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ŞFor millions of years, mankind lived just like the animals.

Then something happened which unleashed the power of our imagination.

We learned to talk and we learned to listen.Ť

(Stephen Hawking)



Abstract

Recent advances in language representation using neural networks and deep learning have

made it viable to transfer the learned internal states of large pretrained language models

(LMs) to downstream natural language processing (NLP) tasks. This transfer learning

approach improves the overall performance on many tasks and is highly beneĄcial when

labeled data is scarce, making pretrained LMs valuable resources specially for languages

with few annotated training examples. In this work, we train BERT (Bidirectional En-

coder Representations from Transformers) models for Brazilian Portuguese, which we

nickname BERTimbau. We evaluate our models on three downstream NLP tasks: sen-

tence textual similarity, recognizing textual entailment, and named entity recognition.

Our models improve the state-of-the-art in all of these tasks, outperforming Multilingual

BERT and conĄrming the effectiveness of large pretrained LMs for Portuguese. We release

our models to the community hoping to provide strong baselines for future NLP research.

Keywords: Natural Language Processing; Deep neural networks; Machine learning; Lan-

guage Model; Named Entity Recognition; Sentence Textual Similarity; Recognizing Tex-

tual Entailment.



Resumo

Os avanços recentes em representação de linguagem usando redes neurais e aprendizado

profundo permitiram que os estados internos aprendidos por grandes modelos de lingua-

gem (ML) pré-treinados fossem usados no tratamento de outras tarefas Ąnais de proces-

samento de linguagem natural (PLN). Essa abordagem de transferência de aprendizado

melhora a performance em diversas tarefas e é bastante benéĄca quando há escassez de

dados rotulados, fazendo com que MLs pré-treinados sejam recursos de grande utilidade,

especialmente para línguas cujos conjuntos de dados de treinamento possuam poucos

exemplos anotados. Nesse trabalho, nós treinamos modelos BERT (Bidirectional Enco-

der Representations from Transformers) para Português brasileiro, os quais apelidamos

de BERTimbau. Nós avaliamos os modelos em três tarefas Ąnais de PLN: similaridade

semântica, inferência textual e reconhecimento de entidades nomeadas. Nossos modelos

desempenham melhor do que o estado da arte em todas essas tarefas, superando o BERT

multilíngue e conĄrmando a efetividade de grandes MLs para Português. Nós disponibili-

zamos nossos modelos para a comunidade de modo a promover boas bases de comparação

para pesquisas futuras em PLN.

Palavras-chaves: Processamento de Linguagem Natural; Redes neurais profundas; Apren-

dizado de máquina; Modelo de Linguagem; Reconhecimento de Entidades Nomeadas; Si-

milaridade semântica; Inferência textual.
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1 Introduction

Early deep neural network systems for natural language processing were proposed

as an alternative to rule-based systems or classical machine learning approaches that com-

bine heavy feature engineering with standard classiĄcation algorithms, such as Support

Vector Machines (CORTES; VAPNIK, 1995). While the latter approach requires a rich set

of hand-designed features tailored by domain specialists for each end task, the deep neural

network approach proposes to pre-process the inputs as little as possible and train a model

in an end-to-end fashion, learning to extract and compose relevant features automatically

from data (COLLOBERT; WESTON, 2008; COLLOBERT et al., 2011). This character-

istic provides higher domain and language independence, making it directly applicable to

diverse tasks and contributing to increase the popularity of neural NLP models.

A crucial component of most neural NLP models are word vector representations.

Words are usually treated as atomic units associated to indices in a vocabulary. Each

word is mapped to a dense vector representation known as word embeddings Ůa row of

a matrix used as a look-up table. These representations are then fed to a neural model,

such as a recurrent neural network. These vectors constitute a relevant part of the modelŠs

parameters and are optimized and learned during training. Since the Ąrst proposals, it

has been shown that sharing word embeddings between tasks is beneĄcial (COLLOBERT;

WESTON, 2008). Intuitively, multi-task learning stimulates learning representations that

are useful to many tasks.

An important landmark for neural NLP models was initializing the word embed-

dings with pretrained representations from unsupervised tasks, such as word2vec (MIKOLOV

et al., 2013) and GloVe (PENNINGTON et al., 2014). These embeddings are word-level

representations trained on large corpora that capture semantic and syntactic features of

words. Initializing the model with rich word vectors can push the performance of many

NLP tasks compared to random initialization (KIM, 2014).

However, word embeddings are context agnostic. More recently, the internal states

of language models were leveraged to extract richer word representations in context, such

as ELMo (PETERS et al., 2018) and Flair Embeddings (AKBIK et al., 2018). These

contextual embeddings are drop-in replacements for classical embeddings and improved

the state-of-the-art on several language understanding tasks.

Despite these advances, a major limitation persisted. These word representations

are used as input features to task-speciĄc models that still have to be trained from scratch

on each task of interest. This implies having to learn all model parameters using limited

labeled training examples, which hinders the application of large models on scenarios of

data scarcity and can lead to overĄtting to training data.
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Language modeling pretraining (DAI; LE, 2015) using only unlabeled data was

shown to provide useful model initialization for all parameters, but only recently this

transfer learning approach became largely adopted. Transfer learning consists of Ąrst

training a model on a data-rich source task and then Ąne-tuning it on tasks of interest.

The strategy of Ąne-tuning a large pretrained language model (LM) achieved state-of-

the-art performances on a variety of NLP tasks (DEVLIN et al., 2018; RADFORD et

al., 2018; RAFFEL et al., 2019; YANG et al., 2019). Aside from bringing performance

improvements, transfer learning reduces the amount of labeled data needed for supervised

learning on downstream tasks (HOWARD; RUDER, 2018; PETERS et al., 2018).

Pretraining these large language models, however, is a resource-intensive process

that requires huge amounts of unlabeled data and specialized hardware, with reports of

models being trained using thousands of GPUs or TPUs and hundreds of GBs of raw

textual data (LIU et al., 2019; RAFFEL et al., 2019). This resource barrier has limited

the availability of these models, early on, to English, Chinese and multilingual models.

BERT (DEVLIN et al., 2018), which uses the Transformer architecture (VASWANI

et al., 2017), among with its derived models, such as RoBERTa (LIU et al., 2019) and

Albert (LAN et al., 2019), is one of the most adopted models. Despite having a multi-

lingual BERT1 model (mBERT) trained on 104 languages, much effort has been devoted

on pretraining monolingual BERT and BERT-derived models on other languages, such as

French (MARTIN et al., 2019), Dutch (DELOBELLE et al., 2020; VRIES et al., 2019),

Spanish (CAĳETE et al., 2020), Italian (POLIGNANO et al., 2019), and others (BALY

et al., 2020; KURATOV; ARKHIPOV, 2019; NGUYEN; NGUYEN, 2020). Even though

it is unfeasable to train monolingual models for every language, these works are motivated

by the superior performance and resource efficiency of monolingual models compared to

mBERT.

Large pretrained LMs can be valuable assets especially for languages that have few

annotated resources but abundant unlabeled data, such as Portuguese. With that in mind,

we train BERT models for Brazilian Portuguese Ů which we nickname BERTimbauŮ us-

ing data from brWaC (FILHO et al., 2018), a large and diverse corpus of web pages. We

evaluate our models on three NLP tasks: sentence textual similarity, recognizing textual

entailment, and named entity recognition. BERTimbau improves the state-of-the-art on

these tasks over multilingual BERT and previous monolingual approaches, conĄrming the

effectiveness of large pretrained LMs for Portuguese. We make BERTimbau models avail-

able to the community on open-source libraries as to provide strong baselines for future

research on NLP.
1 https://github.com/google-research/bert/blob/master/multilingual.md
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1.1 Objectives

In this work, we investigate the transfer learning capabilities of large neural lan-

guage models for NLP tasks in Portuguese. First, we train monolingual BERT models

of two size variants for Brazilian Portuguese. Then, we evaluate our models on down-

stream tasks and compare the results to multilingual models and previous monolingual

approaches.

1.2 Contributions

The main contributions of this work are the assessment of the effectiveness of

deep-learning-based transfer learning approaches for NLP tasks in Portuguese and open-

sourcing our developed resources to the community. Our contributions can be outlined as

follows:

∙ Resource-intensive pretraining of BERT models for Brazilian Portuguese using brWaC,

a large corpus of unlabeled data.

∙ Evaluation on three downstream NLP tasks.

∙ State-of-the-art performances on ASSIN2 and First HAREM/MiniHAREM datasets.

∙ Experiments with Ąne-tuning and feature-based approaches for BERT.

∙ Comparison of the trained Portuguese models to the available multilingual model.

∙ Assessment of the vocabulary impacts on the modelsŠ performances.

∙ Open-sourcing resources to the community.

1.3 Organization of the thesis

This thesis is organized as follows: in Chapter 2, we review relevant concepts used

throughout this work, such as the BERT architecture and its pretraining procedures. in

Chapter 3, we present and discuss the related work. In Chapter 4, we describe BERTim-

bauŠs pretraining methods, such as the pretraining data, and the vocabulary generation,

and the evaluation procedures, such as evaluation tasks, datasets, architectures and met-

rics. Then, in Chapter 5, we describe our experiments and present and analyze our results.

Lastly, we make our conclusions in Chapter 6.



18

2 Concepts overview

2.1 Language modeling

The task of language modeling consists of estimating the joint probability of a

sequence of tokens, 𝑃 (𝑥1, . . . , 𝑥𝑁). In neural language modeling (BENGIO et al., 2003),

it is often factorized as

𝑃 (x) =
𝑁
∏︁

𝑡=1

𝑃 (𝑥𝑡 ♣ 𝑥1, . . . , 𝑥𝑡⊗1) (2.1)

With the factorization, the problem reduces to estimating each conditional factor, that is,

predicting the next token given a history of previous tokens. This formulation sees words

from left to right and is called forward language model. Similarly, a backward LM sees the

tokens in reversed order, which results in predicting the previous token given the future

context, 𝑃 (𝑥𝑡 ♣ x>𝑡).

2.2 Transfer learning

The most established way to reduce the data requirements and improve the per-

formance of neural networks is to resort to transfer learning techniques. Transfer learning

consists of training a base model on a base dataset and task and then transferring the

learned features to another model to be trained on a target task of interest (YOSINSKI

et al., 2014). In other words, the second model has its weights initialized with the weight

values of the trained base model. The base dataset is generally much larger than the

target dataset and the tasks are often related, as the main goal is to learn features from

the base task that are useful for both tasks. In computer vision, an effective recipe for

transfer learning is to pretrain a model on ImageNet (DENG et al., 2009) dataset, which

contains 1 million labeled images for classiĄcation in 1000 classes, and then Ąne-tune it

on a task of interest. This way, the model can leverage the learned representations from

the base task and only a fraction of the model parameters have to be learned from scratch

to the Ąnal task and dataset.

For NLP, the choice of a base task is an active research area. Language modeling

pretraining (DAI; LE, 2015) has been successfully proposed as a base task. It has been

shown that the features learned by this general task is highly transferable to a wide range

of downstream tasks, resembling a multitask objective that allows zero-shot learning on

many tasks (RADFORD et al., 2019). Its self-supervised nature is also beneĄcial, since
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training examples can be automatically generated from raw textual data, which is usually

readily available is most languages and domains and cheaper to gather, as opposed to

other supervised tasks that require manually labeled examples.

2.3 Subword tokenization

Subword tokenization has a vocabulary of subword units that can comprise char-

acters, sequences of characters of variable length and even entire words. The tokenization

process consists of segmenting the text into subword units (also referred to as subtokens

or subword tokens from hereon). The vocabulary is often generated in a data-driven it-

erative process, such as the adapted Byte Pair Encoding (BPE) algorithm (SENNRICH

et al., 2016a). In BPE, the vocabulary is initialized with all characters in a corpus, then

the corpus is tokenized and the most frequent pair of adjacent symbols is merged and

included in the vocabulary. This is repeated until a desired vocabulary size is reached.

This method, along with character-level tokenization, is more robust to out-of-vocabulary

(OOV) words, since the worst case scenario when tokenizing an arbitrary word is to

segment it into characters.

WordPiece (SCHUSTER; NAKAJIMA, 2012b) and SentencePiece (KUDO; RICHARD-

SON, 2018) are commonly used subword-level tokenization methods. In WordPiece, text

is Ąrst divided into words and the resulting words are then segmented into subword units.

For each segmented word that is composed of multiple subword units, all units following

the Ąrst one are preĄxed with Ş##Ť to indicate word continuation. SentencePiece takes a

different approach: white space characters are replaced by a meta symbol Ş Ť (U+2581)

and the sequence is then segmented into subword units. The meta symbol marks where

words start and allows for lossless detokenization. Possible tokenizations of the phrase ŞOs-

car Niemeyer was born in 1907Ť in WordPiece and SentencePiece, supposing the words

ŞNiemeyerŤ and Ş1907Ť are not in the vocabulary, are, respectively:

ŞOscarŤ ŞNieŤ Ş##meyerŤ ŞwasŤ ŞbornŤ ŞinŤ Ş19Ť Ş##07Ť

Ş OscarŤ Ş NieŤ ŞmeyerŤ Ş wasŤ Ş bornŤ Ş inŤ Ş 19Ť Ş07Ť

2.4 BERT

BERT (Bidirectional Encoder Representation from Transformers) (DEVLIN et

al., 2018) is a language model based on the Transformer Encoder (VASWANI et al., 2017)

architecture. BERTŠs main contribution is establishing a framework to pretrain deep bidi-

rectional word representations that are jointly conditioned on both left and right contexts,

in contrast to preceding works on language modeling that employ unidirectional LMs. For
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example, OpenAI GPT (RADFORD et al., 2018) pretrains a Transformer Decoder using

left-to-right language modeling, and ELMo (PETERS et al., 2018) concatenates represen-

tations from independent left-to-right and right-to-left language models. BERT demon-

strates that bidirectionality is important for both sentence-level and token-level tasks by

improving the state-of-the-art on several benchmarks. This unidirectionality limitation

is overcome by using a modiĄed language modeling objective called Masked Language

Modeling, that resembles a denoising objective and which we detail in Section 2.4.2.

Before delving into speciĄcs of the model architecture, BERT can be seen as a

black box model that maps a sequence of tokens x into a sequence of encoded token

representations:

(𝑥1, . . . , 𝑥𝑛) ↦⊃ (c, T1, . . . , T𝑛) (2.2)

where 𝑥𝑖 is a token of a vocabulary 𝒱 of size 𝑉 , T𝑖 ∈ R
𝐻 is the encoded representation of

the i-th token 𝑥𝑖 in the sequence x, c ∈ R
𝐻 is an aggregate representation of the entire

sequence, and 𝐻 is the modelŠs hidden size. To apply BERT to a task of interest, the

representations c or T𝑖 are used as inputs to a task speciĄc model, which can be as simple

as a linear transformation.

BERT usage in downstream tasks is composed of two stages: pretraining and

Ąne-tuning. In the pretraining stage, the model is trained from scratch on self-supervised

tasks to learn useful representations c and T𝑖. This stage is computationally intensive and

has to be performed only once. In the Ąne-tuning stage, a task speciĄc model is attached

to the pretrained BERT and the whole model is trained on the task of interest. In the

following subsections, we describe BERTŠs architecture, the pretraining procedure and

the Ąne-tuning on downstream tasks.

2.4.1 Model architecture

BERT consists of a Transformer Encoder, which is a part of the Transformer

architecture (VASWANI et al., 2017) that comprises an Encoder and a Decoder. The

Transformer was proposed as an alternative to convolutional models and well established

recurrent models, such as LSTM and GRU. By relying only on self-attention mechanisms

instead of recurrence, Transformer models can see all input tokens at once and, hence,

can model dependencies in long sequences in constant time while enabling much higher

parallelization. These features enable the training of deeper models and longer sequences.

Figure 1 shows a diagram of BERTŠs architecture. Each component will be described in

the following sections.
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2.4.1.1 Input representation

BERT can receive as input a single sentence or a sentence pair. Borrowing the

notation of the original work, throughout the rest of this work, a ŞsentenceŤ can be any

arbitrary contiguous text span, rather than a linguistic sentence. A ŞsequenceŤ, in its

turn, refers to the input token sequence, which can be composed of one or two sentences.

An input sequence is generated by packing the input sentences using two special

tokens, [CLS] and [SEP]. A single sentence is represented as

[CLS] 𝑥1 ≤ ≤ ≤ 𝑥𝑛 [SEP] ,

and a sentence pair, as

[CLS] 𝑥1 ≤ ≤ ≤ 𝑥𝑛 [SEP] 𝑦1 ≤ ≤ ≤ 𝑦𝑚 [SEP] .

The [SEP] token is simply a separator to mark the end of a sentence. The moti-

vation of the [CLS] token will be discussed in Section 2.4.1.5.

2.4.1.2 Input embeddings

A sequence of tokens has to be converted to vector representations before in-

putting into the model. In addition to simple token embeddings, that maps each token of

the vocabulary to a corresponding embedding vector, BERT embeds each token using 2

extra embeddings: position and segment embeddings.

The inclusion of position embeddings is directly associated to the non-sequential

nature of the Transformer architecture. While recurrent models inherently take sequence

order into account by consuming one word at a time, the Transformer operates on sets

of vectors and has no notion of sequence order. Therefore, some information about the

relative or absolute position of the tokens in the sequence has to be included at the

input. This position embedding encodes absolute position information by associating each

position 𝑖 ∈ ¶1, ≤ ≤ ≤ , 𝑆♢ to a learned vector embedding, and replaces the TransformerŠs

Ąxed positional encoding. The maximum sequence length 𝑆 is a hyperparameter and is

set to 512 in the original work.

Segment embeddings, in their turn, are related to the input representation and

are used to distinguish two sentences A and B inside a sequence. Each token of sentence

A is embedded using segment A embedding, and each token of sentence B is embedded

using segment B embedding. Table 1 shows an example of the embedding process for a

sentence pair. Formally, the embedding vector for a token 𝑥𝑖 is given by

E(𝑥𝑖) = LayerNorm(E𝑥i

𝑉 + E𝑖
𝑝𝑜𝑠 + E𝐴♣𝐵

𝑠𝑒𝑔 ) ∈ R
𝐻 , (2.3)

where LayerNorm is layer normalization (BA et al., 2016), E𝑉 ∈ R
𝑉 ×𝐻 is the matrix of

token embeddings for the vocabulary 𝒱 , E𝑝𝑜𝑠 ∈ R
𝑆×𝐻 is the matrix of position embeddings,
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where ℓ( ≤ ) is either a Multi-Head Self-Attention or a Feed Forward layer and U ∈ R
𝑛×𝐻

is either the output sequence of the previous encoder layer or of the previous sub-layer.

To facilitate the residual connections, both sub-layersŠ inputs and outputs have dimension

𝐻.

The Multi-Head Self-Attention layer Ů that will be described in the next sub-

sectionŮ receives as input all tokens from the output of the previous encoder layer. In

the attention layer, any position of the sequence can attend to all positions of the pre-

vious encoder layer. In other words, the attention mechanism allows each position of the

sequence to incorporate contextual information from across the sequence.

The Feed Forward layer, in its turn, is composed of two consecutive fully-connected

layers and is parameterized as

FNN(u) = Act(u W1 + b1)W2 + b2 , (2.5)

where u ∈ R
𝐻 , W1 ∈ R

𝐻×𝑑ff , b1 ∈ R
𝑑ff , W2 ∈ R

𝑑ff ×𝐻 , b2 ∈ R
𝐻 , 𝑑𝑓𝑓 is called intermedi-

ate dimension and 𝐴𝑐𝑡( ≤ ) is an activation function Ů ReLU in the original Transformer

and GeLU (HENDRYCKS; GIMPEL, 2016) in BERT.

Note that the input u is a vector and the layer is applied to each position of

the sequence separately and identically, as opposed to the attention that operates on the

entire sequence simultaneously. The output Z(𝑖) of the i-th Encoder layer is given by

Z(0) = E(x) (2.6)

Y(𝑖) = SubLayer(MultiHead(Z(𝑖⊗1), Z(𝑖⊗1), Z(𝑖⊗1)), Z(𝑖⊗1)) (2.7)

Z(𝑖) = SubLayer([FFN(y(𝑖)
1 ), . . . , FFN(y(𝑖)

𝑛 )], Y(𝑖)) (2.8)

Z = Z(𝐿) (2.9)

where E(x) ∈ R
𝑛×𝐻 is the embedded input token sequence, the superscript (𝑖) indicates

the i-th layer, subscript 𝑖 indicates i-th position in the sequence and [ ≤ ] represents con-

catenation operation.

2.4.1.4 Multi-Head Self-Attention

This subsection describes Multi-Head Self-Attention in a bottom-up approach by

Ąrst deĄning an attention mechanism. The attention mechanism was Ąrst proposed in

neural machine translation (BAHDANAU et al., 2014) to enable models to relate signals

from arbitrary positions in long sequences using a constant number of operations. Let

q be a query vector and (k𝑖, v𝑖) be key-value vector pairs. The output of an attention

mechanism is a linear combination of the value vectors,

a =
∑︁

𝑖

Ð𝑖v𝑖 , (2.10)
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where Ð𝑖 is the weight associated to value v𝑖. The weights are computed by

Ð𝑖 =
exp(𝑔(q, k𝑖))

√︁

𝑖′ exp(𝑔(q, k𝑖
′))

, (2.11)

where 𝑔 is a scoring or compatibility function that is calculated with the query and all

keys. Transformer uses Dot-Product attention (LUONG et al., 2015), whose compatibility

function is the dot-product of query and key vectors, and introduces an extra scaling

factor:

𝑔(q, k𝑖) =
q⊺k𝑖√

𝑑𝑘

, (2.12)

where 𝑑𝑘 is the dimension of the query and key vectors. The scaling factor was included

to reduce the magnitude of the dot products for large values of 𝑑𝑘, which could push the

softmax function (see Eq. 2.11) into regions where it has small gradients (VASWANI et

al., 2017).

In practice, dot-product attention can be computed on a set of queries simultane-

ously by packing the queries, keys and values in matrices. Let Q, K and V be the query,

key and value matrices. The matrix of outputs is computed by:

Attention(Q, K, V) = Softmax

(︃

QK⊺

√
𝑑𝑘

⎜

V , (2.13)

where Q ∈ R
𝑛×𝑑k , K ∈ R

𝑚×𝑑k , V ∈ R
𝑚×𝑑v , 𝑛 is the number of queries, 𝑚 is the number

of keys-value pairs and softmax is performed on each row. The attention output has

dimension R
𝑛×𝑑v .

Multi-head attention (VASWANI et al., 2017) consists of performing several at-

tention functions in parallel for 𝐴 individual heads, and then combining its outputs. To

keep computational cost constrained, one can apply linear projections on the queries, keys

and values to reduced dimensions 𝑑′
𝑞, 𝑑′

𝑘 and 𝑑′
𝑣, respectively. The Multi-Head Attention

can be deĄned as:

MultiHead(Q, K, V) = [ℎ𝑒𝑎𝑑1; . . . ; ℎ𝑒𝑎𝑑𝐴]W𝑂, (2.14)

ℎ𝑒𝑎𝑑𝑗 = Attention(QW𝑄
𝑗 , KW𝐾

𝑗 , VW𝑉
𝑗 ), (2.15)

where [ ≤ ] is concatenation operation, W𝑄
𝑗 ∈ R

𝑑i×𝑑′

q , W𝐾
𝑗 ∈ R

𝑑i×𝑑′

k , W𝑉
𝑗 ∈ R

𝑑i×𝑑′

v are the

input projection matrices for head 𝑗, W𝑂 ∈ R
𝐴𝑑′

v×𝑑o is the output projection matrix, and 𝑑𝑖

and 𝑑𝑜 are the input and output dimensions, respectively. To keep 𝑑𝑖 = 𝑑𝑜 = 𝐻, the inner

dimensions are set to 𝑑′
𝑞 = 𝑑′

𝑘 = 𝑑′
𝑣 = 𝐻/𝐴. Finally, self-attention implies that queries,

keys and values vectors are all projections from the same input vectors using distinct

linear projection matrices, as denoted by Eq. (2.7). Figure 2 shows three-dimensional

tensor representations of an input sequence as it is processed inside BERT.
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2.4.1.5 Output representation

As described in 2.4.1.1, the [CLS] token is inserted as the Ąrst token of every

input sequence. Its purpose is to produce an aggregate encoded representation c of the

entire sequence to be used in sequence-level tasks. Given the output of the Transformer

Encoder block Z = (z1, ≤ ≤ ≤ , z𝑛), the encoded representation of [CLS] is pooled using a

linear layer with hyperbolic tangent activation

c = tanh(z1 W𝑐 + b𝑐) , (2.16)

where c, z1, b𝑐 ∈ R
𝐻 , and W𝑐 ∈ R

𝐻×𝐻 .

For token-level tasks, the encoded representation T𝑖 of each token is taken directly

from its corresponding position in Z, as illustrated in Figure 1.

2.4.2 Pretraining stage

In the pretraining stage, BERT is trained on two self-supervised tasks: Masked

Language Modeling (MLM) and Next Sentence Prediction (NSP). Each pretraining ex-

ample is generated by concatenating two sentences A, with tokens (𝑎1, . . . , 𝑎𝑚) and B,

with tokens (𝑏1, . . . , 𝑏𝑜), as

𝑥 = ([CLS] 𝑎1 . . . 𝑎𝑚 [SEP] 𝑏1 . . . 𝑏𝑜 [SEP]) . (2.17)

Given a sentence A from the corpus, in 50% of the time the sentence B is the sentence

that follows sentence A, forming a contiguous piece of text, and 50% of the time B is a

random sentence sampled from a distinct document of the corpus. This choice deĄnes the

ground truth label for the NSP task

𝑦NSP = 1(B is the continuation of A) (2.18)

where 1(≤) is the indicator function.

For MLM, each example is then corrupted by Ąrst selecting a random set of

positions (integers from 1 to 𝑛 = ♣𝑥♣) m = [𝑚1, . . . , 𝑚𝑘], 𝑘 = ⌈0.15𝑛⌉. The tokens in

each of these positions are then replaced by 1 of 3 options: a special [MASK] token with

80% probability, a random token from the vocabulary with 10% probability or, otherwise,

keeping the original token. In this selection step we use whole word masking: if a token

from a word composed of multiple subword units is chosen to be corrupted, all other

subword units are also corrupted. The original tokens from the positions 𝑚𝑖 are saved and

serve as labels for the MLM task

𝑦MLM = [𝑥*
𝑚1

, . . . , 𝑥*
𝑚k

] . (2.19)

The Ąnal pretraining example can be represented as a tuple (𝑥corrupted, m, 𝑦MLM, 𝑦NSP).
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The corrupted sequences 𝑥corrupt are used as inputs to BERT and the output en-

coded representations are used as inputs for the pretraining tasksŠ heads that are attached

during this pretraining stage.

2.4.2.1 MLM head and loss function

The MLM task consists of, for every corrupted position 𝑖 ∈ m, predicting the

original token 𝑥*
𝑖 back by a classiĄcation over the entire vocabulary 𝒱 of size 𝑉 . For each

corrupted position 𝑖, the MLM head computes the classiĄcation probability distribution

𝑝𝑀i
over the vocabulary tokens by

h𝑀𝑖 = LayerNorm(GeLU(T𝑖 W𝑀 + b𝑚)) (2.20)

𝑝𝑀𝑖 = Softmax(h𝑀𝑖E
𝑇
𝑉 + b𝑣) , (2.21)

where W𝑀 ∈ R
𝐻×𝐻 , b𝑚 ∈ R

𝐻 , b𝑣 ∈ R
𝑉 , and E𝑉 ∈ R

𝑉 ×𝐻 is the matrix of input token

embeddings, that is, is a dense layer with tied weights with the input token embeddings.

The MLM loss for an example is the mean cross entropy loss over all corrupted

positions

ℒ𝑀𝐿𝑀(𝑥corrupt, 𝜃) =
1
𝑘

∑︁

𝑖∈m

⊗𝑙𝑜𝑔 𝑝𝑀𝑖(𝑥*
𝑖 ♣ 𝑥corrupt) , (2.22)

where 𝑝𝑀𝑖(𝑥*
𝑖 ♣ 𝑥corrupt) is the modelŠs estimated probability for the original token 𝑥*

𝑖 at

position 𝑖 and 𝑘 is the number of masked tokens.

2.4.2.2 NSP head and loss function

The NSP task is a binary classiĄcation to predict if the sentence B is the actual

continuation of sentence A or a random sentence. The NSP head consists of a single linear

layer that projects the vector c to the probabilities of the two classes, using a softmax

activation:

𝑝𝑁 = Softmax(cW𝑁 + b𝑛) , (2.23)

where W𝑁 ∈ R
𝐻×2 and b𝑛 ∈ R

2. Again, the NSP loss for an example is the cross entropy

loss

ℒ𝑁𝑆𝑃 (𝑥corrupt, 𝜃) = ⊗ (𝑦𝑁𝑆𝑃 𝑙𝑜𝑔 𝑝𝑁(𝑦𝑁𝑆𝑃 = 1) + (1 ⊗ 𝑦𝑁𝑆𝑃 ) 𝑙𝑜𝑔(1 ⊗ 𝑝𝑁(𝑦𝑁𝑆𝑃 = 0))) .

(2.24)

The total pretraining loss is the sum of MLM and NSP losses.
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CLS

Sequence

Output

selection

Figure 2 Ű Three dimensional tensor representation of the operations performed by a
BERT model for a single input sequence with the words ŞI am ĄneŤ. Each
attention head is represented by a distinct shade of blue. The tensor dimen-
sions, the number of attention heads and encoder layers refer to the BERT
Base variant (12 layers, hidden dimension 768, attention dimension 64, 12 at-
tention heads). Figure produced by Peltarion company and published on its
social networks.
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3 Related Work

3.1 Word vector representations

Word vector representations are a crucial component of many neural NLP mod-

els. Classic word embeddings (MIKOLOV et al., 2013; PENNINGTON et al., 2014) are

static non-contextualized word-level representations that capture semantic and syntactic

features using large corpora. More recently, contextual embeddings, such as ELMo (PE-

TERS et al., 2018) and Flair Embeddings (AKBIK et al., 2018), leverage the internal

states of language models to extract richer word representations in context. These em-

beddings are used as features to task-speciĄc models and consist of a shallow transfer

learning approach, since downstream models have to be trained from scratch on each task

of interest.

3.2 Deeper transfer learning

Deeper transfer learning techniques for NLP emerged by successfully Ąne-tuning

large pretrained LMs with general purpose architectures, such as the Transformer (VASWANI

et al., 2017), replacing task-speciĄc models. Language modeling pretraining is shown to re-

semble a multitask objective that allows zero-shot learning on many tasks (RADFORD et

al., 2019). This pretraining stage beneĄts from diverse texts and can be further improved

by additional pretraining with unlabeled data of downstream tasksŠ domains (GURU-

RANGAN et al., 2020).

3.3 Representations and language models for Portuguese

Several static word embeddings for Portuguese have been trained and evaluated

over the past years (SANTOS; ZADROZNY, 2014; HARTMANN et al., 2017). Recent

works also explored and compared contextual embedding techniques. ELMo and Flair

Embeddings trained on a large Portuguese corpora achieve good results on the named

entity recognition task (CASTRO et al., 2019b; CASTRO et al., 2019a; SANTOS et al.,

2019a; SANTOS et al., 2019b). A comparison of ELMo and multilingual BERT using

a contextual embeddings setup shows superior performance of Portuguese ELMo on se-

mantic textual similarity task when no Ąne-tuning is used (RODRIGUES et al., 2020c).

Portuguese language models for Ąne-tuning purposes, which is the topic of this work,

is still an area not much explored. Concurrent to this work, T5 models for Portuguese,
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PTT5, were trained and evaluated on semantic textual similarity and recognizing textual

entailment tasks (CARMO et al., 2020).
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4 BERTimbau: pretraining and evaluation

In this chapter, we describe the procedures to pretrain and evaluate BERT models

for Brazilian Portuguese.

4.1 Pretraining

Our approach closely replicates BERTŠs architecture and pretraining procedures

with few changes. In this section, we describe the procedures of vocabulary generation

and adaptation, and gathering and preprocessing of unlabeled data, which are the steps

required to pretrain the models.

We train BERTimbau models on two sizes: Base (12 layers, 768 hidden dimension,

12 attention heads, and 110M parameters) and Large (24 layers, 1024 hidden dimension,

16 attention heads and 330M parameters). The maximum sentence length is set to 𝑆 = 512

tokens. We train cased models only since we focus on general purpose models and capital-

ization is relevant for tasks like named entity recognition (CASTRO et al., 2018; DEVLIN

et al., 2018).

4.1.1 Vocabulary generation

We generate a cased Portuguese vocabulary of 30,000 subword units using the Sen-

tencePiece library (KUDO; RICHARDSON, 2018) with the BPE algorithm (SENNRICH

et al., 2016b) and 2,000,000 random sentences from Portuguese Wikipedia articles. The

resulting vocabulary is then converted to WordPiece (SCHUSTER; NAKAJIMA, 2012a)

format for compatibility with original BERT code.

4.1.1.1 SentencePiece to WordPiece conversion

To convert the generated SentencePiece vocabulary to WordPiece format, we

follow BERTŠs tokenization rules. Firstly, all BERT special tokens are inserted ([CLS],

[MASK], [SEP], and [UNK]) and all punctuation characters of mBERTŠs vocabulary are

added to the Portuguese vocabulary. Then, since BERT splits the text at whitespace

and punctuation prior to applying WordPiece tokenization in the resulting chunks, each

SentencePiece token that contains punctuation characters is split at these characters, the

punctuations are removed and the resulting subword units are added to the vocabulary.1

1 Splitting at punctuation implies no subword token can contain both punctuation and non-punctuation
characters.
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Finally, subword units that do not start with Ş Ť are preĄxed with Ş##Ť and the Ş Ť

symbol is removed from the remaining tokens.

4.1.2 Pretraining data

For pretraining data, we use the brWaC (FILHO et al., 2018) corpus (Brazilian

Web as Corpus), a crawl of Brazilian webpages which contains 2.68 billion tokens from

3.53 million documents and is the largest open Portuguese corpus to date. On top of its

size, brWaC is composed of whole documents and its methodology ensures high domain

diversity and content quality, which are desirable features for BERT pretraining.

We use only the document body (ignoring the titles) and we apply a single post-

processing step on the data to remove mojibakes2 and remnant HTML tags using the ftfy

library (SPEER, 2019). The Ąnal processed corpus has 17.5GB of raw text. We split the

corpus into chunks of 50MB and generate pretraining examples independently for each Ąle

as described in 2.4.2, with a duplication factor of 10. That is, we run example generation

10 times for each 50MB Ąle, producing distinct sentence pairs for NSP task and token

masks for MLM task. For maximum sequence length of 128 tokens, a total of 4.29 × 108

examples are generated, and, for maximum length 512, a total of 1.58 × 108 examples.

4.2 Evaluation

Once pretrained, we evaluate our models on 3 downstream NLP tasks: Sentence

Textual Similarity (STS), Recognizing Textual Entailment (RTE), and Named Entity

Recognition (NER). To evaluate BERTimbau on downstream tasks, we remove the MLM

and NSP classiĄcation heads used during pretraining stage and attach a relevant head

required for each task. We then Ąne-tune our models on each task or pair of tasks. Sim-

ilar to pretraining, sentence-level tasks are performed on the encoded representation of

the [CLS] special token, c, and token-level tasks use the encoded representation of each

relevant token, T𝑖.

In the following sections we briefly deĄne each evaluation task, the datasets, the

architecture modiĄcations and the training and evaluation procedures.

4.2.1 Sentence Textual Similarity and Recognizing Textual Entailment

Sentence Textual Similarity is a regression task that measures the degree of se-

mantic equivalence between two sentences in a numeric scale. Recognizing Textual En-
2 Mojibake is a kind of text corruption that occurs when strings are decoded using the incorrect character

encoding. For example, the word “codificação” becomes “codificaÃ§Ã£o” when encoded in UTF-8 and
decoded using ISO-8859-1.
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tailment, also known as Natural Language Inference (NLI), is a classiĄcation task of

predicting if a given premise sentence entails a hypothesis sentence.

4.2.1.1 Dataset and metrics

We use the dataset of the ASSIN2 shared task (REAL et al., 2020), which contains

10,000 sentence pairs with STS and RTE annotations. The dataset is composed of 6500

train, 500 validation and 3000 test examples.

STS scores are continuous values in a scale of 1 to 5, where a pair of sentences

with completely different meanings have a score of 1 and virtually equivalent sentences

have score of 5. STS performance is evaluated using PearsonŠs Correlation as primary

metric and Mean Squared Error (MSE) as secondary metric.

RTE labels are simply entailment and non-entailment. RTE performance is

evaluated using macro F1-score as primary metric and accuracy as secondary metric.

Examples from ASSIN2 dataset can be seen in Table 2, which contains sentence pairs and

their corresponding gold labels for both tasks.

4.2.1.2 Tasks’ heads and loss functions

Given an example with a premise sentence and a hypothesis sentence, we concate-

nate the two sentences as of 2.4.1.1 and feed the sequence into BERTimbau. We attach

two independent linear layers on top of BERTimbau in a multitask scheme, both receiving

the vector c as input:

𝑦𝑆𝑇 𝑆 = cW𝑆 + b𝑆 (4.1)

𝑝𝑅𝑇 𝐸 = Softmax(cW𝑅 + b𝑅) , (4.2)

where 𝑦𝑆𝑇 𝑆 is the modelŠs prediction for STS relatedness score, 𝑝𝑅𝑇 𝐸 is the modelŠs pre-

dicted probabilities for the two RTE classes, W𝑆 ∈ R
𝐻×1, b𝑆 ∈ R, W𝑅 ∈ R

𝐻×2 and

b𝑅 ∈ R
2.

We train using MSE loss for STS and cross-entropy loss for RTE. The Ąnal loss

is the sum of both losses with equal weight.

4.2.2 Named Entity Recognition

The task of named entity recognition consists of identifying text spans that men-

tions named entities (NEs) and classifying them into predeĄned categories. There are a

variety of deĄnitions for the Şnamed entityŤ expression, such as proper names and rigid

designators (NADEAU; SEKINE, 2007). These deĄnitions, however, are often loosened

for practical reasons. Common general NE categories are person, organization, location,

temporal expressions and numerical expressions, such as money, quantities of other units
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Table 2 Ű Five samples of ASSIN2 dataset. Each sample is composed of a sentence pair
and its gold STS relatedness score (a contiguous value from 1 to 5) and RTE
label (Entailment or None).

Gold STS/RTE Sentence pair

5.0 / Entailment

A: Os meninos estão de pé na frente do carro, que está queimando.
B: Os meninos estão de pé na frente do carro em chamas.

A: The boys are standing in front of the car, which is burning.
B: The boys are standing in front of the burning car.

4.0 / Entailment

A: O campo verde para corrida de cavalos está completamente cheio
de jóqueis.
B: Os jóqueis estão correndo a cavalos no campo, que é completa-
mente verde.

A: The green Ąeld for horse races is completely full of Jockeys.
B: The Jockeys are racing horses on the Ąeld, which is completely
green.

3.0 / Entailment

A: A gruta com interior rosa está sendo escalada por quatro cri-
anças do Oriente Médio, três meninas e um menino.
B: Um grupo de crianças está brincando em uma estrutura colorida.

A: Four middle eastern children, three girls and one boy, are climb-
ing on the grotto with a pink interior.
B: A group of kids is playing in a colorful structure.

2.0 / None

A: Não tem nenhuma pessoa descascando uma batata.
B: Uma pessoa está fritando alguma comida.

A: There is no one peeling a potato.
B: A person is frying some food.

1.0 / None

A: Um cachorro está correndo no chão.
B: A menina está batucando suas unhas.

A: A dog is running on the ground.
B: The girl is tapping her Ąngernails.

and percentages. Domain-speciĄc entity categories can also be deĄned, such as ŞproteinŤ,

ŞchemicalŤ and Şcell typeŤ that are found in works in the biomedical Ąeld (NADEAU;

SEKINE, 2007).

Formally, a NER system has to perform the following task: given a tokenized text

composed of a sequence of 𝑛 tokens (𝑥1, . . . , 𝑥𝑛), the system has to output triples (𝑡𝑠, 𝑡𝑒, 𝑘)

where 𝑡𝑠, 𝑡𝑒 ∈ ¶1, . . . , 𝑛♢ are the start and end token indices of an entity, respectively, and

𝑘 is a named entity class. For instance:
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Figure 3 Ű Examples of named entity recognition tag sequences for the sentence ŞJames
L. was born in Washington, DCŤ using the IOB2 and BILOU schemes with
person (PER) and location (LOC) classes.

Sentence

James L . was born in Washington , DC .

Tagging in IOB2 scheme

B-PER I-PER I-PER O O O B-LOC O B-LOC O

Tagging in BILOU scheme

B-PER I-PER L-PER O O O U-LOC O U-LOC O

James L . was born in Washington , DC .

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10

(1, 3, PERSON) ⊗⊃ ŞJames L.Ť

(7, 7, LOCATION) ⊗⊃ ŞWashingtonŤ

(9, 9, LOCATION) ⊗⊃ ŞDCŤ

This example emphasizes that NER outputs should locate each named entity in the input

text, and not simply output categorized substrings, such as a list of person names and

locations.

NER is commonly modeled as a sequence tagging task that performs uniĄed entity

identiĄcation and classiĄcation. Given a sequence of tokens (𝑥1, . . . , 𝑥𝑛), the model has to

output a sequence of tags (𝑦1, . . . , 𝑦𝑛), where each token is assigned a tag of a predeĄned

tag vocabulary according to a tagging scheme and the entity classes.

Common tagging schemes are IOB2 (TJONG et al., 1999) and IOBES/BILOU.

Each scheme deĄnes a tag vocabulary and tag transition constraints. The IOB2 tagging

scheme deĄnes the tags {B-x, I-x, O} . The B-x tag indicates the beggining of an entity

of class ŞxŤ. I-x marks succeeding tokens inside the same entity of class ŞxŤ and must

follow a B-x tag. The O tag is used for outside tokens that do not belong to entities. The

Ąnal tag vocabulary is composed by the the O tag and {B-, I-} tags for each named

entity class, allowing entity identiĄcation and classiĄcation to be performed jointly.

The IOBES/BILOU scheme extends IOB2 by including Ending/Last and Sin-

gle/Unit tags. The E-/L- tag is used to mark an entityŠs Ąnal token and S-/U- marks

single-token entities. Tagging output examples for IOB2 and BILOU schemes are shown

in Figure 3.

To perform NER using BERT, we follow the original work and cast it as a sequence

tagging task using the IOB2 tagging scheme. Below we describe the datasets.
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Table 3 Ű Dataset statistics for the HAREM I corpora. The Tokens column refers to
whitespace and punctuation tokenization.

Dataset Documents Tokens
Entities in scenario

Selective Total

First HAREM 129 95585 4151 5017
MiniHAREM 128 64853 3018 3642

4.2.2.1 NER datasets

We use the Golden Collections of the First HAREM (SANTOS et al., 2006) and

Mini HAREM evaluation contests, which we refer hereafter as First HAREM and Mini-

HAREM. Both datasets contain multidomain documents annotated with 10 NE classes:

Person, Organization, Location, Value, Date, Title, Thing, Event, Abstraction, and Other.

Examples from First HAREM dataset are shown in Table 4.

We use First HAREM as train set and Mini HAREM test set. We employ the

datasets on two distinct scenarios: a Total scenario that considers all 10 classes, and a

Selective scenario that includes only 5 classes (Person, Organization, Location, Value,

and Date). This setup of train/test sets and distinct scenarios follows previous works

(SANTOS et al., 2019a; CASTRO et al., 2018; SANTOS; GUIMARAES, 2015) and aims

to facilitate the comparison of results. Table 3 presents some dataset statistics. We set

aside 7% of First HAREM documents as a holdout validation set.

Preprocessing — The HAREM datasets are annotated taking into consideration vague-

ness and indeterminacy in text, such as ambiguity in sentences. This way, some text seg-

ments contain <ALT> tags that enclose multiple alternative named entity identiĄcation

solutions. Additionally, multiple categories may be assigned to a single named entity.

To model NER as a sequence tagging problem, we must select a single truth for

each undetermined segment and/or entity. To resolve each <ALT> tag in the datasets, our

approach is to select the alternative that contains the highest number of named entities.

In case of ties, the Ąrst one is selected. To resolve each named entity that is assigned

multiple classes, we simply select the Ąrst valid class for the scenario.

An example annotation of HAREM that contains multiple solutions, in XML

format, is:

<ALT>

<EM CATEG="PER|ORG">Governo de Cavaco Silva</EM>|

<EM CATEG="ORG">Governo</EM> de <EM CATEG="PER">Cavaco Silva</EM>

</ALT>

where <EM> is a tag for named entity and Ş|Ť identiĄes alternative solutions. This

annotation can be equally interpreted as containing the following NEs:
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1. 1 NE: Person "Governo de Cavaco Silva"

2. 1 NE: Organization "Governo de Cavaco Silva"

3. 2 NEs: Organization "Governo" and Person "Cavaco Silva"

The deĄned heuristics select the third solution in the example above as the

ground-truth.

4.2.2.2 NER evaluation metrics

NER performance is evaluated using CoNLL 2003 (SANG; MEULDER, 2003)

evaluation script,3 that computes entity-level precision, recall, and micro F1-score on

exact matches. In other words, precision is the percentage of named entities predicted by

the model that are correct, recall is the percentage of corpus entities that were correctly

predicted and F1-score is the harmonic mean of precision and recall.

Formally, considering a set of ground-truth named entity triples 𝒯 and a set of

predicted triples 𝒯 , the metrics are computed as:

𝑇𝑃 = ♣𝒯
⋂︁

𝒯 ♣ (4.3)

𝐹𝑃 = ♣𝒯 ⊗ 𝒯 ♣ (4.4)

𝐹𝑁 = ♣𝒯 ⊗ 𝒯 ♣ (4.5)

Precision =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(4.6)

Recall =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(4.7)

F1-score =
2 ≤ Precision ≤ Recall
Precision + Recall

, (4.8)

where TP, FP and FN stand for True Positives, False Positives and False Negatives,

respectively.

4.2.2.3 NER architectures and loss functions

Given a sequence of tokens x = (𝑥1, . . . , 𝑥𝑛) and a corresponding sequence of

ground-truth tags y = (𝑦1, . . . , 𝑦𝑛), the direct approach to perform NER using BERT

is to feed the BERT-encoded token representations T = (T1, . . . , T𝑛) to a classiĄcation

model that projects each tokenŠs encoded representation to the tag space, i.e. R𝐻 ↦⊃ R
𝐾 ,

where 𝐾 is the number of tags and depends on the the number of classes and on the

tagging scheme. In the simplest architecture, the classiĄcation model is a single linear
3 <https://www.clips.uantwerpen.be/conll2002/ner/bin/conlleval.txt>
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layer and tag predictions are made independently for each position,

P = TW𝑐𝑙𝑠 (4.9)

ŷ = argmax
𝑗

P (4.10)

where W𝑐𝑙𝑠 ∈ R
𝐻×𝐾 , P ∈ R

𝑛×𝐾 is a matrix of tag scores for each token, argmax is applied

on the tags dimension and ŷ ∈ ¶1, . . . , 𝐾♢𝑛 is the sequence of predicted tags. In this setup,

the model is trained by minimizing the cross-entropy loss.

Since Linear-Chain Conditional Random Fields (CRF) (LAFFERTY et al., 2001)

is widely adopted to enforce sequential classiĄcation in sequence labeling tasks (SANTOS;

GUIMARAES, 2015; LAMPLE et al., 2016; AKBIK et al., 2018), we also experiment with

employing a CRF layer. In this setup, the output scores of the classiĄcation model, P,

are fed to a CRF layer, whose parameters are a matrix of tag transitions A ∈ R
𝐾+2,𝐾+2.

The matrix A is such that 𝐴𝑖,𝑗 represents the score of transitioning from tag 𝑖 to tag 𝑗.

A includes 2 additional states: start and end of sequence.

For an input sequence X = (x1, . . . , x𝑛) with a corresponding matrix of tag scores

P and a sequence of tag predictions y = (𝑦1, . . . , 𝑦𝑛), the score of the sequence is deĄned

as

𝑠(X, y) =
𝑛
∑︁

𝑖=0

𝐴𝑦i,𝑦i+1
+

𝑛
∑︁

𝑖=1

𝑃𝑖,𝑦i
, (4.11)

where 𝑦0 and 𝑦𝑛+1 are start and end tags, respectively, and 𝑃𝑖,𝑦i
is the score of tag 𝑦𝑖 for

the i-th token. During training, the model is optimized by maximizing the log-probability

of the correct tag sequence, which follows from applying softmax over all possible tag

sequencesŠ scores:

log(𝑝(y ♣ X)) = 𝑠(X, y) ⊗ log

∏︀

∐︁

∑︁

ỹ∈YX

𝑒𝑠(X,ỹ)

∫︀

̂︀ (4.12)

where YX are all possible tag sequences. The summation in Eq. (4.12) is computed using

dynamic programming. During evaluation, the most likely sequence ŷ is obtained by

Viterbi decoding. We refer readers to (LAMPLE et al., 2016) for further explanation of

CRF.

It is important to note that subword tokenization requires tag predictions and

losses to be computed only for the Ąrst subtoken of each word, ignoring word continuation

tokens. This applies to both architectures described in this section, especially for Eqs.

(4.10) to (4.12).

4.2.3 Document context and max context evaluation for token-level tasks

In token-level tasks such as NER, we use document context for input examples

instead of sentence context to take advantage of longer contexts when encoding token
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Figure 4 Ű Illustration of the proposed method for the NER task described in 4.2.3.
Given an input document, the text is tokenized using WordPiece (SCHUS-
TER; NAKAJIMA, 2012a) and the tokenized document is split into overlap-
ping spans of the maximum length using a Ąxed stride (= 3, in the example).
Maximum context tokens of each span are marked in bold. The spans are fed
into BERT and then into the classiĄcation model, producing a sequence of tag
scores for each span. The scores of subtoken entries (starting with ##) are
removed from the spans and the remaining tags scores are passed to the CRF
layer Ů if it is employed, otherwise the highest tag scores are used indepen-
dently. The maximum context tokens are selected and concatenated to form
the Ąnal predicted tags.

representations from BERT. Following the approach of original BERT work (DEVLIN et

al., 2018) on the SQuAD dataset, examples longer than 𝑆 tokens are broken into spans of

length up to 𝑆 using a stride of 𝐷 tokens. Each span is used as a separate example during

training. During evaluation, however, a single token 𝑥𝑖 can be present in 𝑁 = 𝑆
𝐷

multiple

spans 𝑠𝑗, and so may have up to 𝑁 distinct predictions 𝑦𝑖,𝑗. Each tokenŠs Ąnal prediction

is taken from the span where the token is closer to the central position, that is, the span

where it has the most contextual information. Figure 4 illustrates this procedure.



Chapter 4. BERTimbau: pretraining and evaluation 39

Table 4 Ű FirstHAREM dataset samples. Gold named entities are enclosed by brackets
with subscripted labels.

A onça, ou jaguar, é um mamífero ([Panthera]THING onca), da ordem dos carnívoros,
família dos felídeos, encontrado em todo o continente americano, dos [EUA]LOC à
[Argentina]LOC e em todo o [Brasil]LOC.

English translation: The jaguar is a mammal ([Panthera]THING onca), of the or-
der of carnivores, family of felids, found throughout the American continent, from the
[USA]LOC to [Argentina]LOC and throughout [Brazil]LOC.

[Almeida Henriques]PER ([A.H.]PER): O [CEC]ORG foi criado numa lógica de unir as
associações da [Região Centro]LOC, quer sejam industriais, quer sejam comerciais, quer
sejam agrícolas.

English translation: [Almeida Henriques]PER ([A.H.]PER): The [CEC]ORG was cre-
ated in a logic of uniting the associations of the Center Region, whether industrial,
commercial or agricultural.

Entre os mais importantes destacam-se o de [Shanta Durga]TITLE e o de [Shri
Munguesh]TITLE, construidos há [400 anos]VALUE.

English translation: Among the most important are [Shanta Durga]TITLE and [Shri
Munguesh]TITLE, built [400 years]VALUE ago.

Para aqueles que vão participar do processo seletivo, o professor de [Direito
Previdenciário]ABS [Fábio Zambite]PER dá uma dica importante: os candidatos devem
estudar com bastante atenção o [Decreto 3.048/99]TITLE, que aprova o [Regulamento
da Previdência Social]TITLE.

English translation: For those who are going to participate in the selection process,
Professor of [Social Security Law]ABS [Fábio Zambite]PER gives an important tip: can-
didates must carefully study [Decree 3.048/99]TITLE, which approves the [Social Security
Regulation]TITLE.

[A Mulher no Inicio do Novo Século]EVENT

Dia [15 de Maio]TIME, pelas [9.30H]TIME, no [Cine-Teatro Caridade]LOC, em [Moura]LOC

irá realizar-se um Fórum intitulado [A Mulher no Inicio do Novo Século]ABS, tendo
como organização a [Câmara Municipal de Moura]ORG e a colaboração da [Associação
de Mulheres do Concelho de Moura]ORG.

English translation: [Women at the Beginning of the New Century]EVENT

On the [15th of May]TIME, at [9.30 am]TIME, at the [Cine-Teatro Caridade]LOC, in
[Moura]LOC, a Forum entitled [Women at the Beginning of the New Century]ABS will
take place, organized by the [Moura City Council]ORG with the collaboration of the
[MouraŠs Women Association Board]ORG.

[Touro]OTHER é o signo seguinte. O sol o visita entre [21 de abril]TIME e [21 de
maio]TIME, domicílio de [Vênus]THING.

English translation: [Taurus]OTHER is the next sign. The sun visits him between [April
21]TIME and [May 21]TIME, home of [Venus]THING.
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5 Experiments

In this section, we present the experimental setup and results for BERT pre-

trainings and evaluation tasks. We conduct additional experiments to explore the usage

of BERTimbau as a Ąxed extractor of contextual embeddings, the impact of the long

pretraining stage and the impacts of the vocabulary and tokenization on the evaluation

tasksŠ metrics.

5.1 Pretrainings

Following Devlin et al. (DEVLIN et al., 2018), models are pretrained for 1,000,000

steps. We use a peak learning rate of 1e-4, with learning rate warmup over the Ąrst 10,000

steps followed by a linear decay of the learning rate over the remaining steps.

For BERTimbau Base models, the weights are initialized with the checkpoint of

Multilingual BERT Base, with the exception of the word embeddings and MLM head

bias, E𝑉 and b𝑚, that are of a different vocabulary and are randomly initialized. We use

a batch size of 128 and sequences of 512 tokens the entire training. This training takes 4

days on a TPU v3-8 instance and performs about 8 epochs over the pretraining data.

For BERTimbau Large, the weights are initialized with the checkpoint of English

BERT Large, again discarding E𝑉 and b𝑚. Since it is a bigger model with longer training

time, we follow the instructions of the original work and use sequences of 128 tokens in

batches of size 256 for the Ąrst 900,000 steps and then sequences of 512 tokens and batch

size 128 for the last 100,000 steps. This training takes 7 days on a TPU v3-8 instance and

performs about 6 epochs over the training data.

Training loss curves for both pretrainings are shown in Figure 5. It can be seen

that there is a sharp decrease in loss over the initial 100k steps, which can be interpreted

as the models learning the word embeddings that are initialized randomly. The losses

slowly decrease afterwards until the end of the training. A steep decrease in BERTimbau

Large loss can be noticed in step 900,000, which marks the beginning of the pretraining

using sequences of 512 tokens. It is worth noting that while the smoothed curve appears

to have room for further training, this is actually an effect of the large smoothing factor Ů

the non-smoothed curve shows the loss rapidly decreases and varies around a new plateau.

BERTimbau Large reaches a MLM accuracy of 70% and NSP accuracy of 98.5%, while

BERTimbau Base reaches 66.8% and 98.2%, respectively.

Note that in the calculation of the number of epochs, we are taking into con-

sideration a duplication factor of 10 when generating the input examples. This means
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8 for 5 epochs. We also train mBERT to compare it to BERTimbau models. mBERT is

trained using learning rate of 1e-5 and batch size 8 for 10 epochs.

5.3.1 Results

Table 5 Ű Test scores for STS and RTE tasks on ASSIN2 dataset. We compare our models
to the best published results. Best scores in bold. Reported values are the
average of multiple runs with different random seeds. Star (⋆) denotes primary
metrics. †: ensemble technique. ‡: extra training data.

Row Model
STS RTE

Pearson (⋆) MSE F1 (⋆) Accuracy

1 mBERT + RoBERTa-Large-en (Averaging) (RODRIGUES et al., 2020b) † 0.83 0.91 84 84.8
2 mBERT + RoBERTa-Large-en (Stacking) (RODRIGUES et al., 2020b) † 0.785 0.59 88.3 88.3
3 mBERT (STS) and mBERT-PT (RTE) (RODRIGUES et al., 2020a) ‡ 0.826 0.52 87.6 87.6
4 USE+Features (STS) and mBERT+Features (RTE) (FONSECA; ALVARENGA, 2020) 0.800 0.39 86.6 86.6
5 mBERT+Features (FONSECA; ALVARENGA, 2020) 0.817 0.47 86.6 86.6

6 mBERT (ours) 0.809 0.58 86.8 86.8
7 BERTimbau Base 0.836 0.58 89.2 89.2
8 BERTtimbau Large 0.852 0.50 90.0 90.0

Our results for both tasks are shown in Table 5. We compare our results to the

best-performing submissions to official ASSIN2 competition. All compared works employ

either mBERT or a Transformer-based architecture in their approaches. In the following

paragraphs, we refer to each work using their corresponding row numbers in Table 5.

BERTimbau models achieve the best results on the primary metrics of both STS

and RTE tasks, with the large model performing signiĄcantly better than the base variant.

The previous highest scores (rows 1 and 2) for both STS PearsonŠs correlation and RTE F1

score are from ensemble techniques that combine mBERT Ąne-tuned on original ASSIN2

data and an English RoBERTa-Large Ąne-tuned on ASSIN2 data automatically translated

to English. The averaging ensemble uses 2 models and the stacking ensemble uses 10

distinct Ąne-tuned models Ů 5-fold stacking which results in 5 mBERT and 5 RoBERTa

trained models. While this approach shows an interesting application of English models

to Portuguese tasks, our BERTimbau models achieve higher performance using a single

model and, hence, demand lower compute resources in both Ąne-tuning and inference

stages.

Regarding our implementation using mBERT (row 6), it presents a lower per-

formance compared to BERTimbau models, which highlights the beneĄts of Portuguese

pretraining of BERTimbau. For STS task, we note that mBERT achieves the same MSE

as BERTimbau Base, even though Pearson correlation is lower. Comparing it to other

worksŠ approaches, better performances are achieved using extra supervised training data

and further pretraining of mBERT on Portuguese data (row 3), and also by combining it

with hand-designed features (rows 4 and 5).
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5.4 NER

In this section, we refer to the 2 architectures deĄned in 4.2.2.3 as BERT and

BERT-CRF. Long examples are broken into spans using a stride of 𝐷 = 128 as explained

in Section 4.2.3.

The model parameters are divided in two groups with different learning rates:

5e-5 for BERT model and 1e-3 for the classiĄer. We train BERT models for up to 50

epochs using a batch size of 16. BERT-CRF models are trained for up to 15 epochs.

In addition to BERTimbau Base and Large, we also train mBERT to compare

monolingual versus multilingual model performances. mBERT is Ąne-tuned with the same

hyperparameters.

It is common in NER for the vast majority of tokens not to belong to named

entities (and have tag label ŞOŤ). To deal with this class imbalance, we initialize the

classiĄerŠs bias term of the ŞOŤ tag with a value of 6 in order to promote a better stability

in early training (LIN et al., 2017). We also use a weight of 0.01 for "O" tag losses.

When evaluating, we produce valid predictions by removing all invalid tag tran-

sitions for the IOB2 scheme, such as ŞI-Ť tags coming directly after ŞOŤ tags or after an

"I-" tag of a different class. This post-processing step trades off recall for a possibly higher

precision.

Table 6 Ű Results of NER task (Precision, Recall and micro F1-score) on the test set
(MiniHAREM). Best results in bold. Reported values are the average of multiple
runs with different random seeds. Star (⋆) denotes primary metrics.

Row Architecture
Total scenario Selective scenario

Prec. Rec. F1 (⋆) Prec. Rec. F1 (⋆)

1 CharWNN (SANTOS; GUIMARAES, 2015) 67.2 63.7 65.4 74.0 68.7 71.2
2 LSTM-CRF (CASTRO et al., 2018) 72.8 68.0 70.3 78.3 74.4 76.3
3 BiLSTM-CRF+FlairBBP (SANTOS et al., 2019a) 74.9 74.4 74.6 83.4 81.2 82.3

4 mBERT 71.6 72.7 72.2 77.0 78.8 77.9
5 mBERT + CRF 74.1 72.2 73.1 80.1 78.3 79.2

6 BERTimbau Base 76.8 77.1 77.2 81.9 82.7 82.2
7 BERTimbau Base + CRF 78.5 76.8 77.6 84.6 81.6 83.1

8 BERTimbau Large 77.9 78.0 77.9 81.3 82.2 81.7
9 BERTimbau Large + CRF 79.6 77.4 78.5 84.9 82.5 83.7

5.4.1 Results

The main results of our NER experiments are presented in Table 6. We compare

the performances of our models on the two scenarios (total and selective) deĄned in Section

4.2.2.1 to results of previous works. The models of rows 1 to 3 show the progress of neural

network approaches for this dataset over the recent years. The previous best result (row 3),
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Table 7 Ű NER performances (Precision, Recall and F1-score) on the test set (Mini-
HAREM) using BERTimbau as contextual embeddings in a feature-based ap-
proach. Star (⋆) denotes primary metrics.

Architecture
Total scenario Selective scenario

Prec. Rec. F1 (⋆) Prec. Rec. F1 ⋆)

mBERT + BiLSTM-CRF 74.7 69.7 72.1 80.6 75.0 77.7
BERTimbau Base + BiLSTM-CRF 78.3 73.2 75.6 84.5 78.7 81.6
BERTimbau Large + BiLSTM-CRF 77.4 72.4 74.8 83.0 77.8 80.3

achieved by BiLSTM-CRF+FlairBBP model, uses Portuguese Flair Embeddings, which

are contextual embeddings extracted from character-level language models (AKBIK et

al., 2018).

Our best model, BERTimbau Large + CRF (row 9), outperforms the best pub-

lished results improving the F1-score by 3.9 points on the total scenario and by 1.4 point

on the selective scenario. Interestingly, Flair embeddings outperform BERT models on

English NER (AKBIK et al., 2018; DEVLIN et al., 2018).

There is a large performance gap between BERTimbau and mBERT, which rein-

forces the advantages of monolingual models pretrained on multidomain data compared

to mBERT, that is trained only on Wikipedia articles. This result is on par with other

monolingual BERT works.

The CRF layer consistently brings performance improvements in F1 in all settings.

However, F1 increases are pushed by a large boost in precision that is often associated

with lower recall. It is worth noting that, without CRF, BERTimbau Large shows a close

but inferior performance to the Base variant on the selective scenario. This result suggests

that a more controlled Ąne-tuning scheme might be required in some cases, such as partial

layer unfreezing or discriminative Ąne-tuning (PETERS et al., 2019) Ů usage of lower

learning rates for lower layers Ů, given that it is a higher capacity model trained on few

data.

5.5 BERTimbau as contextual embeddings

In this experiment, we evaluate BERTimbau as a Ąxed extractor of contextual

embeddings that we use as input features to train a downstream model on the NER task.

This setup can be interesting in lower resource scenarios in which several tasks are to be

performed on the same input text: the extraction of contextual embeddings Ůwhich is

the most expensive stage, Ůcan be computed once and then shared across several smaller

task-speciĄc models.

In this feature-based approach, we train a BiLSTM-CRF model with 1 layer and
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100 hidden units followed by a linear classiĄer layer for up to 50 epochs. Instead of using

only the hidden representation of BERTŠs last encoder layer, we sum the last 4 layers, as

proposed by the original work (DEVLIN et al., 2018):

Tf𝑖𝑥𝑒𝑑
𝑖 = Z(𝐿)

𝑖 + Z(𝐿⊗1)
𝑖 + Z(𝐿⊗2)

𝑖 + Z(𝐿⊗3)
𝑖 , (5.1)

where Z(𝑗)
𝑖 is the output of the j-th Encoder layer at the i-th position. The resulting

architecture resembles the BiLSTM-CRF model (LAMPLE et al., 2016) but using BERT

embeddings instead of Ąxed word embeddings.

5.5.1 Results

We present the results on Table 7. Models of the feature-based approach

perform signiĄcantly worse compared to the ones of the Ąne-tuning approach. The per-

formance gap is found to be much higher than the reported values for NER on English

language (DEVLIN et al., 2018; PETERS et al., 2019) and reaches up to 2 points on

BERTimbau Base and 3.5 points on BERTimbau-Large, although it can probably be

reduced by further hyperparameter tuning.

In this setup, BERTimbau Base+BiLSTM-CRF achieves similar performances

to BiLSTM-CRF+FlairBBP (row 3 of Table 6), which also uses contextual embeddings

and a similar architecture. BERTimbau shows a slightly lower F1-score in the Selective

scenario but higher F1-score in the Total scenario.

It is worth mentioning that BERTimbau models in this feature-based approach

achieve better performances than a Ąne-tuned mBERT on this same task. While BERTim-

bau Large is the highest performer when Ąne-tuned, we observe that it experiences per-

formance degradation when used in this feature-based approach, performing worse than

the smaller Base variant but still better than mBERT.

5.6 Impact of long pretraining

To assess the impact of long pretraining stage on the performance of downstream

tasks, we repeat part of the NER Ąne-tuning experiment (Section 4.2.2) using intermediate

checkpoints of BERTimbau Base pretraining procedure. We train BERT models (without

CRF) using the checkpoints of steps 235k, 505k and 700k, which correspond to 23.5%,

50.5% and 70% of the complete pretraining of 1M steps, respectively. All models are

trained with the same hyperparameters and experimental setup of Section 4.2.2.

The results are displayed in Figure 6. Performances on the downstream task

increase non-linearly with pretraining steps, with diminishing returns as pretraining pro-
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Figure 6 Ű Performance of BERTimbau Base on NER task using intermediate checkpoints
of the pretraining stage. Reported scores on the validation set.

gresses. This is an expected result, as test performance of pretraining tasks are shown to

follow a power law on the number of pretraining steps (KAPLAN et al., 2020).

5.7 Tokenization analysis

One possible advantage of a monolingual BERT over multilingual BERT can be

related to the WordPiece tokenizer vocabulary. The vocabulary size is a hyperparameter

that limits the number of distinct recognizable tokens, which affects the size of the input

token embedding matrix. Most monolingual BERT models have vocabulary sizes in the

range of 30, 000 to 50, 000 tokens (DEVLIN et al., 2018; LIU et al., 2019; LAN et al.,

2019; CAĳETE et al., 2020). In comparison, mBERT has a vocabulary of 120, 000 tokens,

which has to encompass tokens of over 100 languages and a variety of alphabets. When

considering the usage of mBERT on a single speciĄc language, the effective vocabulary

size is usually much smaller than a monolingual equivalent, resulting in longer tokenized

sequences. This happens because, in smaller vocabularies generated by BPE, only very

frequent words will be present as individual tokens, causing the tokenization of most words

to be composed of multiple subword units.

Considering that dot-product attention layers have quadratic complexity that

imposes limitations on input sequence size of BERT and Transformer models in general

(VASWANI et al., 2017), a more efficient tokenization that produces shorter sequences

allows inputing larger textual context in a sequence of maximum length 𝑆. This limita-

tion is often encountered in sequence-level tasks such as document classiĄcation of long

documents (SUN et al., 2019).

One can also hypothesize that a tokenization that often breaks words into multiple

subword units imposes a harder task on the model, since instead of receiving an embedding

vector that readily represents the original word, the model will receive several vectors, one

for each subword unit, that will have to be combined inside the model to form a complete
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6 Conclusions

In this work, we advance the study of deep learning models for NLP in Portuguese,

especially the usage of pretrained language models in a transfer learning approach. We

train BERT models for Brazilian Portuguese and evaluate their performances on three

downstream NLP tasks.

In the pretraining stage, we use Wikipedia articles to generate a Portuguese vo-

cabulary and then leverage millions of webpages from the brWaC corpus as unlabeled data

to train Portuguese BERT models on self-supervised objectives. On the evaluation stage,

we Ąne-tune the models supervisely on downstream tasks in two distinct experiments.

In the Ąrst experiment, we Ąne-tune our BERTimbau models on the ASSIN2

dataset to jointly solve Sentence Textual Similarity (STS) and Recognizing Textual En-

tailment (RTE) tasks. BERTimbau achieves state-of-the-art performances in both tasks,

surpassing Multilingual BERT (mBERT) and previously published results in the litera-

ture, that comprise both Portuguese speciĄc models and multilingual approaches.

In the second experiment, we Ąne-tune BERTimbau on named entity recognition

(NER) task using the FirstHAREM and MiniHAREM datasets. We experiment with

two NER architectures: plain BERT and BERT-CRF. Again, our best model achieves

state-of-the-art results and shows a large performance improvement over mBERT and the

previously best published result, that uses Portuguese Flair embeddings in a contextual

embeddings setup, especially in the hardest Total scenario that considers all 10 named

entity classes.

In additional experiments, we assess the usage of BERTimbau in a contextual

embeddings setup by freezing its weights and training BERTimbau-BiLSTM-CRF models

on NER task. Even though there is a notable performance drop, we show that contextual

embeddings from BERTimbau Base outperform Ąne-tuned mBERT models, which can be

a lower compute alternative for limited resource scenarios. We also validate the necessity

of a long pretraining stage, that had been reported for English and other languages, for

our Portuguese models by evaluating the performance of intermediate model checkpoints

of the pretraining stage on NER task. Models pretrained for longer times show better

performance in the end task, even though the pretraining stage had already started from

pretrained checkpoints from mBERT and English BERT.

Lastly, we compare BERTimbauŠs Portuguese vocabulary to mBERTŠs multilin-

gual vocabulary by looking at the produced tokenizations on the evaluation tasks. The

Portuguese vocabulary produces smaller tokenized sentences, which corresponds to (1)

keeping more words intact as a single token and (2) breaking words using a lower aver-
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age number of subword units per word. We analyze how tokenizing words into multiple

subword units might affect the model performance on the end tasks by binning task ex-

amples by tokenization statistics and computing evaluation metrics separately for each

group. In particular to NER, we notice the models show inferior performance to detect

named entities that contain at least one subword unit compared to only whole words.

While this phenomenon could be related to the presence of rarer words in these examples,

we hypothesize that the BERT architecture is not fully capable of reconstructing word

representations from several subword units since it relies heavily on the positional embed-

dings that might not be sufficient. Further experiments and analyses can be performed to

better understand these issues, such as exploring other evaluation tasks, distinct vocabu-

lary sizes and vocabulary generation algorithms, or looking for alternatives to the simple

positional embedding.

The Ąeld of deep learning applied to NLP is evolving at a rapid pace, with pre-

trained language models recently becoming ubiquitous in most state-of-the-art (SOTA)

systems. The current trend of publications focus heavily on SOTA by training expo-

nentially larger capacity models that consume huge amounts of data and computational

resources. Despite this path achieving unprecedented performances, if it is not closely

followed by research aiming to optimize model decisions, such as more efficient architec-

tures and training procedures, it might lead to an overconcentration of resources on a few

organizations that have access to the required computational power.

In regards to multilingual models, we notice mBERT is one of the Ąrst works in

this area. There are more recent models, such as XLM (LAMPLE; CONNEAU, 2019) and

XLM-R (CONNEAU et al., 2019), that can be experimented with in future work. These

models propose new training procedures that allow greater knowledge sharing across lan-

guages without sacriĄcing much per-language performance, and avoiding vocabulary dilu-

tion. Even though Portuguese is heavily present on the internet and, as such, it has enough

unlabeled data to train large monolingual language models, the cross-lingual transfer al-

lowed by multilingual models can be extremely beneĄcial for Portuguese by leveraging

labeled datasets of other languages to alleviate the annotated data limitation that is

commonly faced by NLP researchers and developers.

Regarding the future of this area, the trend of ever-growing model sizes will

probably continue over the next years, since neural networks beneĄt from higher model

capacity specially when larger amounts of data are available. The availability of NLP

data is endless when we consider the rate of content generated in the internet, so this

is a natural path. Fortunately, there is a strong and active branch of research focused

on reducing hardware requirements, such as model distillation, model quantization and

optimized architectures.

Since the necessity of labeled datasets is the weaker aspect of deep learning ap-
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plications in general, every possibility of leveraging transfer learning should be exploited.

This way, large multilingual models are a natural path to enable sharing data across lan-

guages and alleviate this problem. Monolingual models, instead of trained individually,

might be distilled when there is necessity, for instance.

6.1 Contributions and publications

The main results of this dissertation were published as an homonymous conference

paper in 9th Brazilian Conference on Intelligent Systems (BRACIS), where it was awarded

the 1st place in the classiĄcation of Best Papers in the conference:

∙ Souza, F., Nogueira, R., Lotufo, R. (2020, October). BERTimbau: Pretrained BERT

Models for Brazilian Portuguese. In 9th Brazilian Conference on Intelligent Systems

(pp. 403-417). Springer, Cham.

Preliminary results of BERTimbau pretraining and evaluation on NER task were

published as a preprint article and has been cited by over 33 works according to Google

Scholar:

∙ Souza, F., Nogueira, R., Lotufo, R. (2019, September). Portuguese named entity

recognition using BERT-CRF. arXiv preprint arXiv:1909.10649.

An extended abstract was accepted as a talk into the OpenCor1 2020 Forum,

which aims to facilitate the discovery and access of Latin American and Iberian languages

free resources. The forum took place in the PROPOR 2020 conference.

Lastly, our models are available to the community in the Transformers open-

source library (WOLF et al., 2019), where they have over 120,000 registered downloads,

as shown in Figure 13. Code to reproduce our evaluation experiments is available in our

GitHub repository2.

1 https://opencor.gitlab.io/
2 https://github.com/neuralmind-ai/portuguese-bert
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Figure 13 Ű Registered downloads for BERTimbau Base model in the Transformers library
over the period of 20/10/2020 to 20/11/2020, as reported by the libraryŠs
webpage.
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