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Abstract

Massive multiple-input multiple-output (MIMO) is one of the most promising technologies
for the next generation of wireless communication networks because it has the potential to
provide huge improvements in Spectral-efficiency (SE) and energy efficiency. This thesis
comprises of some contributions to the massive MIMO field and can be divided into two

parts.

In the first part, we identify issues and solutions in the key research area of massive MIMO
and propose a massive MIMO-based scheme to tackle the mixed-service communication
problem, where the Base Station (BS) has to serve not only human-type communication
(HTC) devices but also a possible massive number of machine-type communication (MTC)
devices. Our study shows that as the number of BS antennas progressively increases, the
performance of sub-optimal linear detectors approaches that of optimum detectors, such
as the Successive Interference Cancellation (SIC) detectors. We additionally prove that
the power radiated by each one of the MTC devices can be reduced proportionally to the
number of antennas deployed at the BS. This finding is of utmost importance to low-cost
and power-constrained MTC devices, which are expected to work for many years without

having their batteries changed.

In the second part, we study the channel estimation problem in multi-cell massive MIMO
systems. The spatial multiplexing gains, promised by the massive MIMO technology,
can only be achieved if accurate channel estimation is available at both the transmitter
and receiver for precoding and detection operations, respectively. However, the reuse of
frequencies and pilot sequences in multi-cell communications systems leads to degradation
in the channel estimation performance. This degradation is mostly caused by coherent
interference, which is known as pilot contamination. In this part of our study, we devise
and assess the performance of a simple and effective channel estimator for multi- and

Single-Carrier Frequency-Division Multiple Access (SC-FDMA) systems. We show that
the proposed estimators are able to work under moderate to strong pilot contamination

without previous knowledge of the channel statistics.

Keywords: Massive MIMO; Channel Estimation; Linear Detection; Pilot Contamination;

Machine Type Communications.



Resumo

MIMO é uma das tecnologias mais promissoras para a proxima geracao de redes de comu-
nicacado sem fio, pois tem o potencial de fornecer enormes melhorias tanto em eficiéncia
espectral e quanto em eficiéncia energética. Esta tese apresenta algumas contribuicoes

para o campo de pesquisas de MIMO massivo e pode ser dividida em duas partes.

Na primeira parte, nés identificamos problemas e solugoes na area de pesquisa de MIMO
massivo e propomos um esquema baseado em MIMO massivo para lidar com o problema
da comunicagao de servigos mistos no Uplink (UL), onde a estac¢ao radio base (BS) tem
que servir ndo apenas dispositivos de comunicacao do tipo humano (HTC) mas também
um possivel niimero massivo de dispositivos de comunica¢ao do tipo méquina (MTC).
Nosso estudo mostra que a medida que o nimero de antenas instaladas em uma BS au-
menta progressivamente, o desempenho de detectores lineares sub-6timos se aproxima dos
detectores 6timos, como por exemplo, os detectores de Cancelamento Sucessivo de Interfe-
réncia (SIC). Além disso, provamos que a energia irradiada por cada um dos dispositivos
MTC pode ser reduzida proporcionalmente ao nimero de antenas implantadas na BS.
Essa conclusao é de extrema importancia para dispositivos MTC de baixo custo e com
restricdo de energia, que devem funcionar por muitos anos sem que suas baterias sejam

trocadas.

Na segunda parte desta tese, nés estudamos o problema de estimagao de canal em sis-
temas MIMO massivos com multiplas células. Os ganhos de multiplexacao espacial, pro-
metidos pela tecnologia MIMO massivo, s6 podem ser alcancados se uma estimacao de
canal precisa estiver disponivel tanto no transmissor quanto no receptor para operacoes
de pré-codificacao e deteccao, respectivamente. No entanto, a reutilizacao de frequéncias
e sequéncias piloto em sistemas de comunica¢oes multicelulares leva a degradacao no
desempenho da estimacao de canal. Essa degradacao é causada principalmente por inter-
feréncia coerente, conhecida como contaminacao por piloto. Nesta parte de nosso estudo,
propomos e avaliamos o desempenho de estimadores de canal simples e efetivos para sis-
temas com portadoras miiltiplas e tinicas. Nos mostramos que os estimadores propostos
sao capazes de operar sob contaminac¢do por piloto moderada a forte sem conhecimento

prévio das estatisticas do canal.

Palavras-chaves: MIMO Massivo; Estimacao de Canal; Deteccao Linear; Contaminacao

por Piloto; Comunicagoes de Méaquina.



List of Figures

Figure 2.1 — Exemplary block diagram of a Massive Multiple-Input Multiple-Output
(MIMO) UL for mixed networks, where the BS simultaneously delivers
narrowband services to Machine Type Communications (MTC) devices
and wideband services to regular User Equipment (UE)s. The cluster
of MTC devices seen at the transmit side share the same Physical
Resource Blocks (PRBs) in frequency and time dimensions, while the
sole BS at the receive side is equipped with an antenna array at least
one order of magnitude larger than the number of served MTC devices. 35

Figure 2.2 — UL frame structure with Physical Narrowband Shared Channel (PNSCH)
time-frequency plane. . . . . . . ... 37

Figure 2.3 — Cell deployments with less aggressive reuse factors: (a) frequency reuse
factor equal to 3 and (b) frequency reuse factor equal to 7. . . . . . .. 38

Figure 2.4 — Propagation model. . . . . . . . . .. ... oo 39

Figure 2.5 — Massive MIMO properties: (a) asymptotic channel hardening and (b)
asymptotic Favourable Propagation (FP) . . . . . ... ... ... ... 41

Figure 2.6 — Capacity lower and upper bounds for several number of antennas, M,
when the channel offers FP. . . . . . .. .. .. ... ... ... ... 45

Figure 2.7 — Comparison of the sum SE for Independent and Identically Distributed
(i.i.d.) Rayleigh fading channels with non-linear and linear signal pro-
cessing and variable number of antennas, M. . . . . . ... ... .. .. 49

Figure 2.8 — Performance of linear receivers for different Signal-to-Noise Ratio (SNR)
values. . ..o 51

Figure 2.9 - BER performance of different linear detection methods for K = 10
single-antenna MTC devices over a range of different UL transmit
power, p, values and different array sizes deployed at the BS. Matched
Filter Bound (MFB) is provided as a benchmark for comparisons. (a)

M = 20 antennas. (b) M = 40 antennas. (c) M = 80 antennas. (d)
M =160 antennas. . . . . . .. ... 55

Figure 2.10-BER performance for the Maximum Ratio Combining (MRC) detector
and several different number of antennas, M. . . .. .. ... ... .. 56

Figure 2.11-Lower bounds and numerically evaluated values of the SE for different
BS antennas for MRC, Zero-Forcing (ZF), and Minimum Mean Square
Error (MMSE) linear detectors and perfect Channel State Information
(CSI). . 57



Figure 2.12-Transmit power required to achieve 1 and 2 bits/s/Hz per MTC device
for MRC, ZF, and MMSE linear receivers as a function of the number
of antennas M. The number of MTC devices is set to K = 10, and the
propagation parameters are ogpadow = 8 dBand v =38.. . . .. . . ..

Figure 2.13-SE versus number of antennas, M, for linear detectors: MRC, ZF, and
MMSE. In these examples K = 10 MTC devices are served simulta-
neously and the transmit power is P = 20 dB for the upper figure
and P = 5 dB for the lower figure and the propagation parameters are
Oshadow = 8dBandv=38 . .. ... ... ... .. ... ... ...

Figure 3.1 — Context application: Enabling a great number of low rate MTC devices
inacell. . ...

Figure 3.2 — Block diagram of a Massive MIMO UL for mixed networks, where the
BS simultaneously serves narrowband MTC devices and wideband UEs
(i.e., Human Type Communications (HTC) devices). The cluster of
MTC devices seen at the transmit side share the same time-frequency
PRBs, while the sole BS at the receive side is equipped with an antenna
array at least one order of magnitude larger than the number of MTC
devices. . . . . . e

Figure 3.3 — UL Frame Structure with PNSCH. . . . .. .. ... ... ... ....

Figure 3.4 — Possible PNSCH resource configuration throughout different neighbor

Figure 3.5 — Time-frequency plane. . . . . . . . .. . . ... ... ... ... ..
Figure 3.6 — Channel estimation Mean Square Error (MSE) versus average UL pilot
POWET, . 0 o o v v i e e e e
Figure 3.7 — MSE performance versus number antennas, M. . . . ... ... .. ..
Figure 3.8 — Average channel estimation MSE under random [; versus UL pilot
DOWET, .0 o o v i it e e e e e
Figure 3.9 — Comparison of the averaged variances of the channel estimators. . . . .
Figure 3.10—-Average of the absolute error between the large-scale fading, (5, and
the variance of the studied estimators. . . . . . . ... ... ... ...
Figure 3.11-Averaged distance between proposed and MMSE channel estimators.

Figure 3.12—Averaged absolute distance between closed-form and approximated MSE

. ropla Trox.
error expressions, |nP™P — pProPPPrOT) |

Figure 3.13-Lower bounds and numerically evaluated values of the SE for different
number of BS antennas for MRC, ZF, and MMSE detectors. . . . . . .

o7

83



Figure 3.14-Transmit power required to achieve 1 and 2 bits/s/Hz per user for
MRC, ZF, and MMSE linear receivers as a function of the number of
antennas M. The number of users is set to K = 10, and the propagation
parameters are Oghagow = S dBandv=38.. . ... .. ... ... ... 86

Figure 3.15-SE versus number of antennas, M, for linear detectors: MRC, ZF, and
MMSE. In these examples K = 10 MTC devices are served simulta-
neously and the transmit power is P = 20 dB for the upper figure
and P =5 dB for the lower figure and the propagation parameters are
Osshadow — S dBand v =38. . .. .. . . ... ... ... ... ... 86

Figure 3.16-BER performance of different linear detectors methods for K = 10
single-antenna M'TC devices and different array sizes at the BS. MFB

is provided as a benchmark for comparisons. (a) M = 50 antennas. (b)

M =100 antennas. (¢) M = 250 antennas. (d) M = 500 antennas. . . . 88
Figure 4.1 — Problem definition. . . . . . . . . . .. ... . o o 95
Figure 4.2 — Time Division Duplex (TDD) transmission protocol. . . . .. ... .. 96
Figure 4.3 — Channel Estimation MSE versus UL pilot power. . . . . .. ... ... 103
Figure 4.4 — MSE performance versus number of BS collocated antennas, M. . . . . 103
Figure 4.5 — Channel estimation MSE versus cross-cell interference level. . . . . . . 104
Figure 4.6 — Average channel estimation MSE under random {f8;x}. . . . . . . . .. 104
Figure 4.7 — Distance between proposed and MMSE estimators (Remark 19). . . . . 105

Figure 4.8 — Absolute distance between closed-form and approximated MSE expres-

Figure 5.1 — Proposed estimator’s histogram versus Normal’s Probability Density

Function (PDF). . . . . . ... 110
Figure 5.2 — Eq. (5.11) versus the Normal’s PDF. . . ... ... .. ... ... ... 111
Figure 5.3 — Proposed estimator’s Cumulative Distribution Function (CDF), Fyy(u) =

2 [y fu(t)dt, versus the Normal’'s CDF. . . . .. ... ... ... ... .. 111

Figure 5.4 — Proposed estimator’s excess Kurtosis for several number of antennas, M.112
Figure 5.5 — Mean Absolute Percentage Error (MAPE) between (5.11) and the Nor-

mal’s PDF, fy(n) for several number of antennas, M. . . . . . . . . .. 112
Figure 6.1 — Problem definition. . . . . . . . . . .. ... ... . 115
Figure 6.2 - TDD transmission protocol. . . . . . . . .. .. ... ... ... .... 116

Figure 6.3 — MSE of channel estimation versus UL pilot power: (a) for M = 30 and
a = 0.05, (b) shows that gap between the MMSE and the proposed
channel estimators increases, tending to a constant value as p increases. 125
Figure 6.4 — Performance of the proposed estimator when varying the number of
averaged elements. . . . . . .. ..o 126

Figure 6.5 — MSE of channel estimation versus number of antennas, M. . . . . . . . 126



Figure 6.6 — MSE of channel estimation versus number of channel paths versus pilot

length. . . . . . . o 127
Figure 6.7 — MSE of channel estimation versus inter-cell interference, a. . . . . . . . 127
Figure 6.8 — Averaged MSE of channel estimation for random{S;;.}. . . . . . . . .. 128
Figure 6.9 — Distance between proposed and MMSE estimators (Remark 25). . . . . 128

Figure F.1 - Comparison of the Monte-Carlo simulated expectation and the closed-
form expression given in (F.16). . . . . . ... ... ... 161
Figure F.2 - Comparison of the exact expectation, #;;, and the closed-form expres-

sion given in (F.16). . . . . .. ... ... oo 161



List of Tables

Table 2.1 — Summary of Challenges & Solutions in Large-scale Multiple Antenna
Systems for 5G. . . . ... 31
Table 3.1 — Complexities involved in the studied linear channel estimators. . . . . . 80

Table 6.1 — Simulation Parameters. . . . . . . . . . . . . ... 125



List of Abbreviations

3GPP 3rd Generation Partnership Project
ADAS Advanced Driver Assistance Systems
AMP Approximate Message Passing

AoA Angle of Arrival

BD Block Diagonalization

BI-GDFE  Block-iterative Generalized Decision Feedback Equalization
BER Bit Error Rate

BS Base Station

CP Cylic Prefix

CSI Channel State Information
C-RNTI Cell-Radio Temporary Identifier
DL Downlink

DPC Dirty Paper Coding

eMBB enhanced Mobile Broadband
FCSD Fixed Complexity Sphere Decoding
FDD Frequency Division Duplexing
FFT Fast Fourier transform

FP Favourable Propagation

HTC Human Type Communications

ICI Inter-Carrier Interference

IoT Internet of Things

IEEE Institute of Electrical and Electronics Engineers
IFFT Inverse Fast Fourier transform

ISI Inter-Symbol Interference

ITU-R International Telecommunication Union-Radiocommunication
LAS Likelihood Ascent Search

LDPC Low-Density Parity-Check

LS Least Squares

LTE Long Term Evolution

LTE-A Long Term Evolution-Advanced
LOS Line of Sight

MFB Matched Filter Bound

MIMO Multiple-Input Multiple-Output

ML Maximum Likelihood



MMSE
MU

MMSE-SIC

MRC
MSE
MTC
mMTC
MVUE

MU-MIMO

OFDM
PAPR
PNSCH
PRACH
PRB
PUCCH
PUSCH
QAM
OOBE
QPSK
RRC
SAGE
SIB
SIC
SINR,
SISO
SNR
Tx-SNR
TDD
THP
TS

UE

UL
URLLC
VP

ZC

ZF
MAPE
PDF

Minimum Mean Square Error
Multi User

MMSE with Successive Interference Cancellation

Maximum Ratio Combining

Mean Square Error

Machine Type Communications
massive Machine Type Communications
Minimum Variance Unbiased Estimator
Multi User MIMO

Orthogonal Frequency-Division Multiplex
High Peak to Average Power Ratio
Physical Narrowband Shared Channel
Physical Random Access Channel
Physical Resource Block

Physical Uplink Control Channel
Physical Uplink Shared Channel
Quadrature Amplitude Modulation
Out-of-Band Emission

Quadrature Phase-Shift Keying

Radio Resource Control
Space-Alternating Generalized Expectation
System Information Block

Successive Interference Cancellation
Signal-to-Interference plus Noise

Single Input Single Output
Signal-to-Noise Ratio

Transmit-SNR

Time Division Duplex
Tomlinson-Harashima Precoding

Tabu Search

User Equipment

Uplink

Ultra-Reliable Low-Latency Communications
Vector Perturbation

Zadoft-Chu

Zero-Forcing

Mean Absolute Percentage Error

Probability Density Function



CDF Cumulative Distribution Function

SIR Signal-to-Interference Ratio

PE Polynomial Expansion

RAN Radio Access Network

WSN Wireless Sensor Networks

5G Fifth Generation

4G Fourth Generation

C-Vv2X Vehicle-to-Everything

IMT International Mobile Communications
MRT Maximum Ratio-Transmission

MF Matched Filtering

PHY Physical-layer

i.i.d. Independent and Identically Distributed
Tx Transmit

SC-FDMA Single-Carrier Frequency-Division Multiple Access
SD Sphere Decoding

SE Spectral-efficiency



List of Symbols

() Hermitian Operator (or conjugate-transpose operator)
Bitk Large-scale fading coefficients

cos™ () Arc-cosine of a value

Ay Subcarrier Frequency Spacing

r'(.) Gamma function

A Wavelength [m]

I|.11% Frobenius norm

CMxK Complex matrix with M rows and K columns
E[] Expectation Operator

P{.} Probability of a random variable

CN Circularly-symmetric Gaussian distribution
O(.) The big-O notation

J{.} Imaginary part of a complex number

R{.} Real part of a complex number

~ Equality in asymptotic sense

) Matrix containing the pilots of K devices

Up Number of paths of the wireless channel

Tp Number of OFDM symbols used for Pilot Transmission
Tu Number of OFDM symbols used for Data Transmission
On N x 1 zero vector

Ix K x K identity matrix

Cov [] Covariance Operator

var(.) Variance Operator

Tr(.) Trace Matrix Operator

B(.,.) Beta function

B, Coherence Bandwidth

Ritkem Small-scale fading coefficients

L Number of cells in a multi-cell system

N Length of the pilot sequences

Nglot Number of OFDM symbols in a 0.5 ms slot
Nymooth Frequency Smoothness Interval

Ny Number of subcarriers in a OFDM symbol
Tot Slot duration

T, Coherence time



NS S

o

Duration of the Cyclic Prefix
OFDM symbol interval

Useful OFDM symbol duration
Pilot sequence of the k-th device



1

Contents

Introduction . . . . . . . . . L e e e e e e e 22
1.1 Summary of Contributions and Thesis Outline . . . . . . . ... ... ... 23
Introduction to Large-Scale Antenna Systems and Massive Machine-Type
Communications . . . . . . . . ... e e e e e e 26
2.1 Imtroduction . . . . . . . . . ... 26
2.2 Massive MIMO Challenges . . . . . . . .. .. ... ... 31
2.2.1 Impairments due to Low-cost Hardware . . . . . . . .. ... .. .. 31
2.2.2  Mutual Coupling and Front-back Ambiguity . . . . . .. .. .. .. 32
2.2.3 RF Propagation and Channel Modeling . . . . . .. ... ... ... 32
2.2.4  Acquisition of Channel State Information . . . . . . . .. ... ... 33
225 Precoding . . . . ... 33
2.2.6 Detection . . . . . . . ... 34
2.3 System Model . . . . . . . . 35
2.3.1 Signal Generation & Transmission . . . . . . . . .. ... ... ... 35
2.3.2  The Massive MIMO Channel and its Key Properties . . . . .. .. 39
2.3.3 Capacity Lower and Upper Boundsin P . . . . .. ... ... .. 43
2.3.4 Signal Detection . . . . . . ... Lo 44
2.4 Sub-optimal Massive MIMO Detection . . . . . .. ... ... ... .... 46
2.4.1 Linear Detection Methods . . . . . . .. ... .. ... ....... 46
2.4.2 Discussion . . . . . . ... 48
2.5 Achievable Rates . . . . . . . . .. 50
2.5.0.1 MRCdetector. . . . . ... .. ... .o 52
2.5.0.2 ZF detector . . . . . ... ... 53
2.5.0.3 MMSE detector . . . . . .. ..o 53
2.6 Simulation Results . . . . . . . . . .. ... 54
2.7 Conclusions . . . . . . . .. 59
Applying Massive MIMO Systems to Machine-Type Communications . . . 61
3.1 Introduction . . . . . . . . ... 61
3.2 Related Work . . . . . . . ... 62
3.3 The UL Mixed-service Communications Problem . . . . . . .. .. ... .. 63
3.3.1 Signal Generation & Transmission . . . . . . . .. ... .. ... .. 65
3.3.1.1 Pilot Transmission . . . . . .. ... ... ... ...... 67
3.3.1.2 Data transmission . . . . . ... ... 67

3.3.2 The Massive MIMO Channel . . . . . . .. .. ... ... .. ... 68



3.3.3 Linear MMSE Channel Estimation . . . . . . . . . . .. ... ...

3.3.3.1  De-Spreading of the Received Pilot Signal . . . . . .. ..

3.3.3.2  Channel Estimation . . . .. ... ... ... .......

3.3.4 Linear Detection . . . . . . . . . .. ... ... .. ...
3341 MRC .. ... .

3342 ZF . ..

3343 MMSE. . . ...

3.3.5 Achievable Rates . . . . . .. .. .. ... ... ... ... ...
3.3.5.1 MRCdetector. . . . . ... ... ... ... .. ...,

3.3.5.2 ZF detector . . . . . . ... ...

3.3.5.3 MMSE detector . . . . .. ...

3.4 Estimation of Large-Scale Fading Coefficients . . . . . .. ... .. .. ..
3.5 Proposed Channel Estimator . . . . . . .. ... ... ... .........
3.5.1 Complexity Analysis . . . . .. ... ... .

3.6 Simulation Results . . . . . . ... 0o
3.7 Conclusions . . . . . . . . .. e

Channel Estimation for Multi-Cell Massive MIMO Systems Considering Pi-

lot Contamination . . . . . . . . . . . . . .. e e e e
4.1 Introduction . . . . . . . ..
4.2 Related Work . . . . . . .
4.3 Problem Structure . . . . . . . .. ...

4.3.1 UL Training . . . . . . . . . . o

4.3.2 Least Squares (LS) Channel Estimator . . . ... ... ... ....

4.3.3 MMSE Channel Estimator . . . . .. . ... ... ... .......
4.4 Proposed Channel Estimator . . . . . . ... ... .. ... ... ... ..
4.5 Simulation Results . . . . . . . .. ...
4.6 Conclusions . . . . . . . .

On the Distribution of an Effective Channel Estimator for Multi-cell Massive

MIMO systems . . . . . . . . . 0 i e e e e e e e e e e e e e e
5.1 Imtroduction . . . . . . . . . ...
5.2 UL Signal Model . . . . . . . . ..
5.3 UL Training . . . . . . . . . .. . e
5.4 Effective Channel Estimator and its distribution . . . . . . ... .. .. ..
5.5 Simulation Results . . . . . . . . . . ... ..
5.6 Conclusions . . . . . . . . L

Channel Estimation for SC-FDMA Multi-Cell Massive MIMO Systems Con-
sidering Pilot Contamination . . . . . .. ... ... ... ..........

6.1 Introduction . . . . . . . . .



6.2 Problem Definition . . . . . . . . .. 116

6.2.1 UL Training . . . . . . . . . . . 118
6.2.2 LS Channel Estimator . . . . . ... .. ... ... ... ...... 119
6.2.3 MMSE Channel Estimator . . . . ... ... ... ... ....... 120
6.3 Proposed Channel Estimator . . . . . . .. ... ... .. .. ........ 121
6.4 Simulation Results . . . . . . . . . .. ... 124
6.5 Conclusions . . . . . . . .. 129
7 Concluding Remarks . . .. ... ... .. ... ... 131
7.1 Future Work . . . . . . . .. 132
7.1.1 Random Access for Massive Machine-Type Communications . . . . 132
7.1.2 Spatially Correlated Channels . . . . . . ... ... ... ... ... 133
7.1.3 Detection for SC-FDMA Systems . . . . . ... ... ... ..... 133
7.1.4 Mitigation of Pilot-Contamination . . . . . . . .. .. ... .. ... 133
Bibliography . . . . . . . . . e e 134
APPENDIX A List of Publications . . . . ... ... .............. 148
APPENDIX B Proof of limy_, O = i defined in Eq. (3.39). . . .. ... .. 149
APPENDIX C Proof of the exact MSE per antenna defined in Eq. (3.43). . . 152
APPENDIX D Proof of the MSE between g and g)"""*F defined in Eq. (3.46).155
APPENDIX E Proof of the approximated MSE per antenna defined in Eq.
(BAT) . o o e e e e e e e e e e e e e e 156
APPENDIX F Proof of the approximated MSE per antenna defined in Eq.
(A 18) . v v e e e e e e e e e e e e e 158
APPENDIX G Proof of the MSE between g°° and g""** defined in Eq. (4.20).163
APPENDIX H Proof of the covariance matrix of the columns of Czr,:p defined
in Eq. (6.19). . . . . o e 164
APPENDIX | Proof of the approximate MSE defined in Eq. (6.20). . . . .. 167
APPENDIX J Proof of the MSE between G'" and G.,  defined in (6.21). 169



22

1 Introduction

The foreseen demand increase in data rate has triggered a research race for
discovering new ways to increase the SE of the next-generation of mobile and wireless
networks [1]. The report in [1] predicts that data rates will easily reach peaks of 10 Gbps,
reaching a staggering 49 Exabytes of data transfer per month. Additionally, the next-
generation of networks is also expected to serve a higher number of devices, including
HTC devices and MTC devices. One of the performance requirements defined by the
International Mobile Communications (IMT) requires a connection density of 1 x 10°
devices/km? for a network to be considered Fifth Generation (5G) [2]. According to [3],
the number of connected devices is forecast to be nearly 30 billion by 2023, where around
20 billion are forecast to be MTC devices. Therefore, new technologies are required to meet
these demands. It is clear that in order to improve the throughput, some new technologies
that can use wider transmission bandwidths or increase the SE or even both should be
exploited. In this thesis, we focus our attention on techniques that improve the SE. A

well-known way to increase the SE is deploying multiple antennas at the transceivers.

Massive MIMO is a promising technology for the next-generation of wireless
communications networks that can provide unprecedented gains in SE. With such tech-
nology, several devices can simultaneously communicate with a BS equipped with a large
number of antennas over the same time-frequency resources. Such technology can provide
huge spatial multiplexing gains even if each device is equipped with a single antenna. The
more antennas a BS is equipped with, the more degrees of freedom are made available and
therefore, more devices can simultaneously communicate over the same time-frequency re-

sources. Two of the main questions that arise in this case are:

(i) whether we can obtain huge spatial multiplexing gains with low complexity signal
processing algorithms or not;
(ii) what is the SE that a cell can provide to individual devices sharing the same re-

sources?

With large antenna arrays, conventional signal processing techniques (e.g.,
maximum likelihood detection) become prohibitively complex due to their high signal di-
mensions. Recently, in [4], Marzetta showed that simple linear processing, e.g., Maximum
Ratio-Transmission (MRT) at the transmitter and MRC at the receiver, is nearly-optimal
when the number of BS antennas is large compared to the number of served devices. The

main benefits of massive MIMO systems are:
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(i) improved data rate and communication reliability: with a BS equipped with M
antennas serving K single-antenna devices, the system is able to achieve a diversity
of order M and a multiplexing gain of min(M, K),

(ii) simple signal processing: with an increasing number of BS antennas, the effect of
thermal noise and small scale fading is averaged out, rendering, for example, the
simple MRT /MRC optimum in such case,

(iii) power efficiency: in the UL, coherent combining achieves very high array gains which
allow for substantial reduction in the transmit power of each device, on the Downlink
(DL), the BS can focus its energy into the spatial directions where the devices are

located.

Inspired by the above discussion, this thesis studies (i) the feasibility of em-
ploying massive MIMO technology to the challenge of serving a massive number of MTC
devices over the same time-frequency resources and (ii) the channel estimation problem,
which is of utmost importance for massive MIMO systems to provide significant improve-
ments in SE. In our study, we consider performance bounds for the UL of massive MIMO
systems under practical constraints such as low complexity signal processing, imperfect

CSI, and inter-cell interference.

1.1 Summary of Contributions and Thesis Outline

This thesis comprises of our research results in the field of large scale antenna
arrays, also known as massive MIMO, tackling aspects related to channel estimation and
to the scalability of the next-generation mobile networks, where hundreds to hundred
thousands of low-cost MTC devices will be served by a sole BS. The present thesis can be
divided into two main problems. The first one regards the application of massive MIMO
to the UL mixed-service communication problem, where a BS is expected to serve both
HTC devices and a great number of MTC devices. The second problem studied in this
thesis is the channel estimation in multi-cell multi-user systems where the BS is equipped
with a huge number of antennas. We evaluate the effect that the phenomenon known as
pilot-contamination has on the performance of such systems. The remainder of this thesis

is structured as follows:

Chapter 2: In this chapter, we identify issues and possible solutions in the
key area of large-scale antenna systems, also known as MIMO systems. Additionally, we
propose the use of Massive MIMO technology as a means to tackle the UL mixed-service
communication problem, where a BS has to serve not only HTC devices but also a possible
massive number of MTC devices. Under the assumption of an available PNSCH, devised

to exclusively consume data traffic from MTC devices, the capacity of the MTC network
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and, in turn, that of the whole system, can be increased by letting MTC devices share
the same time-frequency physical resource blocks. We study the feasibility of applying
sub-optimal linear detection to the problem of detecting a large number of MTC devices
sharing the same time-frequency resources at the UL of a BS equipped with a large number
of antennas, M. In this chapter, we assume perfect channel knowledge, i.e., the case where
the BS has perfect knowledge of the channels and therefore, it doesn’t need to estimate
them. Our intention with this assumption is to assess the best possible case. In our study,
we derive the achievable lower-bound rates for the studied sub-optimal linear detectors
and show that the transmitted power of each MTC device can be reduced proportionally
to M, which is a very important result for power-constrained MTC devices running on
batteries. Our simulation results suggest that, as M is made progressively larger, the
performance of sub-optimal linear detection methods approach the matched filter bound,

also known as perfect interference-cancellation bound.

Chapter 3: This chapter extends the evaluation of the feasibility of applying
Massive MIMO to tackle the UL mixed-service communication problem presented in the
previous chapter. Differently from the previous chapter, in this one, we assume imperfect
channel knowledge, where the BS has to estimate the channels based on pilot sequences
sent by the MTC devices. All the discussion presented in this chapter is based on the
imperfect channel knowledge assumption. Here we also assume the availability of the
PNSCH, with which the capacity of the whole network is increased by letting groups
of MTC devices share the same time-frequency physical resource blocks. Following the
research line where only imperfect channel knowledge is available, in this chapter, we
(i) study the possibility of employing sub-optimal linear detectors to the problem of
detecting signals from a great number of MTC devices, (ii) derive lower bounds on the
achievable rate for each one of the studied linear detectors and (iii) present a simple
and practical channel estimator that works without previous knowledge of the large-scale
channel coefficients and noise power. Our simulation results show that (i) the use of large
antenna arrays can dramatically improve the SE of a BS, allowing it to serve a great
number of MTC devices over the same time-frequency resources, (ii) when the number
of antennas deployed at the BS grows without bound, the transmit power of each MTC
device can be made inversely proportional to v/M, which is of utmost importance to
low-cost and power-constrained MTC devices that are expected to work for many years
without having their batteries changed, (iii) the proposed channel estimator performs
asymptotically, as well as the MMSE estimator, with respect to the number of antennas
and the UL transmission power. Furthermore, the results also indicate that, as the number
of antennas is made progressively larger, the performance of sub-optimal linear detection

methods approaches the perfect interference-cancellation bound. The findings presented
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here and in Chapter 2 shed light on and motivate for entirely new research lines towards
a better understanding of Massive MIMO for MTC networks.

Chapter 4: This chapter presents a simple channel estimator for multi-cell
multi-user massive MIMO systems considering the presence of pilot contamination. We
consider Rayleigh block flat-fading channels, 7.e., channels that are both statistically cons-
tant during a time interval (coherence time) and flat within a frequency band (coherence
band). The proposed estimator addresses performance under moderate to strong pilot
contamination without previous knowledge of the large-scale channel coefficients. This
estimator performs asymptotically, as well as the MMSE estimator, with respect to the
number of antennas without knowledge of the channel statistics. An approximate analy-

tical MSE expression is also derived for the proposed estimator.

Chapter 5: In this chapter, we present a study on the distribution of the simple
but yet effective channel estimator for multi-cell massive MIMO systems suffering from
pilot-contamination proposed in chapter 4. We prove that the distribution of the proposed
channel estimator can be accurately approximated by the circularly-symmetric complex
normal distribution, when the number of antennas, M, deployed at the base station is

greater than 10.

Chapter 6: In this chapter, we extend our study on channel estimators for
multi-cell multi-user massive MIMO systems to the SC-FDMA transmission case. Due
to the SC-FDMA transmission, we propose a multipath fading channel model, which
considers the presence of pilot contamination, in order to study the channel estimation
problem. To facilitate the channel estimation in the multipath scenario, we propose an
UL training scheme that employs Zadoff-Chu (ZC) sequences. We present a simple and
effective channel estimator for multipath multi-cell massive MIMO TDD systems with
pilot contamination. Differently from the MMSE channel estimator, which needs previous
knowledge of the channel statistics, the proposed channel estimator works under mode-
rate to strong pilot contamination without previous knowledge of the large-scale fading
coefficients and noise power. Additionally, we derive and assess an approximate analytical
MSE expression for the proposed channel estimator. We show through simulations that
the proposed estimator performs asymptotically, as well as the MMSE estimator, with

respect to the number of antennas and multipath coefficients.
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2 Introduction to Large-Scale Antenna Sys-
tems and Massive Machine-Type Commu-

nications

2.1 Introduction

We have recently witnessed dramatic changes in the way communications sys-
tems are used. These changes are, in part, due to the big rise in on-demand data con-
sumption over mobile and wireless networks. One issue associated with the task of ac-
commodating such changes consists of finding solutions that can meet the diverse needs
of use cases regarded as market drivers for 5G networks. The development of 5G net-
works has been driven by a number of use cases aimed at supporting innovative applica-
tions and services [2]. The International Telecommunication Union-Radiocommunication
(ITU-R) has divided 5G network applications and services into three main categories
(also referred sometimes as use cases): enhanced Mobile Broadband (eMBB); Ultra-
Reliable Low-Latency Communications (URLLC); and massive Machine Type Commu-
nications (mMTC) [2,5]. They aim at significantly improving performance, scalability
and (cost/energy) efficiency of the current wireless networks such as Long Term Evolu-
tion (LTE), Long Term Evolution-Advanced (LTE-A), and LTE-A Pro. These use cases
and their direct requirements will demand huge improvements in comparison with the
previous generation of IMT systems [2]. A non-exhaustive list of 5G applications grouped

by use case and a brief explanation about them follows next.

e eMBB: focus on improvements to data rate, user density, latency, capacity and
coverage of the current wireless networks [6,7]. Some applications are: high-speed
mobile broadband, augmented and virtual realities (e.g., gaming), smart office en-
vironments, pervasive video (i.e., high-resolution video everywhere), etc.

e URLLC: aims at allowing devices and machines to communicate with ultra-reliability,
high availability and very low latency, which make it ideal for real-time applica-
tions [8-10]. Some applications are: wireless industrial control, factory automa-
tion, remote surgery, cellular Vehicle-to-Everything (C-V2X) communications, self-
driving cars, smart grids, public safety, etc.

e mMTC: focus on enabling machine-centered communications among devices that
are massive in number, battery-driven, generate bursty traffic and have low-cost,

i.e., Internet of Things (IoT) devices [7,11,12]. This use case is intended to support
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applications like: smart metering, smart cities, asset tracking, remote monitoring

(e.g., field and body sensors), etc.

Applications within the scope of the MTC driver range from smart cities and
smart grid to critical infrastructure monitoring [13-15], and from Advanced Driver Assis-
tance Systems (ADAS) to mobile health, which includes sports/fitness and telemedicine
[16, 17]. Reliability in critical infrastructure monitoring and smart grid, for example,
is often achieved only through dedicated land-line connections (i.e., wired connections)
[18-20]. Telemedicine makes use of telecommunications and information technology sys-
tems in order to provide remote clinical health care. It involves, for example, diagnostics
realized through medical data stored in cloud servers, which requires low-latency, real-
time access and high capacity servers capable of dealing with massive amounts of data,
e.g., computerized axial tomography and magnetic resonance imaging [21-23]. Automo-
tive infotainment, vehicular cooperation in ADAS, and pre-crash sensing and mitigation
applications also require high-speed, low-latency car-to-infrastructure and car-to-car com-

munications [24-26].

Reliability and power consumption are of huge importance for Wireless Sensor
Networks (WSN), where a few to several hundreds or even thousands of low-cost and
power-constrained sensor devices (in most of the WSNs, the sensors are battery-powered)
need to measure environmental conditions like temperature, noise level, air pollution lev-
els, humidity, wind speed, etc. and reliably transmit them to a central location over harsh
channel conditions [27,28]. Most of the WSN use cases require the deployment of battery-
powered sensors for ten years without any maintenance, meaning that the battery is

expected to last a decade without being recharged [29].

As can be noticed from the previous discussion, the requirements necessary
for the implementation of next-generation wireless networks (i.e., 5G) are quite diverse,
even within the same market driver. Scalability is yet another issue posed by IoT, as
the main assumption behind it is that hundreds to hundreds of thousands of low-cost
MTC devices shall be served by a single BS [30]. Scalability issues have been mainly
tackled by adopting different and sometimes complementary approaches, such as sparse
signal processing techniques [31], techniques brought from duty-cycled Wireless Sensor
Networks [32] and new waveforms specially designed for bursty and asynchronous data
transmissions [33, 34], however, until now, the use of MIMO techniques in the context of

MTC networks and the scalability issue are less understood.

The sentiment shared by most researchers nowadays is that the foreseen in-
crease in data rate will be achieved through combined gains [35] provided by (i) increasing

the network density, i.e., the addition of more radio sites with smaller cell coverage ar-
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eas to the same region (extreme network densification), which consequently improves the
area SE [36], (ii) increasing spectrum availability such as the introduction of new spectrum
bands like mmWaves [37,38], (iii) improving the use of licensed, unlicensed and licensed-
shared spectrum bands [39,40] with more efficient and intelligent sharing techniques, (iv)
and increasing SE of digital communications systems through advances in MIMO tech-
niques. One of the benefits resulting directly from the powerful processing gains provided
by the use of large arrays of antennas (i.e., massive MIMO systems) is that the major-
ity of the physical layer signal processing and resource allocation (i.e., scheduling) issues
are simplified, if not solved, which is clearly not the case for systems employing only a

moderate to small number of antennas [41].

Massive MIMO has been gaining significant attention and strength as a very
promising candidate to improve SE and consequently increase the channel capacity in
multi-user networks. Massive MIMO is a scalable technology through which large num-
bers of devices can simultaneously communicate through the entire allocated spectrum,
i.e., thanks to its many spatial degrees of freedom, the same allocated frequency band can
be reused by many users at the same time [41]. In the limit, as the number of antennas,
M, deployed at the BS increases, the system processing gain also increases, i.e., as M
tends to infinity, the processing gain tends to infinity as well. Massive MIMO not only
provides high SE in a cell, but also provides a good and uniform service to a great number
of devices simultaneously [41]. A consequence of this powerful processing gain is that the
effects of small-scale fading and frequency dependence disappear. In [42] it is indicated
that, due to the law of large numbers, the channel becomes reliable (i.e., it becomes
deterministic) so that each one of the subcarriers in an Orthogonal Frequency-Division
Multiplex (OFDM)-based massive MIMO system considerably experiences the same chan-
nel gain. This phenomenon is known as channel hardening [4]. Channel hardening renders
frequency-domain scheduling unnecessary as all subcarriers are considered equally good,
and consequently, makes most of the physical layer control signaling no longer needed [43].
Additionally, the adoption of massive MIMO systems also improve frequency reuse (due to
the reduced radiated power), simplifies power control (power control coefficients depend
only on the large-scale fading coefficients) and decreases multi-user interference (due to

the possibility of having very narrow beams as M increases) [4,44].

This chapter is based on our previous works [45,46]. Differently from those
works, where we have only considered the Bit Error Rate (BER) analysis for perfect
channel knowledge, the current work presents additional studies and results that shed
light on the application of massive MIMO technology and sub-optimal linear detection
to the UL mixed-service communication problem, where a BS has to serve not only HTC

devices but also a possible massive number of MTC devices. The main contributions of
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this chapter are the following:

e A survey on existing related work that identifies main issues and candidate solutions
in the key area of Massive MIMO systems. By presenting this survey, we aim at
illustrating the crucial role this technology is envisioned to play in the context of

5G wireless communication systems.

e Investigation of the feasibility of applying Massive MIMO as means to address the so-
called UL mixed-service communication problem, where a single BS simultaneously
delivers services to both narrowband MTC devices and Fourth Generation (4G)
wideband services to UE devices, i.e., HT'C devices. In this problem, the BS has to
serve HTC devices and a possible massive number of MTC devices. In order to be
addressed properly, the problem can be split into two sub-problems, namely, random
access and data transmission problems. The first one deals with the congestion
and overloading issues brought about by the massive number of devices (i.e., HTC
and MTC devices) trying to get access to the network during the random access
phase [47,48]. The second problem tackles the challenge of accommodating the data
transmissions of this huge number of devices, which might tremendously impact on
the operations and quality of the provided services of a mobile network [48,49].
With the foreseen number of connected devices raising up to tens of thousands
per cell [48], a BS might easily run out of available physical resource blocks (i.e.,
congestion due to user data packets) to accommodate the data transmissions of this
huge number of devices, tremendously impacting on the operations and quality of
the provided services of a mobile network. Therefore, the focus of our work is on the
data transmission phase, and in this chapter, we propose a massive MIMO-based
scheme where the data transmissions of a possibly huge number of MTC devices
are served through the same time-frequency resources by a BS equipped with a
large number of antennas. Treating MTC devices as regular UEs turns out to be
an issue, as scheduling PRBs in extremely crowded networks is a nontrivial task
made harder in the presence of retransmissions and intrinsic UL synchronization
procedures [50-53]. Under the assumption that a PNSCH, devised to consume the
data traffic generated by MTC devices, is available, the capacity of the MTC network
— and, in turn, the mixed-service system’s — can be increased by allowing groups of
MTC devices to share the same time-frequency PRBs. The underlying idea behind
the PNSCH is the exploitation of the channel’s geometric scattering characteristics
to spread MTC signals in the spatial domain [4]. Individual data streams conveyed
by spatially spread MTC signals can be separated thanks to the powerful processing
gain of the Massive MIMO setup [4], where the size of the antenna array used at the

BS is at least one order of magnitude larger than the number of served MTC devices.
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It is important to notice that the number of antennas is related to the number of
MTC devices being actually served over the same time-frequency resources, i.e., the
maximum possible number of devices scheduled to transmit data during a specific
interval where the number of devices in idle state is not taken into account for the

specification of the number of necessary antennas.

e Based on perfect CSI, we assess and discuss the feasibility of employing simple and
sub-optimal linear detection schemes (e.g., MRC, ZF, and MMSE) instead of highly
complex and optimal non-linear schemes at a BS equipped with a large number
of antennas. We derive closed-form lower-bound expressions on the UL achievable
rates for each one of the studied linear detectors for a finite number of antennas, M.
Additionally, we show that even when using simple and sub-optimal linear detectors,
the transmitted power of each MTC device can be reduced when the number of
antennas grows. This is a very important result for power-constrained MTC devices

running on batteries.

e We present several simulation results showing that (i) the BER of sub-optimal linear
detection techniques approaches the perfect interference-cancellation bound [55], as
the antenna array size progressively increases, (ii) the derived achievable lower-
bound rates of the studied linear detectors are tight, (iii) the transmitted power
of each MTC device can be reduced with M. Based on our study, we conclude
that aspects like antenna array size, performance-complexity tradeoff, and balance
between interference suppression and noise enhancement dictate, as expected, the

performance of a given detector.

The remainder of the chapter is organized as follows. Section 2.2 provides a
brief but comprehensive overview of Massive MIMO, its challenges, and solutions available
at the time of this writing. Section 2.3 presents the proposed system model and provides
mathematical descriptions for each one of its functional blocks: signal generation & trans-
mission, channel model and signal detection. We also present in this section a discussion
on the capacity lower and upper bounds in favourable propagation. Section 2.4 briefly
discusses contemporary solutions for signal detection in Massive MIMO systems, making
the case for sub-optimal linear detection methods. In section 2.5 we derive lower-bound
expressions for the UL achievable rates when linear detection (i.e., MRC, ZF, and MMSE)
is employed with perfect CSI knowledge at the BS. The results of our simulation work
are presented and discussed in Section 2.6, while Section 2.7 wraps up the chapter with

concluding remarks and suggestions for future work.
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Table 2.1 — Summary of Challenges & Solutions in Large-scale Multiple Antenna Systems for

5G.
Research Area Issue Candidate Solutions Shortcomings and “Side Effects” Refs
Phase noise Smart PHY transceiver algorithms Efficacy yet to be demonstrated [42]
Hardware Power consumption Parallel, dedicated baseband processing Open research question
Proof-of-Concept Experiments, testbeds & prototypes Only basic capabilities demonstrated [56]
e Diminishes bandwidth
Antenna coupling Multiport impedance matching RF circuits e Introduces ohmic losses [57-60]
Antenna o Not fully understood for large M [63]
Aspects e Increases coupling effects
Front-back ambiguity | Dense multidimensional implementations e Limited to indoor environments [57,62]
e 3D arrays have restricted usefulness
. e Realistic empirical models 5
Propagation Channel modeling o Sophisticated analytical models Currently under development [64-66, 84]
Cluster resolution No solution known to date Open research question [61]
BS sends pilots to terminals via FDD Limited by the channel coherence time 4,67
CSI acquisition e R Ny Channel reciprocity calibration [69-73]
Terminals send pilots to BS via TDD Pilot contamination problem [74-79]
o ZF e Computationally heavy for large M [61,86]
o MMSE o Higher average transmit power ’
Linear precoding methods o Has an error floor as M increases )
o MF . . . ) [61]
Precodine e Higher M required for a given SINR
- © e BD Cost-effective strategies are needed 83
¢ DPC Extremely costly for practical deployments 80
Transceiver Nonlinear precoding methods e THP o e e 81
Design o VP Increased complexity is hard to justify i82]
e MRC e Does not treat interference suppression [4,68]
Linear filtering o ZF e Does not treat noise enhancement [55]
e MMSE e More complex than MRC & ZF [61,85]
Iterative linear filtering : IE\;IIl\glg%‘SéC Computationally heavy for large M [87,90,91]
Detection o TS_ £
Random step search methods o LAS More complex than MMSE-SIC I89]
e SD Complexity grows exponentially in M [92]
Tree-based algorithms . e 1,000x more complex than TS .
o FCSD o Best suitable for the M ~ K case 93]

2.2 Massive MIMO Challenges

This section discusses issues regarded as

most challenging in the Massive

MIMO literature. Table 2.1 lists such issues and their available solutions, each presented

alongside with its side effects, i.e., new issues brought about by their adoption [45,46].

2.2.1

Impairments due to Low-cost Hardware

Large-scale multiple antenna arrays will likely be built using low-cost com-

ponents to ease the introduction and leverage the penetration of the Massive MIMO
technology into the market. Hardware impairments cause channel estimation errors and
limit the system’s achievable capacity, which theoretically should be unlimited as the
number of antennas increases. This calls for solutions capable of circumventing hardware
imperfections that manifest themselves as 1/Q imbalance, phase noise, power-amplifier
non-linearities, and quantization errors generally intrinsic to low-cost components [54].
The power-amplifier non-linearity issue is of particular concern because low-cost power
amplifiers often have relaxed linearity requirements, which in turn translate into the need

for reduced High Peak to Average Power Ratio (PAPR) on a per antenna element ba-
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sis [42].

Savings in radiated power result from using excess antennas to simultaneously
send independent data to different users, but the total power consumption should also
be taken into account. In this context, an interesting research path is hardware archi-
tectures for baseband signal processing [42]. Another path of interest is experimentation,
as testbeds currently available only demonstrate basic capabilities, and do not take con-
strained BS real estates into consideration [56]. Experimentation can also be rewarding in
that experimental findings can be fed back into theory, thus rendering the development of
testbeds, prototypes, and proof-of-concept experiments of utmost importance to a better

understanding of the massive MIMO technology.

2.2.2  Mutual Coupling and Front-back Ambiguity

One assumption often made when modeling antenna arrays is that the separa-
tion among antenna elements is large enough to keep mutual coupling at negligible levels.
This is not entirely realistic, especially in the case of a large number of antenna elements
deployed as an array of constrained size and aperture. Under such practical conditions,
the mutual coupling is known to substantially impact the achievable system capacity [57].
Multiport impedance matching RF circuits can cancel out such coupling effects [58], but

they diminish output port bandwidth [59] and increase ohmic losses [60, Chapter 10].

Two- or three-dimensional arrays have been reported to be able to avoid front-
back ambiguity. A side effect of dense implementations is that the larger the number of
adjacent elements, the larger the increase of coupling effects [61]. Another fundamental
shortcoming specific to 3-D settings is the incapability of extracting additional information
from the elements inside the array, i.e., only elements on the array surface contribute
to the information capacity [62]. The optimal densities above which the performance

deteriorates no matter how large is the number of elements are studied in [63] for indoor
Massive MIMO BSs.

2.2.3 RF Propagation and Channel Modeling

Realistic performance assessments call for appropriate channel characterization
and modeling. The Massive MIMO channel behavior, including its correlation properties
and the influence of different antenna arrangements, cannot be captured otherwise. The
interest raised by this issue has been (and still is) experiencing fast-paced growth, and
the community has already managed to contribute towards a better understanding of
the matter. In [64], channel measurements are carried out to identify and statistically

model the propagation characteristics of interest. These are then fed back into an existing
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channel model, extending its applicability to large-scale antenna arrays.

Performance assessments should ideally be conducted using a standardized
or widely accepted channel model. Some models for Massive MIMO are presented and
discussed in [65]. See, e.g., [66], for a discussion on modeling methods, channel categories,

and their underlying properties.

2.2.4 Acquisition of Channel State Information

In conventional Frequency Division Duplexing (FDD) systems, the BS can-
not harness beamforming gains until it has established a communication link with the
terminals. Firstly, the BS broadcasts pilots based on which the terminals estimate their
corresponding channel responses. These terminal estimates are then quantized and fed
back to the BS. Such FDD approach finds limited application in Massive MIMO systems
in that the amount of time-frequency resources needed for pilot transmission in the DL
scales with the number of antennas, and so does the number of channel responses that
must be estimated on the part of each terminal. In systems with large antenna arrays,

pilot transmission time may well exceed the coherence time of the channel [4,67].

An alternative for Massive MIMO systems is to let the terminals send pilots
to the BS via TDD. The TDD approach relies on channel reciprocity, where UL channels
serve as estimates of DL channels. This leads to training requirements independent of the
number of antennas, M [69], and eliminates the need for CSI feedback. TDD’s drawbacks
are reciprocity calibration and pilot contamination: the former is a need raised by dif-
ferent transfer characteristics of DL/UL processing chains (e.g., amplifiers, filters, local
oscillators, etc. present different characteristics); the latter arises in multi-user multi-cell
scenarios where the use of non-orthogonal pilot sequences causes the intended user’s chan-
nel estimate to get contaminated by a linear combination of other users’ channels sharing
that same pilot. Reciprocity calibration and pilot decontamination are studied in [70-79],

but optimal solutions are unknown to date.

2.2.5 Precoding

Multi-user interference can be mitigated at the transmit side by modifying
standard single-stream beamforming techniques to support multiple streams. Precoding
based on ZF or MMSE is simple for a moderate number of antennas. However, reliance
on channel inversions may take its complexity and power burdens to a point hard to
accommodate within very large arrays [61,86]. Matched Filtering (MF), which comprises
MRT in the DL and MRC in the UL, is known to be the simplest method [4].

Nonlinear precoding methods, such as Dirty Paper Coding (DPC) [80], Tomlinson-
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Harashima Precoding (THP) [81], and Vector Perturbation (VP) [82], also have appealing
features (DPC is theoretically optimal) but are either too costly for practical deployment
or offer gains hard to justify in view of their increased computational complexity. Recalling
that the array size required to achieve a given Signal-to-Interference plus Noise (SINR)
with MF is at least two orders of magnitude larger than with ZF [61], further work on cost-
effective solutions are needed, e.g., as illustrated in [83] for Block Diagonalization (BD)

algorithms.

2.2.6 Detection

When it comes to data stream separation in conventional systems, Maximum
Likelihood (ML) detection is the optimum solution but its complexity grows exponen-
tially with the number of streams (this makes it hard to implement in MTC networks
where hundreds to thousands of devices are envisioned). This is the reason why param-
eter estimation and detection are key problems in Massive MIMO systems. Suboptimal
linear filtering detectors with reduced computational complexity, such as MRC, ZF, and
MMSE [55], offer lower costs (that do not depend on the number of streams/users and
modulation order), but are not capable of achieving the full receive-diversity order of
ML detection and, consequently, they do not achieve the channel sum capacity for cases
where the number of streams/users is approximately equal or equal to the number of an-
tennas [42,43,86]. This performance-complexity tradeoff led to the development of several

alternative detection methods, some of them are discussed in the sequel.

The first class of interest is iterative linear filtering, which encompasses MMSE
with Successive Interference Cancellation (MMSE-SIC) and Block-iterative Generalized
Decision Feedback Equalization (BI-GDFE) [87]. A shortcoming common to such iter-
ative detectors is that their reliance on repeated matrix inversions may render them
computationally heavy for large array sizes. Tabu Search (TS) [88] and Likelihood Ascent
Search (LAS) [89] belong to a class of matrix-inversion free detectors known as random
step search detection methods. Regrettably, the performance-complexity tradeoff comes
into play also here, as both T'S and LAS are known to be outperformed by MMSE-SIC [61].
Additionally, MMSE-SIC is known to achieve the sum capacity of the fast-fading MIMO
multiple-access channel [90,91]. The last relevant class, referred to as tree-based detection
algorithms, has in Fixed Complexity Sphere Decoding (FCSD) one of its most promi-
nent methods [92,93]. Notwithstanding the improvements of FCSD over standard Sphere
Decoding (SD), the method is still 1,000 times more complex than TS.
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Figure 2.1 — Exemplary block diagram of a Massive MIMO UL for mixed networks, where the
BS simultaneously delivers narrowband services to MTC devices and wideband
services to regular UEs. The cluster of MTC devices seen at the transmit side
share the same PRBs in frequency and time dimensions, while the sole BS at the
receive side is equipped with an antenna array at least one order of magnitude
larger than the number of served MTC devices.

2.3 System Model

This section describes the system depicted in Figure 2.1 in terms of its underly-
ing functional blocks. In what follows, we assume that the transmitted signals of a cluster
with K single-antenna MTC devices are detected by a Massive MIMO BS equipped with
M receive antennas, where M > K. Single-antenna MTC devices are simple, inexpensive,

power-efficient, and each device normally has low to moderate throughput.

2.3.1 Signal Generation & Transmission

Consider a PNSCH that is available and exclusively dedicated to services re-
lated to sporadic MTC traffic. The K MTC devices map data into a set of continuous
PRBs in the frequency domain, with the subcarrier indexes providing the spectral position
of the PNSCH at the physical layer level.

Once random access is not the focus of this work, in this chapter, we focus
on the issue posed by the necessity of the BS to serve hundreds to thousands of MTC
devices with a limited number of resources. However, several works in the literature deal
with the problem of the random access of a large (or massive) number of devices [94-97].
Therefore, in this chapter, we assume that all MTC devices being served by a BS are
already synchronized and connected to it before accessing the PNSCH, i.e., all the MTC
devices being served have already performed random access and attach procedures before
any data is sent through the PNSCH.

The PNSCH is configured at the BS via broadcasting System Information
Blocks (SIBs), just like with the Physical Random Access Channel (PRACH) used in

current 4G systems (see, e.g. [98] and the references therein). This allows the number of
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PNSCH transmission opportunities in the UL to be scheduled while taking into consider-
ation discrepancies between the (likely different) capacities of MTC devices and regular
UEs. The PNSCH time-frequency resources are semi-statically allocated by the BS, and
are repeated periodically. Additionally, the System Information Block (SIB) messages can
carry, for example, information about the pilot sequence length, which in turn, dictates
the useful capacity of the PNSCH as it will, consequently, determine the remaining time
destined to data symbols. The fraction of pilot and data symbols can be selected based on
the network traffic characteristics of a cell or set of them, 7.e., the PNSCH configuration
can be modified to increase the number of served MTC devices or the throughput of the
ensemble (i.e., the data rate of all MTC devices served through the same time-frequency
resources) by increasing the number of OFDM symbols used for pilot or data transmission
accordingly. Therefore, the pilot sequence length can be varied so that more MTC devices

can be simultaneously served by the BS at the expense of smaller data capacity.

We assume the utilization of OFDM block-based transmissions where each
MTC device transmits its signal (i.e., allocated pilot sequence and data) by taking the
Inverse Fast Fourier transform (IFFT) of the mapped information (i.e., pilot and data
symbols), and subsequently adding a Cylic Prefix (CP). It is important to remember that
all MTC devices transmit their signals at the same time and frequency resources. We
denote the OFDM symbol interval by T}, the subcarrier spacing by Ay, the useful symbol
duration by T, = 1/Ay, and the guard interval (i.e., duration of the cyclic prefix) by
T, =T, — T,. As in [4], we call the reciprocal of the guard interval, when measured in
subcarrier spacings, the frequency smoothness interval,

1 T,

L 2.1
TA, T, (2.1)

Nsmooth =

where Ngmooth represents the number of subcarriers over which the channel frequency

response is considered smooth, i.e., approximately constant [41].

A total of 7, OFDM symbols are entirely used for transmitting pilot sequences.
The remaining symbols, 7,, within the same coherence interval (or coherence block) are
used for data transmission. A coherence interval is a time-frequency space with duration
equal to the coherence time, T, and bandwidth equal to the coherence bandwidth, B,
see Figure 2.2. In general, the channel response is constant over Ngyootn cOnsecutive sub-
carriers and, therefore, the BS can estimate the channel for a total of Kyax = 7 Nsmooth
terminals. We assume that a coherence interval consists of Nyyootn subcarriers and 7, + 7,
OFDM symbols, i.e., Ngnooth X (7, + 7,) subcarriers, over which the channel response can

be approximated as being constant and flat-fading [44].

The modulated symbols (i.e., the symbols carrying data of an MTC device) are

assumed to be randomly and independently drawn from a digital modulation alphabet
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Figure 2.2 — UL frame structure with PNSCH time-frequency plane.

(e.g., Quadrature Phase-Shift Keying (QPSK), 16-Quadrature Amplitude Modulation
(QAM), etc.) with normalized average energy. The modulated symbols are mapped into
7. OFDM symbols. The total number of data symbols that can be transmitted during a

coherence interval is equal to 7, Nemooth-

Figure 2.2 depicts the UL frame structure devised for the PNSCH. As can be
seen in the figure, we assume 1 ms long PNSCH transmission opportunities, however, it is
important to point out that other multiple intervals of 1 ms could also be used, allowing
more MTC devices and/or higher data rates. The figure also shows the time-frequency
plane for one possible configuration of the PNSCH (i.e., frequency position within the
resource grid and time periodicity). It shows how pilots and data symbols are mapped
into the time-frequency domain of a coherence interval. A 0.5 ms slot consists of Ny
consecutive OFDM symbols, where each of of them has IV subcarriers. If we assume that
T, = Ty, then, a coherence interval is composed of Ngoe OFDM symbols and Ngpootn
consecutive subcarriers. The number of coherence intervals in a slot when T, = Ty is
given by N5/Ngmootn- As shown in the figure, the time-frequency plane can be divided
into several coherence intervals in which each massive MIMO channel is considered time-

invariant and frequency-flat.

As an example of the possible PNSCH capacity, if we consider it has 6 Physical
Resource Block (PRB) allocated to it over the interval of a 1 ms long subframe (where

each PRB is equal to 12 subcarriers and the subframe contains 14 OFDM symbols),
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Figure 2.3 — Cell deployments with less aggressive reuse factors: (a) frequency reuse factor
equal to 3 and (b) frequency reuse factor equal to 7.

a periodicity of 10 ms, meaning that MTC devices transmit for 1 ms every 10 ms,
Nsmootn = 12, 7, = 100, and 7, = 68, totalizing 12 subcarriers x 14 OFDM symbols =
168 subcarriers/coherence interval. Therefore, for this setup, 600 different MTC devices
could be served over the 6 allocated PRBs, where each one of the devices can have a data
rate of 40.8 Kbits/s considering 64-QAM modulation. The throughput can be doubled
(i.e., 81.6 Kbits/s) if the PNSCH periodicity is decreased to 5 ms.

The PNSCH is time- and frequency-multiplexed with Physical Uplink Shared
Channel (PUSCH), Physical Uplink Control Channel (PUCCH) and PRACH as depicted
in Figure 2.2. Therefore, as can be seen in Figure 2.1, filters are added to both transmission
and reception chains. These filters are added to the processing chains so that Out-of-Band
Emission (OOBE), which are intrinsic to the OFDM waveform due to the discontinuities
at its edges, do not interfere with adjacent channels, i.e., PRACH, PUSCH, and PUCCH.
Additionally, the filters help to mitigate Inter-Symbol Interference (ISI) and Inter-Carrier
Interference (ICI) caused by asynchronous transmissions coming from random access at-
tempts happening at the PRACH [99].

Note that the received signal is passed through a matched filter, which max-
imizes the SNR. The filter is applied to each time-domain OFDM symbol (i.e., after
IFFT and CP insertion) to mitigate the OOBE of the PNSCH transmissions. The filters
should be carefully designed to (i) maintain the complex-domain orthogonality of OFDM
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symbols, (ii) exhibit flat passband over the subcarriers in the PNSCH, (iii) have sharp
transition band in order to reduce the guard-bands, and (iv) present sufficient stop-band
attenuation [40,100].

Additionally, we assume that inter-cell interference is negligible. Inter-cell inter-
ference can be heavily mitigated, and therefore, considered insignificant, if less-aggressive
frequency-reuse (e.g., reuses of 3, 7 or higher) is adopted [101]. Figure 2.3 depicts reuse
factors equal to 3 and 7. Inter-cell interference manifests itself in two ways, namely, coher-
ent and non-coherent interference, being the former caused by contaminating cells (i.e.,
cells that use the same set of pilots as the home cell, causing pilot-contamination) and
the latter caused by non-contaminating cells (i.e., cells that do not use the same pilots as
the home cell) [41]. If less aggressive frequency reuse factors are not possible or desired,
then, pilot-contamination (i.e., coherent interference) can be mitigated if not eliminated
by making the PNSCH time-frequency resource intervals in each one of the neighbor cells
different from the intervals chosen for the target cell. However, this scheme does not elim-
inate non-coherent interference, once the neighbor cells will be using the same frequency
for other UL channels (e.g., PRACH, PUCCH, PUSCH).

2.3.2 The Massive MIMO Channel and its Key Properties

Let gm kn denote the complex channel propagation coefficient from the k-th
MTC device to the m-th antenna of the BS in the n-th subcarrier

Imkn = hm,k,n \V Bk) (22)

where hy, i, is the complex small-scale fading coefficient, and f, is the amplitude coeffi-
cient that accounts for geometric attenuation and shadowing, i.e., large-scale fading [4].
The large-scale fading coefficients are assumed constant with respect to both subcarrier

number and BS’ antenna index since the geometric and shadow fading change slowly over
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space [4]. Therefore, between any given BS and an MTC device, there is only one large-
scale fading coefficient. Additionally, these coefficients change only when an MTC device
significantly changes its position in relation to the serving BS. It is generally assumed
that in the radius of 10 wavelengths, the large-scale fading coefficients are approximately
constant. With respect to the small-scale fading coefficients, they significantly change as
the MTC device moves by a quarter of the wavelength. Therefore, it is normally assumed
that the large-scale fading coefficients change about 40 times slower than the small-scale
fading coefficients [102].

In general, the bandwidth occupied by an OFDM symbol is greater than the
channel coherence bandwidth, B., however, on the other hand, the subcarrier bandwidth
(Ay) is smaller than B,. Therefore, as mentioned earlier, the channel can be considered flat
(i.e., constant) over Ngnootn Subcarriers. Additionally, we also consider that the channel
is rich in scatterers and has no Line of Sight (LOS) component. Therefore, it is natural
to assume that the transmitted signal within a coherence interval undergoes flat i.i.d.
Rayleigh fading. The justifications for the use of this model are as follows: (i) it is approx-
imately correct under conditions of dense scattering and (ii) it enables a comprehensive

performance analysis [41].

The complex random channel responses within one coherence interval are sta-
tistically identical to the ones in any other coherence interval, irrespective of whether
they are separated in time and/or frequency. Another important point is that the channel
fading can be described by a stationary ergodic random process. Therefore, hereafter, our
analysis is carried out by studying a single statistically representative coherence inter-
val [41]. We assume that the channel realizations are independent between any pair of
intervals, which is known as a block/interval fading assumption in the literature [4,41].
Consequently, for notational simplicity we suppress the dependency of ¢,, 1, on the sub-

carrier index, n, and rewrite it as g, x (see Figure 2.4).

Therefore, within a coherence interval, the M x K channel matrix G can be

expressed as

G=[g g - g =HD"
hip -+ hik VB

harp -+ huk VB

H DL/2

where the elements ¢,,, ; = A i . v/ B correspond to the complex channel gains from the
MTC transmit antenna to the BS receive antennas where g, ~ CN (0,7, BxInr), V. The
channel model in (2.3) is called uncorrelated Rayleigh fading or i.i.d. Rayleigh fading,
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Figure 2.5 — Massive MIMO properties: (a) asymptotic channel hardening and (b) asymptotic
FP

because the elements of g, i.e., g, x, are uncorrelated (and also independent) and have

Rayleigh distributed magnitudes.

Small-scale fading is one of the major impairments in wireless communica-
tions [103]. This kind of fading is created by microscopic changes in the propagation
environment and causes the channel gain to randomly fluctuate. The random fluctuation
of the channel gain will occasionally make it very small, which in consequence causes the
transmitted data to be received in error with high probability, i.e., the random fluctuation

makes the channel unreliable [103].

As we will discuss next, the diversity obtained by transmitting a signal over
several channels with independent realizations is essential to mitigate small-scale fading
and noise. Therefore, the exploitation of spatial diversity becomes very interesting, once

it can be achieved by simply deploying several antennas at the receiver or transmitter.

Under the assumptions of large M and that the small-scale fading coefficients
experienced by each MTC device are i.i.d. complex normal random variables with zero
mean and unitary variance, the column channel vector from different MTC devices be-
comes asymptotically orthogonal as the number of receive antennas at the BS grows
without bound [4]. On the other hand, as the number of antennas increases, the channels
between the MTC devices and the BS start behaving as if they were non-fading channels,
i.e., as if they were almost deterministic scalar channels, after combining/precoding [104].
This phenomenon is attributed to the spatial diversity obtained from having multiple
receive antennas that observe independent fading realizations, which are improbable to

all be zero or nearly zero simultaneously [44].
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These two key properties exhibited by Massive MIMO channels are known
as FP and channel hardening [101], respectively. FP implies that noise and interference
can be canceled out with simple linear detectors such as the MRC, achieving optimal
performance [105]. Additionally, the FP idea provides a way to quantify the ability of a BS
equipped with a large number of antennas to separate the data streams of multiple MTC
devices [105]. Channel hardening makes the channel variations asymptotically reduce as
the number of antennas increases, in the sense that the normalized instantaneous channel
gain, ||g,||>/M, converges to the deterministic average channel gain, ;. With channel
hardening, as the small-scale fading tends to vanish, there is no need to adapt the power
allocation or scheduling to its fluctuations, simplifying the resource and power allocation
algorithms [106]. Moreover, channel hardening provides improved reliability due to the
almost deterministic channel, which consequently results in lower latency due to a smaller
number of re-transmissions. Both effects are a direct consequence of the law of large
numbers, i.e., they are only valid in the context of Massive MIMO when M — oo [101].
Therefore, if the channel offers asymptotically FP and channel hardening, then we have

H'H

GG
—_—~ D2 e D2 ~ D21, DY? 5 D, M - (2.4)

M
where (-)f denotes conjugate-transpose (i.e., the Hermitian operator) operation. Equa-
tion (2.4) mathematically summarizes both phenomenons showing that when M — oo,
different channels become mutually orthogonal and the channel gains tend to their respec-
tive large-scale fading coefficients. That is, as M — oo the small-scale fading vanishes
and only the large-scale fading remains, however, it can be mitigated with power control
techniques [107,108].

Figure 2.5 illustrates both the channel hardening and FP phenomenons for
an M-dimensional channel g, ~ CN(0y7,157), Vi. The figure shows the mean values, the
10% and 90% percentiles and random realizations for both phenomenons and for different
numbers of antennas. As can be seen, in the channel hardening case, the normalized
instantaneous channel gain g7¢g;/M approaches its average value of 1 and the standard
deviations and variance reduce as M increases. In the FP case, the inner product of the
normalized channels g/ /v/M and gx/v/M, tends to zero and the standard deviations and

variance also reduce as M increases.

We refer the interested reader to [41,44,109] for a detailed discussion on these
phenomenons, and to [61] for experimental evidence supporting the assumption of i.i.d.
Rayleigh small-scale fading coefficients with zero mean in Massive MIMO settings. In
[41] the authors demonstrate that two fundamentally different channel models, namely,
independent Rayleigh fading (i.e., isotropic scattering) and Uniformly Random LOS, offer

approximately FP and channel hardening properties. These two models represent quite
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extreme cases, and actually, the real channel is more likely to be something (i.e., exhibit
characteristics) between these two extremes. Therefore, it is reasonable to expect that the
assumptions of FP and channel hardening hold for most of the practical cases. This has
been experimentally confirmed by several independent measurement campaigns [42, 61,
110-113].

2.3.3 Capacity Lower and Upper Bounds in FP

The FP phenomenon does not only provide optimal performance with sub-
optimal linear processing (see (2.4)) but also constitutes the most valuable scenario from
the perspective of maximizing the achievable rate. In order to find lower and upper bounds
for a channel offering FP we employ a capacity argument where we consider the UL
direction and a fixed and deterministic channel, G. The sum capacity for this channel is
defined by [41]

R =log, Iy + pGGH|, (2.5)

where p is the power transmitted per MTC device and we assume that the BS knows the

channel G and that the MTC devices know their respective individual rates [41].

In order to determine the lower and upper bounds that (2.5) can assume for

distinct characteristics of G, we rewrite it as
R = log, ‘IM + pGGH‘

@ log, ‘IK + pGHG‘

(2 log, <ﬁ [IK + ,OGHG] kk) (2:6)

k=1
K
=" log, (1 + pllgill?)
k=1
where in (a) we used Sylvester’s determinant theorem and in (b) we used the Hadamard
inequality. The equality in (b) of (2.6) holds if and only if GG is a diagonal matrix
(i.e., the channel matrix G has mutually orthogonal columns), which is the case when
the channel exhibits FP [44]. Next, we find lower and upper bounds for (2.6) when FP
is assumed and the constraint |G||%2 = 2K, |lg.ll? = S5, A2 = MK (i.e., the columns
of G have the same norm) is applied to the channel matrix, where {\;} are the singular
values of the channel matrix G. Notice that when we have FP, the singular values, {\;},
are equal to the channel norms, {||g,||}, which are in consequence equal to { M f;}. Here

we consider that the channel gains, {f;}, are all equal to 1.

The lower bound of (2.6), given that we have FP, is achieved when G has
its rank equal to one, which corresponds to an LOS channel. The rank of G is equal

to the number of non-zero singular values of G and determines how many data streams
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can be simultaneously multiplexed over the channel. This is expressed by, for example,
when ||g,]|? = MK, |g|> = -+ = |lgkl|* = 0, which meets the constraint ||G||% = MK.
Consequently, the lower bound of (2.6) is given by

Rlower bound — 1Og2 (1 + pMK) . (27>

The upper bound of (2.6), given that we have FP, is achieved when G has
full-rank, i.e., its rank is equal to K, and ||g,||*> = M,Vk, meaning that the channel
matrix is well-conditioned [44], once Apin = Amax = VM , which are the minimum and
maximum singular values of GG respectively [105]. Therefore, as can be seen, a full-rank
and well-conditioned channel matrix attains the highest possible capacity. Next, in order
to find the upper bound for the capacity, we apply Jensen’s inequality and the constraint
IGI2 = XK, gl = MK to (2:6),

K 1 K
R < log, (1+pllg,l?) = K [K > log, (1+ Pilgkﬂg)]
k=1 k=1

K
< Ko, (14 23l ) = K1om, (141G 28)
k=1
= Klog, (1+ pM).
Therefore, the upper bound,
Rupper bound — K 10g2 (1 + PM) ) (29)

is achieved only when the columns of G are mutually orthogonal (i.e., the channel offers
FP), making the equality in the first line of (2.8) hold true, and when {g,} have the same

norm, making the equality in the second line of (2.8) hold true as well.
Finally, summarizing, under the constraint ||G||% = MK, the achievable rate

for a channel exhibiting FP is bounded as

log, (14+ pMK) < R < Klog, (1+ pM). (2.10)

Figure 2.6 shows the capacity lower and upper bounds for several number of
antennas, M, K = 10 MTC devices, a channel offering FP and the application of the

constraint ||G||% = MK to the columns of the channel matrix.

2.3.4 Signal Detection

Here we consider the scenario where the K’ M'TC devices simultaneously trans-
mit signals to the BS. Let zj, where E[|z;|*] = 1, Vk, be the signal transmitted from the

k-th device to the BS and K x 1 vector, x, the vector containing all data symbols of
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Figure 2.6 — Capacity lower and upper bounds for several number of antennas, M, when the
channel offers FP.

all the K devices. Since K devices share the same time-frequency resource, the M x 1
received signal vector at the BS is the combination of all signals transmitted from all K

devices [42,101], which can be expressed as:
y=vpGx+w

K (2.11)
k=1

where p is the average UL Transmit (Tx) power of each MTC device, y € CM*! and
w € CM*! is a zero-mean noise vector with complex Gaussian distribution and identity
covariance matrix, i.e., CN (0,7, I)7). As the noise variance of all elements of w are assumed
to be equal to 1, thus, p can be interpreted as a normalized transmit SNR and consequently
is dimensionless [68]. The noise variance is made unitary in order to minimize notation,
but without any loss of generality. There exist M PNSCH signal versions in (2.11) for each
one of the K MTC devices. Hence, the task of the BS consists of detecting K simultaneous
MTC transmissions on the basis of estimates of the channel coefficients in (2.3). Therefore,
detection techniques need to be employed in order to separate each of the data streams

transmitted by the various devices in a Massive MIMO system.

ML multi-user detection is the optimum detection technique for the UL but it
is highly complex. Its complexity grows exponentially with the number of MTC devices,
K, and modulation order, making it hard to implement in our case where hundreds to
thousands of MTC devices are envisioned to be served by the BS over the same time-
frequency resources. To circumvent this limitation, we discuss in the next section a couple

of sub-optimal alternatives with reduced computational complexity [55].
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2.4 Sub-optimal Massive MIMO Detection

When it comes to separation of data streams in conventional MIMO systems
(i.e., where M is small), ML multi-user detection is the optimal solution but its complexity
grows exponentially with the number of MTC devices. This detector works by trying all
possible transmitted data vectors, x, and selects the one that minimizes the following
equation:
% = arg min [ly — /pGx|*, (2.12)
where X is the set with all possible data symbol vectors, x. The problem (2.12) is a
LS problem with a finite-alphabet constraint. The BS has to search over all possible data
vectors for the one that minimizes (2.12), which as can be noticed, exponentially increases
with the number of MTC devices, K (e.g., for 64-QAM modulation with an alphabet of
6 symbols and 10 MTC devices the BS would have to check 6'° = 60466176 possibilities).
Therefore, although being the optimal solution for detection in cases where K is small,
ML is a highly complex solution to be implemented in cases where hundreds to thousands
of MTC devices are envisioned to be simultaneously served by a BS. This is the reason
why signal detection is a key problem in Massive MIMO systems. To circumvent this
limitation, in the sequel, we overview and discuss the literature on the detection subject,
and justify our choices for the detectors used in the simulation work presented in Section
2.6.

2.4.1 Linear Detection Methods

Linear decoders (also known as linear detectors) work by spatially decoupling
the effects of the channel by a process known as MIMO equalization. This involves mul-
tiplying y with a MIMO equalization matrix A € CM*E to get %(y) € CM*! [55]. Let A
be an M x K linear detector matrix that depends on the channel G. By using a linear
detector, the received signal vector at the BS can be separated into different data streams

using A as follows
r=A"y = A" (\/pGx +w) = /p A"Gx + Aw. (2.13)

where the vector r collects the data streams received at the BS, i.e., the symbols of all
K single-antenna MTC devices, and A is a receive matrix that depends on the specific
linear detector used at the BS. As mentioned before, we consider here the case where
the BS has perfect CSI, i.e. G is perfectly known at the BS, and that the channels are
i.i.d. Rayleigh fading. After matched filtering, CP removal, Fast Fourier transform (FFT)
processing and subcarrier extraction within each one of the OFDM symbols, as seen in
Figure 2.1, a M x 1 vector consisting of transmissions from all the K MTC terminals in

the cell undergoes linear detection in order to retrieve the data symbols from all devices.
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Inspection of (2.3) reveals that D is a diagonal matrix, which means we can
use MRC in the UL to separate the signals from different MTC devices into different
streams with asymptotic no inter-user interference as M — oo [4]. Thereby each MTC
device’s transmission can be seen as the signal of a single device passing through a Single
Input Single Output (SISO) channel. In the limit, this implies that MRC is optimal when
the number of receive antennas is much larger than the number of transmit antennas, i.e.
M > K, M — oo — as can be seen from (2.4). In MRC the linear detection matrix A is
chosen using

Ayre = G, (2.14)

where the dominant computation is due to matrix transposition. With the MRC detector,
the BS aims at maximizing the received SNR of each one of the K streams, but ignoring
the effect of multi-user interference. The associated complexity is of only O(M K) multi-
plications. As mentioned earlier, as M increases, MRC asymptotically becomes optimum
in the sense that multi-user interference is totally removed. More specifically, the received

signal is multiplied by the conjugate-transpose of the channel vector, g, as follows

K
re=gry =VolglPe+vo Y. sigwi+glw. (2.15)
i=0,i£k

One advantage of the MRC detector is that its signal processing is very simple
since the BS just multiplies the received vector with the conjugate-transpose of the channel
matrix G. On the other hand, one disadvantage is that once it disregards the effect of

multi-user interference it performs poorly in interference-limited scenarios.

In contrast to the MRC decoder, ZF detectors take the inter-user interference
into account, but neglect the effect of noise, i.e., it chooses A with the objective of
completely eliminating inter-user interference, regardless of noise enhancement. With ZF,
the multi-user interference is completely nulled out by projecting each stream onto the
orthogonal complement of the inter-user interference [41]. Specifically, the ZF detector
chooses A constrained to AG =1

Azr = G(GHG)™L. (2.16)

The advantages of the ZF detector are that the signal processing is simple and
it works well in interference-limited scenarios. The drawback is that since ZF neglects
the effect of noise, it works poorly under noise-limited scenarios. Furthermore, if the
channel is not well conditioned then the pseudo-inverse amplifies the noise significantly,
and therefore, the performance is very poor. Compared with MRC, ZF has a higher
implementation complexity due to the computation of the pseudo-inverse of the channel
gain matrix [68]. ZF exhibits a complexity of O(MK + 2M K? + K?) [61]. With the ZF
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detector, the received vector, y, is multiplied by the pseudo-inverse of the channel matrix

G, as follows
r=(G"G)'Gy = /px + (G"G) ' G w. (2.17)

For the ZF detector to work, it requires that M > K, otherwise (GH G) is not

invertible. It is noticeable that each stream of r in (2.17) is free of multi-user interference.

A better strategy would be to choose A so as to balance the signal energy
lost with the increased interference. From this point of view, it is much better to accept
some residual interference provided that this allows the detector to capture more of the
desired signal’s energy [55]. Additionally, if the channel, G, is ill-c<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>