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Abstract

This work explores alternative methods for FinFET prototype fabrication. Different Ąn

deĄnition methods (Al hard mask FIB milling and Ga+ FIB lithography) are explored,

aiming for Ćexibility in deĄning the number of Ąns, as well as Ąn height. Alternative

gate stacks are applied in the fabricated FinFETs, with two different dielectric materials

(SiON and TiAlON) and two different methods for TiN gate electrode formation. The

detailed fabrication process is provided and discussed, with special attention to difficul-

ties and challenges faced. Fabrication steps are carefully evaluated, presenting details and

parameters such as that the process could be replicated. Morphological and electrical

characterizations are performed on the fabricated FinFETs. With the Ga+ FIB lithog-

raphy method, working FinFETs with nine parallel Ąns are fabricated, with Ąn width

down to 87nm. Electrical parameters are extracted, such as VTH, subthreshold slope,

leakage current, low Ąeld mobility, RSD, gate electrode work function, EOT, and oth-

ers. Working FinFETs with sub-100nm Ąn width are presented, with subthreshold slope

of 120mV/dec and low Ąeld mobility of 372cm2/v.s, results that show an improvement

on previous works, but still leave room for optimizations. Discussions are performed,

explaining the meaning of the extracted parameters, and ways to improve the results.

The different gate stacks are evaluated regarding their parameter stability and leakage

current density. An EOT of 3.6nm is achieved for the SiON dielectric, with leakage cur-

rent density between 177µA/cm2 and 0.61mA/cm2. Important developments have been

made towards process integration and novel prototype fabrication methods. Future works

include silicon-dielectric interface improvements and a self aligned process to achieve in-

creased transconductance and gate-to-channel coupling, and reduce the series resistance.

Keywords: FinFET; MOSFET; Nanotechnology; Prototype Fabrication; Focused Ion

Beam; Metal Gate.



Resumo

Este trabalho explora métodos alternativos para fabricação de protótipos de FinFETs.

Diferentes métodos de deĄnição de fin (fresagem de máscara de Al por feixe de íon foca-

lizado e litograĄa por feixe focalizado de íons de gálio) são explorados, buscando Ćexibi-

lidade na deĄnição do número de fins, bem como a altura dos fins. Diferentes estruturas

de porta são aplicados nos FinFETs fabricados, com dois materiais dielétricos diferentes

(SiON e TiAlON) e dois métodos diferentes para a formação de TiN como eletrodo de

porta. O processo de fabricação detalhado é fornecida e discutido, com especial atenção

às diĄculdades e desaĄos enfrentados. Etapas de fabricação são cuidadosamente avalia-

das, apresentando detalhes e parâmetros de forma que o processo possa ser replicado.

Caracterizações morfológicas e elétricas são realizadas nos FinFETs fabricadas. Com a

litograĄa por feixe focalizado de íons de gálio, FinFETs com nove fins em paralelo são

fabricados, com largura de fin até 87nm e comportamento elétrico de transistor. Parâ-

metros elétricos são extraídos, tais como VTH, inclinação de sublimiar, corrente de fuga,

mobilidade de portadores, RSD, função trabalho do eletrodo de porta, EOT, e outros.

FinFETs com largura Ąn abaixo de 100nm são apresentados, com inclinação de sublimiar

de 120 mV/dec e moblidade de portadores de 372 cm2/V.s, resultados que mostram uma

melhoria em relação a trabalhos anteriores, mas ainda deixam espaço para otimizações.

Discussões são realizadas, explicando o signiĄcado dos parâmetros extraídos, e formas de

melhorar os resultados. As diferentes estruturas de porta são avaliados quanto à estabili-

dade dos parâmetros e densidade de corrente de fuga. Um EOT de 3.6nm é alcançado para

o dieléctrico SiON, com densidade de corrente de fuga entre 177µA/cm2 e 0.61mA/cm2.

Desenvolvimentos importantes são feitos no sentido da integração de processos e inovaçoes

em termos de métodos de fabricação de protótipos. Trabalhos futuros incluem melhorias

na interface de silício-dielétrico e um processo de fabricação auto alinhado para alcançar

uma maior transcondutância e acoplamento entre porta e canal, e reduzir a resistência

série.

Palavras-chaves:FinFET; MOSFET; Nanotecnologia; Fabricação de Protótipos; Feixe

de Íons Focalizado; Eletrodo Metálico de Porta.
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1 Introduction

1.1 Planar and 3D MOSFETs

The metal oxide semiconductor Ąeld effect transistor (MOSFET) can be consid-

ered one of the greatest inventions of the 20th century and has revolutionized the Ąeld of

electronic devices and systems. For the last Ąve decades the transistor has become steadily

smaller, following the observation made by Gordon Moore (MOORE, 1965; GARGINI,

2015). However, it is a constant challenge for process engineers to reduce its dimensions,

which ranges from incremental improvements and slight tricks to whole new materials

and novel processes. Figure 1 presents the evolution of Intel technology from the 0.5µm

technology node to the 14nm node, in regards to the several aspects that comprise the

complete integrated circuit (IC) fabrication. It can be seen that to achieve modern tran-

sistors with gate lengths of few nanometres, steady efforts in all aspects had to be made.

The transistor architecture change towards Tri-Gate, also known as Ąn Ąeld effect transis-

tor (FinFET), has been commercially introduced in 2011, and current research is focused

on further improvements still Ű such as replacing the silicon channel for a material with

higher carrier mobility. It is important to note that although some developments are

ground-breaking Ű such as the introduction of high-κ dielectric and metal gate Ű they

are not Ąnal. For the scaling to continue, new developments have to be introduced ev-

ery node and new paradigms are researched, which could solve one problem or another

(COLLAERT et al., 2015).

The main focus of this Master thesis are the transistor architecture, gate oxide

and gate electrode aspects. Beyond 32nm, short channel effects degrade the electrical

behaviour of planar MOSFETs, and a 3D channel becomes essential. It provides superior

gate-to-channel coupling, lessening effects such as drain induced barrier lowering (DIBL)

and enabling excellent device subthreshold characteristics (SUBRAMANIAN et al., 2006;

COLINGE et al., 2008). The adopted solution was the FinFET (HUANG et al., 1999;

HISAMOTO et al., 2000), a tri- or double-gate semiconductor device with self-aligned

source and drain regions and gates aligned to each other, and planar complementary metal

oxide semiconductor (CMOS)-compatible process Ćow. A schematic of a planar MOSFET,

fabricated in bulk silicon, and of a 3D FinFET, fabricated on silicon-on-insulator (SOI)

substrate, is presented in Figure 21. One can see that a completely new direction related

to transistor fabrication was taken when the 3D FinFET was Ąrst introduced. What was

a mostly planar process Ű in the front end of the line, at least Ű now becomes three-

dimensional, and has to solve issues related to this device three dimensionality Ű step
1 All figures whose source has not been mentioned are of own elaboration.
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The silicon layer is then etched and the photo-resist or other masking material is removed,

leaving the silicon Ąns exposed for the next step. Gate stack formation (Figure 5b) can be

achieved by high-κ dielectric deposition, followed by gate metal deposition, which is then

lithographically deĄned and etched. Again, the lithographic method used, along with the

etching techniques, has to be able to produce gate lengths of sub-50nm or less. Source

and drain implantation (Figure 5c), along with thermal annealing, creates the source

and drain junctions, by incorporation and activation of impurity atoms in the silicon

lattice. The Ąnal gate stack, with the correct materials, can be formed either before Ű

known as gate Ąrst scheme Ű of after Ű gate last scheme Ű source and drain implantations,

according to process design decisions (FRANK, 2011; VELOSO et al., 2011). Contact and

interconnect deposition (Figure 5d) is usually the last step of device fabrication, where the

contact metal is deposited, patterned and etched. Contact deposition allows the device to

be accessed to be tested or connected to other devices, creating a circuit.

The presented fabrication steps are obviously simpliĄed, since modern CMOS fab-

rication involves additional steps such as gate sidewall spacer formation, silicides, complex

gate stacks, engineered junction proĄles and others (CHAU et al., 2007; HARELAND et

al., 2013). Also, FinFETs fabricated on bulk silicon substrates require further additional

steps, such as ion implants to avoid junction punchthrough and creation of shallow trench

isolation (STI) (LINDERT; CEA, 2006).

Although FinFETs present simpliĄed fabrication steps, compared to other multiple

gate transistor designs Űsuch as planar and vertical double-gate transistors (NOWAK et

al., 2004)Ű, several challenges arise from the channel three dimensionality. The challenges

are mainly related to sidewall smoothness after etching, ion implantation and uniform Ąn

doping, conformal metal gate deposition and layout usage (KAWASAKI et al., 2009).

One of the most important structural parameter in a FinFET device Ű which is not

present in planar MOSFETs Ű is the Ąn width (Wfin). A very thin Ąn is desired, to ensure

volume inversion, improve the electrical response and reduce short channel effects (DAL

et al., 2007). Volume inversion is when the current Ćows in the center of the Ąns, not on

the surface, reducing the mobility scattering effects and resulting in enhanced transistor

performance, as Ąrst suggested by Balestra et al. (1987). It is only achieved, however,

in Ąns thinner than 10nm (COLINGE et al., 2008), which imposes serious fabrication

challenges not only to achieve this dimension, but to ensure uniformity and low roughness.

Besides thin Ąns, multiple Ąn FinFET are also desired. Multiple Ąns improve FinFET

electrical characteristics, for two important reasons: Ąrst, it provides better layout usage,

and a wider channel for the same device, increasing the transistor drive current; second,

it averages the Ąn characteristics, reducing random morphological variations that may

compromise single Ąn transistors (SHANG et al., 2006). The Ąn deĄnition is thus the Ąrst

FinFET fabrication challenge, and special attention is required on the sidewall roughness,
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which increases mobility scattering and degrades the device performance (CHOI et al.,

2002a). Another issue is to guarantee that the metal gate fully envelops the Ąn, with

proper step coverage and uniform thickness (JURCZAK et al., 2009).

Regarding Ąn doping, two main issues can be discussed: channel doping and source

and drain doping. While planar MOSFETs require complex doping proĄles to succesfully

suppress short channel effects, the supperior gate-to-channel coupling provided by Fin-

FET devices allows the reduction of the channel doping (KING, 2005). An undoped

channel provides higher carrier Ąeld effect mobility, increasing the transistor drive cur-

rent. Random discrete doping variability is also signiĄcantly suppressed, when reducing

the channel doping (WANG et al., 2011). For FinFETs with undoped channel, the thresh-

old voltage (Vth) is controlled mainly by the gate electrode work function. Work function

variations become thus the main source of Vth variations between transistors in a circuit

(MATSUKAWA et al., 2009).

The challenge of FinFET source and drain doping is related to uniformity and

silicon amorphisation. An uniform doping of FinFET source and drain is more difficult to

obtain due to Ąn shadowing, where one Ąn acts as a mask for the ion implant of the other

(KAWASAKI et al., 2008). Also, the very thin silicon layer is prone to complete Ąn amor-

phisation during source and drain ion implant, which leads to problematic recrystallization

during high temperature anneal. Boundary defects and possibly polycrystalline Ąns can

result from complete amorphisation, contributing to increase the source and drain series

resistance (RSD) (DUFFY et al., 2007; COLLAERT et al., 2008). One way of preventing

full amorphisation is to perform epitaxial regrowth of the thin Ąns Ű thus increasing the

size of the silicon layer Ű before source and drain ion implantation, which also reduces

signiĄcantly the source and drain series resistance (RSD) (BASKER et al., 2010).

1.4 Objectives and Motivation

MOSFET prototype fabrication is an important part of the development cycle of

new technologies and a basis for important discoveries in materials and devices. Tran-

sistor prototypes are mainly used to evaluate new materials and fabrication alternatives

that can be integrated in the main process Ćow if successful. New materials or deposition

methods for a given material should be assessed both regarding their morphological and

electrical parameters. Due to its constraints on step coverage, sidewall roughness and work

function stability, FinFET devices present themselves as excellent mediums for electrical

characterisation of novel gate stack materials, for example. The Ąn has to be completely

covered by both the dielectric and gate electrode, or else the device will not function

properly. As such, the deposition method has to guarantee conformality, which can be as-

sessed electrically using FinFET prototypes. Furthermore, a dielectric Ąlm which induces
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a high density of charged interface states degrades the transistor carrier mobility and the

subthreshold slope, parameters extracted from the electrical measurements. In summary,

the evaluation of a given material or deposition method, in semiconductor research, has to

go beyond morphological assessments, and as the industry has moved towards 3D devices,

so are research labs required to.

This work is an effort to bring FinFET prototypes as a feasible testing tool for

future developments in the Center for Semiconductor Components and Nanotechnologies

(CCS Nano). When performing experimental research, one faces several challenges and

drawbacks. This work is focused at critically analysing the issues and identifying their

sources, in order to solve some and propose improvements and useful advice for future

works related to prototype fabrication. Special attention is given to in depth evaluation of

the results, both structural Ű such as cross sections with magniĄcation close to the scan-

ning electron microscope (SEM) resolution limit Ű and electrical Ű with careful parameter

extraction and result discussion.

To fabricate the FinFET prototypes, results from other works, both from CCS

Nano and elsewhere, have been put together, investigated and optimized to a certain

degree. An effort towards process integration has been made, since the best results should

be applied to new studies in order to achieve progress. Nonetheless, part of this work

consists of new developments and new methods, since past solutions were not able to

solve the issues raised in this research.

Prototype fabrication and transistor scaling depends on a full toolbox of meth-

ods, materials and equipments that are continually evolving, as was seen in Figure 1.

With this thesis one more technique is expected to be added to the FinFET prototyp-

ing toolbox: the multiple Ąn deĄnition using Ga+ focused ion beam (FIB) lithography.

This technique allows fast device prototyping using the focused ion beam (FIB), when

compared to the most common technique of substrate milling using the same equipment.

The Ćexibility regarding number of Ąns and Ąn width provided by Ga+ FIB lithography

is valuable for prototype fabrication, since it allows FinFETs with different Ąn charac-

teristics to be fabricated side by side. In addition, transistor scaling is full of examples

of techniques and tricks that were used for reasons beyond their original purpose. Spacer

technology is an interesting case, Ąrst used in the gate sidewalls, allowing the fabrication

of high performance lightly doped drain/source (LDD) MOSFETs (TSANG et al., 1982),

was later used for sub-20nm line patterning and Ąn deĄnition (DEGROOTE et al., 2007;

XU et al., 2013), then called self-aligned double-patterning or spacer lithography. Like-

wise, techniques designed for FinFET prototyping could potentially be used for vertically

integrated nanowire FETs or other applications even.
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tion. These materials and methods are discussed in the context of analogous results and

applications, and gate stack alternatives used in modern CMOS by either the industry or

other research institutes. The experimental formation of the different gate stacks in the

fabricated FinFET prototypes and control capacitors is presented in Chapter 3, and the

extracted parameters, results and comparisons are discussed in Section 4.2.

Following the FinFET fabrication, presented in the experimental procedure in

Chapter 3, a complete device is obtained. Electrical characterisations is then performed

and discussed along with its extracted parameters, such as RSD, Vth and mobility, for ex-

ample. The discussions and comparisons are tied with gate stack comparisons and lead to

the conclusions. Improvement suggestions are made, based on the extracted parameters,

electrical characterisations and evaluations of problems during prototype fabrication. It

is not expected that this thesis solves all issues related to process integration and proto-

type fabrication, but that it provides useful advice for future improved devices. The Ąnal

conclusions are thus drawn based on the fabrication experience and results achieved.
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2 FinFET Fabrication Processes

Several fabrication steps are necessary for modern IC fabrication. In this section

some of these fabrication steps will be covered, focusing on the key process for FinFET

fabrication in special. The techniques employed in this work will be described in detail.

2.1 Fin Definition Methods

The vertical FinFET body Ű the Ąn Ű can be obtained using a variety of different

techniques. The main issue is to deĄne sub-100nm lines using the available lithographic

equipment and methods. This section focuses on brieĆy outlining common lithography

techniques for Ąn deĄnition and discussing their advantages and difficulties.

2.1.1 Electron Beam Lithography

Electron beam lithography (EBL) is the method of choice for initial prototype

fabrication, not only FinFETs, but other proof-of-concept devices and techniques as well.

The Ąrst FinFETs fabricated employed e-beam lithography for Ąn deĄnition and source

and drain pads (HUANG et al., 1999; HISAMOTO et al., 2000).

Flexibility in pattern generation, since lithography is performed by direct writ-

ing, which eliminates the need of physical masks. Very Ąne lines below 10 nm can be

achieved using e-beam lithography (GRIGORESCU et al., 2007; MANFRINATO et al.,

2013). Electron forward scattering and backscattering leads to beam spread when elec-

trons interact with the e-resist and even pattern size variations (CONSTANCIAS et al.,

2013). This increases pattern roughness and results in line edge roughness which com-

promise smaller features (VIEU et al., 2000). For FinFET fabrication, it results in Ąns

with uneven width, wich in turn degrades the output characteristics of the transistors.

To reduce the effects of scattering upon the resist, that result in line width roughness

and line edge roughness, very thin resists are employed. This, in turn, compromise future

sample processing, since thicker resist layers are often needed for lift off and etch steps.

Another option, is to separately adjust the exposure dose for each feature, accounting for

proximity effects in order to properly deĄne the featues with minimal roughness (TSENG

et al., 2003).

While electron beam lithography is very attractive for prototyping, mask and mold

fabrication, and research and development (James Watt Nnanofabrication Centre, 2014),

the low throughput makes this technique undesirable for high scale manufacturing. To

address this issue, multiple beam tools are being developed to increase processing speeds
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(CHANG et al., 2001), with different approaches being evaluated, such as the micro-

column multiple e-beam (DU et al., 2016) and the reĆective electron beam lithography

(REBL) (MCCORD et al., 2012). While these systems are still in the development phase,

interesting opportunities are expected for multiple beam systems in critical lithography

steps (LIN, 2012).

2.1.2 193nm Immersion Lithography

Big manufactures and research institutes use multi million dollars 193nm immer-

sion lithography along with ashing and reactive ion etch (RIE) optimizations for Ąn def-

inition. Some examples of fabricated FinFETs using this technique are demonstrated by

IBM (KEDZIERSKI et al., 2003), IMEC (DAL et al., 2007), Intel (KAVALIEROS et al.,

2006; AUTH, 2012; NATARAJAN et al., 2014) and TSMC (WU et al., 2010a). While the

reported technology is 193nm immersion lithography, other methods are also frequently

employed for the Ąn deĄnition and other structures as well, such as double lithography

double etch (LELE) and self aligned double patterning (MAENHOUDT et al., 2008) Ű

herein called spacer lithography.

One way to obtain smaller structures using the same laser source is to replace the

medium between the lenses and the wafer. When switching from air to a higher refraction

index Ćuid, the system numerical apperture is increased, and thus the resolution and

focal depth (SMITH et al., 2004b). Using water as an immersion Ćuid reduces the effective

wavelength of 193nm radiation by 30% (SANDERS, 2010). Immersion lithography enables

the patterning of sub-45nm features (SMITH et al., 2004a) and even sub-10nm when

applied in conjunction with other techniques such as multiple patterning (OWA et al.,

2014) and directed self assemby (JEONG et al., 2013).

Challenges remain, however, when immersion lithography is employed. The Ćuid

has to be extremely homogeneous, free of bubbles and particles, that damage the Ąnal pat-

tern (LIN, 2006). Moreover, scaling using 193nm immersion lithography can only achieve

certain dimensions and remain viable. Beyond the 14nm technology node, extreme ultra-

violet lithography (EUVL) provide important reduction of process complexity Ű and cost

(RONSE et al., 2012).

2.1.3 Spacer Lithography

Spacer lithography is often used for Ąn deĄnition, since it provides reduction of the

minimum features obtained by optical lithography (JUNG et al., 2006). Most nostably,

FinFETs have been fabricated using spacer lithography and RIE for the silicon etch step

(CHOI et al., 2001; CHOI et al., 2002b; DEGROOTE et al., 2007; KIM et al., 2013),

and also using TMAH wet etch for highly anisotropic silicon etching (LIU et al., 2003;
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has also been readily implemented partly due to the excellent conformal Ąlms provided by

ALD (AUTH, 2012; JOHNSON et al., 2014). Furthermore, the main disadvantage ALD

presents Ű the low deposition rate Ű has become less important as required Ąlm thickness

have decreased and thickness control has in turn gained importance (LESKEL; RITALA,

2002).

The ALD process consists of sequential alternating pulses of vapour phase chemical

precursors that react with the substrate. These individual gas-surface reactions are called

Şhalf-reactionsŤ and appropriately make up only part of the materials synthesis. During

each half-reaction, the precursor is inserted in the chamber reacts with to the substrate

surface in a self-limiting manner, saturating the exposed surface and leaving no more than

one monolayer. The Ąrst half reaction is purged and and the next chemical species are

inserted, which react to the adsorbed monolayer and create a single layer of the desired

material. ALD processes are performed at relatively low temperatures (<350°C), and the

temperature range where the growth is saturated is called the ŞALD temperature windowŤ

and depends on the utilized precursos (JOHNSON et al., 2014). Due to the self limiting

nature, the Ąlms are highly uniform, conformal and continuous. Since each cycle deposits

a single material layer, excellent thickness control is achieved (GEORGE, 2010). Several

precursor gases have been developed to deposit a wide range of materials, including gate

oxides, transition-metal nitrides for gate electrodes and metals for interconnections such

as copper and ruthenium and even semiconductor materials (LESKEL; RITALA, 2003;

GUO et al., 2015; MINJAUW et al., 2015; AHADI; CADIEN, 2016; SCHWARTZBERG;

OLYNICK, 2015).

One of the limitations of ALD is related to Ąlm contamination arising from the

non-reacted precursors incorporated in the Ąlm(LESKEL; RITALA, 2003; KIM, 2003;

WU et al., 2010b), which can be controlled by changing the process temperature and

improving the purge steps. Also, the materials that can be deposited are dependent on

the available precursors. Furthermore, ALD depends on the chemisorption of the Ąrst

pulse of precursors to the substrate surface, and for this active sites need to exist in this

surface (PUURUNEN, 2005). For some chemistries employed, certain substrates require

an additional step of surface preparation, prior to material deposition (POMAREDE et

al., 2003).

2.2.2 Metal Evaporation

While evaporation has been phased out in the semiconductor industry, it still

retains a degree of importance for research purposes (NISHI; DOERING, 2000). Evapo-

ration tools are either thermal, with a tungsten Ąlament heating the source material, or

based on an electron beam (e-beam) as a heating source. In both cases the material to be

deposited is heated above its boiling point and evaporates. When the vapour reaches the
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sample it condenses and forms a continuous thin Ąlm. Electron beam evaporators reach

higher temperatures, which allows the deposition of a wider range of materials. Further-

more, the source material is only melted in a small spot, where the electron beam is

focused, reducing the contamination from the crucible that holds the material. Evapora-

tion is performed at ultra high vacuum, which improves Ąlm purity and reduces gas phase

scattering. Deposition of alloys is challenging, since different metals have different vapour

pressures and thus their evaporation rate is also distinct. A multiple e-beam system can

be used for this purpose, with adjusted beam energy to match the deposition rate of

different materials (PLUMMER, 2009). The main disadvantage of e-beam evaporation is

the poor step coverage, leading to non-conformal Ąlms. Perfect step coverage is specially

important for 3D transistor fabrication, where the gate dielectric and gate electrode have

to envelop the Ąn, in the case of FinFETs. Another serious concern regarding e-beam

evaporation, is the radiation damage, originating from the highly excited electrons that

arrive in the material being evaporated decaying back to the core levels (CAMPBELL,

2001). The x-rays can cause oxide traps that reduce MOSFET performance.

In this work e-beam evaporation is employed to deposit ultra thin Ąlms (few

angstroms thick) of titanium and aluminium. The system reaches ultra high vacuum

of 10-8Torr, which allows high deposition rate control, low contamination in the Ąlms, and

low substrate damage resulting from high energy atoms. The evaporated metallic Ąlms are

subsequently treated modiĄed by plasma treatments, that will be discussed in a following

subsection, to become either different compounds or even dielectrics.

2.2.3 Sputter Deposition

Sputtering is a process in which ions are accelerated into a surface in order to

remove atoms from that surface. Sputter deposition relies on the ejected atoms condensing

on the desired substrate, forming a thin Ąlm. It is most widely used for metal deposition,

but can also be employed for insulators (SIMON, 2012).

Argon is typically used as the bombardment species, which is accelerated to the

target. Upon collision with the surface, atoms from the target ejected and travel with high

kinetic energy to the substrate, condensing and forming the thin Ąlm. The impinging ions

need sufficient energy Ű in the range of 50eV to 2KeV Ű in order to sputter target atoms,

but at higher energies Ű 2KeV to 50KeV Ű the incident particle creates a cascade of

collisions that breaks several atomic bonds and is not convenient for thin Ąlm deposition.

Above 50KeV, ion implant is predominant and the sputter yield is signiĄcantly reduced

(ROSSNAGEL, 2003).

The high kinetic energy of the sputtered atoms, when reaching the substrate sur-

face is the main factor for the improvement in step coverage, when compared to evapo-

rated Ąlms. The sputtered atoms have high surface mobility and can condense in smooth,
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pendent parameters can render the deposition process unstable, requiring carefull process

monitoring (SAFI, 2000; SPROUL et al., 2005).

In this work, most of the metal are deposited by sputtering. Aluminium is used

for hard masks, cap layers and contacts, and TiN is used as gate electrode of part of the

fabricated transistors. TiN is deposited by the reactive sputtering process developed in

the work presented in (LIMA, 2011).

2.2.4 Plasma Surface Treatment

Plasma surface treatment consists of subjecting a given material to a plasma with

speciĄc characteristics Ű low power, high density and high percentage of N2, for example

Ű in order to enhance certain characteristics of the material or even convert it to another

compound. This technique is used for a variety of applications, from modiĄcation of

industrial metal coatings, to modern CMOS dielectric formation and low temperature 2D

semiconductor synthesis. An important advantage of plasma treatments, as opposed to

thermal surface modiĄcations relates to the thermal budget. The thermal budget is the

total thermal energy the IC receives during fabrication. Lower thermal budget processes

are needed in order to obtain shallow and abrupt junctions in modern CMOS transistors

(KALAVADE; SARASWAT, 2000; SHARMA et al., 2014)

Heavy industries use plasma surface treatment to increase mechanical properties of

metals such as stainless steel (LARISCH et al., 1999; MENTHE et al., 2000). It can be used

to convert the surface of titanium substrates to titanium nitride (TiN and Ti2N), which

also increases its hardness and wear resistance (MURALEEDHARAN; MELETIS, 1992).

Another use for plasma surface modiĄcation is to increase metal coating hydrophilicity,

which improves subsequent paint adhesion (SHIN et al., 2007)

Plasma nitridation can be used to form a thin barrier layer above the gate dielectric

that prevent diffusion of the polysilicon gate dopant to the oxide layer and semiconductor

substrate (ARONOWITZ et al., 1998). In the late years of SiO2 thickness scaling, the

oxide reliability was increased by nitrogen incorporation, which could be achieved using

plasma nitridation and subsequent annealing (HATTANGADY et al., 1996; NICOLLIAN

et al., 2000). The next step, SiON as a gate dielectric for MOSFETs can be achieved by

a variety of means. Notedly, using plasma surface treatment, silicon oxynitride can be

obtained by plasma nitridation of SiO2 (KRAFT et al., 1997; OKUNO; HATTANGADY,

2000), by nitridation of the silicon substrate with background O2 (OKAMOTO et al.,

1995), or by plasma oxynitridation of the silicon substrate (TOGO et al., 2000; TOGO et

al., 2002; MANERA et al., 2004). Plasma-nitrided hafnium-silicate (HfSiON) has also been

explored as an alternative high-κ dielectric, for its amorphous character even after thermal

annealing (QUEVEDO-LOPEZ et al., 2005). Oxidation in Ar/O2 plasma and nitridation

in Ar/N2 was used in (INUMIYA et al., 2003) to convert the deposited hafnium-silicate
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oxide thickness and the depletion layer width. For deeply scaled devices, the depletion

width Ű between 0.4nm and 1nm Ű is comparable to the oxide thickness. Metal electrodes

do not present depletion layers, and thus solve this issue also. TiN, and TaN to a certain

degree, was chosen as the metal gate electrode due to its suitable Ű and also tunable Ű

work function value and thermal stability (WU et al., 2010c; LIMA et al., 2012; LIMA et

al., 2014). The HfO2/TiN high-κ metal gate stack remain the materials of choice until the

current 14nm transistor generation1 (NATARAJAN et al., 2014), with either tungsten or

poly silicon as the cap layer above the TiN electrode, depending on fabrication design

decisions (FRANK, 2011).

Some discussion still exists regarding the gate stacks for the 10nm technology

node and beyond. Interesting suggestions are to swap the silicon channel for either ger-

manium or III-V compound semiconductors, with higher carrier mobilities. This change

will force new materials in the gate stack, to allow adequate stability and reduce the den-

sity of interface defects. While both germanium and III-V compounds traditionally present

lower quality semiconductor-dielectric interface than the Si-SiO2, important improvements

have been obtained recently. Atomic layer deposition (ALD) of dielectric materials has

allowed decent quality gate stacks, and pre-deposition cleaning, interfacial layers, and

post-deposition treatments are reported to provide lower interface state density (RIEL

et al., 2014; TAKAGI et al., 2015). When III-V channels are considered, one option is

to use a thin layer of Al2O3 beneath the HfO2 to improve the interface (YADAV et al.,

2015). One option, when using Ge as the channel, is to epitaxially grow a layer of InAlP

to achieve high carrier mobilities by conĄning the electrons far from the high-κ/InAlP

interface traps (YEO et al., 2015). Other options remain for future device scaling, from

changing the gate stack materials to redesigning its concept entirely Ű think tunnel FETs

and transistors fabricated solely from 2D materials (ROY et al., 2014; COLLAERT et al.,

2015)

2.3.2 Alternative Gate Stacks for FinFET prototypes

The FinFETs fabricated in this work use TiN/SiON/Si gate stack for initial evalu-

ations and TiN/TiAlON/Si as an alternative high-κ metal gate stack. Figure 15 presents

the two different stacks studied. An aluminium cap layer is employed to reduce oxygen

incorporation in the TiN layer, while maintaining low contact resistance.

SiON is used as a control stack, for its similarity to SiO2, being a material that has

already been used in a technology node and for its slightly higher dielectric constant, as

well as the reduced thermal budget of growing SiON by ECR oxynitridation (TOGO et

al., 2000; TOGO et al., 2002; MANERA et al., 2004). The works presented in (TOGO et
1 The definition of current technology node here is relative to what is being manufactured. Research

institutes are already concerned with 10nm, 7nm and 5nm nodes, for example.
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Table 2 Ű Wet oxidation process

Ambient Temperature Time Comments

N2 600°C 3 minutes Temperature ramp up to prevent warping

N2 1000°C 5 minutes
Temperature stabilization in a neutral
ambient

O2 1000°C 5 minutes
Dry oxidation to prevent stacking faults
(QUEISSER; LOON, 1964)

H2O 1000°C 90 minutes Wet oxidation

N2 1000°C 10 minutes
Increases the density of the oxide by re-
moving the H2 resulting from the wet ox-
idation step (PLISKIN; LEHMAN, 1965)

N2 600°C 3 minutes
Temperature ramp down to prevent warp-
ing

Table 3 Ű Photo-lithography process

Process Parameters

Hexamethyl Disilazane application to im-
prove the resist adhesion to the substrate

4000rpm, 30s, 60s rest

AZ5214 resist application 4000rpm, 30s
Soft bake for the resist densiĄcation 4 minutes at 90°C

UV light exposure
CMOS REGAT mask (17a), 6
seconds

Resist inversion in the hot plate 1 minute 45 seconds at 110°C
UV light Ćood exposure No mask, 40 seconds

Development
Metal ion free (MIF) 300, 16 sec-
onds, deionized water

The sample is then processed using the Ga+ FIB such as to remove the aluminium

hard mask in the channel of the chosen devices, leaving only a thin strip that will be

the Ąn after plasma etching. Table 4 presents the parameters used for the aluminium

milling and the resulting with of the aluminium thin strip. Figure 18 shows the resulting

device, with the aluminium mask milled and a thin strip of aluminium to form the Ąn.

The processing time for each device is around 10 minutes using the presented parameters.

Table 4 Ű FIB parameters for Al hard mask milling

Beam Energy Beam Current Milling depth Milling gap
Resulting
width

30kV 30pA 60nm 150nm
30nm to
100nm

After both SF6/Ar and C4F8/SF6 plasma etch it was observed that the regions

where the milling was performed were etched differently that the remaining silicon, con-

trary to what was expected. Further studies on this etching discrepancies were performed

and are discussed in Section 3.2.
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3.2.1.1 Control Sample

The control samples were etched for 2, 3, 4 and 5 minutes and later the etching

depth was assessed by cross sectioning the sample and measuring. The etching depth

results are shown in the graph in Figure 22. The etch rate was obtained from the slope of

the linear Ąt of the measurements in the graph. In the interval from 2 minutes to 5 minutes

the silicon etching is nearly linear, which is supported by the reasonably good linear Ątting.

The y-axis intersection of the linear Ąt is below zero, which indicates that from zero to two

minutes the etching is non-linear. The etching non-linearity can be attributed either to

silicon native oxides on the sample surface or to plasma ramp up on the initial moments

of etching. Either way, the evaluation of the etching rate in the next samples is performed

in the same manner, as the slope of the linear Ąt of the measurements, ignoring the

non-linearities in the initial moments of plasma etching.

Figure 22 Ű Etching depth achieved in RIE with different etching times for crystalline
control sample.

With this sample we could also analyse the steepness of the sidewall achieved in

SF6/Ar RIE and surface roughness after etching. Figure 23 (a and b) shows that the side-

wall has a distinct slope for different etching times, owing to the isotropic characteristics

of the SF6/Ar etch. In Figure 23c it is possible to see how the RIE etching produces severe

roughness in the sample. The etching rate of 269nm/min obtained in Figure 22 will be

used for comparisons with the other samples.

3.2.1.2 Amorphous Silicon Sample

With this sample we aim to see how the amorphisation induced by the focused

ion beam changes the etching rate of the silicon sample in SF6 and Ar plasma. Since we

want to evaluate the gallium effect separately, this sample has phosphorus implantation,
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Figure 23 Ű Etching depth was measured from the step between the aluminium covered
and bare silicon regions. Sidewall proĄle after 3 minutes of RIE (a) and 5
minutes of RIE (b). Silicon roughness after 5 minutes of RIE (c).

but no annealing, such as to remain amorphous. We estimate, by TRIM simulations that

the amorphous layer extends for about 70nm or 80nm beneath the surface of the sample,

which is much more than the amorphisation induced by the focused ion beam.

Figure 24 Ű Etching depth achieved in RIE with different etching times, for the silicon
sample with a 80nm amorphous layer.

It can be seen in Figure 24 that the amorphous layer on the surface of the sample

has little impact on the etching rate, which changes from 269nm/min in the control sample

to 252nm/min in this one.

3.2.1.3 FIB Processed Sample

With this sample we aim to see if the gallium incorporation changes the etching

rate of the silicon sample in SF6 and Ar plasma, or if the source of the differences is

the aluminium residues. The sample has the same aluminium lines as the others. It was

processed in FIB such as to cut a 7µm X 3µm rectangle half in the aluminium strip, half
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is basically linear with etching time, as seen in Figure 26. The Ga incorporation in the

silicon region milled using the focused ion beam creates a mask in the SF6/Ar the sustains

5 minutes plasma etch and 720nm etch depth.

Figure 26 Ű Height difference between the FIB milled region and the bare silicon for the
RIE with different etching times.

This experimental determination raised two important conclusions regarding the

etching process. First, the masking agent observed previously is the gallium incorporation

in the silicon layer, arising from the Ga+ FIB processing. This masking factor can be

thus used for the deĄnition of multiple Ąn devices with reduced processing time. Instead

of substrate sputtering as in the milling processed, the etch mask can be formed by

irradiating gallium ions only on top of the desired Ąns, as will be discussed in the next

section. Second, the capacitively coupled plasma RIE induces a high degree of substrate

roughness, as seen in Figure 22c, due to the high energy ion bombardment. An alternative

to reduce the etch induced roughness is to switch to the inductively coupled plasma RIE

and separately control the forward bias, such as to reduce the ion impinging energy and

bombardment.

3.2.2 Ga+ Masking for Multiple Fin Fabrication

To enable the reproducible Ąn deĄnition with Ga+ incorporation, several process

parameters have been optimized. The objective is to fabricate thin Ąns, which give im-

proved electrical characteristics when used for FinFET fabrication. Figure 27 presents

schematically the gallium incorporation, as dots, in the silicon layer after a FIB shal-

low cut. With 30KeV beam energy, Ga+ ions form a Ga-rich layer of approximately 20nm

(VOLKERT et al., 2007). During Ćuorinated plasma etch, the region with Ga atoms forms

a mask which protects the silicon beneath it from etching, thus creating the Ąns.
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were obtained with thinner silicon layers, as described in the previous section. The FIB

processing time for each device is around 30 seconds, a sensible improvement from the

10 minutes processing time of the aluminium hard mask FIB milling process. The lower

processing time is also related to lower gallium incorporation in the FinFET, which will

be discussed in the next chapter.

Inductively coupled plasma (ICP) etch is performed to obtain the FinFET active

region using a 10sccm SF6 and 15sccm Ar plasma with 1200W inductive power and 80W

forward power, for 22 seconds. As mentioned previously, the semi-isotropic plasma etch

is used for its low sputtering, which can damage the GaFx etch mask. The Al hard mask

is etched in the same acid mixture and the sample is oxidized for 3 minutes at 1000°C in

O2 ambient to remove plasma etch damage.

A 100nm aluminium hard mask was deposited on the gate so only the source and

drain are implanted. Phosphorus implantation with 30KeV energy and 5x1014 cm-2 dose

was performed at a 7° tilt to avoid channelling. The hard mask is subsequently removed,

along with the sacriĄcial oxide grown in a former step, and RTA is performed for 60

seconds at 1000°C for dopant activation and silicon recrystallization.

Gate stack formation follows annealing, and for this batch of samples, different

gate stacks were evaluated regarding their suitability for multiple Ąn FinFET devices. Two

different dielectrics were used, as well as two different titanium nitride metal formation

methods, and the process steps for each combination is summarized on Table 10. Arrays

of 200µm diameter control capacitors are fabricated alongside the FinFETs beyond this

point to easily evaluate and compare C-V characteristics of the different gate stacks. For

the control capacitor array, p-type silicon with (100) wafer orientation was used. The run

was thus divided in four and each had a slightly different processing to obtain a different

gate stack, and the process are described in the sequence.

Table 6 Ű FinFET gate stacks for metal electrode and dielectric comparisons.

Reactive Sputtering TiN Plasma Nitridated TiN

SiON
dielectric

ECR plasma oxynitridation, gate
patterning, reactive sputtering
TiN/Al deposition

ECR plasma oxynitridation, gate
patterning, e-beam Ti
evaporation, ECR plasma
nitridation, sputtering Al
deposition

TiAlON
dielectric

gate patterning, e-beam Ti/Al
evaporation, ECR plasma
oxynitridation, reactive
sputtering TiN/Al deposition

gate patterning, e-beam Ti/Al
evaporation, ECR plasma
oxynitridation, e-beam Ti
evaporation, ECR plasma
nitridation, sputtering Al
deposition

Plasma oxynitridation was used for silicon oxynitride (SiON) growth as gate di-
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electric on part of the samples. The remote ECR plasma provides a reactive ambient of

N2, O2 and Ar while providing low sample surface sputtering. Gas Ćows of 3sccm of O2,

7sccm of N2 and 20sccm of Ar were used, following previous works, with ECR power of

425W and 5mTorr process pressure, for 15 minutes (MIYOSHI, 2008; SANTOS, 2013).

Since the observation, in he last FinFET batch, that 20 minutes of oxynitridation pro-

vides about 20nm of SiON, the time was reduced to obtain lower EOT for the transistor

dielectric. The samples with SiON as the dielectric had the gate patterned after dielectric

formation. SiON is etched before contact deposition and passivates the exposed Ąns.

The samples with titanium-aluminium oxynitride (TiAlON) as the dielectric had

the gate photomask patterned in order to expose the transistor channel for the gate

stack formation and ensuing lift-off, due to the difficulty in etching TiAlON which would

be required otherwise. TiAlON was formed by a two-step process, Ąrst the deposition

of ultra-thin layers of titanium and aluminium and subsequent plasma oxynitridation.

The ultra-thin layers were deposited by ultra high vacuum electron beam evaporation of

7Å of titanium with 32mA beam current and deposition rate of 0.7Å/s, and subsequent

deposition of 3Å of aluminium with 50mA beam current and deposition rate of 0.5Å/s2.

The evaporation was performed at the pressure of 5.1x10-8 Torr, which provides very

accurate thickness and purity control. Remote plasma oxynitridation in O2, N2 and Ar

converts the Ti and Al layers into TiAlON. The samples were also processed in ECR

plasma, with the same parameters used for SiON growth. Instead of silicon consumption,

now consumption of Ti and Al is desired. Since the plasma oxynitridation is performed

ex situ, oxidation of the metal Ąlms can occur. To reduce oxygen exposure, the samples

were transported submerged in deionized (DI) water.

Titanium nitride as the gate metal is formed on part of the samples by reactive

sputter deposition and in the other part by titanium e-beam evaporation and plasma

nitridation, in a manner that all four combinations of dielectric and TiN formation method

are fabricated. Reactive sputtering deposition of TiN was achieved as described earlier,

with a titanium target and a N2 and Ar plasma (LIMA, 2011). A 20nm of TiN was

deposited as the gate metal and an Al cap layer 100nm thick is used as the cap layer to

avoid oxygen incorporation in the TiN Ąlm. The second method of TiN formation is similar

to the method described above for TiAlON formation. A 10Å thick layer of titanium is

evaporated to the sample by e-beam using a beam current of 32mA and deposition rate

of 0.7Å at 2.2x10-8 Torr pressure. The samples are then nitridated ex situ in a N2 and

Ar remote plasma, with Ćows of 5sccm and 25sccm, respectively, 425W ECR power, 5W

chuck RF power and 4mTorr process pressure, for 20 minutes (GARCIA, 2014). Since this

process aims to obtain a metallic layer, oxidation avoidance is crucial, with the samples

being minimally exposed to clean room air. After TiN formation by plasma nitridation,
2 All metal e-beam evaporation have been performed in the LPD/IFGW laboratory, and we are very

grateful to the staff there, to whom part of this work is owed.
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Using the parameters in Table 7, with 0.8 seconds of Ćood exposure and 15 seconds

of mask exposure, dimensions within 20% of deviation were achieved. Such features were

measured after sputter deposition of a 50nm layer of aluminium and subsequent lift-off,

in order to adequately duplicate the FinFET fabrication process for the active region.

It is believed that further optimizations, to obtain dimensions closer to 1µm, may be

possible if other process parameters are tighter controlled, such as storage temperature

and humidity. Nonetheless, line widths around 1.11µm, as presented in Figure 34, are

already a satisfactory result for this work. This is true specially because structure of

interest for this work has a gap between the source and drain pads, where the Ąns are

deĄned using Ga+ FIB lithography.

Table 7 Ű Parameters for the active region mask lithography

Process Parameters

HMDS application for increased adhesion
5000rpm, 30 seconds, 1 minute
rest

AZ5206 resist application 5000rpm, 30 seconds
Resist soft bake for solvent evaporation and
resist densiĄcation

90°C hot plate, 1 minute

Exposure to obtain the diffraction layer 0.8 seconds, without mask
Resist inversion 110°C hot plate, 45 seconds
Exposure for pattern transfer 15 seconds, with FinFET1 mask

Development
MIF 300, 9 seconds, rinse in DI
water

Proximity effects in optical lithography are the reason dense and isolated patterns

have to be exposed differently to achieve similar results. Alternatively, corrections are

made during pattern design, employing adjustments to compensate for the proximity

effect (LEVINSON, 2010). The active region mask layers presents dense arrays of parallel

lines, while the gate deĄnition mask is composed of sparse features, where the minimum

dimension is an isolated 1µm wide line, the transistor gate. As such, the same exposure

parameters presented in Table 7 resulted in undeĄned gate structures.

The second exposure was thus varied from 23 seconds to 25 seconds, in order to

Ąnd the correct time that achieves the target dimension of 1µm and deĄnes all structures.

The measured dimensions are presented in Figure 35. The arrows indicates that although

the exposure time of 23 seconds achieves dimensions close to the target dimension of

1µm, it presents structures with undeĄned gate, thus the 0µm gate length. In the context

of this work it is acceptable to have gate lengths of 2µm instead of 1µm, but a lack of

deĄned gate results in no ion implant masking and thus a FinFET channel with complete

n-type doping. Furthermore, it is interesting to observe in Figure 35 the wide spread of

the measure gate length. In the 23 seconds and 25 seconds exposure time, the difference

the thinnest deĄned feature and the thickest is around 0.8µm, while in the other case,
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the spread reaches 1.2µm. This means that even if the target dimension is achieved in

one region, other regions may present gate lengths that differ signiĄcantly, possibly due

to resist thickness non-uniformities along the sample surface.

Figure 35 Ű Minimum obtained dimensions for the gate as a function of exposure time.

Table 8 presents the selected parameters for the gate deĄnition, using 23.5 sec-

onds mask exposure time to avoid feature non-deĄnition. The development time has been

increased to 10 seconds in order to achieve more uniform results between the samples.

Table 8 Ű Parameters for the gate mask lithography

Process Parameters

HMDS application for increased adhesion
5000rpm, 30 seconds, 1 minute
rest

AZ5206 resist application 5000rpm, 30 seconds
Resist soft bake for solvent evaporation and
resist densiĄcation

90°C hot plate, 1 minute

Exposure to obtain the diffraction layer 0.8 seconds, without mask
Resist inversion 110°C hot plate, 45 seconds
Exposure for pattern transfer 23.5 seconds, with FinFET2 mask

Development
MIF 300, 10 seconds, rinse in DI
water

3.5 Optimized Ga+ Focused Ion Beam Lithography FinFETs

This set of FinFET devices was fabricated using the Ga+ FIB lithography de-

scribed in Subsections 2.1.4 and 3.2.2, and the photomasks fabricated for the FinFET
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4 Characterizations and Discussions

In this chapter morphological and electrical characterization of the different meth-

ods used for FinFET fabrication will be presented and discussed. The different Ąn deĄ-

nition processes will be evaluated regarding their morphological characteristics: process-

induced gallium incorporation and achieved dimensions. The gate stack alternatives are

in turn assessed regarding their capacitance-voltage behaviour, and parameters such as

Ćat band voltage (VFB), work function (WF), equivalent oxide thickness (EOT) and oxide

leakage are compared. After different annealing times, the gate stacks are also evaluated

regarding their parameter stability. The electrical characterisations of fabricated FinFET

prototypes are then presented, with the discussion being focused on the extracted param-

eters such as threshold voltage (Vth), low Ąeld mobility (µ0) and source and drain series

resistance (RSD). Critical analysis of the results are important to understand and evaluate

the fabricated devices, whether they work as expected or do not.

4.1 FinFET Morphological Characterisations

This section will discuss two morphological characteristics of the fabricated Fin-

FETs: the process-induced gallium incorporation in the Ąns and the Ąn dimensions. Using

the evaluated morphological characteristics, comparisons between the different processes

used for FinFET fabrication are made such as to better evaluate them.

4.1.1 Ga+ incorporation in the fin

Since the Dual Beam FIB/SEM employed (FEI Nova 200 NanoLab, product data

in (FEI Company, 2003)) uses a gallium ion source, it is expected a high degree of Ga

incorporation in the processed transistors. Gallium incorporation in the Ąns was evalu-

ated using the energy dispersive X-ray spectroscopy (EDS) system X-Max from Oxford

Instruments (Oxford Instruments, 2008) with 20mm2 detector area. The EDS mapping of

Ąns fabricated by Ąn milling, Al hard mask milling and Ga+ lithography can be observed

in Figure 41a, Figure 41b and Figure 41c, respectively. All samples have been analyzed

after FIB processing and plasma etching. It can be noted, in the Ąrst two cases, that gal-

liumis positively detected in the milled region and Ąn area. In the latter case, however, no

trace of gallium is detected by the EDS analysis. When superimposing the EDS spectra

of the different Ąn deĄnition processes, in Figure 41d, the absence of the Ga peak in the

Ga+ FIB lithography reinforces that no trace of gallium could be detected. In an EDS

analysis, the material detectability limit is usually 1000ppm in weight (GOLDSTEIN et

al., 2003; HAFNER, 2005), which is equivalent to a gallium concentration of 2x1019cm-3
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From Figure 47 we can see that the SiON/TiN by plasma surface treatment struc-

ture presents reasonably good parameter stability, with 0.28V variation in VFB with up

to 20 minutes annealing. The parameter stability with different annealing times, for the

SiON/TiN by plasma surface treatment gate stack can be also observed from the overlay

of capacitance voltage curves, presented in Figure 48. It can be noted that the curves are

almost superimposed, with slight shifts. Again, it is expected that similar devices present

similar electrical characteristics, and the superimposition of the C-V measurements indi-

cate that this is the case for the SiON/TiN by plasma surface treatment gate stack. A

0.28V VFB variation in sensitive applications or VLSI is unacceptable, however. In this

work this variation range is considered adequate when compared to the other studied op-

tions. Contrasting with this parameter stability is the TiAlON/TiN by reactive sputtering

gate stack, that presents up to 10V VFB shift when subjected to 20 minutes of annealing.

Even when annealed only to 16 minutes, seen in the graph inset, VFB values range from

-0.1V to -1.15V. VFB shifts in metal oxides, according to Nabatame et al. (2007), are

caused by interface dipoles between the dielectric and SiO2 interfacial layers. The oxygen

from the dielectric diffuses to the interface, causing re-oxidation at the interfacial-SiO2/Si

interface, and generating additional dipoles. Oxygen positively charged vacancies also

play a part in VFB roll off (BERSUKER et al., 2010). In our case a similar effect may be

happening, associated to Al diffusion to the gate-dielectric interface, which increases even

further the dipole density and consequently causes VFB shifts.

From Figure 49 we can obtain two important conclusions. The Ąrst is that TiAlON

has higher EOT than expected, and the second is that the leakage current is in general very

high. Since EOT is extracted from the difference between the maximum and minimum

capacitance, measuring a high capacitance results in a low EOT. But the conĄdence in

the capacitance measurement is reduced when capacitors present both high leakage and

high series resistance (YANG; HU, 1999; LUO; MA, 2004). In the case where the leakage

is negligible, a series measurement model is used, which accounts for the capacitor series

resistance and provides reliable measurements. In the cases where the leakage current

is high, but series resistance is low (i.e. below 50Ω), the latter can be neglected and

a parallel measurement model provides accurate capacitance values. When both effects

are signiĄcant, such as in Figure 49a, where the capacitors present around 500Ω series

resistance and leakage current density around 6.3A/cm2 at -1V, more complex models

are required for the accurate capacitance measurement and EOT extraction (LUO; MA,

2004). In this work, however, all capacitors have been measured using the series and the

parallel models and only the series resistance is subtracted from the measurements, which

lead us to doubt EOT values extracted from capacitors with high leakage current densities

(above 0.5A/cm2).

As such, although in Figure 49a EOT values as low as 0.2nm are reported, a higher

measurement conĄdence is obtained where the leakage current is lower, and the measured
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Thus, regarding work function values, VFB parameter stability and, to a degree,

leakage current density, it is considered that the SiON/TiN by plasma surface treatment

gate stack presents the best characteristics, among the studied alternatives. Although

TiAlON as an alternative high-κ dielectric is supported by other works (AUCIELLO et

al., 2005; MIYOSHI, 2008; MIYOSHI et al., 2010; MIYOSHI et al., 2012), in this work

the measured EOT is much higher than expected. It is still unclear whether the titanium

from the electrode diffused to the dielectric layer, forming thus a thicker dielectric, or

other process occurred. When comparing the formation methods for TiN, reactive sputter

deposition and titanium evaporation followed by plasma surface treatment, the latter

presents a lower overall leakage current for the SiON dielectric and improved parameter

stability. The electrode work function for the TiN obtained using plasma surface treatment

present values solely within the nMOS and mid-gap electrode ranges, for the different

annealing times. This is not the case for the reactive sputter deposited TiN, that presents

a higher degree of parameter variation. It is suspected that the parameter stability and

suppression of leakage current is due to the very dense Ű and likely with lower density

of vacancies Ű e-beam evaporated titanium, which serves as base for the TiN electrode.

A 105µΩ.cm resistivity was assessed though four point probe measurements on the TiN

Ąlms, and this rather low resistivity is indicative of a high density Ąlm (CHOU et al.,

2001). Our reactive sputter deposited TiN Ąlms, on the other hand, present resistivity

around 260µΩ.cm (LIMA, 2011).

To evaluate the physical thickness and step coverage of the TiAlON dielectric,

cross sections have been performed on three dimensional MOS gate structures. Figure 50

presents the TiAlON layer on the three dimensional silicon channel, a thinner Ąn in Figure

50a and a wider pillar in Figure 50b. In both cases the TiAlON layer appears to fully

envelop the structure, covering both horizontal and vertical features. Its physical thickness

was estimated to be around 8nm, which roughly agrees with previous TEM measurements

of 6.7nm (MIYOSHI et al., 2012). Comparing this estimated physical thickness with the

equivalent oxide thickness (EOT) extracted from the C-V measurements, an inconsistency

is noted: how can a high-κ dielectric present higher EOT than physical thickness? A

deĄnite answer for this question is not yet known, but it is suspected that the aluminium

from the TiAlON dielectric is diffusing to the interface with the TiN electrode, creating a

low-κ semi-metallic interface layer (KIM et al., 2004; KIM et al., 2008). This is supported

by the WF reduction observed in Figure 46. A low-κ interface layer results in reduced

total capacitance, even if the underlying dielectric has a high dielectric constant. As such,

it can be the reason for the high value of the extracted EOT.
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4.3.1 Al hard mask FIB milling

Electrical characterisations of the FinFETs fabricated by Al hard mask FIB milling

have been performed to extract electrical parameters such as output resistance (ROUT),

threshold voltage (Vth), subthreshold slope and maximum transconductance. Figure 51

presents the IDSxVDS characteristics of the FinFETs, where the gate bias ranges from -2V

to 2V with 0.5V steps. From the linear region slope of the highest gate bias curve we

can qualitatively assess a relatively high source and drain series resistance (RSD). This

conclusion is conĄrmed by the RSD extraction using the method described in (CAMPBELL

et al., 2011), with further details being given on Appendix A.3. The fabricated FinFETs

present RSD of 70kΩ. Figure 52 presents the extraction graph, with where RSD is evaluated

for every value of the gate effective voltage (VGS-Vth), and a single value is extracted from

the trend in high gate bias. The high series resistance is partly caused by low source and

drain junction doping concentration (ND). Resistivity measurements by four-point probe

were performed to determine ND and junction resistivity measured was 3.32 mΩ, which

is equivalent to a ND of 2x1019 cm-3 (SZE; IRVIN, 1968; MOUSTY et al., 1974). This

is a low doping concentration compared to current transistors ND values of above 1020

cm-3 (LEE et al., 2015). Lower transconductance values are also a result of the increased

series resistance due to lower phosphorus concentrations in the source and drain regions,

which will be discussed later. Misalignments between gate and source/drain junctions also

dramatically increase the series resistance, and the non-self-aligned replacement metal

gate process used in this work is prone to such misalignments. A self aligned process

could be developed be either replacing the Al cap layer on the TiN gate by a metal

with high melting point such as tungsten Ű in a gate Ąrst process (SEO et al., 2011)

Ű, or depositing an oxide and using chemical mechanical polishing (CMP) after dopant

activation, to remove the dummy gate Ű a self-aligned gate last process (CHATTERJEE

et al., 1997; PACKAN et al., 2009).

Regarding the gate control over the drive current, it can be observed that a 0.5V

variation in the gate bias results in approximately 0.5µA variation in the drain current. A

higher drain current response with the gate bias variation can be obtained by reducing the

gate dielectric effective thickness. Increasing the gate leakage current, now below 0.5nA at

VGS=2V, should be avoided when reducing the dielectric thickness. The output resistance

of 55MΩ is given as the inverse slope of the linear Ąt on the saturation current (HUANG

et al., 1992). The extracted ROUT is comparable with FinFET prototypes fabricated in

other works (HISAMOTO et al., 2000; KAVALIEROS et al., 2006; NATARAJAN et

al., 2014). High output resistance is desired for both analog and digital applications,

and the fabricated FinFETs show promising results. Reductions in the channel length,

however, should pressure for process improvements in order to maintain the device output

characteristics.
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Figure 51 Ű IDSxVDS of Al hard mask milled FinFET

Figure 52 Ű RSD of Al hard mask milled FinFET

The threshold voltage in the linear region, extracted from the IDSxVGS curve in

Figure 53, is -1.3V. Since no Vth adjustment has been performed, this parameter is con-

trolled mostly by the TiN work function. We are studying single prototype FinFETs and

thus a negative Vth can be accepted. If applied to a circuit, however, the Vth of the tran-

sistors should be carefully adjusted. The limited transconductance of 500nS in the linear

region, shown in Figure 53 is attributed to the single Ąn design which restricts the maxi-

mum current Ćow, and it is expected to increase as a multiple Ąn prototype is developed.

The decrease of 86% in the transconductance with a 1V increase in VGS indicates that

mobility scattering mechanisms are severe in the device. Scattering can be attributed

mostly to Ąn surface roughness in this case, and optimizations can be performed.
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The result, however, is not perfectly linear, as assumed by the method. Two Ąttings

are performed, to present the distinction between the extracted parameter values, in the

lower part of the curve, and in the upper part. In the lower part, the value of Vth, -

1.21V, is close to that extracted in Figure 53, -1.3V. from Equation 4.2, knowing that

the channel width and length are 251nm (from the cross section in Figure 44) and 5µm

respectively, that Cox is 18µF/cm2 for this devices, and that VDS is 0.1V, we can calculate

µ0. The low Ąeld mobility (µ0) of 1072cm2/V.s is much higher than expected, though.

From (RUDENKO et al., 2008) it is expected that long channel relaxed silicon FinFETs

with SiON dielectric present µ0 below 600cm2/V.s. The linear Ątting of the region with

higher bias, however, provides more credible results, with µ0 of 362cm2/V.s. This value for

the carrier mobility is reinforced by a separate measurements of the same run of devices,

with the same 0.1V of drain bias, which was also used for the Y-function extracted, and

is presented in Figure 55. In this case, the resulting curve is considerably more linear,

and a linear Ątting results in -0.85V of Vth and mobility equals to 372cm2/V.s. This value

of mobility agrees with the previous, and 372cm2/V.s is thus accepted as the extracted

value for the µ0 parameter. The threshold voltage parameter extraction in Figure 54 has

to be analysed critically also. Returning to the IDSvVGS measurement in Figure 53, its

clear that when VGS is -1.93V, the FinFET is not conducting, as opposed to the gate bias

of -1.21V. While we determine Vth as -1.21V, it can also be concluded that while the Y-

function extraction is a rather effective tool to remove the series resistance effects from the

transistor measurements, when non-linearities are present in the Y(VGS) graph, the linear

Ątting has to be done carefully. The low Ąeld mobility is better extracted from the part of

the curve with higher gate bias, such as that the transistor is in strong inversion and the

mobility characteristics are better represented. The threshold voltage, however, is more

reliably extracted from the region near the curve bend, closer to the x-axis intersection.

The leakage current of 10pA seen in Figure 56, is in accordance with current

technology devices, and shows an adequate gate-to-channel coupling (JURCZAK et al.,

2009), which in turn implies the successful operation of the top gate as well as the side

gates. The subtheshold slope of 120mV/dec, seen in the same graph, is considerably

better than previous results using the focused ion beam, but still not ideal (LIMA et

al., 2013). Interface trapped charges explain both the mobility scattering observed in

the transconductance curve and the degradation of subthreshold characteristics. Traps
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rated electrical characteristics, which will be discussed in this subsection. Some hypothesis

are proposed to explain why the change from Al hard mask milling Ąn deĄnition to Ga+

FIB lithography Ąn deĄnition resulted in loss of transistor performance:

• Fin dimensions reduced from 175nm Ąn width and 70nm Ąn height to 100nm Ąn

width and 40nm of Ąn height. The reduced Ąn dimensions impose higher restrictions

on cleaning procedures in order to reduce Ąn damage.

• Fin cross section shape changed from trapezoidal to round or triangular with round

sides. Round shapes are challenging to guarantee conformal thin Ąlm coverage, and

void in the gate dielectric or electrode could prevent the transistor from working.

• Gallium incorporation in the Ąn provides p-type doping in the channel that gives

rise to clear source and drain junctions upon ion implantation. The p-type channel

is able to successfully constrain the source and drain junction leakage current.

Nonetheless, some devices presented transistor behaviour, and will be discussed in

the following paragraphs, focusing on their gate stacks and electrical characteristics.

4.3.2.1 TiAlON/TiN by reactive sputtering

FinFETs with TiAlON dielectric and TiN metal gate deposited by reactive sput-

tering worked with distinct IDSxVDS transistor characteristics, presented in Figure 57. If

we compare the drain current in this case with the last transistor presented, we have that

now, for 1V VGS and 2V VDS, IDS is 0.73µA, while in the other transistor it is 0.6µA. In

this present case, however, the FinFET has nine parallel Ąns, instead of a single Ąn. This

means that the drain current increase is in fact a decrease per Ąn.

In Figure 58a it can bee seen that the extracted Vth is -85mV, much closer to

zero than in the former case, where Vth was -1.3V. This threshold voltage shift towards

mid-gap values Ű which is, closer to zero Ű reĆects the work function evaluation of the

TiAlON/TiN by reactive sputtering gate stack, performed in Section 4.2. This gate stack

presented work function values predominantly in the mid-gap electrode range.

The subthreshold characteristics are also degraded for this device. As seen in Figure

58b, the subthreshold slope is 200mV/dec, indicating a high interface trap density. The

minimum leakage current around 30pA, which rapidly increases as VGS decreases indicates

that the channel cannot properly close, even when the gate bias is set to negative values.

The source and drain series resistance (RSD) was extracted using the Campbell

et al. method (CAMPBELL et al., 2011) as in the previous case, and for this device the

series resistance is 2.3MΩ, more than thirty time higher than the last result presented,

even though the source and drain doping was increased from 2x1019 cm-3 to 7x1019 cm-3
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5 Conclusions and Future Work

In this work, different methods for FinFET prototyping were studied. Fin deĄni-

tion through Ąn FIB milling, aluminium hard mask FIB milling and Ga+ FIB lithography

were evaluated. Comparisons based on process induced gallium incorporation and Ąn di-

mensions were performed, and the Ąns fabricated using Ga+ FIB lithography presented

superior characteristics. FinFET prototypes have been fabricated using two of these meth-

ods, with better results being achieved by the Al hard mask FIB milling Ąn deĄnition.

The reasons for the low performance of FinFETs fabricated using Ga+ FIB lithography

are suspected to be due both with the lower Ga incorporation in the Ąns and with the Ąn

dimensions, which makes them more susceptible to process related damages. Comparing

the two processes, it is important to point that Al hard mask milling is an adaptation of

a mature process with conĄrmed results (LIMA et al., 2013), while the Ga+ FIB lithog-

raphy for Ąn deĄnition was developed entirely in this work, from the identiĄcation of the

gallium masking to calibration of the Ąn deĄnition process and application to working

FinFET devices.

Nonetheless, possibly the most important contribution of this work is the devel-

opment of a novel method for multiple Ąn FinFET prototyping, which provides great

Ćexibility regarding the number of Ąns and Ąn width. It allows device fabrication using a

Ga+FIB with greatly reduced processing time and process induced gallium incorporation

in the sample. A FIB/SEM system is a versatile equipment, and in conjunction with this

technique, complex prototype devices can be more easily fabricated in research institutes.

It is believed that the present difficulties can be overcome and FinFETs with adequate

electrical behaviour can be fabricated using this method for Ąn deĄnition.

Although optimal electrical performance could not be achieved with the fabricated

FinFETs, important developments have been presented regarding prototyping methods

and gate stack alternatives. An effort towards process integration for the successful fabri-

cation of FinFETs has been made, and slight changes can allow devices with different gate

stacks, source and drain silicidation and other features. Most fabrication steps have been

carefully evaluated, and this work has presented details and parameters such as that the

FinFET prototype fabrication could be replicated. Special attention was given to in depth

evaluation of the results, both structural Ű such as cross sections with magniĄcation close

to the FIB/SEM resolution limit Ű and electrical Ű with careful parameter extraction and

result discussion. It is expected that such attention to detail helps future works in device

prototyping, either in replicating the processing itself and in comparing the results.

Alternatives were explored in both the FinFET gate stack and in the Ąn deĄnition.
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Table 10 presents the parameter comparison between different studied gate stacks, and

highlights the spread of parameter values observed. The SiON/TiN by plasma treatment

gate stack alternative is regarded as the best option in terms of parameter stability,

since both the work function and the Ćat band voltage show little spread for the different

measurements. This results in almost superimposed C-V curves, for the different annealing

times. In regard to leakage current density, the TiAlON dielectric still presents problems,

which can be attributed to layer crystallization. The SiON/TiN by reactive sputtering

gate stack presents the lowest leakage current density, with its maximum reaching only

up to 65mA/cm2 at -1V.

Table 10 Ű Parameter comparisons of gate stack alternatives

Reactive Sputtering TiN Plasma Nitridated TiN

SiON
dielectric

WF 3.2eV to 4.46eV
VFB -3.8V to -0.55V
EOT 3.6nm
Leakage 177µA/cm2 to 65mA/cm2

WF 4.25eV to 4.69eV
VFB -0.73V to -0.31V
EOT 3.6nm
Leakage 420µA/cm2 to 0.61A/cm2

TiAlON
dielectric

WF 1.34eV to 5eV
VFB -9.3V to -0.01V
EOT 11.9nm
Leakage 70µA/cm2 to 15.8A/cm2

WF 2.6eV to 4.8eV
VFB -2.4V to -0.14V
EOT 13.4nm
Leakage 17mA/cm2 to 1.1A/cm2

Different FinFET devices have been fabricated, with different gate stacks and dif-

ferent Ąn deĄnition methods, rendering a range of morphological and electrical parameters,

which are presented in Table 12. Again, it can be noted that the FinFETs fabricated using

the Al hard mask FIB milling Ąn deĄnition method present superior electrical character-

istics, such as higher carrier mobility, lower subthreshold slope and lower series resistance.

The threshold voltage is much more negative than expected for a mid-gap or nMOS elec-

trode such as TiN, and can be attributed to interface dipoles and charges in the gate

stack. Nonetheless, important morphological achievements were obtained with the Fin-

FETs fabricated by Ga+ FIB lithography method, both in terms of the number of Ąns

and the Ąn width. It is believed that minor process adjustments will results in improved

performance, when using this technique.

Valuable improvements regarding FinFET fabrication in Brazilian research insti-

tutes have been achieved. Table 12 compares morphological and electrical parameters of

FinFETs presented in the works of (LIMA et al., 2013) and (RANGEL et al., 2013) with

the devices presented in this work. Where the parameter has not been explicitly given,

it was estimated from the published graphs and images. It can be seen that this work

presents important contributions regarding number of Ąns and dimensions, alternative

dielectric materials, as well as dramatically reducing the subthreshold slope. Although a

subthreshold slope of 120mV/dec is still much higher than the ideal value of 60mV/dec, it

still shows that achievements are being made. The low Ąeld mobility (µ0) of 372cm2/V.s,
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extracted after removing the parasitic elements, is a very good result, consistent with

relaxed silicon channel FinFETs reported elsewhere (RUDENKO et al., 2008).

Table 11 Ű Parameters of the different FinFETs presented in this work

Parameters
FinFET Al
Hard Mask
FIB Milling

FinFET Ga+

Lithography
FinFET Ga+

Lithography

Fin Definition
Method

Al Hard Mask
FIB Milling

Ga+ FIB Lithogra-
phy

Ga+ FIB Lithogra-
phy

Number of Fins 1 9 9
Fin Width 170nm 87nm 100nm
Gate Length 5µm 5µm 5µm
Gate Dielectric SiON TiAlON SiON

Gate Electrode
TiN by reactive
sputtering

TiN by reactive
sputtering

TiN by plasma treat-
ment

Vth -1.21V -0.03V -0.07V
µ0 372cm2/V.s 81.78cm2/V.s below 50cm2/V.s
Subthreshold
Slope at VBS=0V

120mV/dec 200mV/dec 550mV/dec

IDS at VGS=1V
and VDS=1V

0.6µA 0.44µA 0.1µA

RSD 70kΩ 2.3MΩ ∼5MΩ

Table 12 Ű Parameter comparison between FinFETs fabricated in Brazilian research in-
stitutes

Parameters
FinFET in
Lima et al.
(2013)

FinFET in
Rangel et al.
(2013)

FinFETs in this
work

Fin Definition
Method

FIB Milling EBL
FIB Milling and Ga+

FIB Lithography
Number of Fins 1 1 1 and 9
Fin Width 100nm 210nm 175nm to 87nm
Gate Length 10µm 2.5µm 5µm
Gate Dielectric SiO2 SiO2 SiON and TiAlON
Gate Electrode TiN/Al Poly-Si TiN/Al

Vth 0.5V -0.25V -0.85V to -0.03V
Subthreshold
Slope at VBS=0V

320mV/dec 250mV/dec 120mV/dec

IDS at VGS=1V
and VDS=1V

0.65µA 8.25µA 0.6µA

Some open questions still remain from the study of gate stack alternatives. A

thorough evaluation of the TiAlON dielectric is needed, in order to identify the origin

of the work function reduction and EOT increase. SIMS characterisations could conĄrm

what was pointed, in this work, as the reason: Al segregation to the dielectric-electrode
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interface. Moreover, step coverage evaluation should be performed on the TiN electrode

formed by e-beam evaporation and plasma nitridation, similar to what was performed

for the TiAlON layer. Transmission electron microscope (TEM) measurements should

be done for the accurate assessment of this electrode, on 3D structures, to evaluate its

suitability for 3D transistors.

As future work, alternatives to optimize the FinFET electrical characteristics still

exist. It is suspected that the plasma growth of SiON creates defects and traps in the

interface, which degrade the subthreshold slope. A thin thermally grown SiO2 interfacial

layer could be used to improve the interface, or high temperature thermal annealing of

the obtained SiON Ąlm could reduce the interface trap density. Besides improving the

subthreshold slope, the mobility is also expected to increase with this treatment. SiON,

however, is not likely part of the future in CMOS transistors, and as such, future works

should be focused on high-κ and higher-κ dielectrics for FinFETs. For the devices with

TiAlON as a gate dielectric, the same thermal annealing might increase its density and

improve the interface with the silicon substrate. Furthermore, a self aligned process for

FinFET prototype fabrication should greatly reduce the devices series resistance. A gate

Ąrst process could be implemented by replacing the aluminium cap layer in the gate by

a metal with high melting point, such as tungsten. A self aligned replacement metal gate

process could also be implemented with few changes, using oxide deposition and CMP

following dummy gate deposition.

5.1 List of Publications

• Alessandra Leonhardt, Luiz F. Ferreira, Sergio Bampi and Leandro

T. Manera, Effective device electrical parameter extraction of nanoscale FinFETs:

Challenges and results 27th International Conference on Microelectronics

(ICM), 2015.

• Carlos V. Carnio, Alessandra Leonhardt, Audrey R. Silva, Frederico

H. Cioldin, Ioshiaki Doi, Leandro T. Manera and José A. Diniz, TiN

gate electrodes fabrication by Ti e-beam evaporation and ECR plasma nitridation

25th Materials for Advanced Metallization (MAM), 2016.

• Carlos V. Carnio, Alessandra Leonhardt, Audrey R. Silva, Frederico

H. Cioldin, Ioshiaki Doi, Leandro T. Manera and José A. Diniz, TiN
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APPENDIX A – Parameter Extractions

This appendix will brieĆy explain the procedures used for electrical parameter

extraction throughout the work. Al methods use transistor current-voltage measurements

in certain bias conditions, which are further processed to result in the desired parameters.

A.1 Output Resistance

The output resistance (ROUT) indicates how well the transistor behaves as a con-

stant current source in the saturation region. This parameter is extracted as the inverse of

the slope of the linear Ąt in of the drain current in saturation, as illustrated in Figure 64.

The ideal value for the output resistance is inĄnity, which means that the drain current is

perfectly constant when the transistor is in saturation mode. Channel length modulation

reduces the output resistance, which is more pronounced in short channel devices.

Figure 64 Ű Schematic of the procedure to extract the output resistance

A.2 Subthreshold Slope

The subthreshold slope is deĄned as the gate bias increase required to induce an

increase in one decade Ű or ten times Ű in the drain bias. Figure 65 presents the schematic

of the extraction procedure for the subthreshold slope, which was previously presented

in Figure 56. In this case the increase of one decade in the drain current is caused by an

increase of 120mV in the gate bias, and thus the subthreshold slope is 120mV/dec.
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Figure 67 Ű Extraction procedure for the Vth parameter by extrapolating the IDSxVGS

curve at the point of maximum transconductance.

Figure 68 Ű Transistor IDSxVGS characteristics at low VDS with and without the series
resistance effect, showing how Vth changes when removing its effect. From
(TAUR, 2000)

For the Y-function extraction we deĄne Y as

Y =
IDS

√
gm

=

√︃

W

L
Coxµ0VDS (VGS − Vth) (A.3)

when plotting Y(VGS) we have a linear region, in strong inversion, where a linear

Ątting is performed. The slope of the resulting curve is given by

Slope =

√︃

W

L
Coxµ0VDS (A.4)

and µ0 can thus be calculated if the channel length, width and oxide capacitance

are known, as presented in Equation A.5. The x-axis intersection of the extrapolation of
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