as the 

effect of topography and the existence of more interfering waves, such as the ground-roll, 

a surface wave caused by boundary effects between the soil and the air [SHERIFF, 2002]. 

However, we emphasize that the techniques considered here can be used in both marine 

and terrestrial case, once these issues are overcome [YILMAZ, 2001]. 

 

 

Figure 1: Diagram showing marine seismic data acquisition. A vessel tows the seismic source, 
the air gun, and a streamer, which is a cable that contains a set of receivers, the hydrophones. The 
source emits a seismic wave, which follow the paths indicated by the incident rays.  These rays 
are reflected by the structures of the subsurface and the reflections return to the surface following 
the reflected rays. In this picture, we only show the primary reflections, which are the waves that 
suffered only one reflection in the path between the source and the sensors.    
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Figure 2: The seismic data, acquired as described in Figure 1, goes through intensive data pro-
cessing to produce an image, such as the one shown here. This type of image is used by trained 
interpreters in order to create a geological model of the subsurface. 

1.1.1 Data acquisition and illumination 

Figure 1 shows a diagram on how seismic data is acquired in the marine environment. As 

described in the diagram, the vessel tows a seismic source, typically an air gun, a device that is 

able to produce a strong pressure wave in the water. Also, the vessel tows the streamer, a cable 

that contains a set of sensors called hydrophones. This streamer is usually 10 to 12 kilometers 

long in modern acquisitions. The vessel navigates over the area of interest shooting the source 

several times, usually in constant intervals of space so that regular spatial sampling is obtained. If 

the acquisition is made along a single straight line with only one streamer, the resulting data al-

lows the production of a bi-dimensional image of the subsurface and thus this type of acquisition 

is called 2D acquisition. On the other hand, if the acquisition is made over a 2D area on the sur-
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face, this allows one to produce a tri-dimensional image of the subsurface and this is thus called 

3D acquisition. The acquisition geometry is important to determine how the features of the sub-

surface are imaged as it determines how the seismic waves interact with the subsurface, i.e., the 

illumination1. For example, Figure 3 shows the result of a simulated seismic acquisition with the 

use of ray tracing, which uses ray theory [BLEISTEIN, 1984; ČERVENý, 2001] in order to trace 

the raypaths given a velocity model. The red triangles show the sources positions and the black 

lines the reflected rays that reached the receivers. The left hand side of the salt dome, represented 

as the brown region, has not been illuminated by this survey. As a consequence, this region will 

not be imaged if this dataset is used. 

 

 

Figure 3: Result of ray tracing. The red triangles show the sources positions and the black lines 
the reflected rays that reached the receivers. The left hand side of the salt dome, in brown, has not 
been illuminated (c.f. footnote) by the survey. 

1.1.2 Data preprocessing 

The acquired data consist of a set of seismic traces or simply traces, which are the indi-

vidual readings of a single receiver corresponding to one shot. In the initial steps, called prepro-

                                                 
1 In this case the term illumination is used as an analogy to the phenomenon of visible light striking a surface. In our 
context illumination indicates seismic waves reaching a reflector and thus being available for reflection. [SHERIFF, 
2002]. 
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cessing, these traces are conditioned so that they can be further processed. In this step, the infor-

mation about the geometry of the acquisition is placed on the headers of the files which contain 

the seismic data and bad traces, due to e.g. malfunctioning receivers, are edited, usually manually 

as they are identifiable by visual inspection.  It is important to notice that many signal processing 

challenges are posed during the preprocessing of seismic data. Firstly, the information recorded at 

the receivers is often a mixture of different waves that need to be identified and separated. In 

most cases, seismic imaging techniques require the enhancement of the primary reflections of the 

compression wave (P-wave), as the ones shown in Figure 1, and the suppression of other waves 

through dedicated seismic signal processing techniques such as the ones described in [YILMAZ, 

2001]. Examples of these undesired factors include swell noise, which is caused by sea waves, 

direct waves, which are waves that travel directly from the source to the receivers, without reach-

ing the subsurface, and multiple reflection waves or simply multiples, which are waves that suffer 

multiple reflections on the way between the source and the receiver, such as in the example 

shown in Figure 4. Secondly, distortions that happened during the propagation of the seismic 

wave must also be compensated. These procedures include the compensation of wave-energy 

decay due to absorption and geometrical divergence of the wavefront. Ghosts, which are caused 

by secondary reflections at the surface that happen shortly after the seismic pulse leaves the 

source or before reach the receiver, interfere with the primaries as shown in Figure 5, creating 

notches in the amplitude spectrum of the seismic data. A process called deghosting is used in 

order to eliminate this effect.  Limitations in the frequency bandwidth of the seismic pulse and 

losses in frequency components and distortions in the phase also degrade the seismic image by 

causing the loss of resolution. Deconvolution techniques are used in order to try attenuate these 

effects and will be described with more detail in chapters 2 and 3, as this process plays a central 

role in this thesis. In fact, it will be seen that deconvolution techniques can also be used in later 

steps of seismic processing. 
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Figure 4: Yellow lines represent primary reflections, while the pink lines represent the multiple 
reflections. The primaries only suffer one reflection in the upward direction, while the multiples 
are reflected downwards at least once [VERSCHUUR, 2006]. 

 

 

 

 

Figure 5: The green line represents a source ghost, while the pink line represents a receiver ghost. 
These rays interfere with the primary reflection, represented in yellow. 
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1.1.3 Trace sorting and the common-midpoint (CMP) method 

One of the reasons that motivate the use of several receivers located at different positions 

relatively to the source is that this results in redundancy in the data so that the signal to noise ratio 

of the resulting image may be enhanced. One technique widely used in this sense is the CMP 

method [YILMAZ, 2001]. As shown in Figure 6, the actual seismic data acquisition is made in 

shot-receiver       coordinates. A set of traces corresponding to a single shot is called a Com-

mon Shot (CS) gather of traces. In seismic signal processing, it is common to sort and gather the 

traces accordingly to other types of geometries. Some of these geometries use the midpoint,  , 

and half-offset 2,  , between the source and receiver, which form a new coordinate system,      , 

defined in terms of       as 

               
As shown in Figure 7 and Figure 8, groups of traces that have common value of midpoint 

coordinates or half-offset are called, respectively, Common Midpoint (CMP) gather and Common 

Offset (CO) gather. It can be seen in Figure 7 that if a homogeneous medium and a single hori-

zontal reflector is considered, all the reflected rays in a CMP geometry emerge from the same 

point in depth. The corresponding CMP gather is shown in Figure 9. The position of the seismic 

pulse or wavelet in each trace is determined by the traveltime, needed for the seismic wave to 

travel from the respective source to the reflector and from the reflector back to the respective 

receiver. The traveltime in the CMP gather can be derived from the Pythagorean theorem and is 

given by the following expression for the receiver located at the position   :                   , (1) 

where C is the propagation velocity of the seismic wave and    is the two-way Zero Offset (ZO) 

traveltime, i.e., the traveltime corresponding to a fictitious case in which the positions of the 

source and receiver coincide. The increase of the traveltime caused by the increase of offset is 

called Normal Moveout (NMO) [SHERIFF, 2002]. It is important to notice from the relationship 

                                                 
2 We use   instead of the usual   to denote half-offset in order to avoid confusion with     , which 
indicates the seismic signature in this Thesis. 
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between    and    that (1) describes a hyperbolic shape, as shown in Figure 9 and is only exact for 

the case of a single layer in a homogeneous model, as depicted in Figure 7. If more layers with 

different intervalar velocities (i.e, wave propagation velocities) are added, such as in Figure 1, 

then the traveltimes for the resulting reflections will no longer be perfectly described by a hyper-

bola. Nevertheless, (1) can be considered a fair approximation for the real traveltimes [YILMAZ, 

2001] for small values of   . The value of C associated with small offsets is called NMO velocity. 

In practice, the velocity is not known, and is estimated by a procedure called velocity analysis. 

Given a CMP gather, this procedure consists in sweeping values of   in order to find the respec-

tive curve that maximize the coherency of the data for each value of   .The rationale for this is 

that, if indeed there is a reflection at time   . with velocity  , then all the traces should contain 

the same information, pertaining to the same reflection. One common way to determine coheren-

cy of the data on a given curve is through the use of a second-order energy measure called sem-

blance [YILMAZ, 2001]. The values of   obtained by this method are called stacking velocities.  

After the stacking velocities are determined, a process called NMO correction is applied 

to the CMP gather in order to eliminate the normal moveout effect so that the resulting traces 

simulate a ZO trace. As an example, it is displayed in Figure 10 a noisy version of the CMP gath-

er in Figure 9 after NMO correction. It is possible to observe that the hyperbolic event in Figure 9 

has been horizontalized, i.e., all traces present the seismic event at     , as in the ZO trace. 

Then, after this step, the resulting traces are summed or stacked, so that the horizontalized event, 

which represents the signal of interest, is enhanced and the noise is cancelled out. Thus, the main 

objective of the CMP is to allow the production of a set of stacked traces that not only simulates 

ZO traces but also have an improved signal to noise ratio (SNR). This improvement actually hap-

pens if the traveltimes of the actual reflections are close enough to (1), i.e., the geology model is 

reasonably close to a horizontally layered model, without horizontal variation of velocity. It is 

worthwhile to mention that there are other stacking methods, such as the Common Reflection 

Surface (CRS) method, which enables one to use sets of CMP gathers with neighboring mid-

points in order to combine even more traces with the objective of increasing the SNR of the 

stacked trace [HUBRAL et al., 1998].  
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Figure 9: Each column of this grayscale Figure displays a trace of a CMP gather sorted accord-
ingly to the offsets of its traces. These traces were obtained by a simulating data acquisition on a 
model with a single horizontal reflector located at the depth of         in a homogeneous 
medium, whose seismic wave propagation velocity is          . The position of the seismic 
wavelet on the trace is determined by the traveltime needed for the seismic wave to travel from 
the respective source to the reflector and from the reflector back to the respective receiver. The 
Figure shows that the position of the wavelets matches the traveltime curve described by (1) and 
depicted in red in the Figure. 

 

Figure 10: Noisy version of the CMP section of Figure 9 after NMO correction. 

1.1.4 Seismic migration 

As previously seen, the ZO traces contain seismic events of the hypothetical case in which 

the position of the sources and receivers coincide, and the stacking process produces images close 

to these traces under favorable conditions. However, seismic sections formed by putting these 
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traces side by side will often not represent accurately the position of the geological features. The 

reason for that is because these images assume that each trace contains only reflections that origi-

nate vertically below the source/receiver coordinate, which is seldom true. In Figure 11, where 

we assume a homogenous model, we observe that a time recording of a reflection may have 

origin in any point of the curve, which is a circumference with center at the source/receiver point, 

called isochrone [SHERIFF, 2002]. Once a good estimate of the velocity model of the subsurface 

is obtained, either through the velocity analysis prior to NMO correction or more advanced tech-

niques, such as seismic tomography (e.g. [JONES, 2010]), this type of ambiguity is solved by a 

migration algorithm. Migration algorithms are a family of algorithms whose objective is to cor-

rectly position the geological features in the resulting seismic section (e.g. [YILMAZ, 2001; 

MOUSA, 2012]). As pointed out in [SHERIFF, 2002], migration can be accomplished by differ-

ent approaches, such as integration over diffraction curves (Kirchhoff type of migration) or by 

using methods such as numerical phase shifting or finite differences in order to perform this in-

version. Migration methods that are applied to stacked sections are called post-stack migration 

methods. On the other hand, complex geology may prevent one to use the CMP method success-

fully as this method assumes the existence of structures with horizontal layers and little horizon-

tal velocity variation. If these conditions are not met, such as in areas where there are salt domes, 

then the use of the so called prestack migration methods may be required, as they operate directly 

on the preprocessed data and stacking is not used [YILMAZ, 2001]. A further discussion on mi-

gration is made in Chapter 3, where we will show how a 2D deconvolution may be used to im-

prove a migrated image. 

 

Figure 11: A seismic event recorded in time may be located in any point along the isochrone 
curve. The role of migration is to eliminate this ambiguity and properly locate the position of this 
event. 
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1.2 CONTENTS AND ORGANIZATION 

In this work, we present analyses and contributions to the use of digital signal processing 

tools in unidimensional and bidimensional seismic deconvolution. As will be seen on the follow-

ing chapters, these problems are motivated by the fact that the observations obtained in the sur-

face, the seismic traces, always provide distorted or incomplete information about the subsurface.   

If a single trace is analyzed, i.e., a unidimensional approach is adopted, the seismic exper-

iment can be seen as an attempt to capture the impulsive response of the earth. In practice, the 

seismic trace is a distorted version of this ideal impulsive response, as the bandwidth limitations 

of the seismic source and distortions of frequency components caused by absorption and phase 

changes during the seismic wave propagation, in addition to noise, corrupt and blur this ideal 

impulsive response [NEELAMANI, 2008]. Thus, the deconvolution problem is used to estimate 

this true impulsive response from this distorted observation in order to enhance the final quality 

of the resulting seismic image. The choice of methods to solve this problem depends on the avail-

able data and on some a priori information about the problem. By using the terminology of digi-

tal signal processing literature (e.g. [ROMANO et al., 2010]),  if some information in addition to 

the seismic traces is available, such as some direct measurements of the wavelet, as proposed in 

[ZIOLKOWSKI, 1991], or the structure of the earth through a well log, as in [EDGAR and VAN 

DER BANN, 2011], then supervised type of signal processing techniques, such as the inversion 

methods described in [YILMAZ, 2001], may be employed to perform deconvolution. However, 

often, this extra information is not available or is inaccurate due to non-stationarities or corrup-

tion by noise, making the use of supervised methods not possible. This leads to the need for un-

supervised methods. One of the first unsupervised methods was proposed in [ROBINSON, 1954], 

in which a white reflectivity series and a minimum phase wavelet were considered enabling the 

use of the Wiener theory on prediction error filtering [WIENER, 1949]. As shown in, e.g., 

[ROMANO et al., 2010], this technique is constrained to minimum phase wavelets by the fact 

that it only uses second order statistics (SOS), which do not carry phase information. In order to 

overcome this, unsupervised methods use higher order statistics (HOS), such as the ones pro-

posed in [WIGGINS, 1978; LAZEAR, 1993; MISRA and SACCHI, 2007] and many others.  

In Chapter 2, we review the basics of supervised and unsupervised signal processing. In 

particular, we analyze the method proposed in [KAPLAN and ULRYCH, 2003; KAPLAN, 2003]  
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which uses a variation of independent component analysis (ICA), an important technique in un-

supervised signal processing theory [HYVÄRINEN et al., 2001; COMON and JUTTEN, 2010; 

ROMANO et al., 2010], called Banded ICA (B-ICA). In this analysis, we show our contribution 

to the use of the method [TAKAHATA et al., 2012], where we propose the use of B-ICA as a 

wavelet estimation procedure followed by the calculation of a least squares (LS) inverse filter. 

We extend the contents of this publication to a case study where we assess our improvement by 

comparing it to the original B-ICA algorithm and the use of prediction error filters (PEFs) for 

deconvolution. The choice of the latter was motivated by the fact that it was the first unsuper-

vised methods for deconvolution and also by the fact that it is still one of the standard algorithms 

in the industry [YILMAZ, 2001]. In this case, we used both synthetic and processed (migrated) 

field data in order to perform the tests. A contribution of this work in this context was the use of 

well log data, which are detailed records of the geological formations obtained through direct 

measurements made in a borehole. This allowed us to compute the wavelet and its inverse in a 

deterministic manner, as well as to compute more realistic synthetic data. In other words, the ex-

istence of this well log allowed us to estimate the reflectivity more directly, thus providing a 

benchmark for the deconvolution algorithms.  

The unidimensional approaches are constrained by the fact that only one measurement is 

considered at a time and the use of information of neighboring traces is inexistent or very limited. 

In the bidimensional approach, in addition to the distorting effects of the seismic wavelet, consid-

ered in the 1D case, the effects of the acquisition geometry and velocity variations caused by geo-

logic complexities are taken into account. In [LECOMTE and GELIUS, 1998; GELIUS and 

LECOMTE, 2000; GELIUS et al., 2002] it is shown that limited frequency band of seismic data, 

data acquisition geometry constrained to a finite region in the surface and the pattern followed by 

the propagation of the seismic waves cause the seismic images, more precisely the ones obtained 

by prestack depth migration (PSDM), to be blurred versions of the actual structure of the subsur-

face. In these works, this distortion is quantified by the resolution function. Under proper as-

sumptions, these resolution functions can be interpreted as point spread functions (PSFs), which 

have been used in image processing for quantifying distortions (e.g., [BANHAM and 

KATSAGGELOS, 1997]). The PSDM images are then modeled as the result of the bidimensional 

convolution between the PSFs and the original structure of the subsurface. Thus, the role of de-

convolution is to eliminate, or at least to attenuate, the effect of these PSFs in order to improve 
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the PSDM section so that the process results in a section which is closer to the actual geological 

structure. A direct inversion approach was adopted in [GELIUS et al., 2002; SJOEBERG et al., 

2003], but only small portions around the vertical central axis of the PSFs (pseudo 2D) were used 

in these cases, as the whole PSFs would lead to instabilities in the inversion.  

Related works in enhancing PSDM sections include the methods derived from least-

squares migration (LSM) [NEMETH et al., 1999] and migration deconvolution (MD) [HU et al., 

2001; YU et al., 2006]. These methods consider the whole modeling and migration operators and 

may impose a heavy computation burden or create the need for simplifying schemes, as opposed 

to the bidimensional deconvolution method, where the PSFs can be calculated with relative ease 

with the use of ray tracing methods [GELIUS et al., 2002; LECOMTE, 2008]. These methods 

based on LSM and MD are out of the scope of this thesis and further discussion may be found in 

[YU and SCHUSTER, 2003; TANG, 2009] . 

In Chapter 3, we review, following [LECOMTE and GELIUS, 1998; GELIUS and 

LECOMTE, 2000; GELIUS et al., 2002; LECOMTE, 2008], the bidimensional convolutional 

model and the fundamentals of PSDM and PSF estimation. Next, we show in more detail the so-

lution for the 2D deconvoltution problem proposed in [TAKAHATA et al., 2013]. In this work, 

we proposed the use of a LS inverse filtering (or Wiener filtering) method instead of direct inver-

sion used previously in literature. Even though, as shown in, e.g., [BANHAM and 

KATSAGGELOS, 1997], this approach has been long a common practice in image processing, 

our contribution is to propose its use in this particular context, which also motivated new analysis 

that gave new insights into the problem. In particular, an analysis of the 2D Fourier transform of 

the PSF showed null elements that brought instability to the inverse filtering calculation, which 

are probably also one main source of instability in the inversion approaches in the literature. In 

this chapter, we also discuss a refinement addressing this problem in the inverse filtering ap-

proach, allowing the deconvolution with the whole PSF, as opposed to previous approaches and 

we show our results in controlled and field data.  

In Chapter 4, we present our final conclusions and perspectives. 
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2 UNIDIMENSIONAL SEISMIC DECONVOLUTION 

In this chapter, we review and extend the topics approached in [TAKAHATA et al., 

2012], especially regarding unsupervised deconvolution. In Section 2.1, we review the basic con-

nections between the structure of the earth and its impulsive response, the reflectivity, and also 

between the reflectivity and the seismic traces through the point of view of the convolutional 

model. In Section 2.2, we review the concepts underlying supervised signal processing for seis-

mic deconvolution and wavelet estimation through an analogy to supervised signal processing in 

data communication channel estimation and equalization. After that, in Section 2.3, we analyze 

unsupervised signal processing techniques for seismic deconvolution and wavelet estimation. 

Initially, a study on deconvolution with the use of the prediction error filtering is made and its 

limitations due to the use of second order statistics (SOS) are discussed. Next, we discuss the use 

of higher order statistics (HOS) in order to overcome these limitations.  After this, we review 

independent component analysis (ICA) and blind source separation (BSS), which are also major 

topics in unsupervised signal processing. In the sequence, we explore an approach, initially pro-

posed in [KAPLAN and ULRYCH, 2003; KAPLAN, 2003], that combines these topics, ICA and 

seismic deconvolution. In this technique, a variant of ICA called banded ICA (B-ICA) is used for 

seismic deconvolution and wavelet estimation. We first describe the method and then we show 

our contribution in [TAKAHATA et al., 2012], where we proposed the use of B-ICA for wavelet 

estimation in order to calculate a supervised deconvolution filter.  Afterwards, we extend this 

contribution in the Section 2.4 in a form of a case study. In this section, we characterize a reflec-

tivity series estimated from logs obtained in a borehole and we present the results of the use of 

PEF and B-ICA based methods in synthetic data. After that, we present the results of PEF, B-ICA 

and a supervised method to a set of migrated traces. At the end, we present our conclusions in 

Section 2.5.  

2.1 THE CONVOLUTIONAL MODEL  

As shown in Figure 12, reflection happens when a seismic wave reaches the boundary be-

tween layers with different acoustic impedances. The acoustic impedances are determined by 
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          ∫              
   . (5) 

In (5), we can interpret that the convolution operation actually models the seismic trace as 

superposition of delayed versions of the seismic signature,       , weighted by the amplitude 

of the reflectivity     . This is only valid if we assume that the wavelet does not vary along the 

trace. However, this assumption is often not true if the whole measurement length is considered, 

as the subsurface distorts the seismic wavelet, e.g., by absorbing the high frequency contents, as 

the seismic waves propagate. Nevertheless, this assumption can be approximated if short time 

windows are considered [ROBINSON and TREITEL, 1980]. Further, the convolution models a 

linear distortion imposed on the reflectivity by the wavelet, as a perfect recovery of the reflectivi-

ty would only be possible if          , where      is the Dirac delta distribution, and in the 

absence of noise, since, in this case                . (6) 

This is not possible in real situations, as it would require an infinite frequency bandwidth 

associated with the seismic signature. Thus,      also models the restriction in the bandwidth of 

the data imposed by limitations in the seismic source and attenuations on the seismic waves along 

the path between the source and receiver. Therefore, the role of the deconvolution is to attenuate 

as much as possible the distorting effect of the wavelet on the seismic trace x    in order to obtain 

the best approximation of the reflectivity function.  
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    [  
                       ]  

  
[  
   
                                                                       ]  

   
   
 . (14) 

If we define      [                   ]  , (15)             [                   ] , 

then, the optimal filter w accordingly to the LS criterion is the one that minimizes the square 

norm of the error function, i.e:                                         . 

The well-known solution (e.g., [ROMANO et al., 2010])3 for finding the LS solution of 

the filter is then:                           , (16) 

 Later, the works of [WIENER and HOPF, 1931; KOLMOGOROV, 1939; LEVINSON, 

1947; WIENER, 1949; DURBIN, 1960] established the Wiener filter theory, where the minimum 

mean square error (MMSE) criterion was adopted in order to estimate the optimum filter. This 

criterion assumes that      and      are jointly wide sense stationary random variables. The 

MSE is then defined using (9) and (12) as           [     ]   [            ]   [              ], 
where  [ ] is the expectation operator. By using the definition of autocorrelation function as         [            ] ,  

and of cross-correlation as        [          ] ,  

after some algebraic manipulations, we have                       , (17) 

where     is the variance of d(n), R is the       autocorrelation matrix of x(n) given by    [         ] , (18) 

                                                 
3 The LS method was developed originally in [GAUSS, 1809]. [ROMANO et al., 2010] is indicated as a modern 
approach to this method. 
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and p is the      cross-correlation vector between x(n) and d(n) given by    [        ], (19) 

or in expanded form: 

  [  
                                                                                       ]  

  
, (20) 

  [                     ]  , (21) 

The minimum value of         can be obtained as      , (22) 

and thus the Wiener solution is        . (23) 

By substituting (23) into (17) we obtain the optimal value of       accordingly to the 

MMSE criterion:                              , (24) 

The choice of the input and of the desired signals depends on the objective of the estima-

tion of the linear filter. One of these applications consists in modeling the linear distortion, i.e. 

the seismic signature, as shown in Figure 17. In this case, the input of the linear filter may be the 

reflectivity function estimated from a well log,  ̃   , and supervised filtering techniques are used 

to estimate a model of the wavelet,     ,which will produce a filter output, i.e., a synthetic trace,     , that will be as close as possible to the measured trace,     . In order to obtain an accurate 

wavelet, the reflectivity must comply with the persistent excitation conditions, i.e., it must excite 

all modes of the linear distortion [ROMANO et al., 2010]. Usually, this requirement is fulfilled 

as the reflectivity may be approximated to a white signal [YILMAZ, 2001]. A white signal is 

defined as a stochastic process whose autocorrelation is       {                          , (25) 

or             , where     is the variance of the signal. Also, it is important to note that as in 

any type of estimation, there may be mismatches between the estimated reflectivity from the well 

data,  ̃   , and the actual reflectivity,     , and thus they are shown as different signals in Figure 

17. Nonetheless, this issue is outside the scope of this work as we assume that the estimated re-
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If we do not consider the noise element in Figure 18, we have                (         )                        . (26) 

This deconvolution approach, also called spiking deconvolution, consists in designing a linear 

filter        of       -th order with the LS criterion, so that                  , (27) 

where      is the Kronecker delta or zero-lag spike, defined as      {                       . 

Thus, the spiking deconvolution filter,       , which satisfies the condition in (27), may 

be used to attenuate the effect of the wavelet in the seismic trace, as if we substitute        in 

(26) we get:                                                    . 

Qualitatively, we try to reshape the wavelet of the measured seismic trace with the use of        

so that the original wide wavelet is transformed to a narrower one, ideally a spike, so that the 

resolution of the final trace is enhanced, and in the ideal case the resulting trace becomes the re-

flectivity.  

 Thus, as shown in Figure 19, in this case, the goal is to calculate a linear filter so that the 

output, the processed wavelet, is as close as possible to the desired wavelet. Therefore, in order to 

obtain       , as described in (27),      is set as the desired wavelet. Thus we replace the varia-

bles depicted in Figure 19 in (16) and then we obtain4                          , (28) 

where     is a              Toeplitz matrix so that  [    ]          ,                         , (29) 

and 

                                                 
4 In our case, we use LS in the sense of finding a vector     , which minimizes ‖        ‖  as in [YILMAZ, 
2001], although the classical definition [GAUSS, 1809] of LS is the fitting of an analytical function to a set of data 
so that the sum of the squares of the deviations of the data points to the curve described by the function  is minimized 
[SHERIFF, 2002]. In fact, as shown in Appendix A, if the reflectivity,     ,  is a white signal and the noise is negli-
gible, then     is equivalent to the Wiener filter   , which will minimize the mean square error of the reflectivity 
estimation in the filter output. 
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[  
                                                                                             ]  

  
[  
                              ]  

   [  
          ]  

  
. (32) 

 Finally, as described in [YILMAZ, 2001], other types of signals are used as desired output 

wavelet instead of   in (28). One of them is the spike at an arbitrary lag, as this may lead to a 

smaller error if compared with the use of a zero lag spike. This is called delayed-spike deconvolu-

tion. Another type of desired wavelet may be the zero phase wavelet, i.e., a wavelet whose phase 

spectrum is constant at value equal to zero. This wavelet has even symmetry around the origin in 

time and thus is non-causal. Even though this type of wavelet is not physically realizable, it is 

often used in seismic interpretation, as the peaks and troughs of a seismogram containing this 

type of wavelet correspond to reflectors with positive and negative reflectivity, depending on the 

adopted convention [SIMM and WHITE, 2002]. If causality is to be kept, then a delayed version 

of the zero phase wavelet may be considered. An arbitrary shape wavelet may also be another 

option. This actually defines pulse shaping, in which the original wavelet is shaped into another 

desired shape. 

2.2.1 Supervised deconvolution in data communication channel equalization 

The convolutional model described in Figure 15 is also used to describe problems in other 

areas where digital signal processing is used, such as audio signal processing [ZÖLZER, U., 

2008], dynamic systems analysis [GEROMEL and PALHARES, 2004] and telecommunications 

[ROMANO et al., 2010]. Thus, many problems in these fields based on the convolutional model 

are analogous to the seismic case. In particular, we highlight the application in telecommunica-

tions, as some fundamental results are applicable in both areas. In telecommunications, the con-

volutional model is used to model the transmission of data through a linear distorting channel. As 

shown in Figure 20, in this case, the quantity of interest, that is analogous to the seismic reflectiv-

ity, is the message sent from the transmitter through a wireless channel, which is analogous to the 

wavelet. The receiver gets a superposition of delayed signals weighted by different attenuations 

caused by multipath propagation. This causes the received signal to be a linearly distorted version 
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transmitted electromagnetic waves and changing the channel coefficients. Thus, it is common to 

interleave training data with user data, which is, of course, not known by the receiver at transmis-

sion time, in order to assure that the equalizer is adjusted from time to time. In fact, adaptive al-

gorithms, such as the least mean square (LMS) algorithm [HAYKIN, 2001; ROMANO et al., 

2010], allow the dynamic estimation of the equalizers by using the error information to adapt the 

filter to the changes of the channel in time. 

2.3 UNSUPERVISED SIGNAL PROCESSING 

In the previous section, we estimated the linear distortion or its inverse with the aid of a 

guiding signal, such as the estimate of the reflectivity function obtained from a well log in geo-

physical signal processing or the training bits in telecommunications, in order to eliminate 

through deconvolution the distortions effects in the measured signals. Instead of directly compu-

ting the inverse, another possibility was the use of estimates of the wavelet in the seismic case to 

calculate deconvolution filters using the LS criterion. These methods are called supervised signal 

processing, as extra information, besides the measured data, is used to guide the estimation of the 

quantities of interest.  

However, in some cases, the use of guiding signals is not desirable, nor feasible. In the 

telecommunications case sending training data means that some part of the transmission time is 

not occupied with user data, which lowers the effective user data transmission rate. In the geo-

physical processing case, direct wavelet measurements or well data are not always available. In 

the absence of these guiding signals, unsupervised or blind techniques, which rely exclusively on 

the measured data and on a minimal amount of hypotheses concerning the signal of interest and 

on the linear distortion, become an option [ROMANO et al., 2010].  

Nevertheless, blindly estimating the system input and its distortion is an ill-posed prob-

lem, as, for instance, in the seismic case, infinite combinations of wavelets and reflectivity may 

result in the same trace. Thus, one of the main challenges in this case is to establish a priori hy-

potheses about the structures of the wavelet and the reflectivity in order to make the problem 

tractable. These hypothesis often concern statistical properties of the reflectivity, and thus unsu-

pervised techniques in seismic deconvolution receive the name statistical deconvolution, in oppo-
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sition to the supervised approach, which, as already mentioned, receives the name of determinis-

tic deconvolution [NEELAMANI, 2008]. 

2.3.1 Predictive deconvolution 

The use of predictive deconvoluiton for seismic signals was initially proposed by E.A. 

Robinson in his PhD thesis [ROBINSON, 1954], based on the work of Wiener [WIENER, 1949]. 

Curiously, as later stated in [ROBINSON and OSMAN, 1996], “deconvolution was the first truly 

digital signal processing method”. As stated in, e.g., [ROMANO et al., 2010], the problem of 

prediction consists in estimating future values of a time series from past and present information. 

If the signal to be predicted is a wide sense stationary random process, then a linear filter, such as 

the one illustrated in Figure 21, can be used to minimize the prediction error in the MMSE sense. 

In this case, the input itself,     , plays the role of the desired signal and its delayed version, 

whose lag is  , given by       , is used as the input of the linear filter. The prediction error is 

given by                  (33) 

where                  . (34) 

is the predicted time series. The coefficients of the      -th order filter       which minimize  [     ] are obtained by solving the Wiener-Hopf equations described in (22). However, in this 

case, the cross-correlation vector is replaced by the autocorrelation coefficients of     , given by       [          ]  [                   ]  , (35) 

so that the Wiener-Hopf equations become          . (36) 
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As pointed out in [OPPENHEIM and SCHAFER, 1989], the name “minimum phase” 

stems from the minimum phase-lag property of minimum phase systems. From (39), the phase 

spectrum of      is given by     [    ]     [       ]     [      ]  
As the continuous phase of all pass systems is negative for all normalized frequencies in the in-

terval        , the phase-lag, i.e., the negative of the phase, is always greater in this interval 

in a non-minimum phase system if compared to the phase lag of the minimum phase system 

which has the same amplitude spectrum. This allows the phase to be uniquely determined from 

the amplitude spectrum in minimum phase systems. 

Also, among many other properties, minimum phase systems have the minimum energy 

delay [OPPENHEIM and SCHAFER, 1989] (or simply minimum delay [ROBINSON and 

TREITEL, 1980]) property. To understand this property, we first define the partial energy of an 

arbitrary phase system,     ,  as 

     ∑|    |  
     

Then, for a minimum phase system,        , 

∑|    |  
    ∑|       |   

    

for all stable and causal with arbitrary phase      with the same amplitude spectrum as         . 

This is interesting in the seismic case, as seismic sources try to mimic impulsive sources, so that 

the energy is located in the beginning of the wavelet, and thus, in some cases, it is reasonable to 

assume that the wavelet is minimum phase. 

The characterization of minimum phase systems is important, as the use of prediction for 

deconvolution is based on these two hypotheses [ROBINSON and TREITEL, 1980]: Firstly, the 

reflectivity function may be modeled by as a white wide sense stationary (WSS) random process. 

Secondly, the seismic wavelet can be represented as the impulse response to an all-pole minimum 

phase system As described, for example, in [HAYKIN, 2001], under these hypotheses, the reflec-

tivity can be recovered in a unsupervised fashion with the use of a unit-lag PEF, which can be 

defined as a filter whose output is the prediction error, represented by      in Figure 21. In this 

case, the input of the filter is represented by      and      Also, the number of coefficients of 
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     must be equal to or greater than the number of poles of the wavelet. In fact, the unit-lag 

PEF is related to spiking deconvolution, as it is actually equivalent to a zero lag spiking deconvo-

lution filter, except for a scale factor, as shown, for example, in [YILMAZ, 2001]. 

Prediction error filtering is a relatively simple and robust way to perform deconvolution, as 

only second order statistics (SOS) of the seismic trace are used to compute the filter coefficients, as 

shown in (36). However, its applicability is constrained by its underlying hypothesis. First, the signal 

of interest, in our case the reflectivity, is considered to be made as a set of uncorrelated samples 

(white random process) as the PEF can be shown to be a whitening filter [ROMANO et al., 2010], 

i.e.,  [          ]         
for a PEF with enough number of coefficients6. 

This shows that the prediction error will be a set of uncorrelated samples. This also indi-

cates that the PEF will introduce distortions to the output if the samples of the signal of interest 

are correlated to each other. The second limitation of the method is on the minimum phase wave-

let hypothesis. If the wavelet is not minimum phase, then the PEF still will yield an uncorrelated 

series of samples. However, this result will not correspond to the actual reflectivity.  

Now, we show an example of on how the use of prediction error filtering for deconvolu-

tion results in different outcomes in the cases of minimum and mixed phase wavelets. The white 

random signal      in Figure 23 is convolved with the minimum phase wavelet,        , and the 

mixed phase wavelet,        , depicted in Figure 22, resulting, respectively, in         and        , as in Figure 23. The autocorrelation function and the PEF are calculated for both result-

ing signals as shown in Figure 24. It is observed that the results in both cases are the same. This 

stems from the fact that autocorrelation functions are not affected by the phase of     . This can 

be shown by the fact that if                 
then, as in [MENDEL, 1991], using the definition of      in (38) we have:          |    |  , (41) 

where     is the variance of      and       is the power spectral density of      defined as: 

                                                 
6 The whitening property is attained for a finite length PEF only in the case in which the input is a signal which can 
be modeled as an autoregressive process [HAYKIN, 2001]. Otherwise, the whitening property would be attained 
only asymptotically accordingly to the length of the PEF. 
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      ∑              
     

Equation (41) shows that       can be interpreted as the Fourier transform of the autocor-

relation function of     ,     . Thus the fact that the autocorrelation of      does not carry the 

phase information of      comes from the fact that, as shown in (41),       is a function of |    |  which, in turn, is the power spectrum of      and is not affected by the phase infor-

mation of     . As a consequence, as shown in Figure 24(c) and Figure 24(d), the resulting PEFs 

are the same for the minimum phase and mixed phase cases. 

The PEFs are applied to the outputs of the minimum and mixed phase systems, resulting, 

respectively, in         and        , as shown in Figure 25. The original signal      is almost 

perfectly recovered in the minimum phase case, but only a distorted signal is obtained in the 

mixed phase case. If we compare the Z-plane plots of the PEF in Figure 24 and of the minimum 

phase system in Figure 22, the zeros of the PEF are at the same position of the poles, which al-

lows the PEF to cancel the effect of the minimum phase system. From the decomposition in (39) 

we observe that, in the mixed phase system, the PEF is only able to cancel out the minimum 

phase part, but the all-pass component is left, which causes the residual distortion observed in         in Figure 25. In the following sessions, some approaches to overcome the limitations 

imposed by the minimum phase hypothesis in the use of PEFs for unsupervised (also known as 

blind) deconvolution will be discussed. 
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Figure 22: (a) Zero-pole plot of the minimum phase all-pole system. (b) Zero-pole plot of the 
mixed phase system. (c) Amplitude spectrum of the frequency response of the minimum phase 
all-pole system. (d) Amplitude spectrum of the frequency response of the mixed phase system. 

 

Figure 23:     : white random signal.        : Output from a minimum phase system shown in 
Figure 22.          Output from a mixed phase system shown in Figure 22.The two systems 
have the frequency response with the same amplitude spectrum. 
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Figure 24: (a) and (b) Autocorrelation functions of the minimum phase and mixed phase systems.  
(c) and (d) Zero-pole plot of the estimated PEFs from the outputs of the minimum phase and 
mixed phase systems when the inputs were white signals. 

 

Figure 25:     : white random signal.        : output from PEF for the minimum phase system 
case.         : output from PEF for the mixed phase system case.   
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2.3.2 Mixed phase wavelet deconvolution and higher order statistics  

As explained in the Subsection 2.3.1, the use of PEF for deconvolution is constrained by 

the fact that the phase information of the wavelet is not carried by the second order statistics. In 

order to overcome this, many techniques based on the use of higher order statistics (HOS), which 

carry phase information, were proposed. One of the first techniques in this sense was the mini-

mum entropy deconvolution (MED) proposed in [WIGGINS, 1978]. In this work, no assumptions 

about the phase of the wavelet,     , are made. Instead, the reflectivity,     , is assumed to be 

sparse, i.e., to be composed of few large spikes. Thus, the method consists in obtaining a fixed 

length deconvolution filter,                , from the information provided by a set of    traces,                 , that produces a “simplest” set of outputs,                 , or in other words, a set of outputs with the minimum entropy. In this case, it is assumed that all    traces have the same wavelet. Given that the outputs are obtained by                 , 

Wiggins proposed the use of an optimization procedure to search for the values of      that 

maximize the varimax norm of the output, which is computed as 

   ∑         
    

where    , an estimate of the normalized kurtosis of      , is given by     ∑              ∑                . (42) 

 After further developments introduced in [OOE and ULRYCH, 1979; CLAERBOUT, 

1978; GODFREY, 1978; GRAY, 1979], a theoretical framework was later provided in 

[DONOHO, 1981] for the single trace case, where the trace is assumed to be an independent and 

identically distributed (i.i.d.) non-Gaussian random process. Initially, the equivalence of two ran-

dom variables with finite variance is defined. Under this definition, the random variables   and   

are equivalent, expressed as    , if   has the same probability distribution as     , for some 

constants   and    . Next, the operator   is defined such that     indicates that    ∑      ,  
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where ∑        and    are independent random variables with the same distribution. The opera-

tor   has the properties of transitivity, which implies that  

if     and     then    , 

and asymmetry, which implies that  

if     and    , then    . 

In fact, one important observation about the second property is made in [DONOHO, 1981], 

which states that   is a Gaussian random variable if and only if   has finite variance and   ∑      , (43) 

where the summation represents a linear combination of at least two random variables   . From 

this, if   has Gaussian distribution, then     if   is a non-Gaussian random variable, as the 

linear combination of two independent Gaussian random variables can only be Gaussian. In this 

case, the operator   indicates that   cannot be written as a linear combination of random varia-

bles with the same distribution as  . Also, the central limit theorem states that     √ ∑        

converges to a Gaussian random variable   for a large value of   when   has finite variance and 

zero mean. As      and     , then it is taken as definition that     for all random vari-

ables   with an arbitrary probability distribution and finite variance. Thus, if       represents a 

single reflectivity function that is modeled as an i.i.d. random process with arbitrary distribution,       is the respective measured seismic trace and      a i.i.d. random process with Gaussian 

distribution, we have that                  , (44) 

The first   sign comes from the fact that                   , (45) 

which implies that       is a linear combination of delayed samples of      , which are inde-

pendent realizations of the same random variable, weighted by the coefficients of     , and thus 

by definition we have that             . (46) 

The second   sign in (44) is justified by the fact that      is a Gaussian distributed varia-

ble. (44) states that a linear distortion on       results in a signal      which is closer to a Gauss-

ian. This fact allows a more general approach to MED. Since the objective of the deconvolution 

is to produce an output,      , which is closer to the reflectivity,      , than the seismic trace, 
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     , the approach proposed by Donoho consists in using an objective function which discrimi-

nates how Gaussian a random variable is, i.e., an objective function  [ ] such that 

if             then   [     ]   [     ] . (47) 

Thus, the MED framework proposed in [DONOHO, 1981] consists in finding an optimum 

deconvolution filter,     , solving.             ̃    [     ]         ̃    [ ̃         ]. (48) 

It is interesting to notice that this optimization makes sense only under the hypothesis that       is non-Gaussian. If this assumption is false, then       will have a Gaussian distribution for 

all  ̃    such that   ∑  ̃             , and thus  [ ] will not be useful to discriminate how       is close to the actual reflectivity      . 

Next, it is shown in [DONOHO, 1981] that several measures are consistent with the con-

dition described in (47). The first of them are based on standardized cumulants. The cumulants of 

a random variable   are obtained from the cumulant generating function (e.g. [ROMANO et al., 

2010]):           [        ]   
where  [ ] denotes expectation. The  -th cumulant of   is then defined as 

                     |     
and the corresponding standardized cumulant is defined as               ⁄   
 It is shown that  

if     then  |   |  |   |,    . 

 The second cumulant is simply the variance and thus, as discussed previously, it does not 

carry the information about the phase. Therefore, only cumulants with     may be considered 

for MED. The standardized cumulant of       with     is called kurtosis and is estimated by  |    |  |     |  
where     is defined in (42) if the reflectivity,      , and thus also      , have zero mean. From 

this result, it is concluded in [DONOHO, 1981] that maximizing     as initially advocated in 
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[WIGGINS, 1978] is consistent with (47) if the reflectivity respects      , which is a quantita-

tive way to express the sparsity hypothesis in the original work.  If       , then the deconvolu-

tion should be done by minimizing the varimax norm. 

 A more direct link to Shannon differential entropy, defined for   as     ∫        (     )    
    

is also provided in [DONOHO, 1981] in the case where the wavelet is normalized as ∑              . Then it is possible to show that [BERCHER and VIGNAT, 2000]:          , 
for       and       expressed as in (45). This shows that the minimization of Shannon entropy is 

also consistent with (47) and (48). Thus all deconvolution procedures consistent with the princi-

ple described in (47), i.e., based on a optimization procedure as described in (48) truly work by 

reducing the entropy of the output and hence they receive the name of MED-type deconvolution. 

A further discussion can be found in [WALDEN, 1985]. 

Also, in the context of data communications theory, two other theorems give support to 

the role of HOS in unsupervised deconvolution. The first one is the Benveniste-Goursat-Rouget 

(BGR) theorem [BENVENISTE et al., 1980]. As in the case studied in [DONOHO, 1981], a sig-

nal of interest,     , modeled as an i.i.d. non-Gaussian random process, is observed through an 

LTI system, which introduces distortions on the original signal, producing a series of observa-

tions,     . The signal of interest is estimated with the use of another LTI system, i.e., the de-

convolution filter. The theorem states that if one is able to design a filter such that the probability 

density function (pdf) of the signal at its output,     ,  has the same distribution as     , then the 

deconvolution will be perfect up to a delay,  , and a complex unit-magnitude gain,  , which can 

be represented as              . (49) 

In fact, ambiguity of amplitude and delay also happens in MED-type of deconvolution, as 

described by [DONOHO, 1981], because the functions chosen for the optimization in (48) intend 

to quantify how far the distribution of a random variable is away from the Gaussian distribution, 

as described in (47), and, as such, these functions are invariant to scale and delay. 

 The second theorem was proposed in [SHALVI and WEINSTEIN, 1990], which showed 

that the pdf matching requirement of the BGR theorem was excessively rigorous. The Shalvi-
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Weinstein (SW) theorem states that under the same conditions as the BGR theorem, it is suffi-

cient to obtain  [     ]   [     ] and a match between a cumulant of order higher than two 

of      and      so that the deconvolution is perfect up to the conditions described in (49). This 

theorem thus greatly simplifies the requirements for blind deconvolution, as the full pdf matching 

requirement in the BGR theorem implies the matching of statistics of all orders while accordingly 

to the SW theorem it suffices to perform power normalization and then a match of a single HOS. 

As in the discussion in [TUGNAIT, 1992], the SW approach is based on same principles pro-

posed by Wiggins and Donoho. Thus all these works complement each other in the sense of sup-

porting the use of HOS for unsupervised deconvolution. 

 Other approaches that involve the use of HOS, in particular cumulants, for unsupervised 

deconvolution include the fourth order cumulant matching approach developed by [TUGNAIT, 

1987] in the context of linear system identification. It was first applied in real seismic data in 

[LAZEAR, 1993] and further analyzed and developed in works such as [HARGREAVES, 1994; 

VELIS and ULRYCH, 1996; MISRA and SACCHI, 2007; MISRA and CHOPRA, 2010]. Further 

discussion concerning the use of HOS based in cumulants for deconvolution and wavelet estima-

tion may be found, for example, in [NIKIAS and RAGHUVEER, 1987; MENDEL, 1991; 

NIKIAS and MENDEL, 1993; SACCHI and ULRYCH, 2000].   

2.3.3 Independent component analysis and blind source separation  

Blind source separation (BSS) is another important application of unsupervised signal 

processing described, for example, in [HYVÄRINEN et al., 2001; COMON and JUTTEN, 2010; 

ROMANO et al., 2010]. It is related to the unsupervised (or blind) deconvolution problem, in the 

sense that this problem also consists in estimating a set of quantities of interest from information 

obtained from some observations at the output of an unknown distorting system and few statisti-

cal assumptions. The difference is that in BSS the distorting system has multiple inputs and mul-

tiple outputs. Thus, as shown in Figure 26, in this class of problems,   different sources generate 

initially a set of signals at each sample time  , called snapshots, represented by the vector       [                ] . 
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These signals are observed through a system that mixes them and distorts them. A set of   sensors capture the outputs of this system, forming the set of observations or mixtures repre-

sented by       [                ]   
Hence, the BSS problem consists in recovering the original signals, i.e., performing 

source separation only from the information brought by the mixtures, without a priori knowledge 

of the mixing system.  

If we assume that the mixing system is linear, time invariant and memoryless7, i.e., that 

the mixing system can be represented by a     matrix  , then we may write             , (50) 

where the elements of      and      correspond to the respective sources or mixtures. 

If the matrix is square, i.e.,    , so that the number of the sources and mixtures is the 

same, as well as invertible, then the BSS problem may be cast as the estimation of the inverse 

matrix,      only from the mixtures given by the vector     . In [COMON, 1994], it was shown 

that if, analogously to the of unsupervised deconvolution, the source signals,      , are mutually 

independent and non-Gaussian, then it is possible to find such matrix up to some ambiguities 

analogous to the gain and delay factors in unsupervised deconvolution, given by   and   in (49). 

The principle of Comon’s approach stems from the Darmois-Skitovich theorem [KAGAN et al., 

1973], which, in fact, also underlies the theory of MED developed in [DONOHO, 1981]. To ex-

plain the theorem and its impact, let us consider two random variables    and    such that                                          
where            are zero mean mutually independent variables and    and    are constants. The 

theorem states that if     and    are statistically independent and        for more than one val-

ue of  , then this implies that    are Gaussian random variables for all       . Therefore, this 

means that independent variables cannot result from a mixture of non-Gaussian variables. Thus, 

                                                 
7 In problems in fields such as telecommunications and audio processing, mixtures are made by the superposition of 
delayed and scaled versions of source signals and are hence called convolutive mixtures. If proper hypotheses are 
met, then techniques described in, e.g., [HYVÄRINEN et al., 2001; COMON and JUTTEN, 2010] may be used to 
perform BSS in convolutive mixtures. However, these techniques are out of the scope of this work, as we used the 
technique called Banded ICA (B-ICA), proposed in [KAPLAN and ULRYCH, 2003; KAPLAN, 2003], which al-
lows the use of the ICA for memoryless systems for performing deconvolution, as described in Subsection 2.3.4. 
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where    is the correlation matrix of      and   is the identity matrix. 

 In order to obtain   , let us first consider the eigendecomposition of the correlation ma-

trix of      given by                       
where    [       ] 
is a matrix made with the orthogonal unit norm eigenvectors    of    and         [       ]  

is the diagonal matrix that contains the respective eigenvalues. 

Then, it is possible to show that         ⁄    , (52) 

as substitution into (51), followed by the calculation of the correlation matrix of     , leads to                                   (    ⁄   )      (     ⁄ )    (53) 

 It is interesting to notice that this result is not unique. In order to show this, consider an-

other matrix such that          
where   is an orthogonal matrix, i.e.,          . Then it is possible to show that     is 

also a whitening matrix for all possible values of   because if                             (54) 

then we obtain, by using (53), that                                             
Thus, this shows that it is not enough to perform whitening, and hence only SOS, to per-

form source separation, as uncorrelated signals       may be the result of the linear combination 

of other uncorrelated signals,     , as shown in (54). Also, it is important to observe that this 

shows that ICA is not suited when BSS is performed for two or more Gaussian sources because 

uncorrelated Gaussian random variables are also mutually independent. This means that if there 

are more than one Gaussian sources, an independent component that has a Gaussian distribution 

may still be the linear combination of these Gaussian sources instead of an isolated source signal. 

Nevertheless, following [HYVÄRINEN et al., 2001], we may use the whitening as a pre-

processing step for ICA. If we substitute (50) into (51), we obtain that  
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                     (55) 

where          
represents a residual mixing matrix. If we further substitute (55) into (53) and we assume, with-

out loss of generality, that the signals from the sources have zero mean and unit variance, i.e., 

that the correlation matrix of      is given by                    
we obtain that                                         
which means that the residual mixing matrix is also an orthogonal matrix. Thus, as previously 

mentioned, if the whitening is used as a preprocessing step, ICA may be performed by just find-

ing an orthogonal separating matrix that is able to eliminate the effect of the residual mixing ma-

trix, which simplifies the ICA implementation. 

 A classic example that illustrates whitening [HYVÄRINEN et al., 2001; ROMANO et al., 

2010] considers two independent sources       and      , which are modeled as random varia-

bles with uniform distribution and zero mean and unit variance, so that their joint pdf is given by           {          √        √ ⁄                                            
A 10000-sample realization of       and       is shown in Figure 27 in the form of a scatter-

plot, in which a small blue dot is placed at the coordinate given by              . Next, these 

signals are distorted by the mixing matrix, given by   [        ]  
The scatter plot for the resulting mixtures       and       is shown in Figure 28. The linear dis-

tortion caused by the mixing matrix stretches and rotates the original square into a parallelogram. 

It is interesting to notice that, given the information about one of the mixtures, for example,      , then it is possible to infer some information about      . It is possible to show that the 

range of values attainable by       when          is completely different when          . Thus, this shows that the mixtures are not independent. The result of whitening is shown in 

Figure 29. The square shape is recovered, but, as in Figure 28, it is possible to verify that the 

whitened signals are not independent due to a rotation of the square. This rotation is a geomet-
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rical manifestation of the residual mixing matrix from the whitening process, as orthogonal ma-

trices can also be geometrically interpreted as rotation matrices. 

 

Figure 27: Scatter plot of the independent sources:       and       

 

Figure 28: Scatter plot of the mixtures:       and       
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Figure 29: Scatter plot of the whitened outputs:       and       

In order to overcome the limitations of SOS and recover the residual mixing matrix, ICA 

techniques using HOS were discussed in [COMON, 1994]. These techniques seek an orthogonal 

matrix   so that                                   , (56)

where      represent the independent components and also an estimate of the independent 

sources up to a scale factor, represented by the diagonal matrix,  , and a permutation, represent-

ed by the permutation matrix,  . 

2.3.4 Deconvolution based in B-ICA 

In order to show an application of unsupervised signal processing in seismic signal pro-

cessing we now focus on unsupervised deconvolution with a variation of ICA, called banded ICA 

(B-ICA), introduced in [KAPLAN and ULRYCH, 2003; KAPLAN, 2003]. As in [TAKAHATA 

et al., 2012], we choose this method as it combines the two problems in unsupervised signal pro-

cessing addressed so far, namely, unsupervised deconvolution and ICA.  
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As in (7), the convolutional model is given by                 
where the noise was neglected and, as discussed previously,      represents the seismic trace, 

which is a version of the seismic reflectivity,     , corrupted by the seismic wavelet,       In 

order to fit this model into the mixing model in (50), which underlies ICA, we first rewrite the 

convolution as a matrix operation, as in Section  2.2, so that      , (57) 

where   and   are      vectors given by   [                ]    [                ]  

and   is a        convolution matrix described as  

 

  
[  
   
                                                                                                  ]  

   
 
  

                                            [             ]  
where the seismic wavelet is represented by an      vector   [                ]   
and    is a zero padding matrix that such that        , (58) 

where    is the  -th column of  . By comparing (57) and (50), we observe that the trace and the 

reflectivity play the role of the receivers and sources and the convolution matrix is equivalent to 

the mixing matrix. However, we observe that (57) provides a single snapshot, which is not ade-

quate for ICA as an ensemble of snapshots are needed to compute the statistics in the search of 

the independent components. As delayed inputs leads to outputs with the same delay in the con-

volution operation, delayed versions of the seismic trace and reflectivities can be considered       [                    ]       [                    ]   
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where            and        and        for     . Thus, if replace   and   from 

(57) with the vectors defined by      and     , we obtain                           
which is the same as (50) for    snapshots corresponding to    sources and    receivers. If we 

consider the following       matrices   [                ] 
 [                                                      ]  

and   [                 ]         
 [                                                      ], 

  

then we obtain that        
Thus, each source and receiver corresponds to a delayed version of, respectively, the 

seismic reflectivity and the seismic trace. If we assume that the reflectivity is composed of a se-

quence of non-Gaussian and i.i.d variables, as in the case of MED deconvolution [DONOHO, 

1981], then ICA could, in principle, be used to obtain an independent component from the set of 

delayed versions of the traces,  , that would correspond to an original source that represents the 

original reflectivity or a delayed version of it. Nevertheless, as pointed out in [KAPLAN and 

ULRYCH, 2003], the use of plain ICA does not take into account the banded structure of the   

matrix. Also, they point out that the search for independent components could be harmed by the 

fact that the first rows of matrices   and   contain few non-zero realizations, which would distort 

the computations for the statistics of the independent components. 

In order to overcome these issues, a variant of ICA, the B-ICA, is proposed in [KAPLAN 

and ULRYCH, 2003] so that unsupervised deconvolution can be performed. The B-ICA consists 

of the following steps: 
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Step 1- Data Rearrangement: 

The number of mixtures is reduced to       by eliminating the first          rows of   and  , thus obtaining 

   [                                                                           ]  (59) 

   [                                                                           ]  (60) 

and the  -th column of    is denoted by      . Although a         reduced convolution matrix    no longer provides an exact mapping between    and   , accordingly to [KAPLAN and 

ULRYCH, 2003], the impact of this error is small and as this eliminates the excessive zeroes on 

the original mixtures, it improves the statistics of the mixtures and the performance of the ICA 

algorithm. 

 

Step 2 – Data whitening 

 As discussed in the previous sub-section a whitening matrix    is calculated using SOS 

of the mixtures      , as described in (52), and thus we decorrelate and equalize the variance of 

the output signals as in (51), resulting in                
 

Step 3 – Banded structure reinforcement 

As shown in (56), some ICA procedures work by obtaining an orthogonal matrix   that 

produces a set of independent components such that.                       . (61) 

Let us now consider an auxiliary matrix   so that              . (62) 

By comparing (61) and (62) we obtain                    
from which, 
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Thus,         , 

where    is the  -th row of   and    is the  -th column of  . As the independent components       represents the sources up to a scale factor and permutation, then it is reasonable to assume 

that   and the mixing matrix   have similar structures, as (61) also represents a mapping between 

sources and mixtures. Thus, if we consider the expression for the  -th column of   , similarly to  

(58), we may assume          
where     is the zero padding matrix that maps   into the  -th column of   . 

Now, if we analyze the case for the  -th independent component we obtain from (61)  ̃                                                ̃    ,    (63) 

where  ̃    is a new set of    new mixtures given by  ̃                  
As advocated by [KAPLAN and ULRYCH, 2003], by obtaining this new set of mixtures, 

the banded structure of the mixture matrix is reinforced. As shown in (63), the wavelet, given by  , is now related to the mixtures and to the reflectivity estimation explicitly. Hence, the new set 

of mixtures,  ̃     produced during this step, are further processed on the following steps. 

 

Step 4 – ICA  

 As   and         are still unknown, an unsupervised procedure, in the case ICA, is used to 

estimate them. As  ̃    is not necessarily made of decorrelated signals, a new whitening proce-

dure is applied for pre-processing, as in (51), resulting in  ̃     ̃  ̃     
where  ̃  is the       whitening matrix obtained from  ̃   . Next, an       orthonormal 

matrix  ̃ is calculated with the use of an ICA criterion, resulting in the set of independent com-

ponents given by  ̃     ̃ ̃     ̃ ̃  ̃     ̃    ̃    ,    (64) 

where the separating matrix estimated with ICA is given by 
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 ̃     ̃ ̃   
In our case, we used the FastICA algorithm, for performing ICA, as described in 

[HYVÄRINEN et al., 2001]. However, other methods such as the negentropy based ICA meth-

ods used in the original implementation of B-ICA in [KAPLAN and ULRYCH, 2003; KAPLAN, 

2003] are also possible. The discussion about the implication of the choice of the ICA method is 

out of the scope of this work and is regarded as a future topic of research. 

 

Step 5 – Wavelet and reflectivity estimation 

From (64), we observe that the ICA produces actually a collection of    candidates for 

wavelet and reflectivity estimation, given according to (63) by   ̃       ̃   ̃   , 

where  ̃   corresponds to the  -th row of  ̃   . From     in Step 3, as in [KAPLAN and 

ULRYCH, 2003], we choose the  -th wavelet that best predicts the actual trace by solving             ‖       ̂  ‖   
where      [                                   ]  
such that,         if    , correspond to the  -th mixture in  ̃     and  ̂   is given by  ̂   [ ̂      ̂       ̂      ], 
in which  ̂                . 

Also,  

        ̂  ‖ ̂  ‖   
as this minimizes ‖       ̂  ‖ for a given pair of     and  ̂  . 
 

Additional step 6 – Wavelet shaping 

The optimum estimate of the wavelet,  ̃  can then be used for estimating a wavelet shap-

ing filter, such as the one described in (28), in order to convert it to a zero lag spike or a lagged 

spike. If we admit that the wavelet does not vary in the neighboring traces, this filter can also be 
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used to deconvolve a gather of traces. This step is a contribution of this work [TAKAHATA et 

al., 2012]. 

 

The additional Step 6 was motivated in [TAKAHATA et al., 2012] by the fact that, as 

shown in Section 2.4, the use of the B-ICA method (Steps 1 to 5) leads to a deconvolved trace 

that may be delayed if compared to the reflectivity, which prevents the method to be directly ap-

plied to seismic sections as the one displayed in Figure 30. As pointed out in [KAPLAN and 

ULRYCH, 2003], this delay is caused by the way the input samples are ordered in the input of 

the algorithm in (60) in Step 1. In the unsupervised scenario, this delay is unknown, as the delay 

is related to source ordering, as pointed out in (59) and the fact that ICA is not able to determine 

the source order due to a permutation ambiguity as indicated by the permutation matrix   in (56) 

in Subsection 2.3.3. This becomes an issue when deconvolving the traces of a seismic section 

because if each trace of the section is deconvolved with the B-ICA method individually, then the 

result will become a set of deconvolved traces where each trace has a different delay, which re-

sults in the loss of the lateral continuity of the seismic events. The use of Step 6 involves the 

choice of a representative trace in the seismic section so that B-ICA can be used for wavelet es-

timation. The Step 6, then, enables one to derive a deconvolution filter from the estimated wave-

let. Then, the deconvolution of a seismic section becomes possible by applying the deconvolution 

filter to the traces of the seismic section under the hypothesis that the wavelet varies little within 

neighboring traces. In this case a delay will also be observed, but as all traces will have the same 

delay, the lateral continuity of the seismic events is preserved. A complementary method for es-

timating the delay, such as maximizing the correlation with the input traces, then becomes neces-

sary. Later, as will be shown in Section 2.4, we observed that the use of Step 6 resulted in a supe-

rior result if compared to the deconvolved trace produced by the original method, as Step 6 seems 

to introduce some robustness to non-idealities of the reflectivity regarding the i.i.d. hypothesis. 
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2.4 RESULTS 

After exploring the main topics in the theory of convolutional modeling in the seismic set-

ting and in supervised and unsupervised seismic deconvolution and wavelet estimation, we will 

present results based on field and synthetic data in this subsection. Initially, we will characterize 

the data from logs obtained from measurements made in a borehole as displayed in Figure 30. 

Next, we will present a study on synthetic traces where we try to assess the effect of the phase of 

the wavelet and the statistical properties of the reflectivity on the unsupervised deconvolution 

algorithms previously mentioned. In the end, we apply both supervised and unsupervised decon-

volution techniques to a subset of data from the migrated section shown in Figure 30, which was 

obtained by processing a field data. 

 

Figure 30: 2D time migrated seismic section. At the well position, the reflectivity function ob-
tained from the well log is shown in red. 
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2.4.1 Reflectivity characterization 

As fundamental hypotheses of unsupervised deconvolution are based on the statistics of 

the reflectivity function, in this section, we characterize a reflectivity function calculated from 

data collected at a well in offshore Norway. The corresponding position of the well at a 2D time 

migrated seismic section is indicated in Figure 30 as a red curve. This curve actually shows the 

reflectivity function calculated from a section of the information from the well log ranging from 

0.58s to 1.08s. The actual well begins in a shallower part and reaches deeper parts of the well.  

A well log is obtained by lowering a probe down the borehole which measures one or 

more characteristics of the local geology, which include resistivity, P-wave propagation velocity 

(sonic log), density, neutron porosity, etc. [SHERIFF, 2002]. One characteristic of the well log is 

that the resolution is very high if compared to the seismic log. The sampling interval of the well 

log is usually in meters or even in centimeters, while the resolution of seismic data is usually giv-

en in tens of meters. For instance, let us consider the typical case of a wavelet with dominant fre-

quency,   , of 30Hz travelling through a medium with a velocity of       m/s. Then the dom-

inant wavelength is                 
The actual vertical resolution limit, i.e., the minimum vertical separation between two reflectors 

so that these reflectors are distinguishable in seismic data, can be approximated by      

[KALLWEIT and WOOD, 1982]. In this case the vertical resolution limit is 16.67m. 

Another difference of the well log and the seismic log is that the first one is composed of 

measurements as a function of depth, while the second one is composed by measurements as a 

function of time. The procedure used to match both measurements is called well tying [WHITE 

and SIMM, 2003]. In this procedure, the well data are pre-processed and a reflectivity series in 

time is produced from the sonic and density logs using the equations described in Section 2.1. 

Later, a wavelet is calculated with procedures similar to the one described in Section 2.2, and a 

synthetic seismogram is produced. The synthetic seismogram is then compared to the seismic 

data and further refinements on the wavelet estimation and on the conversion from depth to time 

domains are executed. These refinements are made so that the events in the synthetic trace tie to 

the seismic data. Migrated seismic sections, as shown in Figure 30, are normally used, as migra-
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tion algorithms eliminate dip ambiguities and places reflectors and scatterers on the correct posi-

tions, in the ideal case, as discussed in Chapter 1. The logs used here were previously tied to the 

seismic data with the use of professional software (CGG-Geoview). 

Initially we consider a reflectivity function calculated from a very highly sampled density 

and sonic logs as shown in Figure 31, in which the adopted sampling rate is 0.2ms. In Figure 32, 

the power spectral density function indicates that most frequency content of the reflectivity func-

tion is contained between 250Hz and 1000Hz approximately. However, it is important to notice 

that these frequencies are not present on the seismic data, as shown in Figure 33, as they are ab-

sorbed by the earth. The synthetic seismogram, after proper resampling to the same rate as the 

seismic trace (2 ms) and estimating the wavelet, is shown in Figure 34(b). The Pearson correla-

tion to the seismic trace is 84%.  

 

 

 

Figure 31: From left to right: Sonic log, density log, calculated impedance and calculated reflec-
tivity. The sampling rate is 0.2ms. 
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Figure 32: Power Spectral Density spectrum of the reflectivity sampled at 0.2ms. 

 

Figure 33: Power spectral density spectrum of the seismic trace. 
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Figure 34: (a) and (b): Impedance and reflectivity logs at 0.2ms. (c) Synthetic seismogram. (d) 
Migrated trace. 

In Figure 35, the histogram of the reflectivity samples, sampled at 0.2ms, are shown. We 

verify that it has a leptokurtic distribution [COMON and JUTTEN, 2010], as the estimated kurto-

sis (or fourth cumulant) is 70,0. We observed that the reflectivity pdf is well approximated by a 

generalized Gaussian distribution given by              ⁄     [  |   |  ⁄   ]  
where       and    denote, respectively, the gamma function, the scale factor, the mean and the 

shape factor. Note that,     corresponds to the Gaussian distribution and     corresponds to 

the Laplacian distribution. As the kurtosis,   is linked to   by       ⁄      ⁄      ⁄       
the   estimated by solving numerically this equation is 0.37. The respective curve for the gener-

alized Gaussian distribution is plotted in Figure 35.  

In Figure 36, the autocorrelation function of the reflectivity sampled at 0.2ms is shown. 

The 95% confidence interval is indicated by the red lines for the hypothesis that the autocorrela-
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tion is null for a given lag. This Figure shows that the samples are correlated, especially for small 

lags, although these lags are smaller than the sampling rate of the seismic data, which is 0.2ms. 

 

 

Figure 35: Histogram of the reflectivity samples at 0.2ms. In red, the generalized Gaussian distri-
bution curve for corresponding estimated shape factor.  

 

Figure 36: Autocorrelation function of the reflectivity sampled at 0.2ms. The red lines show the 
95% confidence interval. 
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Next, a reflectivity log is calculated from sonic and density logs resampled at the same rate as the 

seismic data, 2ms, as shown in Figure 37. If we compare the resultant reflectivity in Figure 38(b) 

with the seismic data in Figure 38(d), we verify that it is visually closer to the seismic data, if 

compared to the finer sampling case in Figure 34(b), as the quantities are sampled in the same 

scale. The synthetic seismogram is shown in Figure 38(c), and it also has a correlation of 84% 

with the migrated trace. By visual inspection, if we compare the Figure 38(c) and Figure 38(d), 

we observe that features such as the negative peaks just after 0.8s and 1.0s are well reproduced. 

However, the spikes between 0.65s and 0.7s in the reflectivity graph are not present in the seis-

mic log. By observing this region in Figure 30, we observe that this region has been somehow 

blurred in the migrated image, which may indicate that imaging was not completely successful in 

this part of the data. 

 

 

Figure 37: From left to right: Sonic log, density log, calculated impedance and calculated reflec-
tivity. The sampling rate is 2ms.  
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Figure 38: (a) Seismic impedance. (b) Seismic reflectivity. (c) Synthetic seismogram. (d) Migrat-
ed trace. 
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The histogram of the amplitudes of the reflectivity at sampling rate of 2ms is shown in 

Figure 39. The histogram is coarser, as in this case there are 10 times fewer samples than in Fig-

ure 35. In this case, the associated kurtosis is 4.93, and the corresponding   is 1.16, so this is also 

a leptokurtic distribution. This lower kurtosis can be associated to the fact that the reflectivity is 

smoother if compared to its version sampled at 0.2ms, which becomes clear if we consider the 

power spectral density spectrum of the coarser sampled version in Figure 40. It is verified that the 

high frequency content in Figure 32 is no longer present. 

 

Figure 39: Histogram of the reflectivity samples at sampling rate of 2ms. In red the generalized 
Gaussian distribution curve for corresponding estimated shape factor.  



65 
 

  

 

Figure 40: Power spectral density spectrum of the reflectivity sampled at 2ms 

 

Figure 41: Autocorrelation function of the reflectivity sampled at 2ms. The red lines show the 
95% confidence interval. 
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In Figure 41, the autocorrelation function is shown for the reflectivity sampled at 2ms. We 

observe that there is some correlation between the reflectivity samples, as some values of the 

autocorrelation function are outside of the 95% confidence interval. This is corroborated by the 

power spectral density spectrum in Figure 40, as it does not have a flat response as expected if the 

reflectivity were ideally white.  

2.4.2 Unsupervised deconvolution in synthetic data 

We compare now the results of the unsupervised deconvolution algorithms presented in 

Subsection 2.3.4, which are spiking deconvolution with the use of prediction error filtering, B-

ICA and wavelet estimation with B-ICA followed by an LS inverse filter, as described by the 

additional Step 6.  

Initially, a synthetic white reflectivity with i.i.d. random samples, chosen accordingly to a 

Bernoulli-Gaussin distribution, is considered. In this case, a sample has a probability given by   

of being a non-zero variable. When this is the case, the sample has its amplitude given by a 

Gaussian distribution with zero mean, in our case, and variance equal to   . In this case, we 

chose       and     , and a synthetic trace thus obtained is shown in Figure 42. In the first 

test, we applied the unsupervised deconvolution algorithms to a synthetic trace produced with the 

use of the minimum phase Berlage wavelet [ALDRIDGE, 1990] shown in Figure 43. The ampli-

tude spectrum associated with this wavelet is shown in Figure 44. The results of unsupervised 

deconvolution are shown in Figure 42 and the wavelet estimated with B-ICA is shown in Figure 

43. It is possible to verify by inspection that the unsupervised methods are able to recover the 

original reflectivity from the seismic trace. However, in the B-ICA case, a delay is verified on the 

result. As pointed out by [KAPLAN and ULRYCH, 2003], this is associated with the nature of 

the B-ICA, which uses delayed versions of the seismic trace as its inputs. In fact, this delay is 

sometimes also observed in the B-ICA+LS approach, as the LS inverse filter allows smaller error 

if the estimated wavelet is shaped into a lagged spike instead of a zero-lag spike as in [YILMAZ, 

2001]. Also, as shown in Figure 45, the candidate wavelets produced in Step 5 of B-ICA are like-

ly to be shifted versions of the original wavelet, which is also associated with this observed delay. 

Thus, in the results of B-ICA+LS approach considered here, a slightly larger trace was decon-
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volved with the LS approach and a displacement was applied in order to maximize the correlation 

with the original reflectivity. In Table 1, the Pearson correlation between the deconvolved traces 

and the reflectivity indicates that the unsupervised methods were able to recover the original re-

flectivity as the resultant Pearson correlation is above 90%. It is important to observe that the B-

ICA results considered in this table had their delay compensated by correlation maximization 

prior to the measurement of their correlation.  

 

Figure 42: 1-Synthetic trace (minimum phase wavelet). 2- Synthetic Reflectivity. Deconvolved 
traces: 3-PEF. 4-B-ICA+LS inverse filter. 5-B-ICA.  

 

Table 1: Pearson correlation between the deconvolved traces and the reflectivity. 

 Synthetic reflectivity Reflectivity from logs 

 Minimum phase Mixed phase Minimum phase Mixed phase 

Synthetic trace 46% 44% 64% 67% 

PEF 95% 60% 90% 48% 

B-ICA+LS 96% 93% 84% 66% 

B-ICA 93% 81% 67% 58% 
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Figure 43: Left: Original minimum phase wavelet and respective zero-pole plane plot. Right: 
Estimated wavelet with B-ICA and respective zero-pole plane plot (synthetic reflectivity). 

 

Figure 44: Amplitude spectrum of the minimum phase wavelet. 
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Figure 45: Candidate wavelets produced in Step 5 of B-ICA. 

In the next test, we used the same random reflectivity, but we used the mixed phase wave-

let depicted in Figure 46 and Figure 47. This wavelet was estimated from the reflectivity and the 

seismic trace shown in Figure 38 using the Wiener method described in Section 2.2.  The results 

are shown in Figure 48, and it is possible to observe that the B-ICA methods were able to recover 

most of the features of the original reflectivity, while the result of prediction error filtering is 

completely distorted. This also is shown in Table 1, in which the B-ICA methods present high 

correlation if compared to the prediction error filtering. In this case, the B-ICA+LS approach 

produced a slightly better result than the plain B-ICA method. Also, in Figure 46, it is possible to 

observe that B-ICA was able to estimate the original mixed phase wavelet.  
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Figure 46: Left: Original mixed phase wavelet and respective zero-pole plane plot. Right: Esti-
mated wavelet with B-ICA and respective zero-pole plane plot (synthetic reflectivity). 

 

Figure 47: Amplitude spectrum of the mixed phase wavelet. 
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Figure 48: 1-Synthetic trace (mixed phase wavelet). 2- Synthetic reflectivity. Deconvolved traces: 
3-PEF. 4-B-ICA+LS inverse filter. 5-B-ICA. 

Following the tests with an ideally i.i.d. random reflectivity, we now performed tests us-

ing the reflectivity estimated from the well logs shown in Figure 38, so that the reflectivities are 

no longer ideally i.i.d. The results for the minimum phase case are shown in Figure 49. As also 

shown in Table 1, the plain B-ICA has a poor performance, but B-ICA+LS and the use of PEF 

are able to obtain reasonable results. However, in this case, the use of PEF has a slightly better 

result. The reason for that may be the fact that the use of PEF only assumes a white reflectivity, 

while the B-ICA method requires a stronger i.i.d. condition. Thus, this may provide a larger ro-

bustness to the use of PEF when the reflectivity is not completely white, as in this case. Neverthe-

less, as shown in Figure 50, the shape of the wavelet estimated by B-ICA is close to the original 

one, which explains the reasonable performance of the B-ICA+LS approach. 
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Figure 49: 1-Synthetic trace (minimum phase wavelet). 2- Reflectivity estimated from logs. De-
convolved traces: 3-PEF. 4-B-ICA+LS inverse filter. 5-B-ICA. 

 

Figure 50: Left: original minimum phase wavelet and respective zero-pole plane plot. Right: Es-
timated wavelet with B-ICA and respective zero-pole plane plot (reflectivity estimated from 
logs). 
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As a final test, a synthetic trace is produced from the reflectivity estimated from the well 

logs and the mixed phase wavelet previously used. The results of the unsupervised deconvolution 

procedures are described in Figure 51. In Table 1, it is possible to verify that the deconvolution 

procedures were not able to improve the Pearson coherency of the outputs if compared to the 

input seismic trace. However, by observing Figure 51, it was verified that the result of B-ICA+LS 

provided an increase in resolution but it also introduced a high frequency noise. This noisy data 

was, then, filtered with a low pass filter (LPF) generated with the Parks-McClellan algorithm 

(e.g. [OPPENHEIM and SCHAFER, 1989]) and the result is shown in Figure 53 and in Table 2. 

The LPF has passband whose highest frequency is          and stopband whose lowest fre-

quency is         . Also, the estimated wavelet, shown in Figure 52 had a reasonably close 

shape to the original one. The use of LPF allowed an improvement in the Pearson’s correlation 

coefficient of both PEF and B-ICA+LS cases, while keeping B-ICA+LS as the method that pro-

duced the output with the largest correlation to the original reflectivity. 

 

Figure 51: 1-Synthetic trace (mixed phase wavelet). 2- Reflectivity estimated from logs. Decon-
volved traces: 3-PEF. 4-B-ICA+LS inverse filter. 5-B-ICA. 
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Figure 52: Left: original mixed phase wavelet and respective zero-pole plane plot. Right: Esti-
mated wavelet with B-ICA and respective zero-pole plane plot (reflectivity estimated from logs). 
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Figure 53: 1-Synthetic trace (mixed phase wavelet). 2- Reflectivity estimated from logs. Decon-
volved traces: 3-PEF+LPF. 4-B-ICA+LS inverse filter+LPF. 

 

Table 2: Pearson correlation between the deconvolved traces and the reflectivity comparing the 

use of LPF in the case where the synthetic trace is calculated from the mixed phase and the re-

flectivity estimated from the well logs. 

 Without LPF With LPF 

PEF 48% 67% 

B-ICA+LS 66% 76% 
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2.4.3 Unsupervised deconvolution in migrated section from field data 

In the sequence of the tests, we applied the deconvolution algorithms to the trace of the 

migrated section corresponding to the well location shown in Figure 30. The results are shown in 

Figure 54 and in Table 3, where the Pearson’s correlations of the outputs of the deconvolution 

algorithms and the reflectivity estimated from the well logs are displayed. In the tests with field 

data, we used a LPF whose passband has highest frequency of          and stopband has 

lowest frequency of         , where the use of LPF is indicated. As a reference, a supervised 

LS deconvolution filter, as described in Figure 18 in subsection 2.2, was also calculated from the 

migrated trace and the reflectivity estimated from the well logs. As shown in Table 3, the super-

vised LS deconvolution filter produced the output with the largest correlation, which was ex-

pected, as the supervised method takes into account the estimated reflectivity information in or-

der to obtain the filter, in contrast to the unsupervised methods, which only use the information 

obtained from the seismic trace. Despite this difference, if we compare the supervised and B-ICA 

+ LS inverse filter + LPF outputs in Figure 54, we observe that both outputs present similar fea-

tures, except for the use of PEF. Also, Table 3 shows that the PEF+LPF approach presents a low 

correlation, in fact lower than the original trace, which indicates that this approach introduces 

distortion instead of improvement. The main reason for this is that the wavelet in this case is non-

minimum phase. Also, the regular B-ICA also presents a low correlation, while the B-ICA + LS 

inverse filter + LPF approach present a slight increase of correlation if compared to the original 

trace.  
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Figure 54: 1 – Migrated trace. 2 - Reflectivity estimated from well logs. Deconvolved traces: 3 – 
Supervised LS deconvolution. 4 – B-ICA+LS inverse filter+LPF. 5 - PEF+LPF. 6 – B-ICA. 

 

Table 3: Pearson correlation between the deconvolved traces and the reflectivity when the input 
is the migrated trace shown in Figure 54. 

 Minimum phase 

Migrated trace 53% 

Supervised LS 60% 

B-ICA+LS+LPF 55% 

PEF+LPF 47% 

B-ICA 48% 
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Finally, the devonvolution algorithms were tested on a subset of traces of the migrated 

section of Figure 30 and the results are displayed in Figure 55. We chose this set of data, as we 

only had access to the result of this fully processed seismic section, which was ready for seismic 

interpretation. It is also important to notice that we did not have access to raw data, so we could 

not interfere with the processing of the migrated image. As in the single trace case, a supervised 

LS deconvolution filter was calculated from the reflectivity estimated from the well logs and the 

trace corresponding to the position of the well and the same filter was applied to all traces of the 

subset assuming that the wavelet does not vary significantly between the traces. A similar ap-

proach was used for performing deconvolution with B-ICA + LS inverse filter + LPF. The LS 

deconvolution filter was calculated using the migrated trace corresponding to the well position 

and the same filter was applied to all traces of the subset. In the PEF + LPF case, a deconvolution 

filter was calculated for each trace of the subset and thus each trace was deconvolved with its 

own filter. It is possible to observe that the PEF+LS approach distorted the image by, e.g., de-

stroying the lateral continuity of some reflectors pointed by the yellow arrow in Figure 55(d) and 

in Figure 56(b). The B-ICA + LS inverse filter + LPF enhanced some regions of the image as in 

the one indicated by the yellow and green arrows in Figure 55(c), where some reflectors that were 

hidden or blurred in the original section become visible, as displayed in the zoomed versions in 

Figure 57 and Figure 58. It was also noticed that lateral continuity was not harmed by the use of 

the method as in the PEF+LS approach. By comparing the output of the unsupervised method to 

the supervised LS method, we observe that the images are comparable, but with some differ-

ences, such as the reflector pointed by the yellow arrow in Figure 55(b) and Figure 59(a), which 

is absent in the result of the unsupervised method.  
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                                        (a)                                                                           (b) 

 

                                        (c)                                                                           (d) 

Figure 55: (a) Original traces. (b) Output of supervised LS deconvolution. The deconvolution 
filter was calculated using the reflectivity estimate from the well log and the trace corresponding 
to its position and was applied to all traces. (c) Deconvolution using B-ICA + LS inverse filter + 
LPF approach. The deconvolution filter was calculated using the trace corresponding to the well 
position and was applied to all traces. (d) Deconvolution using PEF + LPF. The deconvolution 
filter was calculated separately for each trace and then was applied to the respective trace. 
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(a)                                                         (b) 

Figure 56: Zoomed versions of Figure 55(a) and Figure 55(d). (a) Shows the original traces, 
while (b) shows the result of deconvolution using PEF+LPF. The lateral continuity of some re-
flectors is lost, as shown in the region pointed by the yellow arrow in (b). 

            

                                                 (a)                                                (b) 

Figure 57: Zoomed versions of Figure 55(a) and Figure 55(c). (a) shows the original traces, while 
(b) shows the result of deconvolution using B-ICA+LS inverse filter+LPF approach. Some re-
flectors that were hidden or weak in (a) where enhanced in (b) as pointed by the yellow arrow. 

      

Figure 58: Zoomed versions of Figure 55(a) and Figure 55(c). (a) shows the original traces, while 
(b) shows the result of deconvolution using B-ICA+LS inverse filter+LPF approach. Some re-
flectors that were hidden or weak in (a) where enhanced in (b) as pointed by the green arrow. 
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                                       (a)                                                     (b) 

Figure 59: Zoomed versions of Figure 55(b) and Figure 55(c). (a) shows the result of deconvolu-
tion using the supervised LS approach, while (b) shows the result of deconvolution using B-
ICA+LS inverse filter+LPF. The reflector pointed by the yellow arrow in (a) is not shown in (b). 

2.5 CONCLUSION 

We started this chapter by analyzing the basics of supervised and unsupervised deconvo-

lution and wavelet estimation tehcniques in the unidimensional context. Supervised techniques 

using LS or Wiener filtering were initially reviewed and were shown to be useful for benchmark-

ing the unsupervised techniques discussed in this work, namely the use of PEF for spiking de-

convolution and the B-ICA and B-ICA+LS inverse filtering approaches, as described in later 

parts of the conclusion.  Next, we reviewed the main theoretical aspects of unsupervised decon-

volution, in special the use of PEF for spiking deconvolution [ROBINSON, 1954], which only 

works for minimum phase, and white reflectivity and the theoretical framework presented in 

[DONOHO, 1981], which explains methods such as MED [WIGGINS, 1978], that use HOS in 

order enable unsupervised deconvolution for arbitrary phase wavelets under the hypothesis that 

the samples of the reflectivity can be assumed to be a realization of a i.i.d. non-Gaussian process.  

As in [TAKAHATA et al., 2012], we focused on the unsupervised technique proposed in 

[KAPLAN and ULRYCH, 2003], which uses a variant of ICA, a technique used in BSS. This 

variant, called B-ICA, allows one to perform seismic deconvolution and wavelet estimation in a 

way that connects unsupervised deconvolution and ICA. As in the classical deconvolution algo-

rithms for non-minimum phase wavelets, this technique also allows the deconvolution of arbi-

trary phase wavelets and requires an i.i.d. non-Gaussian reflectivity, as these are also hypotheses 

that underlie ICA techniques. Our contribution to the use of B-ICA, presented in [TAKAHATA 

et al., 2012], was to add an additional step in which we use the wavelet estimated by B-ICA to 
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calculate an LS inverse deconvolution filter instead of using directly the deconvolved trace esti-

mated by the B-ICA method. 

Following this analysis, we extended the result in [TAKAHATA et al., 2012] by perform-

ing a case study on the method using migrated data and well logs. We started with the characteri-

zation of a reflectivity function using logs from measurements made in a borehole. We performed 

a statistical analysis considering two sampling rates: 0.2ms, representing a closer rate to the log 

acquisition in the borehole, and 2ms, representing the sampling rate of seismic data. Both anal-

yses showed that the distribution of amplitudes was non-Gaussian and obeyed a leptokurtic dis-

tribution. It was also observed that the autocorrelation had significant values especially for small 

lags, although with small values if compared to the value at zero lag. This indicated that the re-

flectivity was not an ideal white signal and thus also not i.i.d.  Therefore, both the whiteness re-

quirement of the PEF-based method and the i.i.d. requirement of the B-ICA method were not 

met, at least not perfectly, in this situation. Next, a segment of the trace of the migrated section 

corresponding to the location of the well was used to estimate the wavelet with a supervised 

method, in which the reflectivity from the well log was used as a training signal. It was verified 

that the wavelet was mixed phase in the chosen segment, as opposed to the minimum phase as-

sumption for deconvolution using PEF.  

This information was used to create synthetic traces with different characteristics with re-

spect to the statistics of the reflectivity and the phase of the wavelet, where some traces met the 

hypothesis of the unsupervised deconvolution algorithms and others corresponded to more realis-

tic cases.  The tested algorithms were the unit lag PEF, classically used for seismic deconvolu-

tion, deconvolution with B-ICA, as proposed in [KAPLAN and ULRYCH, 2003], and the B-ICA 

for wavelet estimation followed by the calculation of an inverse LS filter as proposed in 

[TAKAHATA et al., 2012].  The initial tests showed that the B-ICA-based methods are effective 

for both mixed and minimum phase wavelets, if the i.i.d. requirement is respected, as opposed to 

the use of PEF, which failed in the mixed phase case. The remaining tests were conducted with 

the non-ideally i.i.d. reflectivity, which was estimated from the well logs. The results showed that 

the use of B-ICA for reflectivity estimation was not effective in this case, suggesting that the 

method is sensitive to non-idealities in the i.i.d. hypothesis. On the other hand, the B-ICA+LS 

inverse filter was effective in the minimum and mixed phase cases (after low pass filtering in the 

latter), suggesting that the use of B-ICA for wavelet estimation has some robustness even if the 



83 
 

  

reflectivity is not perfectly white. A certain degree of robustness was also observed in the use of 

PEF in the minimum phase wavelet case. The reason for this may stem from the fact that the use 

of PEF requires only whiteness, which is a weaker requirement than independence. As a final 

observation on the deconvolution of the synthetic traces, as delayed versions of the trace are used 

as inputs of the B-ICA method, a delay was also noticed when using the methods based on the B-

ICA. This is inherent to the method, as noted by [KAPLAN and ULRYCH, 2003]. In this work, 

the reported correlations were calculated after compensating the delay, which was done by find-

ing the delay that maximized the correlation between the original and the deconvolved traces. 

In the sequence, we tested the deconvolution algorithms on a migrated trace correspond-

ing to the well location. In this test, a supervised LS inverse filter was also calculated in order to 

provide a reference. Similarly to the case with the synthetic trace produced from the convolution 

of the reflectivity estimated from the well logs and the mixed phase wavelet, the B-ICA+LS+LPF 

produced the best result and qualitatively was able to reproduce almost all the features obtained 

with the use of the supervised LS filter, which reinforces the fact that this approach has some 

robustness to the fact the reflectivity is not perfectly i.i.d., which is not shared with the deconvo-

lution method using pure B-ICA. Also, ICA+LS+LPF approach outperformed the use of PEF, as 

the hypotheses of the method do not consider the phase of the wavelet, in opposition to the use of 

PEF.  

We also applied the deconvolution methods to a sub-region of a migrated section neigh-

boring the well position. In these tests, we assumed that the wavelet did not vary much from trace 

to trace. Firstly, we observed that the use of PEF was not adequate as it destroyed horizontal con-

tinuity observed in some reflectors of the original section. The main reason for this is that the 

wavelet is non-minimum phase as processed data was used. This happens because, even if the 

original wavelet is minimum phase, regular seismic processing procedures that were used in this 

dataset, such as band-pass filtering, stacking and migration are usually not designed to keep this 

character of the wavelet phase. We also observed that the supervised LS filter and B-ICA + LS 

inverse approaches could enhance some parts of the image, making some reflectors more visible.  

From the results in synthetic and migrated traces from field data, we confirmed that the 

use of unit lag PEF for deconvolution is effective only if the wavelet is minimum phase and oth-

erwise it may harm the result. Moreover, the sole use of B-ICA for deconvolution, as in 

[KAPLAN and ULRYCH, 2003], only succeeds if the reflectivity is i.i.d., independently of the 
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phase of the wavelet. However, B-ICA seems not to be robust for deconvolution if the reflectivity 

is not ideally i.i.d. On the other hand, it seems that B-ICA has a certain degree of robustness in 

wavelet estimation, as its wavelet estimates were successfully used for calculating inverse LS 

filters for deconvolution as in [TAKAHATA et al., 2012]. 
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3 BIDIMENSIONAL DECONVOLUTION 

The deconvolution techniques described so far can be called unidimensional techniques, 

as only vertical information (either time or depth) is used to calculate the deconvolution filter or 

the seismic wavelet, which actually can be seen as a way to quantify vertical linear distortion. In 

these techniques, no information about how the data of neighboring traces relate to each other, 

i.e., no horizontal information is used. In opposition to the unidimensional approach, bidimen-

sional deconvolution uses a bidimensional linear distortion model and aims to enhance both ver-

tical and horizontal resolutions. In our case, we use the concept of resolution function adopted in 

works such as [LECOMTE and GELIUS, 1998; GELIUS and LECOMTE, 2000; GELIUS et al., 

2002] in order to quantify the distortion in both vertical and horizontal directions of prestack 

depth migrated (PSDM) images. Besides the frequency information used in the 1D case, limita-

tions in acquisition geometry and complexities in the geology are also considered. As advocated 

in [GELIUS and LECOMTE, 2000], under proper assumptions, the resolution function describes 

the so called point spread function (PSF). The concept of PSFs has been used widely in the image 

processing community in order to quantify the amount of image degradation caused by blurring 

(for a complete review, see, for example, [BANHAM and KATSAGGELOS, 1997]). In 

[LECOMTE, 2008], an interesting example on the deblurring of images produced by the Hubble 

Space Telescope is described. In this case, stars, which should appear as dots in the resulting im-

age, were blurred by the intrinsic 2D impulse response of the telescope mirror, i.e., the PSF. The 

major problem was that imperfections in the mirror resulted in space-variant PSFs, and thus 

standard algorithms were unable to properly sharpen the resulting image. The problem was 

solved by measuring the PSFs all over the mirror surface with an optical method, and then using 

a space-variant deconvolution method.  

Within seismic processing, a PSDM image can be modelled as the convolution between 

the PSF and the actual model quantities [GELIUS et al., 2002]. The key point is that these PSFs 

can be calculated with relatively low computational effort with the use of ray tracing. This feature 

has been used to simulate efficiently 2D and 3D PSDM images with the method called simulated 

prestack local imaging (SimPLI) described, for example in [LECOMTE and POCHON‐
GUERIN, 2005; LECOMTE, 2008]. The concept of PSF can also be used to enhance the resolu-

tion of PSDM images through 2D deconvolution methods. This approach has been explored in 
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works such as [GELIUS et al., 2002; SJOEBERG et al., 2003]. However, these works only con-

sider the use of a smaller subsection along the vertical direction of each PSF, which is close to the 

1D approach, where only the central vertical line of the PSF is used. This imposes limits on en-

hancing horizontal resolution, and can be seen as a pseudo 2D approach, in fact.  Other approach-

es for PSDM sections enhancement based on techniques such as least-squares migration 

[NEMETH et al., 1999] and migration deconvolution [HU et al., 2001] form another branch of 

research. These methods explicitly take into consideration the modelling and the migration opera-

tor, and require a larger computational effort or simplifying schemes, such as considering only 

the main diagonal of the so called Hessian matrix. The interested reader may find an interesting 

discussion, for example, in [TANG, 2009]. 

In this chapter, we show in detail and extend the results obtained in [TAKAHATA et al., 

2013] where we proposed the method and showed that it is able to increase the resolution of 

seismic images with the use of the entire PSF instead of only using the central vertical part of the 

PSF as in previous works [GELIUS et al., 2002; SJOEBERG et al., 2003]. In Subsections 3.1, 

3.2 and 3.3  we review key topics on PSDM and the use of 2D deconvolution based in works 

such as [GELIUS and LECOMTE, 2000; GELIUS et al., 2002; LECOMTE, 2008]. In Subsection 

3.4, we introduce our main contribution, as proposed in [TAKAHATA et al., 2013], which is the 

use of a 2D filtering approach based on 2D spiking deconvolution in the context of enhancement 

of resolution of PSDM images with the use of PSFs. This contrasts with other works in literature, 

such as [SJOEBERG et al., 2003], in which an inversion approach was used. In this case, we ad-

mit that the PSF is somehow estimated and we calculate the deconvolution filter in a supervised 

manner. It is important to notice that our contribution is not on the concept of spiking deconvolu-

tion, which, as shown in the previous chapter, is an already well-established concept, but rather, 

on its application in the present context. Finally, in Subsection 3.5 we present numerical results 

obtained on controlled and field data, and in Subsection 3.6 we present our conclusions and we 

discuss the potentials and the limitations of the method.  



87 
 

  

3.1 THE 2D CONVOLUTIVE MODEL: THE RESOLUTION FUNCTION AND THE 
POINT SPREAD FUNCTION 

Let      be a quantity that characterizes a geological model, such as the reflectivity, at a 

given point  . As described in [GELIUS et al., 2002], its resolution is controlled by the resolution 

function which can be derived with the aid of a Fourier vector, called scattering wavenumber. 

This vector can be calculated with the use of ray tracing with relative ease, as we will describe 

with more detail later in this chapter. In the aforementioned work, both a smooth acoustic or sca-

lar velocity model of the subsurface (as shown in Figure 60) and local reaction are assumed. This 

means that the scattering or reflection at a given model point   is only caused by interactions 

within a surrounding small region, being negligible the interactions with other parts of the model. 

A local plane-wave contribution is also assumed (far field assumption), as pointed out in 

[GELIUS and LECOMTE, 2000]. Given these assumptions, the spatial Fourier transform of      

is defined as      ∫                         (65) 

Here,   denotes the Fourier vector, or the scattering wavenumber vector, as mentioned 

before, at the center point   and    is a position vector that denotes the points within a small re-

gion   around   [GELIUS et al., 2002]. As shown in Figure 60, and following [GELIUS et al., 

2002], this vector can be linked to the seismic survey geometry by the relationship       (       )    [             (    )]              (    )  (66) 

In the above equation,    and    denote, respectively, the positions of the receiver and 

source,   is the frequency of the source signature,  (       ) is the total traveltime and          

and   (    ) are, respectively, the traveltimes along the rays from the source at    to the model 

point at   and from the model point to the receiver at   . In addition to that, the wavenumber vec-

tors    and    represent the local directions of the Green’s functions associated to the incident 

ray that is generated in    and the scattered ray that is received at   , respectively. These Green’s 

functions must be calculated in the background model. In case of complete coverage in the Fouri-

er space, it follows from (65) that      can be obtained by the inverse Fourier transform of     , 

i.e., 
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     ∫                 

Unfortunately, as can be inferred from Figure 60, the range of directions of   is con-

strained by the limited number of source and receiver positions at the surface, i.e., a 360o cover-

age is, in practice, not possible. Moreover, from (66), we see that the bandwidth limitations im-

posed by the source signature, in combination with attenuation effects, impose a constraint on the 

length of  , which is proportional to  . If we describe these actual band limitations in frequency 

and direction by     , the actual estimated model parameter,     , can be expressed as      ∫                    . (67) 

Substituting (65) in (67), we have:      ∫      [∫                    ]      ∫                   (68) 

where      is defined by the inner integral (between brackets) in the above equation. In fact,      

is the resolution function, which describes the distortions of the estimated model. Moreover, in-

spection of (68) shows that the relationship between      and      is described by a 2D convolu-

tion between the actual model quantity,      and     . As      can be seen as the impulse re-

sponse of a linear system at the point  , i.e., a measure of how a point scatterer blurs or spreads, it 

is also called Point Spread Function (PSF). This applies for Born scattering [MILLER et al., 

1987; GELIUS and LECOMTE, 2000; GELIUS et al., 2002], in which it is assumed that every 

discontinuity of the velocity model can be approximated by a point scatterer. 
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Figure 60: A smooth velocity field corresponding to a simple fault system and a point scatterer 
located at  . The source and receiver are located, respectively, at    and   . The local directions 
of the Green’s functions of the incident and scattered wavefields are given by    and    and   is 
the corresponding scattering wavenumber. 
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3.2 PRESTACK DEPTH MIGRATION AND POINT SPREAD FUNCTION 

The aim of depth migration is to locate in depth the information recorded in time. In order 

to do so, it relies on the velocity field and the traveltimes, representing the link between the time 

and depth domains. For illustration purposes, a homogeneous model considering a single point 

scatterer is considered. Figure 61(a) and Figure 61(b) show the one way traveltimes from a 

source located at    and a receiver at   . Such traveltimes are denoted, respectively, by          

and         . Note that the curves with constant traveltime values represent the wavefronts. Fig-

ure 61(c) shows the scattering traveltimes,   (       )                   , 
which link depth and time when considering the backscattered energy emitted at     and received 

at   . The points of the image where  (       ) is constant form the scattering isochrones. In a 

homogeneous medium, they have an elliptical shape, with foci located at    and   . If we consider 

a single trace and place the point scatterer as in Figure 62(a) and Figure 62(b), where it is indicat-

ed as a yellow star, the migrated image will follow the isochrone curve which contains the re-

spective scatterer. In Figure 62(a), the source and receiver coincide (zero offset, ZO), and are just 

above the point scatterer. The resulting image is a circle (an ellipse with coinciding foci) with 

constant width. In Figure 62(b), an offset exists between the source and receiver, so the migrated 

image has an elliptical shape, wider than in the ZO case and also with a varying width. These 

images are examples of impulse responses of the PSDM algorithm. Essentially, this means that if 

a seismic event is received at a given traveltime in the trace, the event may have occurred at any 

point along the respective isochrone.  
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(a) Isotraveltimes from source. 

 

(b) Isotraveltimes from receiver. 

 

(c) Isochrones. 

Figure 61: Considering an homogeneous model: (a) show the contour lines of the traveltimes 
from the source (blue circle) to the points of the model.  (b) shows the contour lines of the trav-
eltimes from the points of the model  to the reciver (green triangle).  As a homogeneous model is 
considered, these lines form circumnferences with center in the source and receiver, respectively. 
(c) shows the countour lines of the scattering traveltime, which describes the total traveltime from 
the source, to the model points and back to the receiver. These lines, called isochrones, form el-
lipses with foci located at the source and receiver.   
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(a) Impulse response of PSDM for a single ZO trace. 

 

(b) Impulse response of PSDM for a single trace whose offset is 2000m. 

Figure 62: Impulse response of the PSDM algorithm in a homogeneous medium. The yellow star 
corresponds scatterer position. Blue circles and green triangles correspond, respectively, to the 
source and receiver. 

When several traces are available, each one gives rise to its own isochrone. The resulting 

migrated image is obtained by adding these individual isochrones. As an example, in Figure 

63(a), there is the result of the sum of different impulse responses calculated for different ZO 

traces for a single scatterer. Observe that there is a constructive interference at the point-scatterer 

location, while destructive interference takes place at other points, thus eliminating the ambiguity 

found in Figure 62. However, the resulting image is not a perfect impulse, but rather a blurred 

version of it, i.e., the PSF. Thus, the PSF limits the ability to resolve the position of the scatterer.  

Figure 63(b) is the corresponding result for a common-shot gather. By comparing these two im-

ages, we observe that the resulting patterns around the scatterer position are different, in spite of 

the fact that the same scatterer and pulse were used. Thus, the use of two different acquisition 

geometries produced two different PSFs.  As previously discussed, the migrated image should 

show only the point scatterer. However, as mentioned before, distortion is caused by the use of a 

finite number of traces, which implies limited aperture, and also by limited frequency bandwidth. 
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From the foregoing discussion, we see that it may be possible to estimate a PSF by migrating the 

measured data associated with a point scatterer. However, this is very costly, since it involves the 

use of prestack synthetic data followed by migration. According to [LECOMTE, 2008], however, 

such procedure is the only alternative when it comes to wave-type migration. For migration 

methods of Kirchhoff type, in which a local interaction assumption is considered, a scattering 

wavenumber vector approach, as introduced in (66), can be applied with much less cost upon the 

use of ray tracing.  

 

(a) Result of PSDM for a ZO gather. 

 

(b) Result of PSDM for a common-shot gather. 

Figure 63: Migrated image of complete trace gathers. The blue circles and the green triangles 
correspond, respectively, to the sources and receivers. The velocity model is homogeneous. 

To show this claim, we start by considering the illumination vector,  (       ), which is 

defined in [LECOMTE, 2008] as   (       )    (    )                [ ̂ (    )   ̂       ]  (69) 

where  ̂  and  ̂ , are unit vectors, evaluated at the image point,  , that are perpendicular, respec-

tively, to the wavefront incident from the source at    and to the one scattered and received at   . 
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As in (69),      is the velocity at the image point  , then          and   (    ) have the magni-

tude corresponding to the reciprocal of the velocity at   and directions corresponding to   ̂  and  ̂  and thus are defined as the slowness vectors associated with the respective wavefields. From 

the eikonal equation, we also have:                    and    (    )     (    ). (70) 

Therefore, by substituting (70) in (69) and comparing the result with (66), the relationship 

between the illumination vector and the scattering wavenumber vector is found to be  (       )    (       )  (71) 

Figure 64 sketches how the slowness vectors can be easily computed with the use of ray 

tracing, since they are tangent to the ray paths which meet at the image point. It also depicts the 

resulting illumination vector  (       ). If a single temporal frequency   is considered, (71) rep-

resents the 2D Fourier Transform (2DFT) of a monochromatic plane wave (a point in the wave-

number domain). If a pulse with limited bandwidth, as shown in Figure 65, is considered, all fre-

quencies are mapped to the wavenumber domain along the scattering wavenumber vectors ac-

cording to (71) and shown in Figure 66. Figure 67 shows the Fourier amplitudes of the wavelet 

along the scattering wavenumber vector indicated in red in Figure 66. The amplitudes are sym-

metric with respect to the origin, since both positive and negative frequencies are considered 

here. This spectrum represents a band-limited plane wave in the space domain as the one dis-

played in Figure 68. 
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Figure 64: Same setting as in Figure 60:   is the illumination vector and   is the opening angle 
between     and   . The first arriving wavefronts from a secondary source at the point scatterer 
are displayed. 

 

Figure 65: The amplitude spectrum of a Ricker wavelet [RICKER, 1944; HOSKEN, 1988] with 
central frequency of 25Hz . 
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Figure 66: Scattering wavenumber vectors for the survey in Figure 63(a). The sampling rate is 
4ms, thus the maximum length of the vectors corresponds to the Nyquist frequency, 125Hz. 

 

Figure 67: Fourier amplitudes of the Ricker wavelet of Figure 65 mapped onto the scattering 
wavenumber vector displayed in red in Figure 66. Some imperfections in the mapping caused the 
ripples in the amplitude spectrum.  



97 
 

  

 

Figure 68: Band limited plane wave corresponding to the spectrum in Figure 67. The ripples in 
the amplitude spectrum in Figure 67 produce the artifacts shown as weak diagonal lines parallel 
to the main plane wave.  

3.3  2D PSF ESTIMATION 

As (71) and also the discussion in the previous section suggest, the PSF at a point of a 

PSDM image may be calculated, whenever a velocity model in depth and a pulse amplitude spec-

trum are given. Namely, in algorithmic form, we have: 

 

Step 1: Select an image point. 

 

Step 2: For each trace (source-receiver pair) do: 

Step 2.1: Estimate the scattering isochrones and the illumination vector. 

Step 2.2: Map the amplitude spectrum in the wavenumber domain according to (71) and  

Figure 65-Figure 67 to obtain the corresponding scattering wavenumber vector.  

 

Step 3: Since the PSDM image represents the superposition of impulse responses (such as the 

ones shown in Figure 63(a) and Figure 63(b)), the scattering wavenumber vectors corresponding 

to each trace are to be summed. This result gives the PSF in the wavenumber domain. 

 

Step 4: Transform the PSF from the wavenumber domain to the space domain as in Figure 68.   
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In our implementation, the isochrone estimation in Step 2.1 was done with the aid of the 

software package FDTIMES [PODVIN, 2006] developed in [PODVIN and LECOMTE, 1991]. 

Given a velocity field and a source location, the package provides the traveltime of the first arriv-

ing wavefront for all points of the model, as shown in Figure 64. In this figure, a secondary 

source located in the subsurface of the velocity model presented in Figure 60 was simulated. The 

rays to the source and receiver at the surface were traced using the traveltime gradients. Such rays 

are perpendicular to the wavefronts. The package was also used in the homogeneous model 

( =1500m/s) analyzed in Figure 61. The scattering traveltimes,  (       ), in Figure 61(c) were 

obtained as the sum of the source and receiver traveltimes to the image point (see Figure 61(a) 

and Figure 61(b)). As an illustration, Figure 69(a) and Figure 69(b) show several PSFs calculated 

for points along the isochrones (impulse responses) in Figure 62(a) and Figure 62(b). By compar-

ing the PSFs with the migrated images, it is verified that when a single trace and a single event 

are considered, the PSFs consist in plane approximations that are tangent to the pattern of the 

respective migrated image. Also, it is observed that the width of the PSFs follow the width of the 

resulting pattern of the migrated images. 

 The result of variation in direction and width, i.e., resolution, can be explained with the 

use of the illumination vectors,  , described in (69) and plotted, together with the slowness vec-

tors,     and   , in Figure 69(a) and Figure 69(b), It is possible to verify that the PSFs are per-

pendicular to the illumination vectors, as the   vector is related to the representation of the PSF in 

the wavenumber ( ) domain as shown in (71) [LECOMTE, 2008]. The variation of resolution of 

the PSFs along the isochrones can be analyzed, if we recast (69) in the form  (       )                 ̂(       )  (72) 

where   is the opening angle between     and    and  ̂(       ) is the unit vector in the direc-

tion of the illumination vector [LECOMTE, 2008]. It is interesting to notice that  (       ) has a 

maximum length of        when    , namely in case of normal-incidence backscattering. This 

can be observed in Figure 69(a), where the PSFs were calculated along an isochrone correspond-

ing to the zero offset, single trace, scenario presented in Figure 62(a). In this case,      at all 

points of the isochrone and the size of the illumination vector, plotted in red in Figure 69(a), is 

constant. As a consequence, the thickness of the migrated trace in Figure 69(a) is also constant 

along the isochrone. As indicated by (72), the size of  (       ) decreases as   increases. This 
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can be observed in Figure 69(b) where the PSFs were calculated along the isochrone correspond-

ing to the non-zero offset scenario presented in Figure 62(b). In this case, the angle is wider at the 

bottom of the isochrone. Thus, the illumination vector is smaller in this region and, as shown in 

Figure 62(b) and Figure 69(b), the resolution is better in the regions closer to the receiver or the 

source and it becomes worse near the bottom. In fact, if we consider contribution of the illumina-

tion vector to the scattering wavenumber vector, as indicated in (71), we verify that having a 

small illumination vector affects the resolution of the seismic image as much as having a small 

frequency bandwidth in the source signature.  

As a next illustration, we compute the illumination vectors for the acquisition geometries 

in Figure 63(a) and in Figure 63(b). These are displayed, at the point-scatterer position, in Figure 

70(a) and in Figure 70(b). For the ZO case of Figure 70(a), we have     and the illumination 

vector has the maximum length for all traces. For the common-shot situation of Figure 70 (b), the 

size of the illumination vector decreases as the offset and   increase, indicating a poorer resolu-

tion at the larger offsets. We clearly see an improved resolution for the ZO case when compared 

to the CS counterpart whose PSFs are shown in Figure 71(a) and Figure 71(b), respectively. The 

same comparison can be made when we consider the blur patterns observed in the actual PSDM 

images in in Figure 63(a) and in Figure 63(b). Note that the PSFs in Figure 71 are good approxi-

mations of the blurring patterns around the scatterer in Figure 63. 
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(a) PSFs along an isochron corresponding to a migrated ZO trace.

(b) PSFs along an isochron corresponding to a migrated trace with offset 2000m 

Figure 69: PSFs calculated along two migrated traces corresponding to the acquisition geometries 
in Figure 62(a) and in Figure 62(b). The blue, red and green vectors correspond respectively to    ,   and   . 
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(a) Illumination vectors calculated at the scatterer for a ZO geometry 

 

(b) Illumination vectors calculated at the scatterer for a common-shot geometry 

 

Figure 70: Illumination vectors for acquisition geometries of Figure 63(a) and of Figure 63(b). 

 

               

(a) PSF corresponding to Figure 70(a).                 (b) PSF corresponding to Figure 70(b). 

Figure 71: PSFs calculated at the scatterer for the acquisition geometries: (a) ZO of Figure 63(a) 
and (b) CS of Figure 63 (b). 
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3.4  2D DECONVOLUTION 

In this section, we show a method to improve the resolution of an image by mitigating the 

effects of the PSF. The 2D spiking deconvolution filter is analogous to the 1D case in Chapter 2. 

In the 1D case, a deconvolution filter is calculated in order to transform the source signature into 

a narrow wavelet, ideally a spike, in the resulting trace, thus enhancing the vertical resolution. In 

the 2D case, a wide PSF (Figure 72(a)) is filtered with a 2D filter (Figure 72(b)) to produce a 

narrower PSF (Figure 72(c)). As in the 1D case, the ideal 2D spiking deconvolution filter is the 

one that transforms a PSF into a 2D spike (Figure 72(d)), defined as         {                                 . 

So let us define the following signals: 

 

 The sampled versions of the PSDM (blurred) image (          image):         {                                                              

 PSF (          image):        {                                                              

 2D deconvolution filter (          image):  

        {                                                             

 Filter output (                image):         {                                                                           

 

As        is the output of the deconvolution filter, it is given by 

       ∑ ∑                                 
    

 
     , (73) 
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where the blurred image,       , is the input,        is the 2D spiking deconvolution filter and 

the symbol ** denotes the 2D deconvolution.  

In the context of finding the 2D spiking deconvolution filter, we first consider an input 

image generated by the blurring of the single spike in Figure 72(d). The resulting figure is thus 

the single PSF shown in Figure 72(a). In this case, we have that              . The goal then is 

to find a 2D filter, as the one in Figure 72(b), that outputs an image which is similar to a spike 

(Figure 72(c)) when the input is       , i.e.,                                        . (74) 

 

(a)                                          (b) 

 

                                                    (c)                                          (d) 

Figure 72: (a) PSF. (b) 2D deconvolution filter. (c) 2D Deconvolved PSF. (d) Ideal spike. 

 

In order to analyze the effect of this deconvolution filter in a general image, we start by 

considering an original image,       , that is blurred by a linear and space invariant PSF,       , 

resulting in a blurred version,       , such that:                        
The 2D spiking deconvolution filter used in (74) can then be used to restore        from       , or at least to mitigate the effect of the PSF, as  
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                                                           . 

In fact, an actual blurred image can be seen as a superposition of several PSFs, each one 

of them around one pixel of the original image, weighted by its amplitude. The 2D sipky 

deconvolution filter works by enhancing the resolution of each of these shifted and scaled PSFs. 

As an example, we consider a scenario where there are two blurred spikes, as shown in Figure 

73(a). By performing the 2D deconvolution, the two points become distinguishable, as shown in 

Figure 73(b). A more general case is shown in Figure 74, where the original Lena image in Fig-

ure 74(a) is blurred with a PSF, as shown in Figure 74(b).The blurred image is deconvolved and 

the result shown in Figure 74(c) is very close to the original one. 

 

 

      

(a)                                      (b) 

Figure 73: (a) Two separate points are blurred by a PSF. (b) 2D Deconvolved image, the points 
are now cleary distinguishable. 

                

                                    (a)                                   (b)                                     (c) 

Figure 74: (a) Original Lena image. (b) Image blurred with Gaussian PSF. (c) 2D Deconvolved 
image. 
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3.4.1 Obtaining the the 2D spiking deconvolution filter 

The least squares criterion is used to calculate the optimal 2D spiking deconvolution filter 

similarly to the case of 1D deconvolution explored in the previous chapter. In order to do so, we 

define the representation of a 2D image by a 1D vector with the use of the lexicographical order-

ing as in [SJOEBERG et al., 2003]. An example for     and    , is given: 

     {[                                                            ]}  
[  
   
   
                                                             ]  

   
   
 
 

In order to illustrate this, Figure 75(a) shows, for     and       where each color rep-

resents a different number. Figure 75(a) shows       , and Figure 75(b) shows its lexicograph-

ical ordering representation. Figure 75(c) shows its flipped version,         . A flipped and 

shifted version,              and its lexicographic representation, denoted by       ,  are 

shown in Figure 75(d) and in Figure 75(e) respectively. The white spaces represent null elements. 

Now, if we analyze the expression for        , (74), rewritten as: 

        ∑ ∑                  
    

 
     , (75) 

we verify that            is a flipped and shifted version of       , as shown in Figure 75(c) 

for       and Figure 75(d) for       .  By denoting      as the lexicographic representa-

tion of           , as the in the example in Figure 75(e), and   as the lexicographic represen-

tation of       , we have, by substituting in (75), that                  

If we write         in the lexicographical order, we can obtain a convolution matrix   whose 

rows correspond to the values of        , so that 
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   [                                      ]  [  
                                         ]  

       . (76) 

 

 An example of a convolution matrix is given in Figure 76 for             and    , and        shown in Figure 75, where it is possible to verify that the seventh row of the 

matrix corresponds to        shown in Figure 75(e). 

 

 

 

   (a)                                 (b) 

 

                                    (c)                                               (d)                                   (e) 

Figure 75: Illustrative example for     and    . (a)       . (b) lexicographic representation 
of       . (c)         . (d)             .  (e)       .  
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Figure 76: Illustrative example of   for P=1, Q=1, K=1 and L=1. 

 

 If we denote   as the lexicographical representation of       , then, in order to obtain     , we need to solve the following optimization problem:     ‖    ‖    ‖ ‖   

whose solution is the optimum filter, according to the regularized least squares criterion, which is 
given by:                  

where   is the identity matrix8 and   is the regularization term introduced to avoid amplification 
of spectral notches. 

  

                                                 
8 We use   instead of  , as in the usual notation for the identity matrix, in order to avoid confusion with the illumina-
tion vector, which is denoted by  . 
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3.5 RESULTS 

3.5.1 Homogeneous medium 

In this section, we show some results of applying the proposed method to a homogeneous 

model. Initially, a single trace configuration with offset equal to 2000m and a single scatterer is 

considered. The velocity of the medium is C = 2000m/s and a Ricker wavelet with center fre-

quency of 25Hz is used [RICKER, 1944; HOSKEN, 1988]. Figure 77(a) shows the result of dif-

fraction-stack migration [FRENCH, 1974] of this trace. The migrated sections obtained with this 

method actually indicate the probability of existence of a seismic event at each sampled point of a 

region of the subsurface. This is done by summing (i.e., stacking) the amplitudes of all traces at 

times where the response of a hypothetical scatterer located at the chosen point could be recorded 

during the seismic experiment. High absolute values indicate that this given point is highly likely 

to be an actual scatterer. In Figure 77(a), we see that the migration of a single trace results in an 

isochrone curve as in Figure 62, as all points of the ischrone are equally likely to be the origin of 

the recorded energy. Three possible scatterer positions are displayed as red crosses. Figure 77(b)-

Figure 77(d) show the results of 2D deconvolution for the PSFs estimated at each cross. Note that 

the whole image is deconvolved with a single 2D deconvolution filter. The corresponding PSFs 

are shown in Figure 78(a)- Figure 78(c). It is observed that the resolution is increased near the 

scatterers, but the remaining part of the isochrone gets distorted. This is due to the fact that the 

PSF changes along the isochrone, as shown in Figure 69(a) and Figure 69(b). The assumption of 

a spatially invariant PSF is, thus, not globally correct. On the other hand, if a small target region 

is considered and the velocity field is smooth enough, it becomes reasonable to assume that the 

PSF is locally invariant in space. As an example, consider a scenario with two nearby scatterers. 

They are located at (−20, 2000)T and (30, 2000)T (coordinate system (x, z)T ). A common-shot 

gather (cf. Figure 79) with source at the origin and the receivers ranging from (−1600, 0)T to 

(1600, 0) T (10m spacing), is migrated by diffraction stacking. The result is shown in Figure 

80(a), in which we see that it is not possible to discriminate the two scatterers. However, the use 

of 2D deconvolution, as shown in Figure 80(c), allows to discriminate the two scatterers. Thus, 

the use of 2D deconvolution enables increased lateral resolution. The 1D deconvolution was also 
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tested by considering just the central vertical part of the PSF, as in [GELIUS et al., 2002]. The 

result is displayed in Figure 80(b). In this case, the lateral resolution is slightly increased, but the 

2D deconvolution provides a better separation between the scatterers, as expected. The above 2D 

deconvolution result is comparable to the one presented in [GELIUS et al., 2013], shown in Fig-

ure 80(d), in which a high resolution method called multiple signal classification (MUSIC) was 

used for the same data. The main difference is that MUSIC is rather a localization technique and 

its use implies the loss of amplitude information. That does not happen with the deconvolution 

technique. On the other hand, the result provided by MUSIC is more accurate in the sense that it 

does not show the migration artifacts and the ringing observed in the deconvolved image. 

 

 

                                              (a)                                                             (b) 

 

                                              (c)                                                              (d) 

Figure 77 (a) Migrated single trace with offset 2000m. Red crosses represent three possible loca-
tions for scatterers; (b)-(d) Results of 2D deconvolution with PSFs estimated at each red cross. 
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(a)                                                                          (b) 

 

(c) 

Figure 78:  PSFs used to obtain the 2D deconvolution results shown in, respectively: (a) Figure 
77(b); (b) Figure 77(c) and (c) Figure 77(d). 
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Figure 79: Common-shot gather of two nearby scatterers located at (-20, 2000)T and (30, 2000)T. 
The velocity is C = 2000m/s. 
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                        (a)Migrated image.                                             (b)1D Deconvolution. 

 

                 (c) 2D Deconvolution.                                             (d)  MUSIC imaging. 

Figure 80: Migrated, deconvolved and MUSIC images of two nearby scatterers 
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3.5.2 Fault system 

A fault model with layers of different velocities, as shown in Figure 81, is now consid-

ered. This model represents the original velocities before smoothing, as shown in Figure 60 and 

Figure 64. A CO section (4000m), whose acquisition geometry is described in Figure 81, was 

obtained using 2D ray tracing (NORSAR software package). In the figure, we show a small target 

area that has been selected for later migration. The PSF, shown in Figure 82 is calculated at the 

position indicated by a black cross in Figure 81. 

 

 

Figure 81: Fault system model: The selected target is highlighted with a yellow box. The black 
cross describes the point where the PSF for the 2D deconvolution is calculated. 

 

Figure 82: The PSF calculated at the position indicated by the black cross. 

 

The diffraction-stack migration of the CO data corresponding to the small rectangle in 

Figure 81 is shown in Figure 83(a). Observe that, of the four inclined reflectors displayed in Fig-
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ure 84, only three are visible in the migrated image. The 2D deconvolution method was then ap-

plied to the migrated image. The result is shown in Figure 83(b). As can be seen in this figure, all 

four reflectors are now resolved. However, it is also observed that the original migration artifacts 

in Figure 83(a), such as the light colored curves pointed by the yellow arrows, known as migra-

tion smiles [SHERIFF, 2002], have been somewhat amplified. Also, some ringing is associated 

with the reflectors. This can be partly explained by observing the 2D Fourier Transform (2DFT) 

amplitude spectrum of the PSF in Figure 85(a). As the 2D spiking deconvolution filter seeks the 

inversion of the PSF in the mean squares sense, it enhances the low amplitude frequencies of the 

PSF. Since the PSF has null wavenumber components at the points which are not covered by the 

scattering wavenumber vectors (determined by the acquisition geometry, velocity model and the 

seismic frequency band), a high gain is associated with these directions. As these frequency com-

ponents are associated with non-existing illumination directions and temporal frequencies of the 

actual data, they contain mostly noise, so their enhancement leads to the undesired effects seen in 

Figure 83(b). This is supported by the comparison between the 2DFT amplitude spectra of the 

migrated image and the deconvolved image, shown respectively in Figure 86(a) and Figure 86(b). 

For the migrated image, most of the energy is located around the origin and within the limits of 

the "band" associated with the 2DFT amplitude spectrum of the PSF seen in Figure 85(a). On the 

other hand, the 2DFT amplitude spectrum of the deconvolved image shows high amplitudes 

along a band around the    and    axes which continue to the edges of the spectra, and indicates 

the presence of high frequency artifacts, as seen in Figure 83(b). In order to eliminate these com-

ponents, a 2D filter calculated from a tapered wavenumber mask displayed in Figure 85(b) was 

used. The 2DFT amplitude spectrum in Figure 85(b) was transformed to the space domain and 

the resulting filter was applied to the deconvolved image. The result is displayed in Figure 83(c). 

It is possible to observe in the resulting image that the artifacts and the high frequency ringing 

that were dimming the reflectors have now been attenuated. Also, in the resulting amplitude spec-

trum, in Figure 86(c), the high wavenumber components, i.e., the components outside the wave-

number band of the PSF have been attenuated. Nevertheless, we observe that the artifacts are still 

stronger in the deconvolved section. This may be avoided with use of more advanced regulariza-

tion techniques in the deconvolution process, which is the object of current research. 
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(a) Migrated image. 

 

 (b) 2D deconvolution. 

 

(c) 2D deconvolution followed by 2D filtering. 

Figure 83: (a) shows the result of the migration of a CO section. Only three reflectors out of the 
four reflectors in Figure 84 are shown. The light colored curves pointed by the yellow arrows are 
artifacts produced by the migration algorithm known as migration smiles [SHERIFF, 2002]. (b) 
Shows the result of the use of the 2D deconvolution filter to the image in (a). The four reflectors 
are now resolved, but the migration artifacts from Figure (a) have been amplified. (c) Shows the 
result after 2D filtering with the tapered wavenumber mask. The artifacts have been attenuated. 
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Figure 84: The interfaces in the selected target. 

    

           (a) Amplitude spectrum of the PSF.                         (b) Tapered wavenumber mask. 

Figure 85: (a) 2DFT amplitude spectrum of the PSF used for 2D deconvolution and (b) the ta-
pered wavenumber mask used to filter the deconvolved image. 
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                                    (a)                                                                      (b) 

    

(c) 

Figure 86: 2DFT amplitude spectrum of the migrated and deconvolved images: (a) Migrated im-
age; (b) After the 2D deconvolution and (c) After the 2D deconvolution followed by 2D filtering. 
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3.5.3 Field Data Example 

In this subsection, we show a preliminary result of the use of the 2D deconvolution filter 

followed by the tapered wavenumber mask in seismic sections obtained from processed field da-

ta. In Figure 87(a), there is a section obtained from a migration of a 1650m CO section. In Figure 

87(b) we show the 2D deconvolved section. We observe that the resolution at the wedges pointed 

by the yellow arrows was enhanced as it became possible to differentiate the upper and lower 

reflectors in a larger portion of these wedges.  

 

(a) migrated section 

 

(b) 2D deconvolved section 

Figure 87: 2D deconvolution of a 2D CO (1650m) migrated section. 
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3.6 CONCLUSION  

In this chapter, we presented the results from [TAKAHATA et al., 2013] in more detail 

and showed our contribution to the enhancement of resolution of PSDM images which consisted 

in the use of 2D filtering approach derived from the PSFs with the use of a 2D spiking deconvo-

lution approach. We started by reviewing, following [LECOMTE and GELIUS, 1998; GELIUS 

and LECOMTE, 2000; GELIUS et al., 2002], how the concept of resolution function can be used 

to describe how limitations in the acquisition geometry and frequency bandwidth and complexi-

ties in the velocity model affect the resolution of seismic sections generated by PSDM. A seismic 

section obtained by PSDM can be seen as a version of the true model of the subsurface that has 

been distorted or blurred by the resolution function. Further, under proper assumptions, these 

resolution functions can be interpreted as PSFs as used in the context of image processing. 

Next, we described and implemented a method from the referred literature for calculating 

these PSFs with the use of illumination vectors and scattering wavenumber vectors, using a ray-

tracing algorithm. Also, we implemented the diffraction stack algorithm with the same ray-

tracing algorithm in order to produce PSDM sections. In order to test these algorithms, we per-

formed tests in a single scatterer scenario. In these tests, we observed that the PSFs successfully 

approximated the distortions caused by the PSDM. In the single trace configuration case, we ob-

served that the PSFs approximated successfully the impulse response produced by the PSDM 

algorithm within small regions selected around points of the respective isochrone. It was ob-

served that the space-varying PSFs could follow the changes of direction and resolution caused 

by the change of illumination along the isochrone. In the tests with gathers of traces, it was ob-

served that the PSFs could successfully approximate the result of the PSDM around the position 

of the point scatterer.  

After these tests, we presented our main contribution, in which we proposed to use a fil-

tering approach to perform 2D spiking deconvolution, in contrast to previous works in literature 

such as [GELIUS et al., 2002; SJOEBERG et al., 2003], where an inversion approach was used. 

It is important to notice that, in these previous works, only a small section around the vertical 

section (pseudo 2D) of the PSF was used, as, otherwise, the method would become unstable. 

Thus, our first contribution allowed the use of the whole PSF for deconvolution. The 2D spiking 

deconvolution technique was applied to various types of migrated synthetic data. It was shown 
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for a homogeneous medium case that the use of 2D deconvolution improves the lateral resolution 

of migrated images. In fact, the results were comparable to those obtained by methods of high 

resolution such as MUSIC when it comes to separation of two nearby point scatterers (diffraction 

limited case) [GELIUS et al., 2013]. The results for a layered fault model demonstrated that the 

method is also able to enhance the resolution of reflectors. However, we observed that already 

existing migration artifacts can possibly be further enhanced by the deconvolution. These arti-

facts arise if null components of the 2D spectrum of the PSF, which correspond to frequencies 

and illumination directions that do not exist on the data, are not considered. Thus, our second 

contribution to the method was a refinement step with the implementation of a 2D filter based on 

a 2D tapered wavenumber mask to attenuate the effect of the artifacts. This approach was also 

applied to migrated field data, in which the resolution of the image was enhanced. 
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4 CONCLUSIONS AND PERSPECTIVES 

In this thesis, we explored the deconvolution problem from the unidimensional and bidi-

mensional perspectives. In Chapter 2, we focused on the unidimensional problem. We reviewed 

the basic theory of supervised deconvolution and wavelet estimation exploring LS and Wiener 

filtering and also the theoretical aspects of unsupervised deconvolution, especially regarding the 

well-established prediction error filtering [ROBINSON, 1954], which uses SOS and assumes 

white reflectivity and minimum phase wavelet. We also described a method that uses HOS called 

B-ICA [KAPLAN and ULRYCH, 2003; KAPLAN, 2003], which assumes a non-Gaussian i.i.d. 

random reflectivity and does not impose any requirements on the phase of the wavelet. B-ICA 

provides both a wavelet estimate and a deconvolved reflectivity. Our contribution was to show 

that better performance can be achieved if, instead of using the deconvolved output of B-ICA, we 

use its wavelet estimate to calculate an inverse filter, as shown in [TAKAHATA et al., 2012]. 

After the analysis of the theoretical aspects of deconvolution techniques, we made a case 

study using logs obtained from well measurements and migrated field data. From the statistical 

characterization of the reflectivity estimated from the well measurements, we concluded that its 

amplitudes have a non-Gaussian distribution, and the reflectivity is not perfectly white (and thus 

also not perfectly i.i.d.) as required by the unsupervised algorithms. The use of supervised meth-

ods allowed us to verify that the wavelet was mixed phase in the chosen time window, as op-

posed to the minimum phase assumption for prediction error filtering. This information was used 

to create different synthetic scenarios regarding the phase of the wavelet and the statistics of the 

wavelet, allowing us to create traces that met the hypothesis of the deconvolution algorithms and 

also traces closer to real situations. The well data was also useful to validate the outputs of the 

unsupervised deconvolution performed on the trace of the migrated section corresponding to the 

well position. 

Tests with this set of synthetic data and traces from the migrated field data confirmed that 

the use of PEF is ineffective when the wavelet is mixed phase, but we also observed that it has 

some robustness for non-idealities of the reflectivity statistics when the wavelet is minimum 

phase. On the other hand, the B-ICA was effective while deconvolving minimum and mixed 

phase wavelets for i.i.d. reflectivities, but it was ineffective for the non-i.i.d. realistic reflectivity. 

However, the wavelet estimation with the use of B-ICA seemed to possess some robustness to 
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this non-ideality as the use of additional step proposed by us performed well in all synthetic sce-

narios, as well as in the migrated field data.  

Next steps of research could involve further tests on the robustness of the B-ICA to the 

existence of correlation between the samples of the reflectivity, as results in 2.4 showed that an 

actual reflectivity is not perfectly white. Also, more detailed analysis on the effects of the data 

rearrangement in Step 1 of the algorithm and on the choice of the wavelet and reflectivity pair in 

Step 5 could deepen the understanding of the method. Moreover, understanding the implications 

of the choice of the technique used to perform the ICA step (Step 4) on the result of deconvolu-

tion could also lead to improvements. Furthermore, the use of sparse component analysis (SCA), 

e.g., [GRIBONVAL and LESAGE, 2006], instead of ICA could also lead to new insights into the 

approach of joining BSS based approaches and deconvolution. In addition, tests in data produced 

in different stages of processing should be considered. Finally, tests in data acquired from differ-

ent geological sites, including data acquired in Brazil, should be considered. 

In Chapter 3, we focused on bidimensional deconvolution. As opposed to the unidimen-

sional approach adopted in Chapter 2, where the information of a single trace or very limited in-

formation on neighboring traces may be used and the resolution only on the vertical direction is 

considered, the bidimensional approach considers the quantification of distortions, also in the 

horizontal direction, i.e., between neighboring traces, and allows the enhancement of both lateral 

and vertical resolution of seismic images. Following the approach in [LECOMTE and GELIUS, 

1998; GELIUS and LECOMTE, 2000; GELIUS et al., 2002], we explored the concepts of resolu-

tion function, scattering wavenumber vector and illumination vector to calculate PSFs, which 

models the blur in PSDM sections caused by the limitations in the geometry acquisition and the 

geological complexities, in addition to the band limitation of the wavelet, which is the only factor 

considered in the unidimensional approach. 

Our contribution to the use of PSFs in bidimensional deconvolution was to model and use 

an LS spiking deconvolution approach [TAKAHATA et al., 2013], as opposed to the use of di-

rect inversion approaches such as in [GELIUS et al., 2002; SJOEBERG et al., 2003]. These pre-

vious approaches were limited by the fact the use of the whole PSF would lead to instabilities and 

thus a pseudo 2D approach was used where only the central region around the vertical axis of the 

PSF was used. In fact, it was also observed that a naïve use of the spiking deconvolution ap-

proach would also lead to instabilities. An analysis on the 2DFT amplitude spectrum of the PSF 
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allowed the discovery of spectral nulls caused by inexistent frequencies and illumination direc-

tions in the data, and that these components were enhancing noise on the deconvolved image. A 

refinement with a tapered wavenumber mask filter was then proposed in order to eliminate these 

spurious components. Tests in controlled and field data showed that this method was able to in-

crease the resolution of PSDM sections, especially in the horizontal direction. 

Further improvements in the method will consist in enhancing the ability to increase the 

resolution of PSDM sections while mitigating artifacts. In order to achieve this, regularization 

methods for the inversion approach could be elaborated based on a further analysis on the null 

components of the 2D spectrum of the PSFs. Moreover, regularization methods exploring sparsi-

ty in the Wavelet domain [BELGE et al., 2000] or in the Curvelet domain [KUMAR and 

HERRMANN, 2008] could also be explored. Also, in this thesis, it was assumed that the PSFs 

were locally space invariant. This is actually an approximation, valid for small areas with similar 

illumination. However, larger areas or more complex geology may imply in changes of illumina-

tion in the area of interest, which, as consequence, lead to variations in the PSFs. Thus, adaptive 

filtering methods or inverse methods which take these variations into account should also be ana-

lyzed. Finally, the PSFs method assumes that the seismic image is formed by the response of 

point scatterers. As seismic data contains predominantly reflections, a reflector spread function, 

as advocated in [GELIUS et al., 2002], instead of the PSF, may also improve the results of de-

convolution. Finally, an extension for processing 3D data should be considered. 3D seismic data 

may be obtained by performing the acquisition over a 2D area at the surface instead of a single 

line as in the 2D case. The processing of this type of data leads to 3D data volumes which can be 

used to produce 3D models of the earth [YILMAZ, 2001]. The extension of the method would 

then start with the implementation of a method to estimate 3D PSFs by considering 3D illumina-

tion vectors by using the source and receiver positions in the acquisition surface and using 3D ray 

tracing in a three-dimensional velocity model. After that, the LS spiking deconvolution filtering 

approach may be applied by using a 3D convolution matrix that is similar to the 2D matrix pre-

sented in (76). The use of 3D deconvolution would then allow the increase of resolution in two 

horizontal directions, which could enhance the ability to visualize features in horizontal sections 

of seismic volumes.  
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APPENDIX A: PROOF OF EQUIVALENCE BETWEEN LS AND WIENER FILTERS 
FOR WHITE REFLECTIVITY 

 Here we show that, as mentioned in Chapter 2, if we consider the reflectivity,     , to be 

a white signal and we neglect the noise, then, the Wiener filter,      , is actually the same as 

the zero lag spiking deconvolution LS filter,       . 

From (7), neglecting the noise, and (8), we have that 

       ∑                 
    . (77) 

If we make a variable change so that       , 

then we have  

       ∑                     
     .  

As           if      or         , then we have 

       ∑                      
     .  

Thus, if we define as      [                       ]       [                        ] , 

then we can express        as a product of these vectors so that                 . 

 We can substitute this into (11) and thus we have            , (78) 

where    is a              Toeplitz matrix so that 

   [  
                   ]  

 
. 
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As the sample in the m-th line and q’-th column of    are, respectively, linked to the m-

th delay of x(n) and q’-th delay of s(n), then, from (10), we obtain that [   ]          ,                          , (79) 

where [  ]    is the element of    located at the i-th line and j-th column of the matrix, 

   [                                                                    ] , (80) 

From (78) and (18), we now calculate the autocorrelation matrix:    [         ]   [              ]           , (81) 

where     is the variance of     , as      is a white signal and therefore  [         ]      , as 

consequence from (25). Also from (25), it’s possible to verify that  [        ]    [                     ]         , 

where   is a             vector so that    [     ] . 

Thus, as the desired signal is     , the cross-correlation is given by    [        ]   [          ]         . (82) 

By substituting (81) and (82) in (23) we have then:                 . (83) 

 By comparing (29) and (30) to (79) and (80), then we observe that            . (84) 

Thus, if we compare (28) and (83), we have, as a consequence in the case of white reflectivity, 

that actually       . 

Therefore, this shows that if the seismic trace is processed with the LS filter, the error of 

the output in respect to the reflectivity will be minimal in the MMSE sense if the reflectivity is 

white.  

Also, if we consider a unit variance for     , then we have from (81) and (84) the expres-

sions of autocorrelation and cross-correlation in terms of    :            ,             


