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Abstract

In this thesis, we deal with with lattices in communications. In a digital transmission, we can

represent the information to be sent as points in space, as such, lattices are a natural tool which can be

used into the framework of digital communication. Throughout this thesis, we analyse in detail these

relations, dealing, more specifically, with channel coding.

We analyse how to construct Voronoi constellations, and how to achieve channel capacity using

lattices. We show how the mathematical definitions are related to some figures of merit of digital com-

munications. We also go deeply in the encoding and indexing procedures for lattice codes showing

an alternative way to do it, aimed to achieve reduced encoding complexity.

The novelty of this thesis relies on the proposal of a Voronoi shaping method for integer shaping

and coding lattices - as well as, multilevel code constructions - satisfying the chain Λs ⊆ KZ
n ⊆ Λc,

with K as an integer diagonal matrix. As we will see, this assumption is easily satisfied for lattices

obtained from error-correcting codes, and for multilevel code constructions. For these constructions,

using this strategy, the encoding complexity is reduced to the underlying linear code encoding com-

plexity, as opposed to that, found in the literature so far.

To show the potential complexity and performance gains of our method, we illustrate it in con-

structions by the code formula, with Gosset (E8) and Leech (Λ24) lattices as shaping lattices.

Keywords: Encoding, Complexity, Voronoi Shaping, Voronoi constellations, Lattices, Construc-

tion D, Construction by the Code Formula, Leech Lattice, E8.



Resumo

Nesta tese, nós lidamos com reticulados aplicados em comunicações. Em uma comunicação

digital, nos podemos representar a informação a ser transmitida como pontos no espaço, sendo assim,

reticulados aparecem como uma ferramenta natural no contexto de comunicações digitais. Através

desta tese, nos analisamos em detalhes estas relações, lidando mais especificamente com Codificação

de Canal.

Nós analisamos em detalhes como construir constelações de Voronoi e como atingir a capacidade

do canal utilizando reticulados. Nos mostramos como as definições matemáticas estão relacionadas

com algumas figuras de mérito no contexto de comunicações digitais. Nós também analisamos a

fundo os procedimentos de "encoding" e "indexing" para reticulados obtidos por códigos, mostrando

um jeito alternativo de fazê-lo, obtendo complexidade reduzida.

A novidade desta tese, esta relacionada com uma nova proposta de realizar Shaping de Voronoi,

em reticulados inteiros - assim como em construções de códigos multiníveis - que satisfazem a

condição Λs ⊆ KZ
n ⊆ Λc, com K uma matriz diagonal inteira. Como veremos, esta condição é

facilmente satisfeita para reticulados obtidos por códigos corretores de erro e para construções de

códigos multiníveis. Para estas construções, usando esta estratégia, a complexidade da operação de

encoding é reduzida para a complexidade do encoding do código linear utilizado para construir o

reticulado de coding, oposto ao que é encontrado na literatura até agora.

Para mostrar a relevância dos ganhos de performance e complexidade, usando o método proposto,

nós o ilustramos em construções obtidas pela code formula, em conjunto com os reticulados Gosset

(E8) e Leech (Λ24), como reticulados de shaping.

Palavras-chave: Encoding, Complexidade, Shaping de Voronoi, Constelações de Voronoi, Retic-

ulados, Construção D, Construção pela Code Formula, Reticulado Leech, E8.
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Chapter 1

Introduction

This thesis will be dealing with communications over the additive white Gaussian noise (AWGN)

channel using lattices. A lattice is a periodic arrangement of points in the n-dimensional Euclidean

space, which efficiently fits in framework of digital communication because this is how an information

is generally represented. As we will see, lattices can be used in many steps of a transmission system,

but in this thesis, our focus is in one of these steps: our goal is to construct channel capacity-achieving

signal constellations using lattices. In this thesis, we propose a practical and general method to

achieve this - and therefore to achieve channel capacity - which may have linear complexity in the

lattice dimension.

In section 1.1 we describe how exactly lattices fits in the framework of transmitting a signal over

the AWGN channel. A brief discussion of the requirements to achieve channel capacity with lattices

is discussed in section 1.2. To conclude this chapter, section 1.3 describes the thesis organization.

1.1 Lattices in Communication

Lattices are a natural tool in the framework of digital communication since we can represent the

information to be sent as points in Euclidean space. The description of points using lattices relies in

the fundamentals of discrete algebra which open-up a vast field of new possibilities, since associating

a well-known and structured field of mathematics in a specific problem, makes it possible to use all

its tools to expand, improve and create new solutions to the problem addressed. In this sense, lattices

provide an efficient way to describe, manipulate and select those points, in such a way that this choice

can achieve the Gaussian channel capacity.

Consider the general block diagram of an information system, as illustrated in figure 1.1. We

can divide it in two parts, the transmitter and the receiver. As we can represent the information

in every step using lattices, it can naturally describe both the transmitter and the receiver. In the
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lattices arise in the operation that maps s to a k-bits codeword.

For channel coding, the goal is to add redundancy in order to recover the transmitted signal in

reception after channel noise is added. In this case, transmission amounts to map k bits of information

of b into n bits, where n > k, which is done by an error-correction code. After that, the vector of

length n is mapped into the vector x, which will be the transmitted vector, in a step called modulation.

This last step is necessary to satisfy the system power constraint. Here, lattices arise, because, the

overall channel coding step maps k-bits into a point in R
n. The set of all 2k possible input vectors x

is called a lattice constellation.

As mentioned in Zamir [2014], one of the greatest advantage in using lattices is that, for source

coding, quantization and coding (and for channel coding, coding and modulation), are combined as a

single entity: a lattice code directly maps digital information into a vector in R
n and vice versa. As

we will see, this is possible, because we can construct lattices using error-correcting codes and vise

versa.

1.2 Channel Capacity with Lattices

In this section we describe the requirements for achieving channel capacity using lattice codes.

Theoretical results that prove that lattices achieve capacity can be seen in Poltyrev [1994], Erez and

Zamir [2004], Ordentlich and Erez [2016], which show that for a high-SNR band-limited AWGN

channel a capacity-achieving constellation consists of a dense packing of high dimensional signal

points that lie inside a hyper-sphere Forney and Ungerboeck [1998]. The fact that lattices provide

a structured way to find such dense packing is due to the fact that the set of lattice points naturally

forms a packing in the n-dimensional Euclidean space.

Due to that, a transmission using lattice codes is divided in two main steps: firstly, to find a

high-dimensional lattice with a dense packing of points in an n-dimensional space. This is known as

the coding lattice. Secondly, to find a method to select only the points of the coding lattice inside a

specific region of the n-space, which optimally, should approximate to a hyper-sphere. This operation

is called shaping, and ensures that the power constraints are satisfied, such that a finite number of

points can be transmitted. As we will see, a lattice is a infinite set of points, thus, the shaping

operation is essential to constrain the lattice, so that just a finite set of points can be transmitted over

the channel.

For the first step, many authors have proposed good lattice designs, based on error-correcting

codes, which consist in translating to the Euclidean space the techniques used for designing ef-

fective iteratively decodable error-correcting codes over finite fields Di Pietro and Boutros [2017].

Codes like turbo codes, low-density parity-check (LDPC) codes, polar codes and Bose-Chaudhuri-
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Hocquenghem (BCH) codes, were recently proposed to construct lattice codes that have the potential

to achieve the maximum coding gain when dimension grows to infinity Matsumine et al. [2018],

Sakzad et al. [2011], Yan and Ling [2012], da Silva and Silva [2018].

In contrast to coding, shaping is less exploited in the literature. Usually, the power constraint

satisfied using a hypercube for shaping, which can be implemented with very low complexity, but at

the expense of the good gains provided by a good shaping.

In Voronoi shaping Zamir [2014], Kurkoski [2018], only points of the coding lattice inside the

Voronoi region of a shaping lattice are transmitted. These points are known as coset leaders of the

quotient group of the coding lattice modulo the shaping lattice. Traditionally, even for lattices ob-

tained from error-correcting codes, Voronoi shaping requires the construction of the lattice generator

matrix G Kurkoski [2018], a high-complexity matrix-vector product, a strategy to guarantee a bi-

jection between the message vectors and the coset leadersKurkoski [2018], and a final quantization

step.

To decrease complexity, the authors of Khodaiemehr et al. [2016] exploit the structure of Construction-

A lattices obtained from quasi-cyclic low-density parity-check (QC-LDPC) codes, resulting in a ma-

trix G that enables a linear-complexity computation of the product. An efficient Voronoi shaping

scheme was also proposed in Di Pietro and Boutros [2017] for any Construction-A coding lattice,

where the matrix-vector product is replaced by much simpler encoding operations on the underlying

error-correcting code.

In this thesis we generalize the method proposed in Di Pietro and Boutros [2017] to a broad class

of lattices that includes the Construction D. To that end, we will show that, for this class of lattices, the

bijection in Kurkoski [2018] can be achieved from a simple mapping of the message vector, without

a matrix-vector multiplication. Evidently, this greatly reduces the complexity of the system.

Our proposal is illustrated for the Construction-D coding lattices obtained from Bose-Chaudhuri-

Hocquenghem (BCH) codes Matsumine et al. [2018] and spatially-coupled LDPC (SC-LDPC) codes

Vem et al. [2014]. In these examples, shaping is performed by the Gosset lattice E8 and the Leech

lattice Λ24, respectively, which are well-known for providing good gains despite their small dimen-

sions Conway and Sloane [2013]. Additionally, their small dimension enables the use of algorithms

with feasible computational complexity.

1.3 Thesis Organization

The remaining chapters are organized as follow:

• Chapter 2: In this chapter we present general lattice definitions, lattices obtained from error-

correcting codes, and figures of merit for lattices when applied to AWGN channel. We also



1.3 Thesis Organization 15

highlight the requirements to achieve the AWGN channel capacity.

• Chapter 3: In this chapter we describe a way to obtain Voronoi constellations by performing

shaping operation using two nested lattices - the shaping lattice, Λs, and the coding lattice, Λc.

The encoding and indexing of these lattice codes are also described. Special attention is given

when the coding lattice is obtained from error correcting codes, and when these lattices satisfy

the chain Λs ⊆ KZ
n ⊆ Λc ⊆ Z

n.

• Chapter 4: This chapter uses the theoretical results from previous sections to construct the

coding lattice based on extended BCH codes and spatially-coupled LDPC codes. Additionally,

the shaping lattice is constructed based on scaled copies of the Gosset (E8) and the Leech (Λ24)

lattices.

• Chapter 5: This chapter concludes this work, with our achievements and general conclusions.
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Chapter 2

Lattices over the AWGN Channel

This chapter starts presenting some general lattice definitions which we will be using along this

entire thesis. In the second part we will describe some figures of merit to measure the performance

of a communication system over the AWGN channel. As we will see, these figures of merit can be

described using lattice definitions, which will be presented in this chapter. Using these definitions, we

will be able to measure the performance of a lattice, and its goodness in achieving the AWGN channel

capacity. The last part of this chapter describes how we can obtain lattices from error-correcting codes

and how the code choice, as well as the code parameters change the lattice performance. We give

special attention to construction D, construction by the code formula and construction A, which are

standard lattice constructions obtained from error-correcting codes. The motivation of constructing

lattices from error-correcting codes relies in the fact that, as mentioned in chapter 1, we will be

interested in map k-bits of information to a point in the n-dimensional euclidean space and error-

correcting codes naturally provides this change of dimension as it is constructed over a finite field.

Note that, an error-correcting code can be seen as a linear map F
k
q → F

n
q . So basically, lattices are a

structured way to embed a linear code over a finite field into the n-dimensional euclidean space.

This chapter is divided in four sections. In section 2.1 we present mathematical lattice definitions.

Section 2.2 describes how to obtain lattices from error correct codes focused in the two constructions

mentioned above. Section 2.3 describes figures of merit for lattices when applied to AWGN chan-

nel, as well as the power-limited regime and the bandwidth-limited regime. This chapter ends with

section 2.4, which defines further figures of merit for lattices, and present the definitions of Voronoi

constellations, and how to construct them to achieve the AWGN capacity.
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lattice Λ to any point y:

QΛ(y) = argmin
x∈Λ

||y − x||2. (2.4)

For any lattice Λ, we can define a fundamental region P(Λ). Given a lattice point x ∈ Λ, a

fundamental region satisfies the following properties:

1.
⋃

x∈Λ

(x + P(Λ)) = R
n, (2.5)

2.

∀x1, x2 ∈ Λ, x1 6= x2 → (x1 + P(Λ))
⋂

(x2 + P(Λ)) = ∅. (2.6)

The first condition stands that the translations of any fundamental region by lattice points cover Rn,

i,e, the fundamental region tiles the entire space. This is also called the "Tiling Property". The second

stands that there is no intersection between the translated regions.

We focus your attention in two special fundamental regions that can be defined for any lattice:

The Voronoi region and the Fundamental Parallelotope of Λ.

The Voronoi region of the lattice, V(Λ), is the set of points that are closer to the origin than to any

other point of the lattice Λ:

V(Λ) = {y ∈ R
n | QΛ(y) = 0} . (2.7)

This region is shown in green in figure 2.1(b) for the hexagonal lattice. The Voronoi region is unique

for each lattice and is a symmetric region over any lattice point.

The Fundamental Parallelotope P(G) is defined as the parallelotope formed by the lattice gener-

ator vectors:

P(G) = {s1g1 + · · ·+ sngn, 0 ≤ si < 1, i = 1, . . . , n} . (2.8)

This region is shown in green in figure 2.1(c) for the hexagonal lattice generated by the generator

matrix in (3.9). Given that a lattice generator matrix G is not unique, the fundamental parallelotope

is also not unique. Note that, both regions are fundamental regions, and satisfy equations (2.5) and

(2.6), which is easily seen in figure 2.1.

As discussed, the fundamental region is not unique. Moreover, certain parallelotopes P(P) de-

scribed by an n-by-n full rank matrix P satisfy equations (2.5) and (2.5) and are also fundamental

regions of Λ, which as equation (2.8) can be written as,
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P(P) = {P









s1
...

sn









, 0 ≤ si < 1, i = 1, . . . , n}. (2.9)

Of course, if P = G, then equation (2.9) turns to be the fundamental parallelotope (equation (2.8)).

Finally, letting P(Λ) = P(P), condition 1 described in equation (2.5), implies that any point y ∈ R
n

can be written as,

y = x + P(Λ) = x + P(P) = Gb + Ps, (2.10)

while condition 2 described in equation (2.6), implies that (2.10) has unique solution for b and s.

For any lattice, we define its volume as the volume of any fundamental region:

Vol (Λ) = VolP(Λ) = | det (P)| = | det (G)| = Vol (V(Λ)), (2.11)

where det (G) is the volume of the fundamental parallelotope formed by the lattice generator vectors,

det (P) is the volume of a fundamental region formed by the parallelotope P and Vol (V(Λ)) is the

Voronoi region volume. As all these regions are fundamental regions, all of them have the same

volume, this is an important fact when dealing with lattices: it is sufficient to known a lattice basis

G to determine the volume of a fundamental region, e.g, the Voronoi region. Although a lattice has

infinite different basis, the volume is the same for any choice of G. Recalling equation (2.3), this is

true because | det (G′)| = | det (GU)| = | det (G)|| det (U)| = | det (G)|. We invite the reader to see

fig 2.6 of Zamir [2014] for a geometrical proof of (2.11).

Given two lattices Λs and Λc, an important condition that we may require is that every point of Λs

be also a point of Λc. If this is true, then Λs is a subset of Λc, i.e, Λs ⊆ Λc and these lattices are called

a nested lattice pair. Equivalently, if Λs ⊆ Λc, the generator matrix of Λs can be related to that of Λc

by an integer matrix M according to the relation:

Gs = Gc · M. (2.12)

Proof : If x ∈ Gs, then according to (2.1), x = Gsz. If Λs ⊆ Λc, then x = Gsz = GcMz. As

Mz = z′ ∈ Z
n, x is also a point of Λc because x = Gcz′. �

2.1.2 Lattice Cosets and Voronoi Shaping

We now turn your attention into some interesting group properties of lattices. In this section we

assume Λs ⊆ Λc. This is because if Λs ⊆ Λc, than Λs can be viewed as a subgroup of Λc, allowing
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the utilization of some group theory notions in lattices, such as to define a coset and a finite quotient

group.

Given two nested lattices Λs and Λc, for any x ∈ Λc, the set x + Λs is a coset or a lattice shift of

Λs by a point of Λc. The vector x is called coset representative. Each coset x +Λs belongs to Λc (the

proof is direct from the nested condition). We say that x + Λs is the coset of Λs in Λc containing x.

Note that two elements x1 and x2 ∈ Λc, can generate the same coset. Because of that, a natural

question which we will be interested in answering is: how many are the numbers of different cosets?

Since a sublattice Λs ⊆ Λc is a subgroup, we can define the finite quotient group Λc/Λs as the set

of all coset, i.e.,

Λc

Λs

= {x + Λs | x ∈ Λc} . (2.13)

Similarly, if we consider a nested lattice chain, i.e, Λs ⊆ Λr−1 ⊆ · · · ⊆ Λ1 ⊆ Λc and the

sets A1, . . . , Ar as the set of coset representatives of the quotients Λc/Λ1, . . . ,Λr−1/Λs, respectively.

Then, a set of coset representatives of Λc/Λs is given by Forney et al. [2000]:

A = A1 + · · ·+ Ar. (2.14)

Equivalently, (2.13), can be rewritten as

Λc

Λs

= {a + Λs | a ∈ A}

= {a1 + · · ·+ ar + Λs | ai ∈ Ai} .
(2.15)

The number of distinct cosets M is the quotient group cardinally:

M =

∣

∣

∣

∣

Λc

Λs

∣

∣

∣

∣

=
Vol (Λs)

Vol (Λc)
= | det (M)|. (2.16)

By relating the volumes of Λs and Λc, equation (2.16) suggests that the number of distinct cosets are

the number of points of Λc inside a fundamental region of Λs. This is in fact true, and is valid for any

fundamental region of Λs. More than that, each point of Λc inside any fundamental region of Λs is a

coset representative of a distinct coset. So, all the possible cosets can be represented by the elements

inside any fundamental region of Λs. In the special case where the fundamental region of Λs is the

Voronoi region, the coset representative is also called a coset leader. Let P(Λs) be any fundamental

region of Λs. We can then, state:

Λc ∩ P(Λs) is a complete set of coset representatives, (2.17)
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and

Λc ∩ V(Λs) is a complete set of coset leaders. (2.18)

The rightmost equality of the equation (2.16) is direct from (2.11) and (2.12). Of course, the complete

proof of (2.16) and (2.17) is not trivial, and is omitted from this thesis. A theoretical proof based on

geometrical arguments of these statements, using lattice partition notions is given by Zamir [2014] in

section 8.2.

Suppose a point x ∈ Λc. Suppose that this point is inside a fundamental region P(Λs). We can

bring this point to the Voronoi region of Λs. Equivalently, we can find the coset leader x’ of a coset

x + Λs by performing the modulo-Λs operation:

x′ = x −QΛs(x), (2.19)

or equivalently,

x′ = G · b −QΛs(G · b). (2.20)

In consequence, x′ ∈ Λc∩V(Λs). Note that, this is the same as finding the element of the coset x+Λs

with minimum Euclidean norm, because each different point of a coset is mapped in the same unique

point of the set Λc∩V(Λs). The mapping shown in equation (2.20) is also known as Voronoi Shaping.

Note that, b is an integer vector, and as we have seen, there are many values of b which map to x’. In

chapter 3, we will be interested in limiting the range of b, such that each vector b maps in a distinct

coset leader x’. Those vectors b with limited range will be called "the information vectors".

It is worth noting, as pointed also by Zamir [2014], that the modulo-Λs operation relies in bringing

the vector x to the Voronoi region of lattice because we use an Euclidean norm in (2.4). We can use

other norms in order to have different fundamental regions.

2.2 Lattices from Codes

One way to construct lattices is from linear codes. This type of construction associates a linear

code C ∈ Z
n
q to a lattice Λ ∈ Z

n, where Zn
q is defined as the set {0, 1, ..., q−1}n. Here q is any integer.

As C is obtained from a message vector u ∈ F
k
q , with an independently choice in each coordinate of

u ∈ Z
k
q , the overall mapping is Zk

q → Z
n. Let C ∈ Z

n
q be a linear code and ci be one of its codewords.

This association is done by the linear transformation ρ defined as:
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in ΛA2
, so 5Z2 ⊆ ΛA2

.

The code rate of a construction-A lattice is defined as:

Rc =
k

n
, (2.23)

and, for q being a prime number, its volume is given by:

Vol (ΛAn) = qn−k. (2.24)

Proof : As we have the relation qZn ⊆ ΛA, we can define the quotient group: ΛA/qZ
n. As dis-

cussed in section 2.1, the quotient group carnality is the number of points of ΛA inside a fundamental

region of qZn. Because of the definition of construction A, this number is the code carnality. For

instance, in figure 2.2, it is easy to see that, the points inside the fundamental parallelotope of 5Z2 is

the points in black, which are the codewords of the code C. For a linear code, if q is a prime number,

the code carnality is 2k, given that the code C is a subspace of Zn
q with exactly k generator vectors.

Thus, the quotient group carnality is M = qk. Also, the generator matrix of the lattice qZn is qIn.

Thus, using (2.16), we have:

M = qk =

∣

∣

∣

∣

ΛA

qZn

∣

∣

∣

∣

=
Vol (qZn)

Vol (ΛA)
=

det (qIn)
Vol (ΛA)

=
qn

Vol (ΛA)
. (2.25)

Thus we have the relation qk = qn/Vol (ΛA), which implies Vol (ΛAn) = qn−k, concluding the proof.

�

One generator matrix of a construction-A lattice is given by:

Gn×n =

(

Ik×k 0k×n−k

Bn−k×k qIn−k

)

. (2.26)

Proof : A systematic form generator matrix for any linear code is given by:

Vn×k =

(

Ik×k

Bn−k×k

)

, (2.27)

let vj for j = {1, ..., k} be the columns of the matrix V and qei for i = {1, ..., n} be a basis for the

lattice qZn, where ei is the canonical basis. We can write (2.22), as

ΛA =

{

k
∑

i=1

uivi +
n
∑

i=1

qhiei

}

, (2.28)

for some ui ∈ {0, ..., q − 1} and hi ∈ Z. So, the vectors [v1, ..., vk, qe1, ..., qen] span the lattice ΛA.

So, the lattice generator matrix is G = (v1, ..., vk, qe1, ..., qen). Clearly, we have (n + k) vectors. To
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reduce this matrix to n vectors, in order to obtain the matrix stated in (2.26), we need to perform a

Gaussian elimination, which is left for the reader. This concludes the proof. �

Construction A is obtained from a single linear code C. We now focus in another type of con-

struction, also known as a multilevel construction, called construction D.

Definition: Construction-D Lattice. Let g1, g2, ..., gn be a basis for Zn
q . For a ≥ 1, let C0 ⊆

C1 ⊆ · · · ⊆ Ca = Z
n
q be a sequence of nested linear block codes over Zn

q . Let Gi = [g1, · · · , gki
] be

a generator matrix of the code Ci and ui a message vector with length ki, with i = {0, · · · , a − 1},

then a construction-D lattice ΛD, is the set

ΛD =

{

a−1
∑

i=0

qiGi · ui + qaGa · z.

}

(2.29)

In this definitions, all the operations are performed over Zn. This fact, combined with the codes

Ci to be nested, ensure the construction D to be a lattice packing. If the codes are not nested, then the

packing is generally not a lattice. The type of construction where the codes are not nested is called

construction C, and is a general case of construction D, however, this construction is out of the scope

of this thesis as we are interesting in lattice packings.

Alternatively, if the codes are nested, but the operations are performed over Zn
q , such that Gi ·ui =

ci, we obtain the so-called code formula.

Definition: Construction by Code Formula: For a ≥ 1, let C0 ⊆ C1 ⊆ · · · ⊆ Ca = Z
n
q be a

sequence of nested linear block codes over Zn
q . Let Gi = [g1, · · · , gki

] be a generator matrix of the

code Ci and ui a message vector with length ki, with i = {0, · · · , a− 1}. Then, each codeword ci is

given by Gi · ui, where these operations are performed over Zn
q . Thus, the packing obtained is called

code formula ΓCF :

ΓCF =
{

c0 + q · c1 + · · ·+ qi · ci + · · ·+ qa−1 · ca−1 + qa · z
}

, (2.30)

where ci ∈ Ci, i = {0, · · · , a− 1}, z ∈ Z
n.

Despite the similarities of the construction D and the construction by code formula, the packings

generated by these constructions are not always the same. The code formula do not always generate

lattices, a lattice packing is generated by code formula if, and only if, the codes Ci are close under the

so-called Schur product Kositwattanarerk and Oggier [2014], if, this fact is satisfied, then ΓCF = ΛD.

In contrast, construction D always generates lattice packings. More, generally, when the construction

by code formula does not generate a lattice packing, the following relation holds:
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ΓCF ⊆ ΛD (2.31)

For more details, we invite the reader to see Kositwattanarerk and Oggier [2014]. Despite the code

formula does not always generate a lattice, its construction is still valid for a communication system

in general, and will be used several times to illustrate further results presented throughout this thesis.

Moreover, we sometimes refer to this construction as a lattice, without loss of generality.

For the construction by code formula and construction D, each code Ci has rate R = ki/n and

minimum distance di. Because the codes are nested R0 ≤ R1 ≤ · · · ≤ Ra and d0 ≥ d1 ≥ · · · ≥ da.

Also, the basis vectors for the code Ci, with generator vectors g1, g2, ..., gki
are a subset of those for

code Ci+1 with generator vectors g1, g2, ..., gki+1
. Finally, since Ca = Z

n
q , then Ra = 1, ka = n and

da = 1.

The construction D and the construction by the code formula share the same code rate which is

defined as:

Rc =
a−1
∑

i=0

Ri =

∑a−1
i=0 ki
n

. (2.32)

Note that the construction A is a particular case of the construction D and the code formula, obtained

when we set a = 1. As result, construction A yields lattices that are generated by a single code in F
n
q ,

and is not a multilevel construction as the others. For code formula, each code Ci is a code over Zn
q ,

while we can define the "super code" C as a code over Zn
qa :

C =
a−1
∑

i=0

qiCi. (2.33)

Furthermore, the code formula can be seen as a strategy to construct non binary codes, from

nested binary codes. As for construction A, the code formula ΓCF and the construction-D lattice ΛD

are integer constructions, so ΛD,ΓCF ⊆ Z
n, if c = 0, for c ∈ C, then, we have the lattice qaZn. Thus,

for both constructions, holds that qaZn ⊆ ΛD,ΓCF , because as we already mentioned the codeword

0 belongs to any linear code.

As the construction D is always a lattice, we can calculate its volume, which is given by:

Vol (ΛD) = Vol (ΓCF ) = qan−
∑a−1

i=0
ki . (2.34)

The proof is analogous of the proof of the volume for construction-A lattices, but here M = q
∑a−1

i=0
ki

and Vol(qaZn) = det (qaIn) = qan. The prove is left for the reader.

An n× n generator matrix G of a construction-D lattice, is a matrix of the form:
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G = Ga · D, (2.35)

where Ga = (g1, · · · , gki
, · · · , gka) and D is a diagonal matrix with diagonal entries

dii = qj for kj ≤ i < kj−1. (2.36)

Proof : From (2.29), the vectors which span the lattice ΛD, are the vectors

[g1, · · · , gk0
, · · · , qig1, · · · , qigki

, . . . , qag1, · · · , qagka ], which are
∑a

i=0 ki =
∑a−1

i=0 ki + n vectors,

because ka = n. To reduce this matrix to n vectors, in order to obtain the generator matrix of ΛD, we

need to perform a Gaussian elimination, which yields to the matrix:

G =





 g1 g2 . . . gk1
qgk1+1 . . . qigki

qi+1gki+1 . . . qagka−1 qagka






. (2.37)

which can be write as a multiplication of two matrix as in equation (2.35). �

For a construction-D lattices and the code formula, let the minimum square distance of the code

Ci be d2i ≥ q2(a−i)/γ for i = {0, 1, ..., a − 1}, where γ ∈ H with H the set of multiples of q. Then

these constructions has square minimum distance satisfying,

d2min ≥ q2a/γ. (2.38)

Proof : Because of the multilevel construction characteristic, C0 is a set of consecutive points of

ΛD,ΓCF . Thus, the square minimum distance is the same as that of the code C0, which is q2a/γ,

obtained when i = 0. �

Throughout the rest of this thesis, in order to reduce and simplify the notation, as well as the

illustrations of the theorems which will be presented, we refer to the construction by the code formula

as a construction-D lattice, given that, when it generates a lattice, this lattice is always a construction-

D lattice. Note that, even if it does not generate a lattice, it is still applicable in a communications

system as a multilevel code construction, and generally the approximation ΓCF ≈ ΛD can be used

without loss of generality. Moreover, given the similarities of these two constructions, the extension

from one to another of all the results presented in following chapters are straightforward.
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2.3 Modulation and Coding for AWGN Channel

We now define some figures of merit for the AWGN channel and briefly discuss the performance

of standard known constellations such as M -PAM and M2-QAM over this channel.

Lattices are a mathematical tool, which provides a general method to construct constellations.

Uncoded M -PAM constellations are obtained by setting Λc = Z and Λs = MZ. Equivalently,

we can choose a set of n symbols, in which each symbol belongs to a M -PAM constellation by

setting Λc = Z
n, and Λs = MIZn, with I the identity matrix. Here, the Voronoi region of Λs is

a hypercube. As we will see, when the Λs is a hyperrectangle or a hypercube, we can choose any

symbol independently, i.e, the choice of a present symbol do not depend on the choice of a previous

one. This independence is provided by the hypercube shape of the Voronoi region of Λs. In other

words, the marginal distribution of the symbols to be transmitted over the AWGN channel is an

uniform distribution.

A standard measure of the constellation performance is the signal-to-noise ratio of the AWGN

channel, which is given by

SNR =
P

N0W
=

Es

σ2
= 2R

Eb

N0

, (2.39)

where P = 1
n
E[||x||2k] is the transmit average power per dimension of the constellation, σ2 = N0/2

is the noise variance, Eb is the energy per bit, Es is the energy per symbol, and R is the Information

Rate, defined as:

R =
log2 M

n
, (2.40)

where M is the number of points of the constellation. As we will see, for Voronoi constellations,

defined in the next section, this value is given in equation (2.16).

The capacity of the AWGN channel is given by:

C = W log2 (1 + SNR) bits/s (2.41)

for the continuous time, whereas for the discrete time, it is defined as,

C =
1

2
log2 (1 + SNR) bits/dim. (2.42)

Note that, in discrete time, the capacity formula can be rewritten as SNR = 22C − 1. This suggests

defining the normalized SNR:
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Table 2.1: Comparison between Low-SNR Regime and High-SNR Regime

Regime
Low-SNR

(Power-limited regime)
High-SNR

(Bandwidth-limited regime)
Capacity (bits/s) C ≈ W SNR log2 e C ≈ W log2 SNR

Capacity (bits/dim) C ≈ 1
2
SNR log2 e C ≈ 1

2
log2 SNR

Constellations Type Binary Nonbinary
Uncoded Modulation Baseline 2-PAM M-PAM

Coded Modulations Error-correcting code Lattice code

General Mapping
m(C) : Fk

2 → m(Fn
2 )

m : {0, 1} → {±d0/2} Λ : Fk
2 → Z

n

Coding Gain γ(C) = k
n
dmin γ(Λ) =

d2min

Vol(Λ)2/n
= d2min

∆2/n

Vol(B)2/n

challenge in this regime is to code our constellation, and change the shaping region in order to obtain

the remaining 1.53 dB. This remaining gain comes at a price of creating a dependence between the

symbols choice, as we no longer use a hypercube as shaping region. Finally, note that, in this regime,

we associate a set of bits, to a set of non-binary symbols. Thus a lattice generated from an error-

correcting code is a natural mapping for achieving capacity, because,

Λ : Fk
2 → Z

n. (2.45)

For the power-limited regime the coding gain is equal to,

γ(C) =
k

n
dmin, (2.46)

which improves as good linear codes is used, that is, codes which have a good compromise between

the code rate Rc, and the minimum distance dmin. In this regime, as we are dealing with binary con-

stellations, the code rate Rc = k/n is the same of the information rate R = log2 M/n = log2 2
k/n =

k/n. For the bandwidth-limited regime, the coding gain is defined as

γ(Λ) =
d2min

Vol(Λ)2/n
= d2min

∆2/n

Vol(B)2/n , (2.47)

where ∆ is the packing density of the lattice, and Vol(B) is the volume of a ball in dimension n.

Thus, in this regime, good coding gains are provided by lattices which have good packing densities

for the same dmin.
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2.4 Voronoi Lattices Codes

We now define some figures of merit for lattices over the AWGN channel. In this section, remem-

ber that each lattice point is a symbol vector, while each coordinate of the lattice point is a symbol to

be transmitted over the AWGN channel. Therefore, choosing a lattice point, is equivalent of choosing

a set of symbols to be transmitted.

As mentioned in section 1.2, good lattice code constellations consist in finding a high-dimensional

lattice Λ, which is constrained by a shaping region around the origin that we denote by S. Then,

we can define lattice code C as the set of points of a translation of Λ inside the shaping region S:

C = (Λ − d) ∩ S. The translation d is applied to ensure that the final constellation has zero average,

which implies minimal power, and it does not change the fundamental lattice parameters defined in

the previous sections.

Given two nested lattices Λs ⊆ Λc, we call Λs the shaping lattice, and Λc the coding lattice. We

define a Voronoi constellation or Voronoi lattice code as the lattice code C constrained by the Voronoi

region of Λs, in other words: S = V(Λs) and,

C = (Λc − d) ∩ V(Λs). (2.48)

The average Voronoi constellation power per dimension P (C) satisfies:

P (C) = P (Λc)− P (d), (2.49)

where P (Λc) is the average power per dimension of the lattice Λc constrained by the Voronoi region

of Λs, and P (d) = 1
n
||d||2.

Proof: The average Voronoi constellation power per dimension is given by: P (C) = 1
n
E{||xk||2},

where xk is the possible symbols of the Voronoi constellation, which are related to the corresponding

vectors x′
k of the coding lattice as xk = x′

k − d. Thus,

P (C) = 1

n
E{||x′

k − d||2} =
1

n
E{||x′

k||2} −
2

n
E{d · x′

k}+
1

n
E{||d||2}. (2.50)

Because d is not random, E{||d||2} = ||d||2, and E{d · x′
k} = d ·E{x′

k}. By definition, d ensures that

the final constellation has zero average, and it is true if E{x′
k} = d, because to ensure that the final

constellation has zero average, we need to subtract exactly the average. Finally, we have,

P (C) = 1

n
E{||x′

k||2} −
2

n
d · d +

1

n
||d||2 = 1

n
E{||x′

k||2} −
1

n
||d||2 = P (Λc)−

1

n
||d||2, (2.51)

and this concludes the proof. �
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For coding, a standard measure of lattice performance, without considering any shaping region is

the so called volume-to-noise ratio, defined as

VNR =
Vol (Λ)

2

n

2πeσ2(Pe)
. (2.53)

This quantity measures the possible performance advantage of the lattice Λ, in comparison with the

cubic lattice for a given error probability Pe. We write σ2(Pe) to call attention that, a fair comparison

between lattices is obtained when fixing a value of Pe, and not a value of σ. We wish to find the

densest lattice, i.e., the lattice with the lowest VNR. This would imply the largest information rate

R. Also, for a given family of lattices with increasing dimension, a necessary condition for its error

probability to vanish as the lattice dimension increases is that VNR > 1. To see this, it is enough to

insert σmax in equation (2.53).

For a detailed mathematical prove of all stated in this section we invite the reader to see Erez and

Zamir [2004], Forney and Ungerboeck [1998], Poltyrev [1994], Zamir [2014].



36

Chapter 3

Lattice Encoding and Indexing

In chapter 2, we presented general lattice definitions and the requirements to achieve Shannon

capacity by applying lattice theory in the channel coding stage of a communication system, yielding

to multidimensional constellations, specifically Voronoi constellations or Voronoi lattice codes. As

we have seen, this is equivalent of finding a set of coset leaders for the quotient group defined in

(2.13). Despite that, we have not discussed how to find a coset representative of each coset.

In this chapter we present the requirements, and a method to find these coset representatives,

which will allow the encoding and indexing operation for these lattices, obtaining a Voronoi lattice

code. Encoding is the process of mapping the information to be transmitted, represented by a vector

of integers, to the symbol vectors of C. Indexing is the inverse operation, mapping symbol vectors

of C to information integer vectors. For an additional complementing of this chapter, we recommend

the reader to read Kurkoski [2018].

This chapter is divided in three sections. In section 3.1, we present the motivation of the problem,

and some additional definitions, which will be useful for the next sections. Section 3.2 describes

a general encoding scheme for lattices, called Rectangular Encoding, which allows the creation of

Voronoi lattice codes. If the basis of a shaping lattices are "aligned" with the basis of a coding lattice

in the sense that will be clearly later, then a rectangular encoding is trivial. Section 3.3 applies the

rectangular encoding in a particular case of lattices obtained from error-correcting codes, as we will

see, it allows to obtain a complete set of cosets representatives of each coset allowing an efficient

construction of the Voronoi lattice code with reduced encoding complexity.

3.1 Preliminaries

As we have seen in section 2.1.2, the set of points of Λc inside any fundamental region of the

shaping lattice P(Λs) is a complete set of coset representatives. We are now interested in finding those
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points. To that end, consider the nested lattice pair, Λs ⊆ Λc, which are related by Gs = Gc · M, with

M = diag(M1, . . . ,Mn), a diagonal matrix with integer entries Mi. Now, choose the fundamental

parallelotope P(Gs) as a fundamental region of Λs. Thus, following equation (2.8), this region is the

set of all points satisfying:

P(Gs) = {α1M1g1 + · · ·+ αnMngn, 0 ≤ αi < 1, i = 1, . . . , n} . (3.1)

The set of all points of Λc can be written as equation (2.1):

Λc = {Gc · b = b1g1 + · · ·+ bngn, b ∈ Z
n} . (3.2)

By the similarity of equations (3.1) and (3.2), it is straightforward to see that, the points of Λc inside

P(Gs), or a set of coset representatives of the quotient group defined in (2.13) is the set of points:

Λc ∩ P(Gs) = {Gc · b = b1g1 + · · ·+ bngn, bi = 0, . . . ,Mi − 1} . (3.3)

This is what we mean by the basis be "aligned", ie, each shaping lattice generator vector is a linear

combination of the respective coding lattice generator vector. Of course, this is possible because

M is diagonal. A lattice pair with these characteristics is called "near-ellipsoidal lattices", while if

Mi = M or M = MIn the basis are still aligned, and this lattice pair is called "self-similar" lattices.

Furthermore, as shown in equation (2.12) in section 2.1.1, in general M is not diagonal, but an

integer matrix. Fortunately, for any nested lattice pairs, we can find a new basis for Λc and Λs, such

that Λc and Λs become near-ellipsoidal. This is done by the Smith decomposition of the matrix M.

Smith decomposition stands that we can decompose M as:

M = U · D · W (3.4)

with U and W unimodular matrices and D a diagonal matrix. We can then replace (3.4) in (2.12),

obtaining the relation:

Gs = Gc · U · D · W, (3.5)

and if we multiply both sides of (3.5) by W−1 we have:

G′

s = Gs · W−1 = Gc · U · D · W · W−1 = Gc · U · D = G′

c · D. (3.6)

Thus, because U and W are unimodular matrices, we have a new basis matrix G′

s of Λs and a new

basis matrix G′

c of Λc, satisfying the relations G′

s = Gs · W−1 and G′

c = Gc · U, which are now

near-ellipsoidal, because D is diagonal.
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It seems that the problem is solved. Actually, by a mathematical point of view yes, but practi-

cally we have some drawbacks. Firstly, achieving capacity requires that the lattice dimension goes

to infinity. The Smith decomposition is not feasible for high dimensions because of its complexity.

Moreover, after performing Smith decomposition, we need to use G′

c and G′

s to find the coset rep-

resentatives, but in many applications we will be interested in take advantage of the structure of the

matrix Gc and Gs, and not to obtain other basis matrices. This will be the problem which we will

be dealing in section 3.3. Because of that, in section 3.2 we will be interested in finding the coset

representatives by looking for the structure of Gc and Gs and letting M be as it is.

3.2 Rectangular Encoding

Definition: Rectangular Encoding. The Voronoi lattice code C has rectangular encoding, if there

exist Gc and positive integers I1, . . . , In such that the function

x = Gcb −QΛs(Gcb)− d (3.7)

is a bijective mapping between the integers bi ∈ {0, 1, . . . , Ii − 1}, and the codebook x ∈ C. In

other words, the encoding generates C exactly. The encoding operation (3.7) is abbreviated as x =

enc(b), while the inverse operation, called indexing operation is abbreviated as b = index (x), and

amounts to find the element of the set x + Λs inside the fundamental region, which is used for the

encoding operation P(Λs). "Rectangular" emphasizes that each bi is selected independently of the

other integers, or in a less systematic method, the integer range bi does not depend on the integers

selected in other positions. Also, Ii = 1 implies that bi encodes no information.

Additionally, if a rectangular encoding exists, i.e, if it is possible to find I1, . . . , In, such that the

above definition holds, then, analysing equation (3.7), the term Gcb, bi ∈ {0, . . . , Ii} is a set of coset

representatives of the quotient group defined in (2.13), or a set of points of Λc inside a fundamental

region of Λs, in particular, if M is diagonal, this fundamental region is the fundamental parallelotope

of Λs. The term QΛs(Gcb) is responsible for finding the coset leaders of (2.13), given the coset

representatives, which is done by performing the quantization operation defined in (2.4), or, in other

words, to translate the points inside any fundamental region of Λs to its Voronoi region, remembering

that any set of points of Λc inside any fundamental region of Λs is a set of coset representatives.

Finally, the term d is responsible for the minimal average Voronoi constellation power.

As motivated in section 3.1, if M is diagonal, encoding is trivial because Ii = Mi. Also, we

would not like to change the lattice basis Gc to accomplish a rectangular encoding. To that end, we

now analyse the case where M is not diagonal. More specifically, Gc and Gs are both upper triangular

or lower triangular matrices, in this case, rectangular encoding is always possible without changing
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the lattice basis matrix.

3.2.1 Encoding and Indexing Triangular Matrices

Before formalizing encoding and indexing for triangular matrices, it will be useful to show the

following. Let G be a triangular generator matrix for any lattice Λ and P be also a triangular matrix

with the same diagonal elements of G:

G =













g11 0 . . . 0

g21 g22 . . . 0
...

. . .
...

gn1 gn2 . . . gnn













, (3.8)

P =













g11 0 . . . 0

p21 g22 . . . 0
...

. . .
...

pn1 pn2 . . . gnn













, (3.9)

here, G and P need to be both upper triangular or both lower triangular. The convention lower

triangular is used. We can state that, the parallelotope P(P) is a fundamental region of the lattice Λ

generated by the matrix G.

Proof : To verify that P(P) is a fundamental region of Λ we need to verify conditions 1 and 2

of equations (2.5) and (2.6). These two conditions imply the verification of the volume preserving

of a fundamental region, i.e, det(G) = det(P), and to show that equation (2.10) has unique solution

in b and s, where b ∈ Z
n and 0 ≤ si < 1. The volume condition holds because both matrices are

triangular with the same diagonal elements. For the unique solution, consider the triangular system

for any y ∈ R
n,

y = Gb + Ps. (3.10)

The first row of (3.10) is

y1 = g11b1 + g11s1, (3.11)

and has unique solution, b1 and s1 are the integer and fractional parts of y1
g11

, respectively. Row two is,

y2 = g21b1 + g22b2 + p21s1 + g22s2, (3.12)
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and also has unique solution, b2 and s2 are the integer and fractional parts of y2−g21b1−p21s1
g22

, respec-

tively. This continues recursively so that all bi and si for i = 1, 2, . . . , n have unique solutions, which

concludes the proof. �

With the stated above, we can easily find a rectangular encoding for triangular matrices. For equa-

tion (2.12), in the case where M is diagonal, the basis of Gc are aligned with that of the fundamental

parallelotope. But, as we already discussed, the coset representatives do not need to lie inside the fun-

damental parallelotope, but in any fundamental region Λs, this implies that, if we can find a diagonal

matrix D, such that

P = Gc · D (3.13)

is a fundamental region of Λs, then rectangular encoding exists and Ii = di. To verify this argument,

it is sufficient to compare equation (3.1), with the parallelotope P(P) = P(Gc ·D) and equation (3.2),

and to verify the alignment between Gc and P. Thus, consider Gc and Gs given respectively by,

Gc =













gc11 0 . . . 0

gc21 gc22 . . . 0
...

. . .
...

gcn1
gcn2

. . . gcnn













, Gs =













gs11 0 . . . 0

gs21 gs22 . . . 0
...

. . .
...

gsn1
gsn2

. . . gsnn













. (3.14)

Note that M = G−1
c · Gs is a triangular matrix, with diagonal elements Mii =

gsii
gcii

. Now, choose the

matrix D, equal to,

D =















gs11
gc11

0 . . . 0

0
gs22
gc22

. . . 0

...
. . .

...

0 0 . . . gsnn

gcnn















=













M11 0 . . . 0

0 M22 . . . 0
...

. . .
...

0 0 . . . Mnn













. (3.15)

Finally, using (3.13), we have,

P =













gc11 0 . . . 0

gc21 gc22 . . . 0
...

. . .
...

gcn1
gcn2

. . . gcnn













·















gs11
gc11

0 . . . 0

0
gs22
gc22

. . . 0

...
. . .

...

0 0 . . . gsnn

gcnn















=













gs11 0 . . . 0

gc21 gs22 . . . 0
...

. . .
...

gcn1
gcn2

. . . gsnn













, (3.16)

and here, P is a fundamental region of Λs because it has the same diagonal elements of Gs. Thus, we
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conclude that, Gc and D form a rectangular encoding, and Ii = Mii =
gsii
gcii

. In other words, if Gc and

Gs are both upper or lower triangular, the set

Λc ∩ P(P) = {Gc · b = b1g1 + · · ·+ bngn, bi = 0, . . . ,Mii − 1} (3.17)

is a complete set of coset representatives of the quotient group defined in (2.13), and of course, here
gsii
gcii

∈ Z
n because M is an integer matrix.

Furthermore, note that, if M is diagonal, then rectangular encoding exists and the coset represen-

tatives lie inside the fundamental parallelotope P(Gs). If M is not diagonal (here M is triangular),

and Gc and Gs are both upper or lower triangular, then rectangular encoding exists and the coset rep-

resentatives lie inside the parallelotope P(P). Of course, as diagonal matrices are a particular case of

a triangular matrices, equation (3.17) is a general case of equation (3.3), because, it is straightforward

to see that if M is diagonal, then Ii = Mi =
gsji
gcji

, for j = 1, . . . , i, . . . , n.

For triangular matrices, our Voronoi constellation is all the x obtained by applying equation (3.7),

and with Gcb satisfying equation (3.17). The indexing b = index (x), i.e, the process to obtain b

from x is done as follows.

Firstly, we translate our point x in equation (3.7) by d, obtaining x + d. Then, we multiply the

obtained point by G−1
c , obtaining

b′ = G−1
c (x + d) = b − G−1

c QΛs(Gcb). (3.18)

Now, note that QΛs(Gcb) is a point of Λs by definition of quantization operation (2.4). Thus, it can

be written as Gs · z for some z ∈ Z
n,

b′ = b − G−1
c Gsz = b − Mz, (3.19)

as the matrix M, with elements Mij for i ≥ j, is triangular, this is a triangular system. The first row

is,

b′1 = b1 −M11z1. (3.20)

Note that, from (3.17), bi ≤ Mii − 1, so b1 can be obtained as,

b1 = b′1 mod M11, (3.21)

and z1 is then,

z1 =
b′1 − b1
M11

. (3.22)
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Generalizing, the following lines k = 2, . . . , n is:

b′k = bk −
k−1
∑

j=1

Mkjzj −Mkkzk, (3.23)

which have solutions given by:

bk = (b′k +
k−1
∑

j=1

Mkjzj) mod Mkk, (3.24)

zk =
bk − b′k −

∑k−1
j=1 Mkjzj

Mkk

. (3.25)

The above procedure computes the bi one at a time, in sequence. This a standard and effective

technique for triangular matrices. Finally, for easy of exposition during the rest of chapter 3 we

consider the translation vector d = 0.

3.2.2 Encoding the chain Λs ⊆ KZ
n ⊆ Λc.

We now turn our attention to a special case of nested lattice pairs, such that the chain Λs ⊆
KZ

n ⊆ Λc is satisfied, for K a diagonal matrix. For these lattice families, we announce a theorem

that gives an alternative method to compute a complete set of distinct coset representatives of the

quotient group Λs/Λc. As we will see in the next section, when the coding lattice Λc is obtained

from an error-correcting code, this theorem eliminates the requirement of a matrix multiplication

for encoding lattices, providing reduced encoding complexity, in the sense that it never exceeds the

encoding complexity of the underlying linear code used to construct Λc.

Theorem 1: Let Λs and Λc be any integer lattices satisfying the lattice chain Λs ⊆ KZ
n ⊆ Λc, for

K a diagonal matrix with entries ki > 0. Let Gs be a triangular generator matrix of Λs that is defined

as

Gs =













gs1,1 0 . . . 0

gs2,1 gs2,2 . . . 0
...

. . .
. . .

...

gsn,1 . . . gsn,n−1
gsn,n













∈ Z
n×n. (3.26)

Define a set S as the Cartesian product:
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S = {0, . . . ,
∣

∣

∣

∣

gs1,1
k1

∣

∣

∣

∣

− 1} × · · · × {0, . . . ,
∣

∣

∣

∣

gsn,n

kn

∣

∣

∣

∣

− 1}.1 (3.27)

Let X = Λc ∩ P(K) be the set of points of Λc in the parallelotope associated with K, as defined

in (2.9). Then, a complete set of coset representatives of the quotient group Λc/Λs is provided by

X + K · S = {x + K · s | x ∈ X , s ∈ S} . (3.28)

Moreover, this set lies in the hyper-rectangle with sides (|gs1,1 |, . . . , |gsn,n |) from the origin.

Proof : A complete set of coset representatives of the quotient group Λc/Λs is the set of points

of Λc inside any fundamental region of Λs Zamir [2014]. Thus, a complete set of coset representa-

tives of Λc/KZ
n is the set of points of Λc inside the fundamental parallelotope of KZ

n, which is the

hyperrectangle P(K), with sides (k1, . . . , kn). This is the set X . According to section 3.2.1, a funda-

mental region of Λs is the hyperrectangle with sides (gs1,1 , . . . , gsn,n). Thus, by the tiling property of

fundamental regions (2.5), a complete set of coset representatives of KZ
n/Λs can be written as KS ,

with S given in (3.27), because of the triviality of the lattice KZ
n. Finally, by Lemma 2, a complete

set of coset representatives of the quotient group Λs/Λc is the sum of the coset representatives of the

quotients Λc/KZ
n and KZ

n/Λs, which is X + KS as stated in (3.28).

�

Theorem 1 provides an efficient way to explicitly construct a set of coset representatives for any

integer lattices satisfying the chain Λs ⊆ KZ
n ⊆ Λc, for any diagonal matrix K. It can be directly

applied to near-ellipsoidal lattice codes (Ragot et al. [2003]) Λc/KΛc, with K an integer diagonal

matrix. In this case, the shaping lattice is an expansion per coordinate of the coding lattice, Λs = KΛc

and the chain condition is naturally satisfied because Λs = KΛc ⊆ KZ
n ⊆ Λc. Self-similar lattices

codes Λc/kΛc are a particular case of near-ellipsoidal lattices, with K = kI, in this case, the shaping

lattice is an uniform expansion of the coding lattice, so the theorem can also be employed to them.

In general, for other lattices pairs and any diagonal matrix K, a shaping lattice Λs ⊆ KZ
n can

be found by first choosing any integer lattice Λ′, then computing Λs = KΛ′. Since Λ′ is integer,

this ensures that KΛ′ ⊆ KZ
n. For some diagonal matrix K, the condition KZ

n ⊆ Λc, can be easily

satisfied if a coding lattice is obtained from an error correcting code, because Λc can be written as

λc = C + KZ
n, which naturally satisfies the chain condition KZ

n ⊆ Λc. For construction-A and

construction-D lattices, K = qI and K = qaI, respectively.

1Note that, gs1,1/ki is an integer value since Λs ⊆ KZ
n.



3.3 Encoding and Indexing for Lattices from Error Correcting Codes 44

3.3 Encoding and Indexing for Lattices from Error Correcting

Codes

As we have seen in section 3.2.1, finding a set of coset representatives requires a matrix multi-

plication (see equation 3.17). However, in this section we show that, if the underlying coding lattice

Λc is a lattice obtained from an error-correcting code, and Λc and Λs are lattices satisfying the chain

Λs ⊆ KZ
n ⊆ Λc as in section 3.2.2, then, the matrix multiplication in (3.17) is unnecessary.

Note that the condition KZ
n ⊆ Λc is always satisfied for lattices from codes. Indeed, for

construction-A lattices, as stated in section 2.2, qZn ⊆ Λc, while for construction-D lattices qaZn ⊆
Λc. This suggests that K = qIn and K = qaIn, respectively. In fact, this is a natural choice, but there

is no need to restrict K to these values, given that the chain condition is satisfied for other values of

this matrix. The choice of the shaping lattice, Λs, must satisfy the condition Λs ⊆ KZ
n, and can be

obtained as described in section 3.2.2.

Now, consider the application of Theorem 1 in construction-D lattices, shown in Corollary 1.

Corollary 1: Construction-D Lattices: For construction D, shaping is normally done in the last

level code, which implies K = qaIn. Let Λ′ be any integer lattice with a triangular generator matrix

G’ with entries g′ij . Choose Λs = qaΛ′. Let Λc =
∑a−1

i=0 q
iCi + qaZn be a construction-D lattice. A

complete set of coset representatives is:

a−1
∑

n=0

qiCi + qaS =

{

a−1
∑

n=0

qici + qas | ci ∈ Ci, s ∈ S
}

, (3.29)

with S given as:

S = {0, . . . , g′1,1 − 1} × · · · × {0, . . . , g′n,n − 1}. (3.30)

Proof: Applying theorem 1, a complete set of cosets are:

X + qaS =

(

a−1
∑

i=0

qiCi + qaZn

)

mod qa + qaS

=
a−1
∑

i=0

qiCi + qaS =

{

a−1
∑

n=0

qici + qas

}

,

(3.31)

By theorem 1, the set S is given by:
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S = {0, . . . ,
qag′1,1
qa

− 1} × · · · × {0, . . . ,
qag′n,n
qa

− 1}

= {0, . . . , g′1,1 − 1} × · · · × {0, . . . , g′n,n − 1}.
(3.32)

�

Note that, the matrix multiplication is unnecessary. Corollary 1 says that, for construction-D

lattices, it is possible to identify the coset representatives looking just for the codewords of the under-

lying linear code C, and elements of the set S , which determine the shaping lattice.

This result is easily extended for construction-A lattices:

Corollary 2: Construction-A Lattices: Let Λc = C + qZn be a construction-A lattice. A

complete set of coset representatives is:

C + qS = {c + qs | c ∈ C, s ∈ S} . (3.33)

Proof: It is sufficient to set a = 1 in equation (3.31) of corollary 1 and a construction-A lattice is

obtained via construction-D lattice. �

Note that, the information is no longer provided by the information vector b as shown in section

3.2.1. In this case, information is given by the message vectors ui and the vector s, i.e, information

is taken from (u0, . . . , ua−1, s) for construction-D lattices and from (u, s) for construction-A lattices.

Also, note that, messages are taken from
∑a−1

i=0 ki + n coordinates for construction D and from k+ n

for construction A, whereas the vector b has n-coordinates. An interpretation for corollary 1 and

corollary 2 is to first apply a hypercube shaping in the coding lattice Λc, obtaining the set of code-

words of the underlying code C, and then translating each point by points of the set qaS , obtaining

the coset representatives of Λc/Λs. Moreover, from 3.2.1, these coset representatives lie inside the

hyperrectangle with sides equal to the diagonal elements of the triangular generator matrix of Λs.

Based on Corollary 1, we show an alternative encoding and indexing procedure for lattices ob-

tained from error-correcting codes. This alternative procedure has reduced encoding complexity, as

the matrix multiplication G · b is unnecessary. We show this procedure for construction-D lattices,

given that the extension to construction-A lattices is trivial as it can be obtained by setting a = 1.

As suggested by corollary 1, to find a coset representative we need to choose a codeword ci of

each code Ci, and an element of the set S . Each codeword is obtained by encoding a message vector

ui ∈ Z
ki
q . Then, each message m is chosen from the set M = Z

k0
q × Z

k1
q × · · · × Zka−1

q × S . An

element of this set is of the form m = (u0, u1, . . . , ua−1, s), which has
∑a−1

i=0 ki + n coordinates.

The encoding procedure is done as follows:

1. Pick an element of the set M.
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2. Encode each element ui in order to obtain ci.

3. Find the coset representative by computing:

x =
a−1
∑

i=0

qici + qas.

4. Find the element of the coset of x inside the Voronoi region of the shaping lattice Λs by per-

forming modulo-Λs operation:

x′ = x −QΛs(x).

and as x and x’ belong to the same coset, each coset representative corresponds to a different coset

leader, which is a point inside the Voronoi region of Λs.

The inverse operation of encoding is called indexing or demapping. It obtains the message

m = (u0, u1, . . . , ua−1, s) given a Voronoi constellation point x’. The indexing procedure is done

as follows:

1. Denote rj =
∑j

i=0 q
ici, for j = 1, . . . , a − 1. So r0 = c0, r1 = c0 + qc1, . . . , rj, . . . , ra−1 =

∑a−1
i=0 q

ici. The point x’ can be written as x’ = ra−1 + qas − QΛs(x), where x is a coset

leader obtained at step 3 of the encoding procedure. Applying mod q operation to x’ we

obtain r0 = c0, and the codeword c0 is obtained. That is because QΛs(x) ∈ qaΛ’ by definition.

Applying mod q2 operation to x’ we obtain r1 = c0 + qc1. As we already have c0, then c1
is obtained as c1 = r1−r0

q
. Generalizing, let r−1 = 0, starting by i = 1 moving upwards to

i = 2, . . . , a− 1, any codeword ci is obtained as:

• First, obtain ri by performing mod qi+1 operation:

ri = x′ mod qi+1.

• Second, obtain ci by:

ci =
ri − ri−1

qi
.

2. Obtain ui by indexing each ci ∈ Ci. This step depends on code choice and how it was encoded.
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3. Since we know each ci ∈ Ci and x’, we can recover:

v =
x′ − ra−1

qa
= s − 1

qa
QΛs(x) = s − p ∈ Z

n.

Note that v can be written as v = s - G′z for some unknown z ∈ Z
n because p = 1

qa
QΛs(x) ∈ Λ′.

This is a triangular system with unknown variables s and z. The first row is,

v1 = s1 − g′11z1. (3.34)

Note that from (3.30), si ≤ g′ii − 1, so s1 can be obtained as,

s1 = v1 mod g′11, (3.35)

and z1 is then,

z1 =
v1 − s1
g11

. (3.36)

Generalizing, the following lines k = 2, . . . , n is:

vk = sk −
k−1
∑

j=1

g′kjzj − g′kkzk, (3.37)

which have solutions given by:

sk = (vk +
k−1
∑

j=1

g′kjzj) mod g′kk, (3.38)

zk =
sk − vk −

∑k−1
j=1 g

′
kjzj

g′kk
. (3.39)

The above procedure computes si one at a time, in sequence. This a standard and effective tech-

nique for triangular matrices. Note the similarity between the step 3 with the indexing procedure for

triangular matrices in section 3.2.1. In fact, steps 1 and 2, is the indexing of a standard multilevel

code construction, with standard hypercube shaping (see Forney et al. [2000]), i.e the indexing of

Λc/q
a
Z
n, while step 3 is the indexing procedure for Voronoi shaping, i.e the indexing of qaZn/Λs

(see Kurkoski [2018]).

Note that, as we are referring the construction by code formula as a construction-D lattice, this

indexing procedure, followns the Forney’s indexing of a standard multilevel code construction. How-
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ever, if one choose to use construction D as in equation (2.29), a reencoding step is necessary for

indexing this construction. See Matsumine et al. [2018] for details.

3.4 Complexity

The overall complexity of encoding Voronoi lattices codes, relies in the Voronoi shaping operation

defined in (2.20). This operation is divided in two steps. The fist step is to find a complete set of coset

representatives by performing the matrix multiplication Gc · b. The second step relies in finding

the shaping lattice point closest to the point Gc · b, which is the result of the quantization operation

QΛs(Gc · b).

The overall complexity of a Voronoi shaping scheme is dominated by the quantization operation

QΛs(Gc ·b) which is generally np-hard. However as discussed in section 2.3 (also see Ferdinand et al.

[2016]), some low-dimensional shaping lattices, already provides shaping gains which is close to the

maximum shaping gain of 1.53 dB, e.g, the Leech lattice Λ24, which provides a nominal shaping gain

of 1.03 dB in dimension 24. Thus we do not need to increase the dimension to much. If we keep small

dimensions for shaping, the overall encoding complexity is no longer dominated by the quantization.

Instead, its dominated by the matrix multiplication Gc · b which is generally proportional to n2.

In contrast, with the proposed corollary 1 and corollary 2, which are particular applications of

theorem 1, the coset representatives can be explicitly computed if the coding lattice, is a lattice ob-

tained from an error-correcting code, e.g, construction-D or construction-A lattices. As showed in

section 3.3 the matrix multiplication Gc · b is unnecessary and the complexity is dominated by the

encoding of the underlying linear code C with is generally smaller than O(n2). In fact, if a linear

code encoding strategy is adopted, the encoding complexity is linear in the block length.
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Chapter 4

Construction and Implementation

In this chapter we discuss the practical aspects in the implementation of Voronoi constellations.

We describe the construction of coding lattices based in error-correcting codes. More specifically, we

focus in the utilization of spatially-coupled low-density parity-check (SC-LDPC) codes, as described

in Vem et al. [2014], and extended Bose-Chaudhuri-Hocquenghem (BCH) codes, as described in

Matsumine et al. [2018], to construct the coding lattice using the construction D. Other types of

codes can be vastly found in the literature. As references, we cite Liu et al. [2018] and Yan and

Ling [2012], which use polar codes combined with the construction D, Di Pietro and Boutros [2017]

which uses LDPC codes, and Khodaiemehr et al. [2016] which uses QC-LDPC codes, both using a

construction A.

We then focus in the construction of the shaping lattice using two good small-dimensional lattices,

which have the best shaping gain among all lattices in their dimensions: the Gosset lattice (E8), and

the Leech lattice (Λ24). All the implementation details are described, as well as a technique that

matches the dimension of the coding lattice to the dimension of the shaping lattice.

The decoding techniques of the linear codes used to construct these lattices is described. Finally,

we remember the reader that, the general encoding and indexing operation, for the lattice codes

constructed in this chapter is described in chapter 3.

4.1 Shaping Lattice Design

In this section, we discuss the construction of the shaping lattice, the idea is to use low-dimensional

lattices, which achieve good shaping gains in small dimensions, such those of figure 2.7. It is always

possible to obtain a high-dimensional lattice with scaled copies of a low-dimensional one. In fact, an

n-dimensional shaping lattice can be obtained from an n′-dimensional shaping lattice, with n′ < n,

as long as l = n/n′ ∈ Z. For this, it is sufficient to construct the generator matrix G′ of the n-
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dimensional shaping lattice as,

G′ =













αG′

s 0 . . . 0

0 αG′

s . . . 0
...

. . .
. . .

...

0 . . . 0 αG′

s













∈ Z
n×n, (4.1)

where G′ is the generator matrix of the lattice Λ′ described in Theorem 1 (see section 3.2.2), and G′

s

is the generator matrix of the low-dimensional shaping lattice in a triangular form, and α is a scaling

factor. In this type of construction, the overall shaping gain is that of the low-dimensional lattice.

More generally, the n-dimensional lattice is obtained as the Cartesian product of the n’-dimensional

lattice, this is equivalent of applying the shaping operation l times in n’ coordinates at a time.

Note that, G′

s is scaled by α for two reasons. First, it makes G′ an integer matrix and consequently

Λs an integer lattice as required in theorem 1. Second it allows us to change the information rate, by

expanding the shaping region and consequently increasing the number of points of C. Obviously, this

expansion also increases the transmit power. Also, as mentioned, this type of construction reduces the

quantization complexity of the Voronoi shaping operation given that it is reduced to l quantizations,

each in dimension n’, instead of one quantization in dimension n.

With this configuration, we can calculate the information rate R of our transmission system. Using

equations (2.16) and (2.34). Firstly, the carnality of the quotient group is given by,

M =
Vol (Λs)

Vol (Λc)
=

qan Vol Γ

qan−
∑a−1

i=0
ki

= αn(detGs)
lq

∑a−1

i=0
ki , (4.2)

thus, using equations (2.32) and (2.40), the information rate of the Voronoi constellation is given by

R = log2 α +
1

n′
log2(detG′

s) +Rc log2 q bits/dim. (4.3)

Based on Corollary 1 of section 3.3, the shaping lattice Λs will be constructed as Λs = qaΛ′,

which is equivalent of choosing the matrix K = qaI. Also, given that Λ′ is an integer lattice as it is

scaled by the factor α. Thus, Λs and Λc are nested lattices, and satisfy the chain condition of Theorem

1, because,

Λs = qaΛ′ ⊆ qaZn ⊆ Λc ⊆ Z
n. (4.4)
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4.1.1 Gosset Lattice (E8)

The first low-dimensional shaping lattice which we will be considering is the so called Gosset

Lattice or E8 lattice. This lattice is an 8-dimensional lattice with one possible generator matrix given

by:

GE8
=

































1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

0 1 0 0 0 0 0 1

0 0 1 0 0 0 0 1

0 0 0 1 0 0 0 1

0 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 2

































∈ Z
8×8. (4.5)

Additionally, in dimension eight, the E8 lattice has the greatest packing density, is the best-known

quantizer Conway and Sloane [2013], and its dimension is low enough that quantization operation

(2.4) is feasible.

Given the optimally of the E8 lattice in its dimension, it also has the best shaping gain in dimension

eight, which using the continuous approximation Forney and Ungerboeck [1998], is shown to be 0.65

dB, i.e, 0.88 dB from the optimal shaping gain of 1.53 dB. In section 4.4, we use this lattice to shape

the coding lattice constructed using extended BCH codes.

4.1.2 Leech Lattice (Λ24)

The second low-dimensional shaping lattice is the so called Leech Lattice or Λ24. This lat-

tice is a 24-dimensional lattice, and its generator matrix in triangular form can be found in Con-

way and Sloane [2013]. An integer triangular version of this matrix, obtained by a multiplication

by 2
√
2, can be found in [Costa et al., 2017, p. 25], where the diagonal elements are given by:

(8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 4, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 1). This lattice has the greatest packing den-

sity, and is the best known quantizer in dimension 24, even considering non-lattice packings Costa

et al. [2017].

In comparison with the E8 lattice, this lattice is expected to have a better shaping gain, given its

optimally in dimension 24 and the fact that we are increasing the dimension to 24. In fact, its shaping

gain is equal to 1.03 dB, only 0.5 dB from the optimum shaping gain of 1.53 dB. Furthermore, in

section 4.4, we use this lattice to shape the coding lattice constructed using SC-LDPC codes.
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4.2 Coding Lattice Design

In this section, the construction of the coding lattice based on construction D is described. We

start by constructing a 2-level construction-D lattice using two nested extended BCH codes. Then,

we construct a 3 and 4-level construction-D lattices using nested SC-LDPC codes. The decoding of

both codes are also described.

4.2.1 Extended BCH Codes Lattices

The BCH codes form a class of cyclic error-correcting codes that are constructed using polyno-

mials over a binary finite field. Extended BCH codes are BCH codes with an additional parity check

bit. The set of BCH codes with code parameters (n, k, dmin) can be found in numerous tables in the

literature. The parameters are such that n = 2m − 1, n − k ≤ mt and dmin ≥ 2t + 1. Adding an

additional parity check bit in a standard BCH codes, changes the dimension to n+1 and the minimum

distance to dmin + 1 and it is called an extended BCH code.

This section describes the design of a 2-level nested extended BCH lattice code, where each

codeword is obtained from a BCH code with an additional parity check bit. Remembering the

construction-D levels a, and the definition of q-ary codes, we see that, as BCH codes are binary

codes we have q = 2, and as we construct a 2-level construction-D a = 2. Additionally, our lattice

is based in two extended BCH codes denoted by C0 and C1, such that C1 ⊆ C0, as required for the

Construction D.

Despite of no efficient linear encoding strategies for cyclic codes, the motivation of use BCH

codes is due to the superiority of these codes in comparison with several others, as pointed in the

results shown in Matsumine et al. [2018]. We start by fixing the dimension of the BCH code in

n = 127. As we have seen, ideally the lattice dimension n must go to infinity, but the lack of linear

encoding strategies for BCH codes makes the growth of the dimension not feasible. This value of n

allows a practical algorithm implementation of the code, which is sufficient to apply, and show the

reduced complexity shaping scheme proposed in this thesis.

Here, minimum distance is used as a design criteria, we want to maximize the minimum distance

of the lattice at the lowest cost in the total rate. From (2.38), if γ = 1, the minimum distance, for C0

and C1 are 4 and 16, respectively, while if γ = 2 the minimum distances are 2 and 8. As we want

to maximize the minimum distance of the lattice, we set γ = 1, which implies dmin = 4 for C0 and

dmin = 16 for C1. Note that, for primitive BCH codes, the minimum distance are odd values, this is

the reason why we use extended BCH codes.

Thus, from primitive BCH code tables found in the literature, we select the BCH codes (127, 120, 3)

and (127, 78, 15), which implies C0 and C1, respectively as (128, 120, 4), with a code rate of Rc1 =
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128/120 = 0.9375, and (128, 78, 16) with a code rate of Rc2 = 78/120 = 0.6094. The code rate of

the construction-D lattice is given by equation (2.32), i.e, Rc = 1.54.

The nested constraint (C1 ⊆ C0) must also be satisfied. For this purpose, a generator polynomial

gi(x) of degree n− ki of the code Ci must satisfy gj(x) = g(x)gi(x) for j < i, for gj(x) a generator

polynomial of the code Cj . In this case Ci ⊆ Cj . In our case with a = 2 we have g0(x) = g(x)g1(x).

Finally, with c0 ∈ C0, c1 ∈ C1 and z ∈ Z
n, the coding lattice Λc is the set

Λc = {c0 + 2c1 + 4z} . (4.6)

Using equation (2.34), the volume of the constructed lattice is given by Vol (ΛD)
2

128 = 1.8741. The

VNR is then,

VNR =
Vol (Λ)

2

n

2πeσ2(Pe)
=

0.1097

σ2
. (4.7)

For generating the polynomial g1(x) and g(x), the Matlab function "bchgenpoly" was used. This

function returns the narrow-sense generator polynomial of a BCH code, and as mentioned g0(x)

was obtained as the multiplication: g0(x) = g(x)g1(x). Additionally, each codeword is obtained as

ci(x) = gi(x)ui(x), where ui(x) is the polynomial of degree ki with coefficients ui over the binary

field F
ki
2 .

The encoding of the extended BCH codes constructed was performed via generator polynomials

as described above. The lattice point x’, which is transmitted in the channel is obtained from equation

(2.19), where x is obtained from equation (3.31). The point received is a noisy version of x’, which

can be written as

y = x′ + w, (4.8)

where w is the Gaussian noise added by the channel. Here x ∈ Λc ∩ P(qaI), and x′ ∈ Λc ∩ V(Λs),

while y ∈ R
n, given the noisy characteristic of w. However, before decoding the channel output, we

multiply y ∈ R
n by a constant c:

c =
SNR

1 + SNR
=

P

P + σ2
, (4.9)

which is known as Wiener coefficient. The use of this factor is important for achieving the capacity

using lattices, as explained in Forney Jr [2004]. Thus, what we actually decode is cy, with c as in

(4.9).

In order to find the point x′ ∈ Λc closest to cy, soft-input decoding of binary codes is used. Each
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noisy level yi is recovered from cy with the application of mod 2i operation and the subtraction

of the previous decoded levels. The modulo operation applies to the noise as well, and distance to

(0, 1) should be preserved. As pointed in Matsumine et al. [2018], the following “triangle function”

preserves these distances, and performs the modulo 2i operation as:

|(cyi + 1) mod 2i − 1|. (4.10)

In our case, ordered statistics decoding (OSD) algorithm with order-l reprocessing is used as

described in Fossorier and Lin [1995]. Also, as described in Matsumine et al. [2018], for our con-

struction, order-4 reprocessing for code C0 and order-1 reprocessing for code C1 yield a performance

close to the maximum likelihood decoding. However, we use a order-3 reprocessing for decoding C0,

this is because it achieves only slightly higher error-rate performance than that of order-4 reprocessing

(see Matsumine et al. [2018]), and because of the reduced computational complexity.

We now assume an infinite constellation. This means that we do not have any power constraint

in our system, and we can transmit any lattice point. We show the performance of the 2-level

construction-D extended BCH lattice code. The unconstrained scenario performance is analysed

in terms of the symbol-error rate (SER), and the word-error-rate (WER) as a function of the VNR

parameter, which is a measure of the performance of the coding lattice, defined in (2.53).
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Figure 4.1: SER and WER performance of 2-level extended BCH code lattices with dimension n =
128 over AWGN channel without power constraint.

Figure 4.1 shows the symbol-error rate (SER) and word-error-rate (WER) as a function of VNR

of our construction-D lattice. We define WER as the probability of detecting a lattice point, which is
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different than the point transmitted. Analogously, we define the SER as the probability of error in any

one of the n coordinates.

As pointed in Matsumine et al. [2018], for n = 128, a construction-D lattice with extended BCH

code outperforms turbo lattices Sakzad et al. [2011], and LDLC lattices Sommer et al. [2008]. For

more results in this type of construction, see Matsumine et al. [2018].

4.2.2 SC-LDPC Code Lattices

In this section, we propose a class of lattices constructed using Construction D, where the un-

derlying linear codes are nested binary spatially-coupled low-density parity-check codes (SC-LDPC)

codes. This construction is the same construction proposed by Vem et al. [2014].

The construction of SC-LDPC codes is done by coupling together a set of independent LDPC

codes such that these codes are nested. In this construction, each independent LDPC code is regular,

i.e, it has uniform left and right degrees. The focus of this chapter is on the construction of SC-LDPC

codes, and then, the lattice associated with this code, which is obtained using the construction D. This

section is based on chapter 4 of Vem [2017], which we invite the reader to consult for further details

of the construction described.

We want to construct a set of a − 1 LDPC codes Ci such that C0 ⊆ C1 ⊆ · · · ⊆ Ca−1. To that

end, we construct a Tanner Graph of the code Ca−1 which we denote by Ga−1. We then, obtain the

Tanner Graphs Gi of the remaining codes by removing a fraction of the parity checks and the edges

incident on these checks in a systematic fashion, in a way that Gi is also regular. Let denote the

variable node degree of each code Ci by div and the check node degree by dc, which is the same for

all codes Ci given the construction described above. This construction generates a SC-LDPC code

ensemble denoted by (d0v, . . . , d
a−1
v , dc).

For any div > 0, the code rate of each individual code is given by:

Rci = 1− div
dc
. (4.11)

The construction is done as follows (this is a replication of Chap 4, section IV.B.1 of Vem [2017]):

fix M ∈ N, place Mdc variable nodes at each position in the range [1 : L] := {1, 2, . . . , L}, L ∈ N

and Md1v check nodes at each position in the range [1 : L+w−1], where w ∈ N is coupling width. At

each position divide the Md0v check nodes into d0v groups where each group contains M check nodes.

At any position we refer to all check nodes belonging to kth group as of type Tk. This is equivalent

to, at each position, Mdc edges coming from check nodes of type Tk for all k ∈ [1 : d0v]. Similarly,

for each variable node, we arbitrarily classify the d0v edges into types, where kth edge is referred to

as type Ek which equates to Mdc edges of each type at any position. For a fixed k ∈ [1 : d0v], for all
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i ∈ [1 : L], each edge of type Ek at position i is assigned uniformly at random to a type Tk check

node from positions [i : i + w − 1]. The main idea is that, for each k ∈ [1 : d0v], if we consider

the sub-graph containing only the type Tk check nodes and variable nodes with single edge (type Ek
edges) the above mimics the construction of a (1, dc, L, w) ensemble on the sub-graph. This results

in a Tanner graph in which every variable node has exactly one edge connected to type Tk check

node, for all k ∈ [1 : d0v]. We call such a graph, a check-uniform connected graph and the proposed

construction as (d0v, dc, L, w) check-uniform SC-LDPC (CU-SC-LDPC) ensemble of codes.

Choose a Tanner graph uniformly at random from the above described (d0v, dc, L, w) CU-SC-

LDPC ensemble, call it G0. Observe that, removal of all check nodes of a particular type, say Td0v
,

from G0 results in a regular (d0v − 1, dc) Tanner graph. One can see that removal of all check nodes of

types Td1v+1, Td1v+2, . . . , Td0v
from G0 results in a graph from the (dc, d1v, L, w) CU-SC-LDPC ensemble,

which let’s refer to as G1. More importantly, all the check-nodes in the derived graph G1 are also

contained in G0 and hence any codeword satisfying all the check constraints in G0 also satisfies all the

check constraints in G1. Thus we can say that the binary code C0 defined by G0 is a sub-code of the

binary code C1 defined by G1. One can obtain a sequence of nested linear codes C0 ⊆ C1 ⊆ · · · ⊆
Ca−1 by repeatedly performing the above operation. Given (dc, d

0
v, . . . , d

a−1
v ), for each code C0 from

the (dc, d
0
v, L, w) CU-SC-LDPC ensemble, we can obtain a nested sequence of codes C0 ⊆ C1 ⊆

· · · ⊆ Ca−1 where Ci ∈ (dc, div, L, w) CU-SC-LDPC ensemble. We call the proposed ensemble of

nested sequences of codes as (dc, d0v, . . . , d
a−1
v , L, w) CU-SC-LDPC ensemble.

For our construction, we use dc = 60, L = 72, w = 12, M = 47, which yield a lattice code of

dimension n = 200000. We use a construction D with a = 3 levels to construct the following two

SC-LDPC lattice codes: (26, 3, 3, 60) and (35, 3, 3, 60) which using equation (4.11), yield a code rate

Rc = 2.47 and Rc = 2.32, respectively. We also use a construction with a = 4 levels to construct

the following codes: (26, 3, 3, 3, 60) and (35, 3, 3, 3, 60), which using equation (4.11), yield a code

rate Rc = 3.42 and Rc = 3.27 respectively. Additionally, for decoding each codeword, we use belief

propagation decoding. The simulation results for these type of lattices, and the construction described

above is shown in section 4.4.2.

4.3 Quantization: Sphere Decoder Algorithm

Finding the nearest lattice point, i.e, performing the quantization operation (2.4), is performed by

the Sphere Decoder Algorithm proposed in Viterbo and Boutros [1999]. Generally, this a np-hard

problem, which is why we proposed a low-dimensional quantization (section 4.1), given that special

low-dimensional shaping lattices already provide good shaping gain in their dimension (see sections

4.1.1 and 4.1.2).
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As shown in Eq. (7) of Viterbo and Boutros [1999], the sphere decoder complexity can be poly-

nomial in the block length if a special sequence of lattices is used. We invite the reader to see Viterbo

and Boutros [1999] for a complete complexity analysis and implementation of the sphere decoder

algorithm.

4.4 Simulation Results

In this section we combine the construction of the coding lattice and the shaping lattice to form a

multidimensional constellations, which is the set of symbols that we can transmit over the channel.

In section 4.4.1, we use the E8 lattice to shape the coding lattice constructed in section 4.2.1,

whereas in section 4.4.2, we use the Leech lattice to shape the coding lattice constructed in 4.2.2.

In both cases, we analyse the performance of our system in comparison with the cubic shaping,

and the complexity reduction provided by the use of the strategy described in section 3.2.2, i.e, when

both lattices, Λc and Λs, satisfy the chain condition Λs ⊆ KZ
n ⊆ Λc.

4.4.1 Gosset Constellations of Extended BCH Lattice Codes

In this section we assume a finite constellation, limiting the points to be transmitted over the

channel. The title of this section, relies on the fact that we use the E8 lattice (section 4.1.1) for

shaping, combined with the extended BCH code described in section 4.2.1, to construct the coding

lattice.

As mentioned in section 4.2.1, we use a 2-level Construction D for our construction, so that, the

results present in this section are obtained using Corollary 1 of section 3.3. Moreover, as discussed in

section 3.4, the encoding complexity is reduced to the encoding complexity of the underlying linear

code, and since we use polynomials to encode each codeword of our BCH code, the encoding com-

plexity is O((d0 + d1)n log n) Roth and Seroussi [1988], where d0 and d1 are the minimum distances

of each BCH code C0 and C1 (see section 4.2.1). This complexity is quasi-linear in the block length,

whereas the standard matrix multiplication has polynomial complexity (O(n2)).

Since we are using an extended BCH code with dimension n = 128, this strategy can be used

with the Gosset lattice E8, since 128 is a multiple of 8. Setting α = 2 in equation (4.1), in order that

the matrix G′ be an integer lattice, as required by Corollary 1 of section 3.3, the shaping lattice is

Λs = qaΓ = 4Γ. (4.12)

Remembering the definition of the coding lattice (equation (4.6)), it is easy to note that Λs and Λc

are nested and satisfy the requirements of Corollary 1 of section 3.3, because,
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Λs = qaΓ = 4Γ ⊆ qaZn = 4Zn ⊆ Λc. (4.13)

From section 4.2.1, Rc = (78 + 120)/128 = 1.54 is the code rate of our extended 2-level BCH

code. Now, using (4.3), the information rate is,

R = log2 2 +
1

8
× log2 1 + 1.54 = 2.54 bits/dim. (4.14)

The average power per dimension can be obtained by the continuous approximation as in (2.52).

From Forney [1989], its known that γs(S) = 1.163 when S is the E8 Voronoi region. As our shaping

lattice is as in (4.12), and α = 2, we have,

Vol S2/n = Vol(4Γ)2/n = 4n(detT)2/n = (8n)2/n = 64, (4.15)

and the average power is,

P (S) =
64

12× 1.163
= 4.5858. (4.16)

As mentioned in section 2.4, the average value of the constellation, d, is subtracted from all the

symbols before transmission, this is done to ensure minimal energy consumption (2.51). We estimated

d taking the sample mean of 20,000 randomly generated symbols. The largest absolute value of the

elements of this estimation was 0.07231, which is negligible compared to the entries of the lattice

constellation. Therefore, P (d) ≈ 0 in (2.51), and we ignored this subtraction and transmitted the

lattice constellation directly.

In order to verify the shaping gain of our system, we also design the same coding lattice shaped

with an hypercube, which is nothing more than a coded M-PAM constellation. To that end, a generator

matrix for a cubic lattice is the identity matrix In. As before, Rc = (78+120)/128 = 1.54 is the code

rate of our extended 2-level extended BCH code. To ensure the same information rate, we choose α

in (4.3), so that both shaping lattices have the same volume, the code rate is then,

R = log2 2 +
1

128
× log2 1 + 1.54 = 2.54 bits/dim. (4.17)

The shaping lattice is Λs = 8I, yielding a hypercube shaping. The shaping operation in this

case is trivial. Firstly, we reduce mod 8 every transmitted point, yielding to the possible symbols

{0, 1, 2, 3, 4, 5, 6, 7}. In order to put points inside Voronoi region of Λs, we subtract 4 from every

coordinate obtaining the hypercube constellation with possible values {−4,−3,−2,−1, 0, 1, 2, 3}.

To have the minimum average power, the average of all the possible transmitted points must be zero.

To achieve this, we sum 0.5 to all points - this makes the constellation symmetric - to obtain the zero
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average hypercube constellation, with possible values {±0.5,±1.5,±2.5,±3.5}. This is equivalent

of translating the coding lattice from a vector d as in (2.51) with all entries equal to 0.5. This is a

coded 8-PAM constellation. Since all coordinates are equally likely, in this case the average power is

trivial to compute: P (S) = 5.25.
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Figure 4.2: WER performance of 2-level extended BCH code lattices with dimension n = 128 over
AWGN channel constrained by cubic lattice and E8 lattice.

Figure 4.2 shows the performance of our system when shaping is performed with the E8 and the

Cubic lattices. We consider two-dimensional passband transmission, which means that we have a

complex Gosset (E8) constellation and a 64-QAM constellation. In comparison with the hypercube

shaping, a gain of 0.63 dB is obtained for WER of 10−3 when using the E8 to construct the shaping

lattice. This value is close to the 0.65 dB, which verifies the theoretical shaping gain for the E8 lattice

Forney and Ungerboeck [1998]. This small difference is possibly due to the several approximations

involved in the definition and computation of the theoretical shaping gain Forney and Ungerboeck

[1998].

As discussed in section 2.3 and 2.4, the 1.53 dB of shaping gain is achieved when the inputs of the

channel are Gaussian. Equivalently, when the shaping region is an n-dimensional hypersphere with

n → ∞. As mentioned, there are a set of lattices that, when increasing its dimension, the Voronoi

region tends to an hypershpere when n → ∞. To verify this, Figures 4.3 and 4.4, show the marginal

distribution of the input symbols for the cubic and the E8 lattice shaping respectively. As we can

see, the E8 lattice distribution starts to look as a Gaussian distribution, while as expected the cube is

equivalent to a uniform distribution.
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Chapter 5

Conclusions

Throughout this thesis we presented a general discussion on lattices applied in communications.

We started with an introduction, clarifying how lattices is applied in the context of communications.

In chapter 2 we presented general lattice definitions, as well as, how those definitions is related with

some figures of merit of digital communications. In this chapter we also presented how to construct

general lattice constellations, which is the title of this thesis. In chapter 3 we focus in some parts of

the construction of Voronoi constellations described in chapter 2, which relies on the encoding and

indexing procedure. Still in this chapter we presented the novelty of this work, which is an efficient

way for encoding lattices obtained from error-correcting codes and multilevel code constructions. In

chapter 4 we showed the potential of our method, which achieves reduced encoding complexity, as

opposed to what is presented in the literature so far.

Moreover, a general method to identify a set of coset representatives and to construct Voronoi

constellations was presented. The scheme is valid for all full rank lattices that satisfy the conditions

of Theorem 1 of section 3.2.2. As mentioned, this scheme enables reduced encoding complexity for

lattices obtained from codes. More specifically, the complexity of the encoding is reduced to that of

the underlying error-correcting code used to construct the coding lattice. Additionally, our method

was applied in chapter 4 to the SC-LDPC and BCH lattice codes. In all cases, reduced encoding

complexities and shaping gains was obtained using the proposed Voronoi shaping scheme with good

small dimensional lattices such as Λ24 and E8 lattices.

For further works, one may note that, even if the focus of this thesis is for lattices packings, the

utilization of the code formula shows that, our proposed theorem is valid for any multilevel code con-

structions, even if it is not a lattice. Thus, one may generalize these results for infinite constellations

generated by codes (linear or not).

Another direction is to apply the shaping strategy to other types of lattices which are found in

the literature. Another question that remains is, how to obtain efficient encoding for lattices obtained
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from the original construction-D definition 2.29, given that, even with the application of our theorem,

the matrix multiplication is still needed. In other words, to find if there is an efficient way to construct

nested codes in equation 2.30, such that the codes are closed under the Schur product.
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