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Abstract

The main objective of this theses is to design and to implement a centralized self-healing soft-

ware for unbalanced three-phase electrical distribution systems (EDS), using the information

provided by smart meters and considering distributed generation (DG). Self-healing is the

ability of the EDS to automatically restore themselves in case of a permanent fault. According

to the data gathered by smart meters and the EDSŠs parameters, the proposed self-healing

software is able to: a) estimate the nodal demands during the pre and post-fault status, using

a three-phase state estimator and a short-term load forecasting method, b) identify the zone

wherein a permanent fault is located, and c) generate the sequence of operations that must

be deployed by the remote-controlled switches installed along the system. Ultimately, the

self-healing scheme will isolate the faulty section of the network and restore the service of

as many customers as possible, in the least amount of time and with minimal human inter-

vention. The proposed self-healing software will have a friendly graphical user interface to

simplify the data acquisition process and to present the results, considering geographic data,

dispatchable DG units, smart meters and remote-controlled switching devices. A three-phase

state estimator will continuously calculate the power demands at the nodes. In case of a

permanent fault, the fault location algorithm will use the smart metersŠ data and the fault

indicators signals to establish the zone where a permanent fault is most probably located. Af-

ter Ąnding the faulty section of the system and the estimated post-fault demands, an optimal

service restoration will be deployed in order to determine the sequence of switch operations.

Mathematical optimization models will be used to represent the three-phase state estimator

and the service restoration process. An enhanced bus-impedance-matrix-based fault-location

method will be also implemented. The methodology used to solve the optimization models

will be the metaheuristic Tabu Search. The short-term load forecasting method will be an

adaptation of the seasonal ARIMA models. The proposed self-healing scheme will be tested

using real EDS.

Keywords: Electrical distribution system, fault-location method, mathematical program-

ming, self-healing scheme, service restoration, short-term load forecasting.



Resumo

O objetivo deste trabalho é projetar e implementar um software eĄciente de self-healing

em sistemas de distribuição de energia elétrica trifásicos, usando as leituras dos medidores

inteligentes instalados na rede e considerando a operação dos geradores distribuídos (GD).

Self-healing é a capacidade de um sistema de distribuição para se restaurar automaticamente

após a identiĄcação e isolamento de uma falta permanente na rede. Em função dos parâmetros

do sistema e das medidas, o esquema de self-healing proposto deve: a) estimar as demandas

dos nós, no estado de pré e pós-falta, através de um estimador de estado trifásico e um

modelo de previsão da demanda ao curto prazo, b) identiĄcar a zona da rede onde existe

uma falta permanente, e c) gerar a sequência de operações das chaves instaladas ao longo

do sistema para isolar a zona com falta e restaurar o serviço de energia do maior número de

usuários desenergizados, no menor tempo possível, e com mínima intervenção humana. Foi

desenvolvida uma ferramenta computacional com um entorno gráĄco amigável capaz de ler

e processar os dados elétricos e geográĄcos das redes trifásicas, os parâmetros das fontes de

GD, as leituras dos medidores inteligentes, e o estado de operação das chaves remotamente

controláveis. Um algoritmo de estimação de estado trifásico determinará continuamente as

injeções de potência nos nós em função das medidas registradas pelos medidores. Em caso

de falta permanente, um modelo de localização de faltas, baseado nas leituras dos medidores

e dos indicadores de falta instalados na rede, fornecerá o local aproximado da falta. Após

localizar a falta e, segundo o valor das demandas estabelecidas pelo estimador de estado, o

esquema de restauração fornecerá a sequência de operações das chaves para levar o sistema

até um estado restaurativo eĄciente. Modelos de otimização matemática serão desenvolvidos

para representar o estimador de estado e o problema de restauração trifásica, respectivamente.

O método de localização de falta utilizado será uma versão melhorada do método basedo em

medida esparsas e a matriz de impedância das barras. A meta-heurística Tabu Search será

utilizada para resolver os modelos de otimização propostos. O modelo ARIMA será utilizado

para a previsão da demanda. O software de self-healing será testado utilizando sistemas reais.

Palavras-chaves: Estimação de estado, meta-heurísticas, otimização matemática, previsão

do consumo de energia, sistemas de distribuição de energia elétrica.
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1 Introduction

Acronyms of Chapter 1

ARIMA Autoregressive integrated moving average

DG Distributed generation

EDS Electrical distribution system

GIS Geographic information system

GUI Graphical user interface

MAS Multi-agent system

MILP Mixed-integer linear programming

MINLP Mixed-integer nonlinear programming

MISOCP Mixed-integer second-order conic programming

NLP Nonlinear programming

OLTC On-load tap changer

SCADA Supervisory control and data acquisition

1.1 Background

In the context of modern electrical distribution systems (EDS), a centralized self-

healing system is a set of equipment, software and communication technologies that, after

a permanent fault, can determine and deploy a sequence of restorative actions to isolate

the faulted section of the network and to minimize the total number of unsupplied custo-

mers (AGUERO, 2012). Among the restorative actions, the most commonly used are the

operation of remote-controlled switching devices and the outputs of the dispatchable distri-

buted generation (DG) resources. A truly automated self-healing system not only restores

the EDS in case of a fault, but also is able to identify the approximated location of the

fault and to estimate the total amount of unsupplied demand that needs to be minimized by

the service restoration process. As shown in Fig. 1, the centralized self-healing scheme uses

the information gathered by the SCADA system (e.g., Ąeld measurements and status of the
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control/protection devices) to identify the most probable location of a permanent fault and

respond to it as soon as possible, with minimal human intervention. Finally, once the faulted

section of the zone has been cleared, the maintenance crews can be sent to Ąnd and repair

the interruption (LIU et al., 2014).

Self-healing

Software
Permanent fault detected

Fault location

Service restoration

Fault repair

Figure 1 Ű Centralized self-healing system.

Source: author.

Based on the former description, the Ćowchart in Fig. 2 summarizes the steps of a

truly centralized self-healing system. Using data gathered by smart meters and the EDSŠs to-

pological and electrical parameters, a centralized self-healing scheme: a) estimates the nodal

demands during the pre and pos-fault conditions, using a three-phase steady-state estimation

algorithm and a short-term load forecasting method; b) identiĄes the zone wherein a per-

manent fault is located; and c) generates the sequence of switching actions and dispatchable

DG outputs that minimize the total unsupplied demand (ZIDAN et al., 2017). Thus, the mo-

dules of the proposed self-healing system work in tandem: once the measurements from the

SCADA system have been processed by the data processing module, the state estimator mo-

dule establishes the pre and the post-fault operating point of the EDS. If a permanent fault

has been identiĄed by the protection coordination, the fault location algorithm establishes

the zone of the network where the outage is, most probably, located; a.k.a., the faulty zone.

Finally, given a faulty zone and the estimation of the demands after the fault, an optimal

restoration algorithm is deployed.

Clearly, the main module of any self-healing system is the service restoration algo-

rithm. In general, service restoration adapts the classic system reconĄguration problem in

which, instead of active power losses, the objective is to minimize the unsupplied demand
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Post-fault operation

not

yes

Faulty Zone

- Switching Sequence

- Dispatch DG units

Figure 2 Ű Flowchart of the proposed self-healing system.

Source: author.

after a permanent fault. In order to exemplify the service restoration scheme consider the

restoration sequence shown in Fig. 3. Given a permanent fault at any component of Zone 2

in the test system at Fig. 3, a simple protection scheme would open the circuit-breaker S2

to extinguish the fault (Step 1). Eventually, all loads at Zones 2 and 5 will be de-energized.

Then, a simple restoration algorithm can be deployed to restore all loads at Zone 5 by ope-

ning Switch S6 and transferring Zone 5 to another feeder by closing Switch S8. (Steps 2 and

3) Finally, the faulty Zone 2 will be isolated and ready to be repaired, and the amount of

unsupplied demand will be minimal.

In summary, the service restoration problem is a computationally complex optimiza-

tion problem (LATARE et al., 2017) for the following reasons: 1) it is combinatorial since

there exists a large number of possible conĄgurations depending on the number of remote-

controlled switches; 2) it is a non-linear non-convex problem due to the equations used to
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Figure 3 Ű Restoration sequence for a fault in Zone 2.

Source: Lopez et al. (2018).

represent the steady-state operation of unbalanced three-phase EDS; 3) it can be multi-

objective; and 4) it is a constrained problem, in terms of electromechanical limits, switching

sequence and radial topology.

1.2 State-of-the-art

Since the early nineties, multiple centralized approaches for the optimal service res-

toration have been proposed in the specialized literature. In this work, we have classiĄed

the service restoration methods in the following groups: expert systems, heuristic and me-

taheuristic algorithms, fuzzy set-based methods, graph theory-based methods, mathematical

programming, and multi-agent systems (SHEN et al., 2018).
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1.2.1 Expert Systems

Expert systems are knowledge or Ąeld-based experience techniques. They are used to

transfer expertsŠ knowledge into a set of if-then-else rules, and uses them as decision-making

tools to establish a set of restorative actions (SRIVASTAVA; BUTLER-BURRY, 2006). For

instance, authors in Liu et al. (1988) developed an expert system with 180 different rules

that are gathered from the specialized literature and from discussions among operators.

Authors in Lee et al. (1992) proposed a knowledge-based restoration system with different

rules that are able to separate the outage areas into a single group or multiple groups, based

on feeder margins, branch points, and tie switches. Authors in Chen et al. (2002) developed

an expert system using a colored Petri net model. This inference method can be solved in

parallel processors, hence, it is very efficient for numerous switching scenarios. In addition,

load priority was also considered by Chen et al. (2002). The author in Tsai (2008) developed

an expert system using an object-oriented programming technique. In this case, the feeder

conĄguration data is organized in a hierarchical structure that improves the performance of

the inference tool. Furthermore, the proposal in Tsai (2008) considered time-dependent loads.

Although the above-mentioned expert system techniques can be very efficient in terms

of computational performance, they are not suitable when more than one fault is conside-

red, and when the electrical and topological constraint of the EDS are taken into account.

Furthermore, experience can be very subjective; thus, it can be difficult to transfer into logic

rules.

1.2.2 Heuristic Algorithms

Heuristic algorithms use domain-speciĄc rules that guide the searching for quality

solutions of combinatorial optimization problems. In Hsu et al. (1992), Miu et al. (1999),

Kleinberg et al. (2011), Shirmohammadi (1992) the service restoration problem has been sol-

ved problem using distinctive heuristic approaches. Authors in Hsu et al. (1992) presented an

heuristic multi-step procedure that makes use of feeders and lateral branches to perform full

restoration or partial restoration in case of a fault. In Miu et al. (1999), a multi-tier algorithm

was developed. In there, a tier1 is a set of tie switches, switch pairs and feeders incident to the

out-of-service areas, whereas tier2 is a set of tie switches, switch pairs and feeders incident to

tier1. At Ąrst, all switches and feeders in tier1 attempt to restore all the de-energized loads.

If this fails, then tier2 is used to solve the problem. A similar approach considering load

curtailment was proposed in Kleinberg et al. (2011). The author in Shirmohammadi (1992)

developed a service restoration based on load Ćow analysis. Initially, all available switches

are treated as ideal current sources and then they are closed to create a meshed grid. Then,
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a compensation-based power Ćow is executed to calculate the current magnitudes at each

branch of the network. Once the current magnitudes are known, the switch carrying the least

amount of current is opened to eliminate a loop. Switches are iteratively opened using the

same procedure until a radial network with acceptable operating requirements is obtained.

Authors in Morelato and Monticelli (1989), Wu et al. (1991), Botea et al. (2012)

constructed search spaces and decision trees of the combinatorial problem and used them in

different search techniques. Clearly, domain-speciĄc knowledge can be used to avoid unneces-

sary search. Thus, authors in Morelato and Monticelli (1989) developed a binary search tree

in which each node is a partial assignment of a binary decision variable given by the swit-

chesŠ status, either open or closed. Starting from any parent node, a switch in the network

is selected for branching the tree. Each possible binary value produces a child node. After

the binary tree has been built, a depth-Ąst search technique is used to search for the optimal

solution. Authors in Wu et al. (1991) proposed a different decision tree, in which a node

represents a conĄguration of the network. The transition from a parent node to a child node

is given by the opening of a sectionalizing switch or the closing of a tie-switch. In this work,

breadth-Ąrst search is used to travel through the decision tree. Finally, authors in Botea et

al. (2012) built a similar decision tree than Morelato and Monticelli (1989) disregarding load

transference among healthy feeders. A specialized A* search technique was used in Botea et

al. (2012) to search for the optimal reconĄguration.

While heuristic algorithms can obtain fast solutions, they still require specialistsŠ

knowledge and they are not based on classical mathematical optimization, thus optimality

and feasibility are not guaranteed.

1.2.3 Metaheuristic Algorithms

Metaheuristic algorithms (or simply, metaheuristics) are optimization methods that

use dissimilar strategies to avoid local minima in the search for the optimal solution of

combinatorial problems (LOPES et al., 2013). Many metaheuristics have been developed for

solving the service restoration problem, including genetic algorithms (AUGUGLIARO et al.,

1998; LUAN et al., 2002), tabu search (TOUNE et al., 2002a), particle swarm optimization

(CHEN et al., 2011), parallel simulated annealing (TOUNE et al., 2002b), among others.

These algorithms have similar objectives with different search strategies and systems for

encoding the solutions.

Thus, in Toune et al. (2002b), four metaheuristics were built and compared conside-

ring the average execution time and the quality of the Ąnal solution. In most metaheuristics

(AUGUGLIARO et al., 1998; LUAN et al., 2002), a multi-objective problem is converted into
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an equivalent single objective problem via weighting factors, and the admissible switching

sequence is usually omitted. To overcome these disadvantages, some improvements have been

proposed as in Kumar et al. (2008), where authors adopted a non-dominated sorting genetic

algorithm-II (NSGA-II) to solve the restoration problem. The objectives are the minimiza-

tion of the out of service areas, switching operations and network losses. The utilization

of non-dominated sorting techniques deals with multiple objectives without using weighting

factors. Authors in Marques et al. (2018) proposed a multi-objective revolutionary algorithm

that considers priority in loads and switches, and also determines the optimized switching

sequence. In addition, the methodology uses a node-depth encoding method that guarantees

radiality of each solution.

Metaheuristic algorithms can be very fast and do not require specialistsŠ knowledge.

However, global optimality cannot be guaranteed by any of the aforementioned techniques.

1.2.4 Fuzzy Theory

Fuzzy theory (a.k.a., fuzzy logic or fuzzy set theory) has been successfully used to

address the multi-objective nature of the service restoration problem (LEE et al., 1998;

HSIAO; CHIEN, 2000), to consider the imprecise linguistic terms of some heuristic rules

(HSU; KUO, 1994; HUANG, 2003) and to characterize uncertainties in the optimization

problem (KUO; HSU, 1993; POPOVIC; POPOVIC, 2004). In these works, loads, the number

of switching actions, line Ćows, bus voltage, etc., are treated as fuzzy variables and the solution

is attained based on a maximum membership function.

Authors in Lee et al. (1998) developed fuzzy evaluation criteria to deal with the multi-

objective nature of the restoration problem. First, a set of feasible plans is generated by a

heuristic algorithm. Then, four predeĄned fuzzy criteria are used to evaluate these plans and

to choose the one with the highest membership value. In Hsiao and Chien (2000), an inte-

ractive fuzzy satisfying method was proposed. Initially, multiple objectives are normalized

by their corresponding membership functions, and the decision maker establishes a satisfac-

tion value between 0 and 1 for each objective. Then, a genetic algorithm is used to Ąnd the

solution whose membership values are closer to the established satisfaction value. Finally,

according to satisfactory level of the solution, the decision maker can redeĄne the objectives

and Ąnd a new solution.

Fuzzy set theory can also be used to represent imprecise linguistic terms of heuristic

rules. In Hsu and Kuo (1994), some objectives and constraints, such as capacity limits of

the supporting feeders and lateral branches, are transformed into fuzzy objectives and fuzzy

constraints. Then, a maxmin problem is adapted to determine the best solution. In Huang
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(2003), heuristic rules are transformed into a fuzzy cause-effect network, which is used to

evaluate all feasible cases and Ąnd the solution with best objective value.

Uncertainties in loads were modeled in Kuo and Hsu (1993), Popovic and Popovic

(2004) via fuzzy theory. In Kuo and Hsu (1993) stochastic demands are represented by fuzzy

variables. According to mathematical operations on fuzzy variables, a heuristic algorithm is

used to Ąnd the solution with the lowest number of required switching actions. In Popovic

and Popovic (2004), uncertainties at loads and payback value are modeled as fuzzy variables,

and a fuzzy mixed-integer model is developed to perform a risk-averse service restoration.

Fuzzy theory is suitable when an analytical representation of the problem is not

straightforward. However, service restoration can be represented using mathematical expres-

sions and well-known physical equations. Thus, the use of fuzzy logic seems unnecessary in

most practical cases.

1.2.5 Graph Theory

Distribution networks can be represented using a graph in which nodes are seen as

vertices and circuits are seen as edges of the network. Thus, the service restoration problem

can be considered as the problem of Ąnding the spanning tree that bests represents the struc-

ture of a graph in which the faulty section has been isolated, satisfying a set of operational

constraints. Different graph-oriented techniques have been proposed in the specialized lite-

rature (LI et al., 2014; DRAYER et al., 2018; ZADSAR et al., 2017; SARMA et al., 1994;

DIMITRIJEVIC; RAJAKOVIC, 2015). In Li et al. (2014), authors proposed a spanning tree

search procedure based on the cut set theory. According to this theory, a new tree can be

generated by operating a pair of switches with different status. Then, power Ćows can be

executed to evaluate the feasibility of all newly formed trees and Ąnd the desired tree. In

Drayer et al. (2018) the concept of fundamental loops is used. In theory, a tree can be derived

by removing one edge from every fundamental loop. As before, power Ćow calculations are

used to evaluate the quality of the obtained trees. In Zadsar et al. (2017), fundamental loops

are used again to form microgrids and the particle swarm optimization is used to Ąnd the

optimal solution. Author in Sarma et al. (1994) proposed the concept of interested trees. An

interested tree is a graph in which all vertices are supplied by a given source. After evaluating

all interested trees, a service restoration plan can be obtained. In Dimitrijevic and Rajakovic

(2015), any energized node that can be connected to a de-energized area is considered as a

possible root, which means that the process of restoring faulted areas can be treated as a

process of identifying multiple spanning trees.

Although the optimal solution can be obtained through exhaustive search in graph
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theory, the number of spanning trees can be considered as a NP-hard problem. Thus, graph

theory approaches suffer from scalability issues.

1.2.6 Mathematical Programming

In mathematical programming, the service restoration problem is formulated as a

combinatorial optimization problem. In Nagata et al. (1995), Ciric and Popovic (2000), an

heuristic algorithm and an expert system were merged with combinatorial optimization.

Authors in Nagata et al. (1995) used generic experts knowledge to separate a network into

several sub-networks. Then, each sub-network is analyzed with a mixed-integer linear pro-

gramming (MILP) problem, solved via branch and bound. In Ciric and Popovic (2000), the

combinatorial optimization is used when a simple heuristic algorithm is unable to Ąnd a fea-

sible solution. In this context, a smaller version of the original network is used to formulate

the MILP problem.

In Khushalani et al. (2007), Romero et al. (2016), Cavalcante et al. (2016), Lopez et

al. (2018) more sophisticated mathematical programming models for service restoration have

been proposed. Authors in Khushalani et al. (2007) developed two different mixed-integer

nonlinear programming (MINLP) models for distribution network restoration in unbalance

three-phase EDS. The Ąrst formulation uses a classical bus injection model and the second

uses a branch Ćow model (a.k.a., DistFlow model). A nonlinear optimization solver was

used to solve both MINLP models. It is well-known that solving MINLP models is difficult

due to their non-convex non-linear nature. Authors in Romero et al. (2016) relaxed the

original MINLP problem into a mixed-integer second-order cone programming (MISOCP)

model, which can be efficiently solved and whose optimality is guaranteed by commercial

solvers. In Cavalcante et al. (2016), a two-stage procedure was proposed. The Ąrst stage uses

a piece-wise linearization method to transform the original MINLP problem into a convex

MILP problem to calculate the value of the binary decision variables. In the second stage, a

nonlinear programming (NLP) problem is solved to adjust the steady-state operating point

of the network and to further optimized the load curtailment. In Lopez et al. (2018), the

authors proposed a multi-stage MINLP problem, considering dispathchable DG units and

the optimal switching sequence. Likewise, the MINLP problem is transformed into a convex

MILP problem via a set of linearization techniques.

Furthemore, dynamic programming has also been used to solve the service restoration

problem with switching sequence. Authors in Perez-Guerrero et al. (2008) used dynamic

programming to determine the restoration sequence that minimizes the usupplied energy

during the service restoration. In Carvalho et al. (2007), a two-phase strategy was proposed.

In the Ąrst phase, genetic algorithm is used to Ąnd the optimal conĄguration. Then, in
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the second phase, the optimal sequence of switching operations is calculated using dynamic

programming.

Uncertainties of the DG units and loads have also been studied in the specialized

literature. Authors in Chen et al. (2016) proposed a robust restoration model that uses a

two-terms objective and it takes the form of a minmax problem. Then, the MILP problem is

solved by a column-and-constrained generation method and an optimized conĄguration that

tries to restore as much unsupplied demand as possible, in the worst-case scenario of possible

DG dispatch. Authors in Chen et al. (2015) formulated a robust restoration decision-making

model based on information gap decision theory. This method considers uncertainties at

renewable resources and loads. For a given bounded uncertainty set, the solution guarantees

that the operational constraints will not be violated, and the supplied load will not fall below

a selected threshold.

Some mathematical optimization models have been developed to solve the service

restoration problem considering the assistance of microgrids. Authors in Wang and Wang

(2015) proposed a holistic strategy that uses DG units and energy storage systems (ESS), in

which normal and restorative operation are considered. In the normal operation, a rolling-

horizon MINLP model is proposed to minimize the total operational costs and to deal with

uncertainties. On the other hand, during restorative operation, sectionalizers are used to

break the network into self-sustained microgrids. Authors in Chen et al. (2018) proposed

a sequential restoration strategy to break the network into microgrids. Moreover, typical

components of EDS, such as voltage regulators and capacitor banks, are modelled. In Guo and

Wang (2016), authors used BenderŠs decomposition technique to solve the service restoration

problem. The master problem minimizes the load shedding during the reconĄguration, and

the slave problem minimizes active power losses in each generated microgrid.

Although convex mathematical programming can obtain the optimal solution under

diverse operating constraints, execution times often exceed practical implementation, speci-

ally for large-scale EDS.

1.2.7 Multi-agent Systems

Multi-agent systems (MAS) are decentralized control methods that use procedural

programming at each individual agent of the system to achieve a common goal. Authors in

Nagata and Sasaki (2002) proposed a MAS-based service restoration process in which each

bus is considered as a single agent with a central facilitator agent. Each bus agent is res-

ponsible for monitoring and restoring its own load, whereas the facilitator runs a negotiation

process to guarantee overall feasibility. Clearly, the previous work is not totally decentralized
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due to the presence of a central facilitator agent. Authors in Solanki et al. (2007) proposed

a fully decentralized MAS-based restoration using three types of agents: switch, load, and

generation agents. Each agent has restricted access to local measurements and limited com-

munication with neighboring agents. Full restoration and partial restoration can be achieved

in Solanki et al. (2007) thanks to the inclusion of load priority at each load agent. Likewise,

authors in Zidan and El-Saadany (2012) proposed a MAS-based restoration using zone and

feeder agents, considering the presence of dispatchable DG resources. A two-step process is

considered by each agent at Zidan and El-Saadany (2012); Ąrst, zone agents monitor the EDS

in search for permanent faults or under-fault operation, and deploy a set of control actions

according to the impact of the fault. Then, in the second step, a negotiation among agents

is carried out to reduce the amount of unsupplied demand. Multiple faults are also conside-

red by the method in Zidan and El-Saadany (2012). Working above the previous proposal,

authors in Hafez et al. (2018) proposed four different types of zone agents, namely, faulted

zone agent, unsupplied zone agent, tie zone agent, and healthy zone agent. After a permanent

fault, each zone of the network identify itself as one of the previous types depending on the

location of the fault. Authors in Elmitwally et al. (2015) included a new type of agent asso-

ciated to voltage control. Such devices, voltage regulators, capacitor banks and OLTCs, are

used to improve the voltage proĄle of the system and, therefore, the restorative capacity of

the EDS. Fuzzy set theory was used to carry out the decision-making process at each agent.

More recently, energy storage systems and microgrids have been adapted to provide

service restoration services., as in Nguyen and Flueck (2012). Under normal operation, storage

units are used to provide voltage support and active power losses reduction. Then, in case of

a permanent fault, storage and switch agents are deployed in order to reduce the impact of

the outage by transferring loads among healthy feeders and the creation of microgrid islands.

Finally, electric vehicles with vehicle-to-grid (V2G) capabilities are employed to support the

grid in case of a fault, as in Sharma et al. (2015). In this work, a new aggregator agent is

proposed and used by the MAS-based restoration service to improve the restorative capacity

of the grid.

1.3 Objectives

The main objective of this thesis is to develop a software dedicated to the design and

implementation of a centralized self-healing system in modern EDS. Based on the measure-

ments gathered by smart meters and the operation of remote-controlled switches installed

throughout the network, and considering the presence of dispatchable DG units, the propo-

sed software can be used to locate the fault, to estimate the state and to restoration the
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grid in case of a permanent fault. Hence, the overall reliability and resilience of the network

will be enhanced. The use of real time measurements will make it possible to forecast the

moment of maximum consumption after a fault, which is necessary to deploy a robust res-

toration sequence that minimizes the un-supplied demand and isolates the faulted section of

the network.

A straightforward geographic information system (GIS)-based graphical user interface

(GUI) will be developed to represent the real EDS. On the other hand, the proposed software

will be Ćexible enough to allow the application of different networks with a speciĄc data-set

format. Operational limits, such as three-phase current and voltage limits, source capacities

and maximum number of switching actions can be adjusted by the user, and they will be

considered as constraints of the service restoration module.

Finally, the proposed self-healing system will require the following set of modules and

methods that will be explained and tested in the subsequent chapters:

∙ Three-phase state estimator based on smart metersŠ measurements and SCADA data.

∙ Short-term load forecasting module to determine the moment of maximum consumption

after a permanent fault.

∙ Fault location and identiĄcation algorithm based on smart metersŠ measurements and

SCADA data.

∙ Optimal restoration sequence of unbalanced three-phase EDS.

∙ A GIS-based GUI for visualizing and deploying the proposed self-healing system in real

EDS.

1.4 Motivation

The motivation behind the proposed research project was originated during the execu-

tion of the industrial research project (a.k.a., P&D project) PD-0063-3010/2014: Self Healing

- Sistema para reconfiguração automática de rede e alocação ótima de religadores automáticos

telecomandados coordinated by the Centro de Pesquisa e Desenvolvimento em Telecomunica-

ções (CPqD), Prof. Dr. Arivaldo Garcia, Ąnanced by the Companhia Paulista de Força e Luz

(CPFL Energia) and technically supported by the supervisor Prof. Dr. Marcos Julio Rider.

The challenge was to implement a practical self-healing scheme in real electrical distribution

systems, considering the unreliable and sometimes non-existing data, which can be fully de-

ployed within reasonable amount of time and limited computational resources. To this date,
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and thanks to some of the results presented in this PhD thesis, the industrial research project

was successfully implemented and many of the tests presented throughout this thesis are part

of the real CPFLŠs distribution network.

1.5 Organization

This thesis has been structured using a paper-based approach, in which each chapter

is a complete paper with abstract, introduction, state-of-the-art, contributions, methodo-

logy, tests, results and conclusions. Thus, the rest of this document is organized as follows:

Chapter 2 explains and shows the performance of the proposed service restoration method

for unbalanced three-phase EDS, considering the operation of dispatchable DG units and an

optimized switching sequence. Chapter 3 shows the proposed fault location algorithm used

to establish the most probable location of a permanent fault, based on the smart metersŠ me-

asurements and the bus impedance matrix. Chapter 4 shows the adaptation of a short-term

load forecasting method via seasonal autoregressive integrated moving average (ARIMA)

models to estimate the moment of maximum consumption after the fault, used to deploy a

robust restoration plan. Chapter 5 illustrates the resulting self-healing software and shows a

practical implementation in a real EDS. Finally, conclusions and future works are addressed

in Chapter 6.
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2 Optimal Restoration/Maintenance Swit-

ching Sequence of Unbalanced Three-Phase

Distribution Systems

Abstract

This chapter presents a mixed-integer non-linear programming (MINLP) model for the opti-

mal restoration/maintenance switching sequence of unbalanced three-phase electrical distri-

bution systems. Once the protection coordination has identiĄed and cleared the faulty zone,

the proposed MINLP model determines the status of the remote-controlled switches and the

dispatchable distributed generation (DG) units, used to de-energized the troubled section

of the network and supply as much demand as possible. The optimal restoration considers

the switching sequence over a discrete horizon, guaranteeing that the operational constraints

of the distribution system are not violated in every step of the sequence. Furthermore, a

set of linearization strategies are presented to transform the proposed MINLP model into

a mixed-integer linear programming (MILP) model. The use of MILP models guarantees

convergence to optimality by applying convex optimization techniques. Tests are performed

over an unbalanced three-phase radial distribution system comprising 123 nodes, 12 switches,

and three dispatchable DG units. A real network with more then 5,000 nodes is also tested.

Results show that the proposed optimization model is a holistic procedure that can be used

to efficiently manage power restoration or to minimize isolated areas in case of scheduled

maintenance in modern electrical distribution systems.

Notation of Chapter 2

The notation used throughout this chapter is as follows:

Sets:

Ωb Set of nodes

Ωg Set of dispatchable DG units

Ωl Set of circuits
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Ωs Set of sequence steps ¶1, . . . , 𝑠max♢

Ωsw Set of switches

Ωz Set of zones

ΩS
z Set of source zones

Ωf Set of phases ¶𝑎, 𝑏, 𝑐♢

Ωz \ ΩS
z Set of load zones, disregarding the source zones

Functions:

𝑔
⎞

𝑉 r
i,f,s, 𝑉 i

i,f,s

)︁

Function of the real part of the load current at node 𝑖, phase 𝑓 , and step 𝑠

ℎ
⎞

𝑉 r
i,f,s, 𝑉 i

i,f,s

)︁

Function of the imaginary part of the load current at node 𝑖, phase 𝑓 , and

step 𝑠

Parameters:

𝜃f Reference angle at phase 𝑓 [rad]

𝜃+ Maximum positive deviation of the voltage phase angle around the reference for

each phase [rad]

𝜃⊗ Maximum negative deviation of the voltage phase angle around the reference for

each phase [rad]

Λ Number of discrete blocks used in the square current linearization

ãij,λ Slope of the Ú-th discrete block used to linearize the square current through

circuit 𝑖𝑗

𝑐U

z,s Cost of de-energizing a given zone 𝑧 at step 𝑠 [m.u.]

𝑐sw Cost of operating a switch during the restoration [m.u.]

𝐼ij Maximum current magnitude through circuit 𝑖𝑗 [A]

𝐼sw

ij Maximum current magnitude through switch 𝑖𝑗 [A]

𝑀I Big-M number

�̂�g Node of DG unit 𝑔
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𝑃 D
i,f Active power demand at node 𝑖 and phase 𝑓 [kW]

𝑃 DG
g Active power capacity of DG unit 𝑔 [kW]

pfg Minimum power factor of DG unit 𝑔

𝑄D
i,f Reactive power demand at node 𝑖 and phase 𝑓 [kvar]

𝑄
DG
g Upper reactive power capacity of DG unit 𝑔 [kvar]

𝑄DG
g

Lower reactive power capacity of DG unit 𝑔 [kvar]

𝑅ij,f,k Resistance of circuit 𝑖𝑗 between phase 𝑓 and phase 𝑘 [mΩ]

𝑠max Maximum number of sequenced switching operations

𝑠ini

ij Initial status of switch 𝑖𝑗

𝑉 Upper voltage magnitude [kV]

𝑉 Lower voltage magnitude [kV]

𝑉 r*
i,f Real part of the estimated voltage at node 𝑖 and phase 𝑓 [kV]

𝑉 i*
i,f Imaginary part of the estimated voltage at node 𝑖 and phase 𝑓 [kV]

𝑋ij,f,k Reactance of circuit 𝑖𝑗 between phase 𝑓 and phase 𝑘 [mΩ]

𝑧i Zone of node 𝑖

𝑧ij Zone of circuit 𝑖𝑗

Continuous Variables:

Δr
ij,f,s,λ Value of the Ú-th auxiliary variable used to linearize the real current through

circuit 𝑖𝑗, phase 𝑓 , and step 𝑠

Δi
ij,f,s,λ Value of the Ú-th auxiliary variable used to linearize the imaginary current th-

rough circuit 𝑖𝑗, phase 𝑓 , and step 𝑠

𝑏ij,smax Continuous auxiliary variable related to 𝑦ij,smax

𝑏r
i,f,s Continuous auxiliary variable related to 𝐼r𝐷

i,f,s

𝑏i
i,f,s Continuous auxiliary variable related to 𝐼 i𝐷

i,f,s

𝐼r
ij,f,s Real part of the current through circuit 𝑖𝑗, at phase 𝑓 , and step 𝑠 [A]
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𝐼 i
ij,f,s Imaginary part of the current through circuit 𝑖𝑗, at phase 𝑓 , and step 𝑠 [A]

𝐼r+
ij,f,s Positive amount of currentŠs real part through circuit 𝑖𝑗, at phase 𝑓 , and step 𝑠

[A]

𝐼r⊗
ij,f,s Negative amount of currentŠs real part through circuit 𝑖𝑗, at phase 𝑓 , and step

𝑠 [A]

𝐼 i+
ij,f,s Positive amount of currentŠs imaginary part through circuit 𝑖𝑗, at phase 𝑓 , and

step 𝑠 [A]

𝐼 i⊗
ij,f,s Negative amount of currentŠs imaginary part through circuit 𝑖𝑗, at phase 𝑓 , and

step 𝑠 [A]

𝐼rD

i,f,s Real part of the current demanded at node 𝑖, phase 𝑓 , and step 𝑠 [A]

𝐼 iD

i,f,s Imaginary part of the current demanded at node 𝑖, phase 𝑓 , and step 𝑠 [A]

𝐼rDG

g,f,s Real part of the current generated by the DG unit 𝑔, phase 𝑓 , and step 𝑠 [A]

𝐼 iD

g,f,s Imaginary part of the current generated by the DG unit 𝑔, phase 𝑓 , and step 𝑠

[A]

𝐼rS

i,f,s Real part of the current generated at node 𝑖, phase 𝑓 , and step 𝑠 [A]

𝐼 iS

i,f,s Imaginary part of the current generated at node 𝑖, phase 𝑓 , and step 𝑠 [A]

𝐼rsw

ij,f,s Real part of the current through switch 𝑖𝑗, phase 𝑓 , and step 𝑠 [A]

𝐼 isw

ij,f,s Imaginary part of the current through switch 𝑖𝑗, phase 𝑓 , and step 𝑠 [A]

𝑃 DG

g,s Active power generated at DG unit 𝑔, and step 𝑠 [kW]

𝑄DG

g,s Reactive power generated at DG unit 𝑔, and step 𝑠 [kvar]

𝑉 r
i,f,s Real part of the voltage at node 𝑖, phase 𝑓 , and step 𝑠 [kV]

𝑉 i
i,f,s Imaginary part of the voltage at node 𝑖, phase 𝑓 , and step 𝑠 [kV]

Binary Variables:

𝑦ij,s Status of switch 𝑖𝑗, where 𝑦ij,s = 1 if switch 𝑖𝑗 is closed at step 𝑠, or 𝑦ij,s = 0, if

open.

𝑥z,s Binary variable that indicates the state of zone 𝑧. If 𝑥z,s = 1, then zone 𝑧 is

energized at step 𝑠; if 𝑥z,s = 0, then zone 𝑧 is de-energized.
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Δ𝑦+
ij,s Opening of switch 𝑖𝑗 at step 𝑠, where Δ𝑦+

ij,s = 1 if switch 𝑖𝑗 has been opened at

the step 𝑠, or Δ𝑦+
ij,s = 0, otherwise.

Δ𝑦⊗
ij,s Closing of switch 𝑖𝑗 at step 𝑠, where Δ𝑦⊗

ij,s = 1 if switch 𝑖𝑗 has been opened at

the step 𝑠, or Δ𝑦⊗
ij,s = 0, otherwise.

2.1 Introduction

After a permanent fault has been identiĄed and cleared by the protection coordina-

tion system, or if a speciĄc zone needs to be isolated for scheduled maintenance, the restora-

tion/maintenance sequence of electrical distribution systems (EDS) can be deployed in order

to establish a set of sequenced switching operations that de-energizes the faulty zone and

that minimizes the unsupplied demand (WILLIS, 2004). Execution of the restoration pro-

cess can be integrated into a centralized distributed automation (DA) scheme or a SCADA

system in order to obtain the location and time of the fault, whereas the nodal demands can

be gathered via measurements, state estimation or statistically, through short-term demand

forecasting. The restoration must satisfy a set of constraints related to the electrical and

physical limits of the EDS, such as the current and voltage magnitude limits, the operational

constraints of the dispatchable distributed generation (DG) units, and radiality (ZIDAN et

al., 2017). The restoration of EDS is a combinatorial optimization problem; since the ope-

ration of remotely-controlled switches, as well as the status of each load zone at the end

of the restoration process can be represented using binary decision variables. Furthermore,

the restoration is also a non-linear programming problem, since the equations that represent

the steady-state operation of unbalanced AC electrical networks are non-linear, non-convex

mathematical expressions.

The Ąrst computational efforts for solving the optimal restoration problem relied mos-

tly on the operatorŠs experience, and heuristic strategies (LIU et al., 1988; HSU et al., 1992).

Further works considered the topological and operational constraints of the EDS by using

power Ćow analysis and heuristic approaches to provide optimized restoration schedules in a

reasonable amount of time (AOKI et al., 1989; MORELATO; MONTICELLI, 1989; SARMA

et al., 1994). With the advent of meta-heuristic algorithms, these techniques have been widely

applied to provide quality solutions to the restoration problem; they have been used to deal

with conĆicting objective functions (KUMAR et al., 2008), comparative studies (TOUNE

et al., 2002a), unbalanced networks (MANJUNATH; MOHAN, 2007), and large networks

(SANCHES et al., 2014). Fuzzy sets have also been applied to improve the decision-making

process (HUANG, 2003; CHEN, 2010). More recently, in the context of DA and smart grids,

new and specialized approaches have been proposed, taking advantage of modern compu-
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tational and telecommunication resources spread along the EDS. A restoration algorithm,

considering direct load control and demand response is presented in Kleinberg et al. (2011).

Distributed alternatives are presented in Solanki et al. (2007), Nguyen and Flueck (2012),

Eriksson et al. (2015) via multi-agent systems. A spanning-tree search algorithm is proposed

in Li et al. (2014) in order to restore three-phase microgrids after a fault, considering dispat-

chable resources and islanded operation. None of these techniques guarantee optimality and

none of them are either Ćexible or easy to develop and adapt in case of new or unexpected

conditions (e.g., different objective functions, new constraints or parameters).

Mathematical optimization (or exact methods) has also been applied for solving the

restoration problem. In Butler et al. (2001) a mixed-integer linear programming (MILP) mo-

del, based on a simpliĄed DC power Ćow, is used to restore critical shipboard power feeders.

Furthermore, a mixed-integer nonlinear programming (MINLP) model with the aim of res-

toring unbalanced EDS is proposed in Khushalani et al. (2007); a non-linear optimization

solver was applied to obtain the solution for the MINLP formulation in Khushalani et al.

(2007). On the other hand, in Romero et al. (2016) and Hijazi and Thiebaux (2014), authors

present a mixed integer second-order cone programming model to solve the restoration pro-

blem, which is convex and can be solved efficiently using classical optimization techniques.

Chen et al. (2016) formulate a MILP robust model, considering uncertain DG and demand.

However, none of the aforementioned solutions have taken into account switching sequence

operation and DG resources as part of the restoration process of unbalanced EDS.

This chapter proposes a generalized MINLP model for the optimal restoration/ main-

tenance switching sequence in unbalanced EDS, considering operational and topological cons-

traints. The solution provided by the proposed MINLP model determines the operation of

remotely-controlled switches and dispatchable DG units in each step of the sequence. The

solution de-energizes the faulty or maintenance zone, and minimizes the total unsupplied

demand, whilst guaranteeing a feasible steady-state operation. In each step of the sequence,

only a single switch would be able to change its status. Thus, the proposed MINLP mo-

del deĄnes a sequence of switching and dispatchable DG actions that isolates the trouble

portion of the network, whilst supplying most of the remaining demand. In case of a per-

manent fault, the restoration process is deployed shortly after the protection coordination

and DG protection have been triggered. A set of linearization strategies is used to trans-

form the proposed MINLP model into a convex MILP model. Despite other enumerative,

heuristic or metaheuristic approaches, MILP models are Ćexible, easy to reproduce and re-

present using mathematical programming languages such as AMPL (FOURER et al., 2003).

Additionally, convergence to optimality is guaranteed by convex optimization solvers such as

CPLEX (CPLEX, 2009), which uses binary search algorithms (e.g., branch and bound) to
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solve MILP models. The main contributions of this chapter are as follows:

1. A holistic and Ćexible MINLP model for the optimal restoration of unbalanced three-

phase EDS, considering the switching sequence, dispatchable DG resources and opera-

tional constraints.

2. A MILP model for the restoration/maintenance switching sequence that can be solved

efficiently using convex optimization solvers.

2.2 Optimal Restoration/Maintenance Switching Sequence of EDS

The optimal restoration sequence of the EDS is an event-based problem that determi-

nes the optimal switching sequence, with the double aim of de-energizing the faulty section

of the network and minimizing the amount of de-energized consumers during and after the

restoration. The restoration process is independent from the protection coordination, and

it is executed immediately after the fault has been totally cleared and located. Meanwhile,

all the operational constraints must be guaranteed in every step of the sequence (WILLIS,

2004). Moreover, zones can also be isolated for maintenance purposes, by setting the zones to

be de-energized at the last step of the switching sequence (CHOWDHURY; KOVAL, 2011).

The 16-node test system, shown in Fig. 4, is used here to exemplify the proposed

sequence restoration. During the pre-fault status, the EDS is totally energized, having two

radial feeders (associated with sources F1 and F2), Ąve load zones (wherein each load zone

is a section of the system, delimited by switches), and eight remotely controlled switches

represented by black-colored squares, if closed; and white-colored squares, if open. If a per-

manent fault occurs in any branches of Zone 2, then a basic protection scheme would open

the circuit-breaker S2 to extinguish the fault (Step 0). However, the opening of S2 also de-

energizes Zone 5 and increases the amount of unsupplied demand. Eventually, an optimized

restoration scheme would determine that the demand in Zone 5 can be transferred to feeder

F1 by opening switch S6 (Step 1), followed by the closing of switch S8 (Step 2). This load

transference considers the operational constraints of the system, such as voltage and current

limits, and executes one switch operation at a time. In general, Step 0 is associated to the

operation of the protection scheme; Step 1, is associated to the isolation of the zones that

cannot be restored, and further steps are associated to load transference and minimization

of the unsupplied demand by the restoration/maintenance switching sequence.

In addition to the load transference and the switching operation, the optimal restora-

tion/maintenance process can be enhanced by considering the contribution of the dispatcha-

ble DG resources. If a DG unit is available and connected to an energized zone, it can be used
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Figure 4 Ű Restoration sequence for a fault in Zone 2: Step 0, open switch S2 to extinguish
the fault. Step 1, open switch S6. Step 2, close switch S8 to transfer the demand
in Zone 5 to the feeder supplied by F1.

Source: Lopez et al. (2018).

to improve the service restoration. Finally, if none of the former strategies are sufficient, the

restoration process can de-energize other zones of the system to meet the system constraints.

2.3 Mathematical Programming Approach

This section discusses the hypotheses and the proposed MINLP model used to repre-

sent the optimal restoration sequence of unbalanced three-phase EDS.
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2.3.1 Hypotheses

The mathematical functions used to calculate the steady-state operating point of

unbalanced EDS are based on the analytical formulation that represents the unbalanced

three-phase current Ćow (CHENG; SHIRMOHAMMADI, 1995), used in Franco et al. (2015)

and Sabillon-Antunez et al. (2016) to solve other related EDS operation problems. In order

to formulate the optimization model, the following hypotheses are considered:

1. Electrical loads in the EDS are represented as three-phase constant active and reactive

power demands.

2. Switches are considered short-length circuits with negligible impedance and limited

current capacity.

3. The sequence of switching operations is discretized over a horizon of 𝑠max steps.

4. Parameters, such as three-phase circuit impedances, limits, and DG capacities are es-

tablished once and remain constant.

5. The location of the fault and nodal demands are gathered externally, e.g., via Ąeld

measurements, state estimation or statistically.

2.3.2 Mixed-Integer Non-Linear Programming (MINLP) Model

The MINLP model that represents the optimal restoration/maintenance switching

sequence of unbalanced EDS is shown in (2.1)-(2.22). Note that every node and circuit of

the network must belong to a unique zone 𝑧 ∈ Ωz, wherein each zone is an interconnected

section of the network delimited by the remote-controlled switches.

min

∏︁

⨄︁

⋃︁

∑︁

z∈Ω𝑧

∑︁

s∈Ω𝑠

𝑐U
z,s (1⊗ 𝑥z,s) + 𝑐sw

∑︁

ij∈Ωsw

∑︁

s∈Ω𝑠

⎞

Δ𝑦+
ij,s + Δ𝑦⊗

ij,s

)︁

∫︁

⋀︁

⋂︁

(2.1)

Subject to:

∑︁

ji∈Ω𝑙

𝐼r
ji,f,s ⊗

∑︁

ij∈Ω𝑙

𝐼r
ij,f,s +

∑︁

ji∈Ωsw

𝐼rsw

ji,f,s ⊗
∑︁

ij∈Ωsw

𝐼rsw

ij,f,s +
∑︁

g∈Ω𝑔 ♣�̂�𝑔=𝑖

𝐼rDG

g,f,s + 𝐼rS

i,f,s = 𝐼rD

i,f,s𝑥ẑ𝑖,s

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.2)

∑︁

ji∈Ω𝑙

𝐼 i
ji,f,s ⊗

∑︁

ij∈Ω𝑙

𝐼 i
ij,f,s +

∑︁

ji∈Ωsw

𝐼 isw

ji,f,s ⊗
∑︁

ij∈Ωsw

𝐼 isw

ij,f,s +
∑︁

g∈Ω𝑔 ♣�̂�𝑔=𝑖

𝐼 iDG

g,f,s + 𝐼 iS

i,f,s = 𝐼 iD

i,f,s𝑥ẑ𝑖,s

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.3)
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𝑉 r
i,f,s ⊗ 𝑉 r

j,f,s =
∑︁

k∈Ω𝑓

⎞

𝑅ij,f,k𝐼r
ij,k,s ⊗𝑋ij,f,k𝐼 i

ij,k,s

)︁

∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.4)

𝑉 i
i,f,s ⊗ 𝑉 i

j,f,s =
∑︁

k∈Ω𝑓

⎞

𝑋ij,f,k𝐼r
ij,k,s + 𝑅ij,f,k𝐼 i

ij,k,s

)︁

∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.5)

𝐼rD

i,f,s = 𝑔
⎞

𝑉 r
i,f,s, 𝑉 i

i,f,s

)︁

=
𝑃 D

i,f𝑉 r
i,f,s + 𝑄D

i,f𝑉 i
i,f,s

⎞

𝑉 r
i,f,s

)︁2
+

⎞

𝑉 i
i,f,s

)︁2 ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.6)

𝐼 iD

i,f,s = ℎ
⎞

𝑉 r
i,f,s, 𝑉 i

i,f,s

)︁

=
𝑃 D

i,f𝑉 i
i,f,s ⊗𝑄D

i,f𝑉 r
i,f,s

⎞

𝑉 r
i,f,s

)︁2
+

⎞

𝑉 i
i,f,s

)︁2 ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.7)

⧹︃

⧹︃

⧹︃𝑉 r
i,f,s ⊗ 𝑉 r

j,f,s

⧹︃

⧹︃

⧹︃ ⊘ 2𝑉 (1⊗ 𝑦ij,s) ∀𝑖𝑗 ∈ Ωsw, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.8)

⧹︃

⧹︃

⧹︃𝑉 i
i,f,s ⊗ 𝑉 i

j,f,s

⧹︃

⧹︃

⧹︃ ⊘ 2𝑉 (1⊗ 𝑦ij,s) ∀𝑖𝑗 ∈ Ωsw, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.9)

𝑃 DG
g,s /3 = 𝑉 r

n̂𝑔 ,f,s𝐼
rDG

g,f,s + 𝑉 i
n̂𝑔 ,f,s𝐼

iDG

g,f,s ∀𝑔 ∈ Ωg, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.10)

𝑄DG
g,s /3 = ⊗𝑉 r

n̂𝑔 ,f,s𝐼
iDG

g,f,s + 𝑉 i
n̂𝑔 ,f,s𝐼

rDG

g,f,s ∀𝑔 ∈ Ωg, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.11)

0 ⊘ 𝑃 DG
g,s ⊘ 𝑃

DG
g 𝑥ẑ𝑔 ,s ∀𝑔 ∈ Ωg, 𝑠 ∈ Ωs (2.12)

𝑄DG
g

𝑥ẑ𝑔 ,s ⊘ 𝑄DG
g,s ⊘ 𝑄

DG

g 𝑥ẑ𝑔 ,s ∀𝑔 ∈ Ωg, 𝑠 ∈ Ωs (2.13)

⧹︃

⧹︃

⧹︃𝑄DG
g,s

⧹︃

⧹︃

⧹︃ ⊘ 𝑃 DG
g,s tan

⎞

cos⊗1 pfg
)︁

∀𝑔 ∈ Ωg, 𝑠 ∈ Ωs (2.14)

𝑉 2𝑥ẑ𝑖,s ⊘
⎞

𝑉 r
i,f,s

)︁2
+

⎞

𝑉 i
i,f,s

)︁2
⊘ 𝑉

2
𝑥ẑ𝑖,s ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.15)

0 ⊘
⎞

𝐼r
ij,f,s

)︁2
+

⎞

𝐼 i
ij,f,s

)︁2
⊘ 𝐼

2
ij𝑥ẑ𝑖𝑗 ,s ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.16)

0 ⊘
⎞

𝐼rsw

ij,f,s

)︁2
+

⎞

𝐼 isw

ij,f,s

)︁2
⊘

⎞

𝐼
sw
ij

)︁2
𝑦ij,s ∀𝑖𝑗 ∈ Ωsw, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.17)

𝑦ij,s ⊗ 𝑦ij,s⊗1 = Δ𝑦+
ij,s ⊗Δ𝑦⊗

ij,s ∀𝑖𝑗 ∈ Ωsw, 𝑠 ∈ Ωs♣y𝑖𝑗,0=sini

𝑖𝑗
(2.18)
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∑︁

ij∈Ωsw

⎞

Δ𝑦+
ij,s + Δ𝑦⊗

ij,s

)︁

⊘ 1 ∀𝑠 ∈ Ωs (2.19)

⧹︃

⧹︃

⧹︃𝑥ẑ𝑖,s ⊗ 𝑥ẑ𝑗 ,s

⧹︃

⧹︃

⧹︃ ⊘ 1⊗ 𝑦ij,s ∀𝑖𝑗 ∈ Ωsw, 𝑠 ∈ Ωs (2.20)

∑︁

ij∈Ωsw

𝑦ij,smax𝑥ẑ𝑖𝑗 ,smax =
∑︁

z∈(Ω𝑠\ΩS
𝑠 )

𝑥z,smax (2.21)

𝑦ij,s, 𝑥z,s, Δ𝑦+
ij,s, Δ𝑦⊗

ij,s ∀𝑖𝑗 ∈ Ωsw, 𝑧 ∈ Ωz, 𝑠 ∈ Ωs (2.22)

The objective function in (2.1) is comprised by two terms. The Ąrst term aims at

minimizing the total cost of de-energizing the zone 𝑧 ∈ Ωz, at each step of the sequence

𝑠 ∈ Ωs, using parameter 𝑐U
z,s. The second term of the objective function minimizes the total

cost of the switching operations throughout the sequence, using parameter 𝑐sw. Note that

the objective function in (2.1) is a straightforward expression that can be easily adapted

to consider other objectives, such as priorities, switching times, energy not supplied, total

amount of de-energized demand, among others.

Equations (2.2) and (2.3) represent the nodal balance equations for the real and

the imaginary part of the currents, respectively. Both equations are deĄned for each node

𝑖 ∈ Ωb and discrete step 𝑠 ∈ Ωs; and they consider the three-phase injections of DG units

(given by the set Ωg) and switch currents (given by the set Ωsw). The nodal voltages for

unbalanced three-phase EDSs are calculated using (2.4) and (2.5), as shown in Cheng and

Shirmohammadi (1995). Since loads are represented as constant active and reactive demands

(see hypothesis 1 in Section 2.3.1), (2.6) and (2.7) determine the three-phase current injections

at each node 𝑖 and step 𝑠, as functions of the nodal voltage components 𝑉 r
i,f,s and 𝑉 i

i,f,s.

Moreover, since the impedances of the switches are negligible, (2.8) and (2.9) guarantee that

the voltage difference of a closed switch 𝑖𝑗 (i.e., if 𝑦ij,s = 1) is equal to zero. Otherwise, if

the switch 𝑖𝑗 is open (i.e., if 𝑦ij,s = 0), both nodal voltage components can vary freely within

their limits, given by 2𝑉 .

The operation of the DG units is represented by (2.10)Ű(2.14). Equations (2.10) and

(2.11) establish the relationship between the active and reactive generations at each phase

and the steady-state variables (i.e., voltages and currents) of the three-phase DG units. In

case dispatchable DG units were considered as single-phase units, then, variables 𝑃 DG
g,s and

𝑄DG
g,s will be calculated as the addition of each single-phase generation, and the division by

three will not be necessary. Total active and reactive generations are limited by (2.12) and

(2.13), respectively. As shown by (2.14), each DG unit is also limited by the minimum power

factor, pfg. Note that all DG units can only operate if the zone which they are connected to
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is energized (i.e., if 𝑥ẑ𝑔 ,s = 1); otherwise, the DG injections are set to zero. Other operatio-

nal constraints related to DG unitsŠ operation, such as ramping rates, capability curves, or

turning on/off limits, can be included in the proposed formulation.

Constraint (2.15) limits the voltage magnitudes of the energized nodes; if node 𝑖 is

not energized, i.e., if 𝑥ẑ𝑖,s = 0, then the voltage at node 𝑖 will be zero. Likewise, (2.16) limits

the current magnitudes of the energized circuits and the current capacities of the feeders

and transformers. The current limits of the switching devices are given by (2.17). If switch

𝑖𝑗 ∈ Ωsw is open (i.e., if 𝑦ij,s = 0), then no current will Ćow through it. Otherwise, 𝑖𝑗 is closed

(i.e., if 𝑦ij,s = 1), the current magnitude will be limited by the switchŠs maximum current.

Constraints (2.18) and (2.19) model the sequenced operation of the switching devices.

Both binary auxiliary variables in (2.18), Δ𝑦+
ij,s and Δ𝑦⊗

ij,s, represent a switching transition

from open-to-closed and closed-to-open, respectively. Both variables are used to calculate

the number of switching operations at the end of the restoration process. Constraint (2.19)

guarantees that only one transition will be made in each step of the switching sequence.

Furthermore, (2.20) deĄnes the relationship between the binary variable that represents each

switchŠs status, 𝑦ij,s, and the binary variable that represents each zoneŠs status, 𝑥z,s: if a

switch 𝑖𝑗 is closed at step 𝑠 (i.e., if 𝑦ij,s = 1), then both zones, 𝑧i and 𝑧j, must share the same

status (energized or de-energized). Constraint (2.20) guarantees that an energized zone will

not be connected to a de-energized zone, and vice-versa. In case a switch cannot change its

status (e.g., a sectional switch), the binary decision variable associated to that switch (𝑦ij,s)

can be Ąxed.

At the Ąnal step of the restoration, it is desired that the energized portion of the

system has a radial topology. Radiality is made possible by equation (2.21), along with the

current Ćow balance equations in (2.2) and (2.3). As demonstrated by Lavorato et al. (2012),

a radial network is obtained if the number of energized switches is equal to the number of

energized load zones. In this case, (2.21) guarantees that the number of closed and energized

switches - hence the product between the binary decision variables 𝑦ij,ssw and 𝑥ẑ𝑖,smax - must

be equal to the number of energized load zones at the end of the restoration process, given by

the expression
√︁

z∈(Ω𝑧\Ω𝑆
𝑧 ) 𝑥z,smax . Finally, the binary nature of the decision variables is given

by (2.22).
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2.4 MILP Model for the Optimal Restoration/Maintenance Sequence

of Unbalanced EDS

The proposed MINLP in (2.1)Ű(2.22) is non-convex and optimality can be guaranteed

by neither classical optimization techniques nor by modern heuristic approaches. Thus, this

section presents a set of linearization strategies used to transform the proposed MINLP into

a MILP model. This kind of formulation is desirable because there are tools (e.g., commercial

solvers) available for its solution, which are more efficient and scalable than the ones used

for MINLP formulations.

2.4.1 Linear Equivalents of the Binary Products

The product between binary variables and continuous variables can be represented

using a single continuous variable via disjunctive constraints (FORTUNY-AMAT; MCCARL,

1981). Thus, the products between the real and imaginary load currents (𝐼rD

i,f,s and 𝐼 iD

i,f,s) and

the zone status (𝑥ẑ𝑖,s) in constraints (2.2) and (2.3) is replaced by the continuous auxiliary

variables 𝑏r
i,f,s and 𝑏i

i,f,s, using the linear equivalent equations (2.23)Ű(2.26), where 𝑀I is a

big-M number.

⧹︃

⧹︃

⧹︃𝑏r
i,f,s

⧹︃

⧹︃

⧹︃ ⊘𝑀I𝑥ẑ𝑖,s ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.23)

⧹︃

⧹︃

⧹︃𝐼rD

i,f,s ⊗ 𝑏r
i,f,s

⧹︃

⧹︃

⧹︃ ⊘𝑀I (1⊗ 𝑥ẑ𝑖,s) ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.24)

⧹︃

⧹︃

⧹︃𝑏i
i,f,s

⧹︃

⧹︃

⧹︃ ⊘𝑀I𝑥ẑ𝑖,s ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.25)

⧹︃

⧹︃

⧹︃𝐼 iD

i,f,s ⊗ 𝑏i
i,f,s

⧹︃

⧹︃

⧹︃ ⊘𝑀I (1⊗ 𝑥ẑ𝑖,s) ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.26)

Similarly, the product between the binary variables 𝑦ij,smax and 𝑥ẑ𝑖,smax in (2.21) can

be replaced with yet another continuous auxiliary variable 𝑏ij,smax as shown in (2.27)Ű(2.29).

𝑦ij,smax + 𝑥ẑ𝑖,smax ⊗ 1 ⊘ 𝑏ij,smax ∀𝑖𝑗 ∈ Ωsw (2.27)

0 ⊘ 𝑏ij,smax ⊘ 𝑦ij,smax ∀𝑖𝑗 ∈ Ωsw (2.28)

0 ⊘ 𝑏ij,smax ⊘ 𝑥ẑ𝑖,smax ∀𝑖𝑗 ∈ Ωsw (2.29)
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2.4.2 Linearization of the Load Currents

Non-linear rational equations (2.6) and (2.7) can be linearized using an approximation

based on Taylor series expansion. Considering estimated values for the real and imaginary

parts of the nodal voltages (𝑉 r*
i,f and 𝑉 i*

i,f ), the linear equations for the nodal load currents

are given by the Ąrst-order approximations in (2.30) and (2.31).

𝐼rD

i,f,s ≡ 𝑔* +
𝜕𝑔

𝜕𝑉 r
i,f,s

♣*
⎞

𝑉 r
i,f,s ⊗ 𝑉 r*

i,f

)︁

+
𝜕𝑔

𝜕𝑉 i
i,f,s

♣*
⎞

𝑉 i
i,f,s ⊗ 𝑉 i*

i,f

)︁

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.30)

𝐼 iD

i,f,s ≡ ℎ* +
𝜕ℎ

𝜕𝑉 r
i,f,s

♣*
⎞

𝑉 r
i,f,s ⊗ 𝑉 r*

i,f

)︁

+
𝜕ℎ

𝜕𝑉 i
i,f,s

♣*
⎞

𝑉 i
i,f,s ⊗ 𝑉 i*

i,f

)︁

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.31)

This approximation results in a relatively low error because the voltage magnitudes

at each node are limited by a narrow interval. The estimated values 𝑉 r*
i,f and 𝑉 i*

i,f , can be

selected using an initial three-phase load Ćow analysis, experience-based values, or even a

Ćat-start power Ćow.

2.4.3 Linearization of the DG Units

The three-phase operation of DG units given by the nonlinear equations (2.10) and

(2.11) can be approximated using estimated values for the real and imaginary parts of the

nodal voltages (𝑉 r*
i,f and 𝑉 i*

i,f ) as shown by (2.32) and (2.33).

𝑃 DG
g,s /3 ≡ 𝑉 r*

n̂𝑔 ,f𝐼rDG

g,f,s + 𝑉 i*
n̂𝑔 ,f𝐼 iDG

g,f,s ∀𝑔 ∈ Ωg, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.32)

𝑄DG
g,s /3 ≡ ⊗𝑉 r*

n̂𝑔 ,f𝐼 iDG

g,f,s + 𝑉 i*
n̂𝑔 ,f𝐼rDG

g,f,s ∀𝑔 ∈ Ωg, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.33)

2.4.4 Linearization of the Voltage Limits

As shown in Fig. 5, the nodal voltage constraint in (2.15) can be linearized by selecting

a maximum positive and negative deviation around the reference angle for each phase, given

by 𝜃+ and 𝜃⊗, respectively. Thus, a set of linear constraints are used to approximate (2.15)

as follows:

𝑉 i
i,f,s ⋚

sin (𝜃f + 𝜃+)⊗ sin (𝜃f ⊗ 𝜃⊗)

cos (𝜃f + 𝜃+)⊗ cos (𝜃f ⊗ 𝜃⊗)

[︁

𝑉 r
i,f,s ⊗ 𝑥ẑ𝑖,s𝑉 cos (𝜃f + 𝜃+)

]︁

+ 𝑥ẑ𝑖,s𝑉 sin (𝜃f + 𝜃+)

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.34)

𝑉 i
i,f,s ⋚

sin (𝜃f + 𝜃+)⊗ sin 𝜃f

cos (𝜃f + 𝜃+)⊗ cos 𝜃f

[︁

𝑉 r
i,f,s ⊗ 𝑥ẑ𝑖,s𝑉 cos 𝜃f

]︁

+ 𝑥ẑ𝑖,s𝑉 sin 𝜃f

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.35)



Chapter 2. Optimal Restoration/Maintenance Switching Sequence of Unbalanced Three-Phase EDS 43

𝑉 i
i,f,s ⋚

sin (𝜃f ⊗ 𝜃⊗)⊗ sin 𝜃f

cos (𝜃f ⊗ 𝜃⊗)⊗ cos 𝜃f

[︁

𝑉 r
i,f,s ⊗ 𝑥ẑ𝑖,s𝑉 cos 𝜃f

]︁

+ 𝑥ẑ𝑖,s𝑉 sin 𝜃f

∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.36)

𝑉 i
i,f,s ⋚ 𝑉 r

i,f,s tan (𝜃f + 𝜃+) ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.37)

𝑉 i
i,f,s ⋚ 𝑉 r

i,f,s tan (𝜃f ⊗ 𝜃⊗) ∀𝑖 ∈ Ωb, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.38)

The inequality symbols in (2.34)Ű(2.38) are chosen according to Table I, assuming 𝜃+

and 𝜃⊗ lower than 30◇.

Figure 5 Ű Linearization of the voltage limits.

Source: Lopez et al. (2018).

Table 1 Ű Inequality symbols for (2.34)Ű(2.38) assuming 𝜃+ and 𝜃⊗ lower than 30◇.

Equation 𝑓 = 𝑎 𝑓 = 𝑏 𝑓 = 𝑐

(2.34) ⊘ ⊘ ⊙
(2.35) ⊘ ⊙ ⊘
(2.36) ⊙ ⊙ ⊘
(2.37) ⊘ ⊙ ⊙
(2.38) ⊙ ⊘ ⊘
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2.4.5 Linearization of the Current Limits

To linearize the quadratic terms in (2.16) and (2.17), a piecewise linear approxima-

tion function is used (FRANCO et al., 2015). Thus, the square magnitude of the real and

imaginary current through each circuit is approximated by the set of linear equations in

(2.39)-(2.46). Similarly, the square magnitudes of the current through the switches in (2.17)

are linearized using the same piecewise approach.

(𝐼ij,f,s)
2 ≡

Λ
∑︁

λ=1

ãij,λ

⎞

Δr
ij,f,s,λ + Δi

ij,f,s,λ

)︁

∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.39)

𝐼r
ij,f,s = 𝐼r+

ij,f,s ⊗ 𝐼r⊗
ij,f,s ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.40)

𝐼 i
ij,f,s = 𝐼 i+

ij,f,s ⊗ 𝐼 i⊗
ij,f,s ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.41)

𝐼r+
ij,f,s + 𝐼r⊗

ij,f,s =
Λ

∑︁

λ=1

Δr
ij,f,s,λ ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.42)

𝐼 i+
ij,f,s + 𝐼 i⊗

ij,f,s =
Λ

∑︁

λ=1

Δi
ij,f,s,λ ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs (2.43)

0 ⊘ Δr
ij,f,s,λ ⊘ 𝐼ij/Λ ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs, Ú = 1 . . . Λ (2.44)

0 ⊘ Δi
ij,f,s,λ ⊘ 𝐼ij/Λ ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ Ωf , 𝑠 ∈ Ωs, Ú = 1 . . . Λ (2.45)

ãij,λ = (2Ú⊗ 1) 𝐼ij/Λ ∀𝑖𝑗 ∈ Ωl, Ú = 1 . . . Λ (2.46)

2.4.6 Optimization Process

The following steps and the Ćowchart in Fig. 6 summarize the proposed optimization

process used to solve the optimal restoration/maintenance switching sequence of unbalanced,

three-phase EDS:

Step 1 Based on experience, technical assessments or switching operation policies, deĄne

𝑠max as the maximum number of steps of the restoration process. DeĄne the faulty

zone 𝑧f ∈ Ωz, and Ąx the zone status 𝑥z𝑓 ,s = 0. DeĄne 𝑠ini
ij as the initial status of the

remotely controlled switches. DeĄne the estimated values of the voltage components

(𝑉 r*
i,f and 𝑉 i*

i,f ) by solving a relaxed version of the MINLP model in (2.1)-(2.22). To do

so, all binary decision variables in (2.1)-(2.22) are transformed into continuous, bounded

variables, and a non-linear solver is used to Ąnd the estimation of 𝑉 r*
i,f and 𝑉 i*

i,f .
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Parameter

Estimation

MILP model

solution

Error

Assessment

Figure 6 Ű Proposed optimization process.

Source: Lopez et al. (2018).

Step 2 Solve the restoration problem given by (2.1)-(2.22), considering the linearization

strategies in Section 2.4. The resulting MILP model can be solved using a MILP solver,

such as CPLEX, which uses a branch-and-bound/branch-and-cut algorithm to Ąnd

the optimal solution (CPLEX, 2009). Once the solver has Ąnished, save the decision

variables, i.e., the optimal switching sequence and the DG unitsŠ operation.

Step 3 If necessary, Ąx the values of the decision variables and execute a three-phase load

Ćow algorithm, such as the one in Cheng and Shirmohammadi (1995), to assess the

linearization error of the proposed methodology.

2.5 Tests and Results

The unbalanced 123-node test system shown in Fig. 7 has been adapted to demons-

trate the performance of the proposed restoration process. The nominal voltage is 4.16 kV.

Three-phase circuit parameters and node demands can be obtained in PES (2013). As shown

in Fig. 7, the voltage regulation and the capacitor banks from the original test system have

been removed, and additional switches have been installed. Under normal operation, con-

sidering DGs, the minimum voltages at each phase are: 𝑉a = 0.9575 p.u. at node 151,

𝑉b = 0.9755 p.u. at node 96, and 𝑉c = 0.9623 p.u. at node 66. The current limit for all

circuits is 600 A. For the sake of simplicity, the costs in the objective function are chosen

using a hierarchical criterion: the cost of de-energizing a given zone during the switching

sequence is 𝑐U
z,s = 1 ≤ 103 m.u. for 𝑠 < 𝑠max, and the cost of de-energizing a zone at the

end of the restoration process is 𝑐U
z,s = 10 ≤ 103 m.u. The cost of each switching operation is

𝑐sw = 0.1 ≤ 103 m.u. In practice, these costs are selected based on operational, reliability, or

Ąnancial criteria. The maximum number of switching operations is deĄned as 𝑠max = 5, which

corresponds to the maximum number of steps necessary to perform a complete restoration of

any zone. If forecasted demands are accurate, a technical assessment of 𝑠max can be obtained

by iteratively increasing its value until no more restored demand is obtained.

The system in Fig. 7 has two feeders, 7 radial load zones, and 12 remotely controlled

switches, indicated with black-colored squares, if initially closed and white-colored squares,
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Figure 7 Ű Unbalanced 123-node test system.

Source: Lopez et al. (2018).

if initially open. The topology shown in Fig. 7 corresponds to the pre-fault state of the EDS.

The maximum current magnitudes of the system during pre-fault are 387 A, 215 A and 313 A,

for phases a, b, and c, respectively.

Three case studies are used here to demonstrate the adaptability of the proposed

restoration process for different scenarios. In Case 1, the objective is to de-energize a faulty

zone and minimize the unsupplied demand as soon as the protective scheme has located the

fault, i.e., the faulty zone must be de-energized during the entire restoration sequence. The

objective of Case 2 is to isolate a given zone for scheduled maintenance, thus the EDS operator

would like to de-energize a zone in the last step of the switching sequence while reducing the

number of de-energized customers in the process. Finally, Case 3 is identical to Case 1, but

with no DG units available. In summary, for Case 1 and 3, 𝑥z𝑓 ,s = 0, ∀𝑠 ∈ Ωs, and for

Case 2, 𝑥z𝑓 ,smax = 0. The voltage magnitude limits for both cases are set to 𝑉 = 1.02 p.u. and

𝑉 = 0.95 p.u. Capacity limits of the three dispatchable DG units in Fig. 7 are 𝑃
DG
g = 100 kW,

𝑄DG
g

= ⊗50 kvar, 𝑄
DG
g = 50 kvar, and pfg = 0.9, for all units. The dispatchable DG units are

located at nodes 250, 450, and 610, respectively.
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Table 2 Ű Case 1 (Restoration): Switching sequence, total unsupplied demand and optimiza-
tion results.

Zone Restoration Sequence P U O.F. Vmin [p.u.] Imax [A] Time

z𝑓 s = 1 s = 2 s = 3 s = 4 s = 5 [kW] [m.u.] f = a f = b f = c f = a f = b f = c [s]

1 150-149≪ 918-18≪ 151-300≫ 13-152≪ 60-160≫ 0.0 22.5 0.9616 0.9689 0.9619 569 379 418 9.6

2 918-18≪ 18-135≪ 151-300≫ – – 0.0 16.3 0.9696 0.9755 0.9713 407 309 300 5.6

3 18-135≪ – – – – 0.0 14.1 0.9696 0.9755 0.9672 260 182 211 1.4

4 13-152≪ – – – – 0.0 14.1 0.9627 0.9755 0.9730 306 182 236 1.3

5 976-76≪ – – – – 0.0 14.1 0.9817 0.9918 0.9673 273 168 211 1.4

6 97-197≪ 976-76≪ 96-17≫ – – 0.0 16.3 0.9645 0.9804 0.9581 367 227 307 2.8

7 300-350≪ 976-76≪ 96-17≫ – – 360 30.3 0.9575 0.9752 0.9530 525 357 410 25.7

The optimization process shown in Section 2.4.6 was implemented using the mathe-

matical modeling language AMPL (FOURER et al., 2003), whereas the MILP problem was

solved via CPLEX 12.6 (CPLEX, 2009). The optimization gap of the MILP solver has been

set to zero. The number of discrete blocks used in the current linearization was set to Λ = 40

blocks. All simulations were executed using a workstation with an Intel Core processor i7-6700

(3.40 GHz), and 8.00 GB of RAM.

2.5.1 Case 1: Restoration

The results of the proposed restoration process are summarized in Table 2, in which

each line indicates the simulated faulty zone (𝑧f ). As shown in Fig. 7, all load zones have

been tested. The second column indicates the switching sequence generated by the proposed

methodology. The symbols Ş≪Ť and Ş≫Ť represent the ŞopeningŤ and ŞclosureŤ of the speciĄed

switch, and ŞŰŤ indicates no switching action required. The column marked as 𝑃𝑈 determines

the amount of unsupplied demand at the end of the restoration sequence, without considering

the demand of the faulty zone. 𝑃𝑈 is calculated using (2.47), where 𝑥*
ẑ𝑖,smax represents the

optimal status of the zone 𝑧i at the end of the switching sequence. The column marked

as ŞO.F.Ť shows the value of the objective function at the end of the restoration process.

Columns Ş𝑉minŤ and Ş𝐼maxŤ show the minimum three-phase voltage magnitudes (in p.u.) and

maximum currents (in Amperes) at the end of the restoration process. Finally, the execution

time is shown in the last column of Table 2.

𝑃𝑈 =
∑︁

i∈Ω𝑏♣𝑧𝑖 ̸=𝑧𝑓

∑︁

f∈Ω𝑓

𝑃 D
i,f

⎞

1⊗ 𝑥*
ẑ𝑖,smax

)︁

(2.47)

All the solutions in Table 2 guarantee that the operational constraints are not viola-

ted, i.e., all the three-phase voltage magnitudes, circuit currents, switch currents, and DG

capacities are within their operational limits in every step of the sequence and the energized
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section of the network has a radial topology at the end of the restoration process. Further-

more, after executing a three-phase load Ćow algorithm (CHENG; SHIRMOHAMMADI,

1995), the maximum relative error of the proposed MILP model in terms of nodal voltage

magnitudes was 0.14%, and in terms of current magnitudes was 2.3%. These errors are low

and similar to other linear three-phase load Ćow formulations (GAN; LOW, 2014; GARCES,

2016). A more comprehensive error assessment of the proposed linear three-phase load Ćow

formulation can be found in Franco et al. (2015), Franco et al. (2013).

From Table 2, note that the restoration after faults in Zones 3, 4 and 5 requires only

one switch action because, as shown in Fig. 7, the isolation of those zones is made possible

by opening a single switch without de-energizing other zones. Thus, the optimal restoration

sequence of Zones 3, 4 and 5 is trivial, and it can be achieved by opening a single switch.

In contrast, the restoration of Zones 2 and 6 requires three steps because those zones are

middle sections of the feeders; therefore, the restoration process uses at least two steps to

totally isolate those zones, while one additional step is required to transfer the downstream

unsupplied demand to other feeders. Finally, since Zones 1 and 7 are located at the initial

section of the feeders, the restoration process would require all the steps of the sequence.

Nevertheless, the switching sequence generated by the proposed methodology guarantees

minimum unsupplied demand, whilst satisfying operations constraints. This is demonstrated

by comparing the restoration process performed after faults in Zones 1 and 7 at Table 2. Zone

1 is completely isolated at the end of the switching sequence and no additional unsupplied

demand exists (i.e., 𝑃𝑈 = 0.0 kW). In contrast, at the end of the restoration of Zone 7, an

amount of 𝑃𝑈 = 360.0 kW is caused due to the disconnection of Zone 6, which cannot be

restored by the proposed optimization model without violating the voltage limits of the EDS.

As indicated by the ŞO.F.Ť column in Table 2, the more steps are used, the higher

the objective function is. This happens because each switching operation has an additional

cost. To satisfy the radiality constraint, the proposed methodology initiates each restora-

tion sequence by opening the upstream switch of the faulty zone, which de-energizes all the

downstream zones. Then, it transfers the non-faulty zones to other feeders, whist maintaining

the radial topology of the energized section of the network.

The contribution of the dispatchable distributed resources can be illustrated by com-

paring the operation of each DG unit during the restoration after a fault in Zone 1. As shown

in Fig. 8, since DG3 is located at Zone 6 Ű which is not affected by the fault at Zone 1Ű

it operates unchanged during the entire restoration sequence. DG2 operates at step 3 when

Zone 2 is restored. Finally, DG1 only operates when the Zone 4 has been transferred to the

other feeder at the Ąnal step. Thus, the proposed methodology does not allow any DG unit

to operate if its zone has not been yet totally restored.
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Figure 8 Ű Operation of the DG units during the restoration after a fault in Zone 1.

Source: Lopez et al. (2018).

Table 3 Ű Case 2 (Maintenance): Switching sequence, total unsupplied demand and optimi-
zation results.

Zone Restoration Sequence P U O.F. Vmin [p.u.] Imax [A] Time

z𝑓 s = 1 s = 2 s = 3 s = 4 s = 5 [kW] [m.u.] f = a f = b f = c f = a f = b f = c [s]

1 151-300≫ 60-160≫ 918-18≪ 13-152≪ 150-149≪ 0.0 10.5 0.9616 0.9689 0.9619 569 379 418 5.5

2 – – 151-300≫ 18-135≪ 918-18≪ 0.0 10.3 0.9696 0.9755 0.9713 407 309 300 3.6

3 – – – – 18-135≪ 0.0 10.1 0.9696 0.9755 0.9672 260 182 211 2.3

4 – – – – 13-152≪ 0.0 10.1 0.9627 0.9755 0.9730 306 182 236 2.1

5 – – – – 976-76≪ 0.0 10.1 0.9817 0.9918 0.9673 273 168 211 2.3

6 – – 96-17≫ 976-76≪ 97-197≪ 0.0 10.3 0.9645 0.9804 0.9581 367 227 307 7.3

7 – – 96-17≫ 976-76≪ 300-350≪ 360 20.3 0.9575 0.9752 0.9530 525 357 410 13.0

2.5.2 Case 2: Scheduled Maintenance

As in the previous case, Table 3 summarizes the results of the proposed methodology

applied to deĄne the set of switching actions used to isolate each zone for maintenance.

As shown in Table 3, all switching operations are carried out at the end of the swit-

ching sequence because the binary decision variable that deĄnes each zone status is Ąxed as

𝑥z𝑓 ,smax = 0. Moreover, the radiality constraint is relaxed for 𝑠 < 𝑠max to consider the use

of temporary loops during the switching sequence. As an example, considering the isolation

of Zone 2, note that the switch 151-300 was closed Ąrst, which creates a temporary inter-

connection path between both feeders. Then, switches 918-18 and 18-135 were opened to

isolate Zone 2 and to transfer Zone 3 to another feeder. This temporary loop minimizes the

number of de-energized zones during the switching sequence. However, if meshed conĄgura-

tions are not desired by the EDSŠs operator, then the switching sequence can be reproduced
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Table 4 Ű Case 3 (Restoration without DG): Switching sequence, total unsupplied demand
and optimization results.

Zone Restoration Sequence P U O.F. Vmin [p.u.] Imax [A] Time

z𝑓 s = 1 s = 2 s = 3 s = 4 s = 5 [kW] [m.u.] f = a f = b f = c f = a f = b f = c [s]

1 150-149≪ 918-18≪ 151-300≫ – – 550 32.3 0.9683 0.9740 0.9721 520 343 373 12.9

2 918-18≪ 18-135≪ 151-300≫ – – 0.0 16.3 0.9683 0.9740 0.9693 423 325 316 8.7

3 18-135≪ – – – – 0.0 14.1 0.9683 0.9740 0.9644 276 198 243 1.4

4 13-152≪ – – – – 0.0 14.1 0.9612 0.9740 0.9715 323 198 252 1.4

5 976-76≪ – – – – 0.0 14.1 0.9549 0.9853 0.9594 420 247 346 1.4

6 97-197≪ 151-300≫ 976-76≪ 54-94≫ 18-135≪ 0.0 17.5 0.9501 0.9783 0.9590 402 259 338 30.3

7 300-350≪ – – – – 1105 42.1 0.9549 0.9853 0.9594 420 247 346 25.8

ŞbackwardsŤ and the Ąnal solution would be the same.

2.5.3 Case 3: Restoration Without DG

Table 4 shows the results for the restoration of each zone without DG resources in

the EDS. There are some noticeable differences between results in Table 2 and results in

Table 4. First, note that after a fault in Zone 1, the proposed methodology will not transfer

Zone 4 to another feeder due to current limits. Moreover, as shown in Table 4, in order to

restore Zone 5 during an outage in Zone 6, an additional transference of Zone 3 must be done

to alleviate the undervoltage of the feeder supplied by node 150. This additional switching

sequence cannot be performed in less than Ąve steps when simulating an outage in Zone 7.

Thus, in case of a permanent fault in Zone 7, the proposed methodology only opens switch

300-350 and de-energizes the entire feeder. Comparing the simulations in Table 2 and 4, it is

evident that dispatchable DG resources improve the restoration capacity of the system.

2.5.4 Real EDS

In order to demonstrate the performance of the proposed optimal restoration model,

the real-size 13.2 kV EDS in Fig. 9 was used for tests. The system comprises Ąve radial feeders

that supply electricity to 38,000 users. The real-size EDS has 5,181 nodes, from which 955 are

primary distribution transformers. Distribution transformers are represented by small circles

in Fig. 9. Blue and magenta feeders are connected to a main substation of 40 MVA (nominal

capacity), whereas red, yellow, and green feeders are connected to a different substation of

60 MVA. Moreover, the EDS has three 5 MVA dispatchable distributed generation (DG) units.

The total installed capacity of the distribution transformers is approximately 81 MVA. Also,

there are 32 remotely-controlled normally closed (NC) switches and 14 remotely-controlled

normally open (NO) switches that participate in the switching sequence.
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MV Trafo

Figure 9 Ű Real 13.2 kV EDS with Ąve feeders, 5,181 nodes, three DG units, 32 remotely-
controlled NC switches and 14 remotely-controlled NO switches.

Source: author.

A permanent fault has been located at feeder 1 (green), close to the main substation.

Then, after solving the proposed service restoration model with 𝑠max = 5, the resulting

switching sequence is shown in Fig. 10. In order to extinguish the fault (depicted by the

lightning bolt in Fig. 10), the Ąrst step of the service restoration was to open the feederŠs

main breaker at the substation. Then, a second NC switch was opened to isolate the faulty

zone (Step 2) and a NO switch that interconnects feeder 1 (green) and 2 (yellow) was closed

to restore most of the un-supplied demand (Step 3). Finally, in order to alleviate the burden

at feeder 2 (yellow), part of its load was transferred to feeder 4 (red) by opening a NC switch

(Step 4) and closing a NO tie switch at Step 5.

In this case, due to the size of the EDS, a 12 core server with Intel R÷ Xeon R÷ CPUs at

2.4 GHz and 32 GB of RAM was used to solve the model. Under these conditions, the MILP
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Figure 10 Ű Switching sequence of the proposed restoration applied to a real EDS in Fig. 9.

Source: author.

model was solved in approximately 16 minutes.

2.5.5 Computational Performance and Applicability

The execution time and the applicability of the proposed methodology can be impro-

ved using the following strategies:

1. Improve the processing capacity of the computer being used to solve the problem.

2. Reduce the number of discrete blocks Λ or use an optimization gap different from zero

as a stopping criterion of the MILP solver.

3. Solve the model without the set Ωs and constraints (2.18) and (2.19), i.e., disregard the

switching sequence. Then, count the number of switching actions and use this value to

establish 𝑠max in Step 1 of the optimization process.

2.6 Conclusion

In this chapter, a new mixed-integer non-linear programming (MINLP) model for

the optimal restoration sequence of unbalanced three-phase EDS, which considers a discrete

switching sequence and the contribution of DG resources, has been presented. The proposed

optimization methodology de-energizes the zone wherein a permanent fault has been iden-

tiĄed Ű or for maintenance Ű and minimizes the total un-supplied demand, as well as the
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number of switching operations during the restoration process. The operational constraints

of the system are not violated in every step of the sequence. The proposed MINLP was li-

nearized using a set of efficient linearization strategies and solved by a convex optimization

solver. The obtained results show that the proposed optimization model is a holistic proce-

dure that can be used to efficiently manage power restoration or to minimize isolated areas

in case of scheduled maintenance.



54

3 Enhanced Fault Location Method for Elec-

trical Distribution Systems

Abstract

An essential aspect that contributes to the reliability of modern electrical distribution systems

(EDS) is the deployment of efficient and fast fault location, isolation and service restoration

(FDIR). Once the protection system has reacted to a fault, the next step in the FDIR

philosophy is to assess, with maximum accuracy, the location of the fault. This chapter

proposes an enhanced version of the fault location method based on asynchronous voltage

measurements and the bus impedance matrix. Given a voltage drop sensed by each smart

meter, the location of the fault is achieved by averaging the fault current as seen by each

meter in each node of the system. Then, the node with the lowest difference between the

average fault current and the individual fault currents will be regarded as the location of the

fault. This method has proved to be easy to implement, fast and robust. The fault location

algorithm has been enhanced in this chapter by using a weighted arithmetic mean instead of

a regular arithmetic mean for averaging the fault current. As shown by the result, this simple

enhancement makes the algorithm less susceptible to erroneous fault locations when some of

the measurements are missing or unreliable.

3.1 Introduction

With the advent of smart meters and advanced metering infrastructure (AMI) in

electrical distribution systems (EDS), distribution companies are becoming more aware of

the status of their networks, in almost real-time basis (MOHASSEL et al., 2014). AMI is of

course expensive, and its cost must be justiĄed by the applications that can be performed

with such level of supervision. More accurate and timely billing, remote service connection

and disconnection, short-term load and distributed generation (DG) forecasting, tamper and

theft detection, voltage control, and load-side management programs are among the main

beneĄts of AMI and smart meters (DOE, 2016).

Another beneĄt from advanced supervision in EDS is the deployment of efficient and

fast fault detection, isolation and service restoration (FDIR) (ZIDAN et al., 2017). Without

smart meters, a truly automated and responsive FDIR will not be possible, specially because

the location of the fault and the service restoration systems requires accurate and recent
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Ąeld measurements. Efficient fault-location techniques reduce outage management costs and

increase the overall reliability of the EDS (KEZUNOVIC, 2011).

The proper identiĄcation and location of faults in distribution networks is an active

research Ąeld. As discussed in CIRED WORKING GROUP WG03 (1999) there are three

distinctive fault-location techniques for EDS in continuous development: techniques that use

fault indication devices (SUN et al., 2016a; JIANG et al., 2016), techniques that use transient

and traveling wave signal analysis (ROBSON et al., 2019; ROBSON et al., 2014; RUI et al.,

2017) and techniques that indicate the distance to the fault based on fault current/voltage

estimation (KEZUNOVIC, 2011). In the last category, the fault location is done by comparing

how well each calculated fault current/voltage matches up to what was actually observed at

the meters in the network. In this case, a fault location index is deĄned. The pioneer method

in Pereira et al. (2009) requires the direct calculation of a current fault which is highly

inĆuenced by the type of fault and the fault resistance. Robustness of the pioneer method

was assessed in Chen et al. (2014).

Many techniques based on fault current/voltage estimation derived in large system of

equations that require complex computational resources and slow iterative procedures. Many

authors have proposed the application of reduced equivalent networks to deploy the fault loca-

tion algorithms in a hierarchical structure (OROZCO-HENAO et al., 2017; MORA-FLOREZ

et al., 2015; ZHANG et al., 2018). Other authors have solve the fault location problem as a

instance of the state estimation in EDS (MAJIDI et al., 2015; MAJIDI et al., 2015; MAJIDI;

ETEZADI-AMOLI, 2018; JAMALI; BAHMANYAR, 2016). Moreover, highly sophisticated

approaches have been proposed in the past, such as backward/forward calculation (BAH-

MANYAR; JAMALI, 2017), data-mining (RECHE et al., 2019), data-driven (HOSSAN;

CHOWDHURY, 2019), fuzzy logic (JARVENTAUSTA et al., 1994) and modern heuristics

(JAMALI et al., 2015). Most of these techniques try to cope with the multiple estimation

problem. However, these techniques require sophisticated programming and infrastructure,

which inhibits the applicability and scalability of these methods. A comprehensive review on

fault location methods in distribution systems up to 2017 can be found in Bahmanyar et al.

(2017).

To the best of our knowledge, the simplistic impedance-based method proposed in

Pereira et al. (2009) is still the most straightforward, robust and efficient fault location

technique for practical distribution networks, considering scarce and asynchronous voltage

measurements. Other authors have proposed different enhancements to deal with the multiple

estimation problem (TRINDADE et al., 2014; BISCARO et al., 2016; CAVALCANTE; AL-

MEIDA, 2018). Similar to the aforementioned works, this chapter proposes a simple enhance-

ment of the method presented in (TRINDADE et al., 2014) to deal with missing or unreliable
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measurements in a simplistic way that do not compromise the straightforwardness, robustness

and overall accuracy of the bus-impedance-matrix-based methods.

The fault-location methods in Trindade et al. (2014), Cavalcante and Almeida (2018)

establish the location of the fault by minimizing an index Ón. Based on the voltage drop

measured by each smart meter after a fault, the node with the lowest Ón is considered as

the most probable location of the fault. In this chapter, the assessment of Ón is enhanced

by using a weighted arithmetic mean instead of a regular arithmetic mean for calculating

the average fault current due to a voltage drop at each meter. As shown by the results, the

proposed enhancement elevates the robustness of the methods presented in Trindade et al.

(2014), Cavalcante and Almeida (2018) by making them less susceptible to erroneous fault

locations when some of the measurements are missing or unreliable. Moreover, the scalability

and practicality of the method is demonstrated by its simulation in real size distribution

systems.

The rest of the chapter is organized as follows: Section 3.2 introduces the fault location

method based on scarce, asynchronous voltage measurements and the bus impedance matrix.

The proposed enhancement is illustrated in Section 3.2.1. Section 3.3 presents the tests and

results obtained using a 135-bus 13.8 kV three-phase distribution system and a real size

distribution system. Finally, conclusions are given in Section 3.4.

3.2 Fault-location method

Thanks to the ongoing reduction of their costs and the increasing set of capabilities of

intelligent electronic devices (IED), smart electricity meters are now capable to participate in

detection and diagnosis of outages in EDS (SUN et al., 2016b). Nowadays, smart meters are

able to provide two-way end-to-end communication, data storage and processing, and high

rate sampling, within small, robust and affordable equipment. Thus, AMI applications, such

as automatic fault-location methods, are becoming feasible solutions for distribution system

operators (DSO).

Given a voltage drop perceived in each smart meter 𝑚 ∈𝑀 , the fault-location method

in Trindade et al. (2014) is based on the short-circuit current at each node 𝑛 ∈ 𝑁 , calculated

by the following expression:
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In (3.1), the voltage drop at each meter 𝑚 ∈𝑀 is calculated as follows:
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In case the smart meter 𝑚 ∈𝑀 does not have voltage phasor capabilities, the angles

in (3.1) can be replaced by their nominal values, i.e., 𝜃ΔV
a = 0, 𝜃ΔV

b = ⊗2π
3

and 𝜃ΔV
c = 2π

3
,

with comparable performance.

Based on the system parameters and topology, the three-phase bus impedance matrix

in (3.1) can be obtained through analytical approaches or via simulations using an electro-

magnetic transient program, such as ATP/EMPT (ATP/EMPT, 1992), to assess and store

all the three-phase bus impedance seen by each smart meter 𝑚 ∈ 𝑀 , given a solid three-

phase fault at each node 𝑛 ∈ 𝑁 . Whatever the case, loads must be considered during the

calculation of the impedance bus matrix as equivalent shunt elements. Load impedances can

be obtain from average consumption, nominal values or smart electricity meters.

Thus, the fault-location index Ón is calculated using (3.3) for each node of the system,

where
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The node with the lowest value of Ón is considered to be the location of the fault.

Implicitly, the fault-location index in (3.3) assesses the variance of the current faults as seen

by the meters. Thus, the minimization of Ón is a risk-averse estimator that selects the node

with the lowest variability around the mean value.

3.2.1 Enhanced fault-location method

The robustness and accuracy of the previous fault-location method can be improved

by considering a weighted arithmetic mean for the fault current
⧹︃

⧹︃

⧹︃𝐼 fault
f,n

⧹︃

⧹︃

⧹︃, instead of the regular

arithmetic mean. In this case, the weight of each fault current is inversely proportional to the

physical distance between the node and the meter, given by 𝑑n,m. The proposed enhancement

is shown in (3.4), where the weights 𝑝n,m are given by equation (3.5).

⧹︃
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⧹︃𝐼 fault
f,n,m

⧹︃

⧹︃

⧹︃ ∀𝑛 ∈ 𝑁, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (3.4)
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𝑝n,m =
𝑑⊗1

n,m
√︁

n∈M 𝑑⊗1
n,m

∀𝑛 ∈ 𝑁, 𝑚 ∈𝑀 (3.5)

Once again, the fault-location index is calculated using (3.3). The proposed weighted

arithmetic mean gives more importance to the meters closer to the estimated fault. Hence,

it is expected that the impact from erroneous or unreliable measurements were reduced in

those meters that perceive small voltage drops. A similar weighted approach was proposed

in Cavalcante and Almeida (2018). However, the weights in Cavalcante and Almeida (2018)

depend on the voltage drop at each meter, which might be an unreliable parameter in case of

erroneous measurements. Since the distance is a constant value, it will not be affected by the

quality of the measure. An empirical comparisons of the fault-location methods in Trindade

et al. (2014), Cavalcante and Almeida (2018) and this work are carried out in the following

section.

3.3 Tests and Results

Test and results are divided in two subsections. The Ąrst subsection compares the

accuracy and robustness of the proposed fault-location method with similar bus impedance

based location methods in Trindade et al. (2014) and Cavalcante and Almeida (2018). To do

so, the real 135-nodes, 13.8 kV distribution system in Fig. 11 will be used for tests. The system

comprises one feeder with 13 smart meters arbitrarily allocated along the network. Meters

do not have voltage phasor capabilities, and they only provide three-phase phase-to-ground

voltage magnitudes before and after the fault. Load and branch parameters can be obtained

in Trindade et al. (2014), Pereira et al. (2009). The short-circuit analysis was performed in

ATP/EMPT. Fig. 12 shows the schematic of the network in ATPDraw (ATP/EMPT, 1992).

The second section shows the application of the proposed fault location method in a real size

distribution system comprising thousands of nodes and branches.

3.3.1 Comparison of Fault-location Methods

In this case, the fault location methods in Trindade et al. (2014), Cavalcante and

Almeida (2018) and this work, are analyzed to show their susceptibility to erroneous measu-

rements. All three methods are based on the three-phase bus impedance matrix in (3.1), but

the fault location index Ón is calculated using dissimilar criteria. Considering a solid three-

phase fault at nodes 14, 55, 75 and 114; Table 5 shows the average distance to the fault after

executing the three fault-location methods for different levels of erroneous measurements.

The average distance to the fault is computed using a set of Monte Carlo simulations with
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Figure 11 Ű Real 134-nodes, 13.8 kV distribution feeder (TRINDADE et al., 2014; PEREIRA
et al., 2009).

Source: Trindade et al. (2014).

10,000 iterations for each test. The simulated error is adjusted by adding white Gaussian

noise to the three-phase voltage magnitudes using different signal-to-noise ratios (SNR).

As shown by the results in Table 5, the proposed fault-location method has superior

performance over the other methods when the SNR is low, i.e., when meters are unreliable.

However, for reliable measurements (SNR = 40) all three method behave similarly with small

distances to the faults. A more practical approach to assess the robustness of the methods is

shown in Table 6. Based on the Monte Carlo simulations, Table 6 computes the percentage

of positive locations of each method and SNR. The criterion for considering a location as

ŞpositiveŤ is that the distance between the actual faulty node and the location provided

by each method is lower than 500 m. Clearly, the proposed method is less susceptible to

erroneous measurements, up to SNR = 30. However, for extremely noisy readings (SNR =

20) all methods are equally unable to locate the fault.
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Figure 12 Ű 135-nodes test system in ATP/EMPT.

Source: author.

3.3.2 Real-size distribution system

To show the scalability of the proposed fault-location method, a real-size 13.2 kV EDS

has been tested. The system comprises Ąve radial feeders that supply electricity to 38,000

users of different types. The real-size EDS has 5,181 nodes, from which 955 are primary

transformers. Also, there are 32 remotely-controlled NC switches and 14 remotely-controlled

NO switches. Consider three three-phase faults at dissimilar nodes of the network. Fig. 13

depicts the performance of the proposed method if the voltage magnitude measurements,

before and after the fault, are collected by the smart meters installed at the 32 remotely-

controlled NC switches and 14 remotely-controlled NO switches, i.e., there are only 46 smart

meters available. The magnifying glass in Fig. 13 represents a radius of 100 m from the

location of the fault provided by the proposed method. The true location of the fault is

represented by the thunderbolt. Note that, with only 46 smart meters available, locations are

not accurate enough, but they can be used as rough indicators of the fault. Finally, results

considering 955 smart meters participating in the fault-location method, i.e., AMI, are shown

in Fig. 14. Note that all faults are within the 100 m range when AMI is implemented. Thus,

an effective outage management system can be deployed.
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Table 5 Ű Average distance (in meters) to the fault for different SNR and fault-location
methods

Method SNR=20 SNR=25 SNR=30 SNR=35 SNR=40
a) Three-phase fault at node 14

(TRINDADE et al., 2014) 2053 2046 1920 498 33
(CAVALCANTE; ALMEIDA, 2018) 2053 2027 1950 672 32

This work 2052 2035 1270 48 2

b) Three-phase fault at node 55
(TRINDADE et al., 2014) 2417 2313 984 454 117

(CAVALCANTE; ALMEIDA, 2018) 2417 2336 1136 456 117

This work 2380 2000 676 508 181
c) Three-phase fault at node 75

(TRINDADE et al., 2014) 2523 2233 482 19 1

(CAVALCANTE; ALMEIDA, 2018) 2527 2277 503 19 1

This work 2438 1769 137 14 1

d) Three-phase fault at node 114
(TRINDADE et al., 2014) 1197 815 567 237 54

(CAVALCANTE; ALMEIDA, 2018) 1171 812 546 221 46
This work 1352 339 197 72 8

3.3.3 Applicability Notes

1. The proposed fault-location method can be further improved by considering the per-

formance of the distribution protection system. In practice, protection devices (circuit

breakers, reclosers, fuses, etc.) are coordinated so that faults can be isolated with mini-

mum impact. This creates an outage mapping that can be exploited to omit areas that

should no be considered by the fault-location method.

2. The proposed fault-location method can be easily embedded into an optimization pro-

blem. Thus, it can be used for formulating the optimal allocation of smart meters that

maximizes the accuracy of the fault-location process.

3. Finally, a major applicability issue of the proposed fault-location method is the delay or

latency among measurements. This is a complex telecommunication-related problem,

that must be addressed in future works.

3.4 Conclusion

This chapter proposed a enhanced version of the fault-location method based on

asynchronous voltage measurements and the three-phase bus impedance matrix. The method

is straightforward, fast, accurate and robust, in the sense that it is less susceptible to erroneous
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Table 6 Ű Percentage of positive locations (< 500 m) for different SNR and fault-location
methods

Method SNR=20 SNR=25 SNR=30 SNR=35 SNR=40
a) Three-phase fault at node 14

(TRINDADE et al., 2014) 0.0% 0.1% 3.2% 54.8% 93.4%
(CAVALCANTE; ALMEIDA, 2018) 0.0% 0.1% 2.4% 48.9% 93.5%

This work 0.0% 0.3% 27.7% 91.1% 99.7%
b) Three-phase fault at node 55

(TRINDADE et al., 2014) 0.0% 0.3% 15.2% 40.8% 85.2%
(CAVALCANTE; ALMEIDA, 2018) 0.0% 0.2% 13.9% 40.5% 85.1%

This work 0.0% 1.7% 17.3% 33.9% 77.4%
c) Three-phase fault at node 75

(TRINDADE et al., 2014) 0.0% 1.3% 66.6% 97.8% 99.8%
(CAVALCANTE; ALMEIDA, 2018) 0.0% 1.2% 66.3% 97.8% 99.8%

This work 0.0% 9.9% 88.5% 98.1% 99.8%
d) Three-phase fault at node 114

(TRINDADE et al., 2014) 0.4% 2.4% 20.4% 74.9% 99.3%
(CAVALCANTE; ALMEIDA, 2018) 0.4% 2.4% 21.8% 78.5% 99.3%

This work 19.3% 44.4% 91.7% 99.9% 100.0%

fault locations when some of the measurements are missing or unreliable. As demonstrated by

the results, the proposed simple enhancement increases the performance of the fault-location

method without compromising its applicability and scalability, which makes it suitable for

outage management systems in AMI networks.



Chapter 3. Enhanced Fault Location Method for Electrical Distribution Systems 63

Feeder 1

Feeder 2

Feeder 3

Feeder 4

Feeder 5

NO Switch

NC Switch

Transformer

Feeder 1

Feeder 2

Feeder 3

Feeder 4

Feeder 5

NO Switch

NC Switch

Transformer

Feeder 1

Feeder 2

Feeder 3

Feeder 4

Feeder 5

NO Switch

NC Switch

Transformer

Figure 13 Ű Real-size EDS: Fault-locations for three different faults based on the measure-
ments of 46 smart meters.

Source: authors.
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Figure 14 Ű Real-size EDS: Fault-locations for three different faults based on the measure-
ments of 955 smart meters, i.e., AMI.

Source: authors.
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4 Parsimonious Short-Term Load Forecasting

for Optimal Operation Planning of Electrical

Distribution Systems

Abstract

The optimal operation planning (OOP) of electrical distribution systems (EDS) is very sensi-

ble to the quality of the short-term load forecasts. Assuming aggregated demands in EDS as

univariate non-stationary seasonal time series, and based on historical measurements gathe-

red by smart meters, this chapter presents a parsimonious short-term load forecasting method

to estimate the expected outcomes of future demands, and the standard deviations of forecast

errors. The chosen short-term load forecasting method is an adaptation of the multiplica-

tive autoregressive integrated moving average (ARIMA) models. Seasonal ARIMA models

are parsimonious forecasting techniques because they require very few parameters and low

computational resources to provide an adequate representation of stochastic time series. Two

approaches are used in this chapter to estimate the parameters that constitute the proposed

multiplicative ARIMA model: a frequentist and a Bayesian approach. Advantages and disad-

vantages of both methods are compared by simulating a centralized self-healing scheme of

a real EDS that uses the forecasts to deploy a robust restoration plan. Results shown that

the proposed seasonal ARIMA model is a fast, precise, straightforward and adaptable load

forecasting method, suitable for OOP of highly supervised EDS.

4.1 Introduction

Short-term load forecasting is of great importance in the operation planning of bulk

energy systems. Regulation bids, energy arbitrage, and market-clearing mechanisms are con-

ducted on hourly bases, which puts a lot of pressure on forecasting techniques to provide

accurate and fast estimations of future demands (TAYLOR; MCSHARRY, 2017). With the

advent of smart meters and advanced distributed automation, electrical distribution system

(EDS) operators are also becoming active users of short-term operation planning (HONG,

2014). Based on the information gathered by meters, demand forecasts can be used as input

data for the dynamic optimization of the EDS resources, a.k.a., optimized energy mana-

gement systems. Moreover, in case of a fault, fast restoration methods can be deployed to
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minimize the total amount of expected unsupplied demand while the fault is being repaired,

a.k.a., self-healing schemes (NORTHCOTE-GREEN; WILSON, 2017).

Optimal operation planning (OOP) problems, such as self-healing schemes, require

fast and precise short-term load forecasts in order to compute their decisions. In many cases,

only the expected value of the future consumption is not enough. Other statistical moments,

such as the standard deviation of forecast errors, are also important to make robust and

risk-averse decisions. Such is the case for self-healing schemes, in which EDS operators would

be more interested in a restoration plan that not only minimizes the expected amount of

unsupplied demand, but also guarantees that the energized portion of the network is able

to operate within its operational constraints during the time required to repair the fault.

Thus, when implementing a self-healing scheme, the accuracy of the expected outcomes, and

the standard deviations of the forecast errors, are signiĄcant to the robustness of the Ąnal

restoration plan (CHEN et al., 2016).

Since the beginnings of electrical engineering, numerous short-term load forecasting

techniques have been proposed and extensively tested (HONG; FAN, 2016; HERNANDEZ et

al., 2014). Most techniques use historical information to formulate and train different estima-

tors: multiple linear regression models (PAPALEXOPOULOS; HESTERBERG, 1990), semi-

parametric additive models (FAN; HYNDMAN, 2012; GOUDE et al., 2014), exponential

smoothing models (TAYLOR; MCSHARRY, 2007), autoregressive moving average models

(HAGAN; BEHR, 1987; WERON, 2013), artiĄcial neural networks (HIPPERT et al., 2001;

KHOTANZAD et al., 1998), fuzzy regression models (SONG et al., 2005; HONG; WANG,

2014), support vector machines (CHEN et al., 2004), and gradient boosting (TAIEB; HYND-

MAN, 2014; LLOYD, 2014); are among the most successful forecasting techniques proposed

to this date.

In this context, the objective of this chapter is not to propose a new short-term load

forecasting technique in an already saturated research area. Our goal is, in fact, to adapt

one of the aforementioned methods for formulating and solving short-term OOP problems in

highly supervised EDS. To achieve this, the forecasting technique must meet the following

four requirements: a) its computational complexity must be low in order to be deployed in

on-line on-site applications; b) it should be accurate in terms of expected values and residuals;

c) it should contain as few tuning parameters and forecasting variables as possible; and d)

it should be able to automatically adapt itself to the ever-charging stochastic nature of EDS

demands. A short-term load forecasting technique that satisĄes all these four requirements

is said to be a parsimonious method (BOX et al., 2008).

As shown in previous empirical studies, multiplicative autoregressive integrated mo-



Chapter 4. Parsimonious Short-Term Load Forecasting for Optimal Operation Planning of EDS 66

ving average (ARIMA) models are simplistic and accurate analytical methods for short-term

forecasting of aggregated demands (TAYLOR; MCSHARRY, 2017). All forecasting techni-

ques are subject to error but, when dealing with univariate seasonal stochastic time series,

regression models are regarded as the best option to provide fast and reliable forecasts (HONG

et al., 2014). Assuming aggregated demands as non-stationary seasonal time series, several

univariate multiplicative ARIMA models (one for each electrical measurement) can be used

to dynamically estimate future outcomes of power demands in each load node. In this chapter,

a generalized parsimonious short-term load forecasting method based on seasonal ARIMA

models and historical measurements gathered by smart meters is presented. Two approaches

are used to estimate the parameters that constitute the proposed multiplicative ARIMA mo-

del: a frequentist and a Bayesian approach. The accuracy and efficiency of both estimation

methods are tested by simulating a robust self-healing scheme in a real EDS that requires

fast and precise short-term load forecasts to deploy its restoration plan. Results show that

the proposed seasonal ARIMA model satisĄes the four parsimonious requirements, and it is

suitable for solving short-term OOP problems in highly supervised EDS.

The main contributions of this chapter are as follows:

∙ A parsimonious short-term load forecasting method, based on seasonal ARIMA models

and historical measurements gathered by smart meters, is adapted and presented as

the Ąrst-step for solving short-term OOP problems in highly supervised and automated

EDS.

∙ A frequentist and a Bayesian approaches for estimating the parameters of the seasonal

ARIMA models are used and compared. Advantages and disadvantages of both methods

are discussed by simulating a centralized self-healing scheme that uses the forecasted

demands to execute a robust restoration plan.

The rest of the chapter as organized as follows: Section 4.2 presents the application of

forecasting techniques for the OOP of highly supervised EDS. Section 4.3 shows the process

of model identiĄcation, preliminary estimation and forecasting, using the proposed seasonal

ARIMA model. Section 4.4 deals with the estimation of the modelŠs parameters using the

frequentist and Bayesian approaches. Model adequacy is discussed in Section 4.5, and test

and results are shown in Section 4.6, followed by conclusions.
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Figure 15 Ű Short-term load forecasting for OOP of highly supervised EDS.

Source: Lopez et al. (2019).

4.2 Short-term Load Forecasting for the Optimal Operation Planning

of EDS

The optimal operation planning (OOP) of EDS requires fast, updated, and precise

load forecasts to make informed decisions (HERNANDEZ et al., 2014). As shown in Fig. 15,

short-term load forecasting is the very Ąrst step for deploying an OOP method in distribution

systems with an advanced metering infrastructure (AMI) (MOHASSEL et al., 2014). Based

on current measurements (i.e., at time á) and historical information, the short-term load

forecasting method (the ARIMA model in Fig. 15) estimates the expected values and the

standard deviations of future demands at each load node, i.e., from time á to á + 𝑙, where 𝑙

is the time lag of the forecasts.

Electrical measurements, such as current and voltage magnitudes at distribution

transformers, can be considered as non-stationary seasonal time series that depend on the

aggregated demands of all users connected to each transformer. Thus, as shown in Fig. 15,
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these time series can be forecasted on-line and on-site by taking advantage of the limited

storage and processing capabilities of smart meters in the Ąeld.

Using a small resolution (e.g., 5 minutes per sample), the short-term memory of

regression models can capture slow consumption patterns affected by exogenous variables,

such as temperature and humidity (TAYLOR; MCSHARRY, 2017). Moreover, control actions

that affect the collective consumption in a seasonal fashion (e.g., demand response at certain

hours of the day, scheduled charging of EVs, etc.) can be also captured by univariate seasonal

methods.

Finally, it is worth mentioning that univariate load forecasting methods should be

used to estimate pure aggregated consumption, i.e., their are neither suitable for forecas-

ting individual demands (e.g., households) nor renewable generation resources, because these

stochastic processes are highly inĆuenced by rapid exogenous random events, such as micro-

weather conditions or individual human behavior, that cannot be fully captured by univariate

linear regression models (HONG, 2014).

4.2.1 OOP problem: Self-healing Scheme

In order to evaluate the efficiency of the proposed parsimonious load forecasting tech-

nique, a real-size EDS with an AMI will be used to simulate a centralized self-healing scheme.

In case of a permanent fault, the function of the self-healing scheme is to automatically ge-

nerate a set of control actions that minimize the impact of the outage while the fault is being

repaired. Based on the short-term load forecasts and the location of the fault, the self-healing

scheme is represented as an OOP problem whose solution aims at minimizing the expected

unsupplied demand after the fault (CAVALCANTE et al., 2016; AGUERO, 2012).

The quality of the self-healing scheme is highly inĆuenced by the speed and precision

of the load forecasts. The set of restorative actions must be deployed shortly after the fault has

been identiĄed in order to be effective. Thus, forecasts must be updated and available at any

time. Moreover, poor forecasting can result in ill-conceived restoration plans. For example,

too much load could be transferred to heavily loaded feeders or, on the contrary, feeders with

enough capacity could be ignored by the self-healing scheme. Thus, in this case, not only the

average values of the load forecasts are important, but also the standard deviation of the

forecast errors are signiĄcant to the robustness of the restoration.

In this chapter, the optimization model in Lopez et al. (2018) is used to represent and

deploy the restoration plan of the centralized self-healing scheme in unbalanced three-phase

EDS. The model in Lopez et al. (2018) considers the operation of remotely-controlled swit-

ches for transferring de-energized sections of the system to other feeders and for isolating the
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Figure 16 Ű Time series 𝑧t: four years of single-phase current magnitudes recorded from the
primary side of a distribution transformer.

Source: Lopez et al. (2019).

fault. Also, if available, dispatchable distributed generation (DG) units can be rescheduled

to improve the impact of the restoration plan. The optimization model is shown in Chap-

ter 2. Details regarding the optimization technique used to solve the restoration plan will be

discussed in Section 4.6.

4.3 Seasonal ARIMA model

In this section, the use of a seasonal ARIMA model as a parsimonious short-term

load forecasting technique is justiĄed by analyzing the estimated autocorrelation function

of a typical time series, associated to the magnitude of an aggregated single-phase demand

current. Furthermore, the identiĄcation of the model, the initial estimation of its parameters,

and the generation of forecasts will be discussed and validated through empirical analysis.

4.3.1 Model Identification

The Ąrst step of building any stochastic model is to analyze the attributes of the time

series that will be forecasted. The time series in Fig. 16 represents the single-phase current

magnitudes recorded by a smart meter at the primary side of a distribution transformer.

Four years of data with a resolution of 5 minutes per sample are shown in Fig. 16, which

constitutes a total amount of 420,768 measurements. The data have been generated by ag-

gregating several demands from a residential area whose individual load proĄles have been

randomly generated using the LoadProĄleGenerator software in PĆugradt and Muntwyler

(2017), PĆugradt et al. (2013).

Time series 𝑧t in Fig. 16 is a non-stationary stochastic process since its mean level and
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Figure 17 Ű Estimated autocorrelation function of series 𝑧t.

Source: Lopez et al. (2019).

variance may have different values for different, sufficiently large, time intervals. However,

there is a notorious interdependence between adjacent observations of the series which indi-

cates that, in spite its randomness, aggregated demands have a tendency of following similar

patterns that derive from previous outcomes, i.e., there are temporal correlations among data

samples. Analyzing these correlations is the Ąrst step for model identiĄcation. Fig. 17 shows

the estimated autocorrelation function of series 𝑧t for time lags between 1 to 4,500 samples

(i.e., up to two weeks).

The estimated autocorrelation function in Fig. 17 seems to oscillate without visible

reduction, with two notorious spikes at lags 2,016 and 4,032, i.e., at exactly one and two

weeks, which suggests a periodic time series with period 𝑠 = 2, 016. Fig. 18 shows a detailed

section of time series 𝑧t that illustrates its seasonal component. Aggregated demands usually

follow a period of one week because human activities are conditioned to the hour of the day

and the day of week. Other slow periods, such as annual seasons or tropical temperature

oscillations, that depend on the geographic location of the loads, can also be identiĄed fol-

lowing a similar analysis. However, for the sake of simplicity and generality, only a one-weekly

period will be considered in this chapter, keeping in mind that all subsequent procedures for

model identiĄcation can be extended to time series with multiple periods following analogous

methods.

Fig. 19 shows the estimated autocorrelation function of time series Δs𝑧t = 𝑧t ⊗ 𝑧t⊗s,

with 𝑠 = 2, 016. A small version of the resulting time series is also shown in Fig. 19. Note that,

after removing the periodic component of the series, most of the estimated autocorrelations

are reduced. However, strong oscillating autocorrelations remain, suggesting non-stationarity.

The next step in model identiĄcation is checking whether the time series is homoge-

neous or not. Homogeneity is perceived when different, sufficiently large, intervals of the time
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Figure 18 Ű Detailed section of time series 𝑧t that shows its seasonality.

Source: Lopez et al. (2019).

Figure 19 Ű Estimated autocorrelation function of series Δs𝑧t, with 𝑠 = 2, 016.

Source: Lopez et al. (2019).

series show similar patterns in terms of level and slope. Large portions of Δs𝑧t show similar

mean levels which indicates a Ąrst degree of homogeneity, i.e., each outcome is highly inĆu-

enced by its previous realization. Thus, Fig. 20 shows the estimated autocorrelation function

of the time series ΔΔs𝑧t = 𝑧t ⊗ 𝑧t⊗s ⊗ (𝑧t⊗1 ⊗ 𝑧t⊗s⊗1) and a small version of the resulting

time series æt = ΔΔs𝑧t, with 𝑠 = 2, 016.

Time series æt in Fig. 20 is a stationary time series whose estimated autocorrelations

can be considered signiĄcant for lags 0, 1, 2,015, 2,016, and 2,017. Furthermore, lags 1 and

2,016 are negative, whereas lags 2,015 and 2,017 are positive which is consistent with a moving

average process given by the following regression model:

æt = ΔΔs𝑧t = 𝑎t ⊗ 𝜃𝑎t⊗1 ⊗Θ𝑎t⊗s + 𝜃Θ𝑎t⊗s⊗1, (4.1)

where stochastic variables æt and 𝑎tŠs have zero mean. Equation (4.1) is known as univariate

multiplicative ARIMA model (BOX et al., 2008), and only three parameters need to be
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Figure 20 Ű Estimated autocorrelation function of stationary series æt = ΔΔs𝑧t, with 𝑠 =
2, 016.

Source: Lopez et al. (2019).

estimated in order to start generating forecasts with (4.1): parameters 𝜃, Θ, and the variance

of the 𝑎tŠs, i.e, à2
a.

4.3.2 Preliminary Estimation

Parameters 𝑎tŠs in (4.1) are independent and identically distributed (IID) random

variables whose linear regression predicts the values of the future outcomes of æt. Thus, the

autocovariance function of (4.1), for lags 𝑘 = 0, 1, ...,∞, is given by (4.2).

Òk = 𝐸 [(𝑎t ⊗ 𝜃𝑎t⊗1 ⊗Θ𝑎t⊗s + 𝜃Θ𝑎t⊗s⊗1) (𝑎t⊗k ⊗ 𝜃𝑎t⊗k⊗1 ⊗Θ𝑎t⊗k⊗s + 𝜃Θ𝑎t⊗k⊗s⊗1)] (4.2)

Since 𝑎tŠs are IID, the analytical autocovariances of æt are given by (4.3)Ű(4.8). Note

that, since 𝜌k = γ𝑘

γ0
, (4.3)Ű(4.8) are consistent with the estimated autocorrelations in Fig. 20.

Ò0 =
[︁

1 + 𝜃2 + Θ2 + (𝜃Θ)2
]︁

à2
a =

⎞

1 + 𝜃2
)︁ ⎞

1 + Θ2
)︁

à2
a (4.3)

Ò1 = [⊗𝜃 ⊗Θ (𝜃Θ)] à2
a = ⊗𝜃 (1 + Θ)2 à2

a (4.4)

Òs⊗1 = 𝜃Θà2
a (4.5)

Òs = [⊗Θ⊗ 𝜃 (𝜃Θ)] à2
a = ⊗Θ (1 + 𝜃)2 à2

a (4.6)

Òs+1 = 𝜃Θà2
a (4.7)

Òk = 0; Otherwise (4.8)
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Providing that the series æt is stationary, and given the autocovariances in (4.3)Ű

(4.8), the preliminary estimation of parameters 𝜃 and Θ can be obtained by (4.9) and (4.10),

respectively.

𝜌1 =
Ò1

Ò0

=
⊗𝜃

1 + 𝜃2
(4.9)

𝜌s =
Òs

Ò0

=
⊗Θ

1 + Θ2
(4.10)

Thus, based on the empirical results from Fig. 20, the preliminary parameters are

𝜃 = 0.4916 and Θ̂ = 0.8122, where the accent �̂� stands for Şestimated value of 𝑎Ť. Finally, an

unbiased estimation of à2
a may be obtained from the time series data and the ARIMA model

as discussed in the following subsection.

4.3.3 Forecasting

Once initial values for 𝜃 and Θ̂ have been obtained, the ARIMA model in (4.1) can be

used to dynamically generate forecasts from the time series. Consider a lag time 𝑙, such that

𝑙 can go from 5 minutes-ahead to any practical value of 𝑙. Forecast values 𝑧t can be produced

by sequentially solving (4.11) for 𝑡 ∈ ¶á + 1, á + 2, . . . , á + 𝑙♢, where á is the current time

from which forecasts are taken and the accent �̃� stands for Şforecasted value of 𝑎Ť.

𝑧t = 𝑧t⊗1 + 𝑧t⊗s ⊗ 𝑧t⊗s⊗1 + 𝑎t ⊗ 𝜃𝑎t⊗1 ⊗ Θ̂𝑎t⊗s + 𝜃Θ̂𝑎t⊗s⊗1

∀𝑡 ∈ ¶á + 1, á + 2, . . . , á + 𝑙♢ (4.11)

In (4.11), the values for 𝑧t⊘τ are obtained directly from the time series, whereas the

vales for 𝑧t>τ are returned from previous forecasts. On the other hand, the values for 𝑎t⊘τ

are obtained by using the conditional estimation method shown in Algorithm 1, whereas the

values for 𝑎t>τ are set to zero.

Algorithm 1 is called conditional estimation because it approximates the individual

outcomes of 𝑎tŠs based on the ARIMA model and the historical information of the time series

æt. Considering that the known values of æt start at 𝑡 = 1 and end at 𝑡 = á , back-forecasts of

æt (regarded as æ̃t) are Ąrst calculated using the recursive procedures in lines 4 to 7, where

𝑒t are the random coefficients of the back-forecasted series æ̃t. Once the values of æ̃⊗s⊗1⊘t⊘0

have been obtained, the recursive forward method in lines 8 to 12 is used to estimate the

𝑎tŠs. Note that the Algorithm 1 estimates the values of 𝑎⊗s⊗1⊘t⊘τ , i.e., it also provides the

random coefficients of the back-forecasts.
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Pseudocódigo 4.1 Conditional Estimation of 𝑎tŠs

1: 𝑒t ⊂ 0; 𝑡 ∈ ¶⊗𝑠⊗ 1,⊗𝑠, . . . , á + 𝑠, á + 𝑠 + 1♢
2: æ̃t ⊂ 0; 𝑡 ∈ ¶⊗𝑠⊗ 1,⊗𝑠, . . . ,⊗1, 0♢
3: 𝑎t ⊂ 0; 𝑡 ∈ ¶⊗2𝑠⊗ 2,⊗2𝑠⊗ 1, . . . , á ⊗ 1, á♢
4: for each 𝑡 ∈ ¶á, á ⊗ 1, . . . , 2, 1♢ do

5: 𝑒t = æt + 𝜃𝑒t+1 + Θ̂𝑒t+s ⊗ 𝜃Θ̂𝑒t+s+1

6: for each 𝑡 ∈ ¶⊗𝑠⊗ 1,⊗𝑠, . . . ,⊗1, 0♢ do

7: æ̃t = 𝑒t ⊗ 𝜃𝑒t+1 ⊗ Θ̂𝑒t+s + 𝜃Θ̂𝑒t+s+1

8: for each 𝑡 ∈ ¶⊗𝑠⊗ 1,⊗𝑠, . . . , á ⊗ 1, á♢ do

9: if 𝑡 ⊘ 0 then

10: 𝑎t = æ̃t + 𝜃𝑎t⊗1 + Θ̂𝑎t⊗s ⊗ 𝜃Θ̂𝑎t⊗s⊗1

11: else if 𝑡 > 0 then

12: 𝑎t = æt + 𝜃𝑎t⊗1 + Θ̂𝑎t⊗s ⊗ 𝜃Θ̂𝑎t⊗s⊗1

Once the values of 𝑎t⊘τ have been calculated, the unbiased estimator of the variance

à̂2
a is obtained by averaging over the sum-of-square values of 𝑎t given by (4.12), where 𝑁 is

the number of samples in the time series 𝑤t.

à̂2
a ≡

1

𝑁

τ
∑︁

t=1

𝑎2
t (4.12)

Fig. 21 shows the forecasts of the series 𝑧t in Fig. 16, obtained using the aforementioned

technique for a lag 𝑙 = 2, 016, i.e., one-week ahead. The forecasts in yellow are compared with

the real outcomes in blue to demonstrate the accuracy of the proposed ARIMA model when

using preliminary values of 𝜃 = 0.4916 and Θ̂ = 0.8122. The estimated variance à̂2
a ≡ 10.2

is obtained by (4.12). Note that the forecasted demands follow a similar pattern as the real

consumption. Through the estimated variance à̂2
a, the standard deviation of the forecast

errors at any lag 𝑙 can be assessed, and they increase with the length of 𝑙 (see Chapter 5 in

Box et al. (2008)).

4.4 Model estimation

Together, the seasonal ARIMA model in (4.1) and the forecasting algorithm in Sec-

tion 4.3.3, provide a parsimonious short-term load forecasting technique that can be pro-

grammed in each individual meter of an EDS with an AMI. As shown in Fig. 21, rough

values of 𝜃 and Θ̂ already provide suitable forecasts for a one-week lag. However, as more

data become available, and considering that consumption is a dynamic stochastic process

that continuously reacts to exogenous factors, e.g., new circuits that are installed to energize

new demands, socioeconomic activities that change in an area, unexpected events that lead
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Figure 21 Ű Forecasts of time series 𝑧t for a lag time of one week, with 𝜃 = 0.4916 and
Θ̂ = 0.8122.

Source: Lopez et al. (2019).

to different operating points and topologies of the EDS, etc. Thus, in order to be parsimo-

nious, the proposed short-term load forecasting method must be able to adapt itself to the

ever-changing nature of demands by updating the values of the parameters 𝜃 and Θ̂ when

new measurements of the series are obtained.

Two approaches are presented in this section to optimized the values of 𝜃 and Θ̂: a

frequentist and a Bayesian approach. These two methods are different strategies to optimize

the modelŠs parameters based on historical data. However, each one derives from parallel

perspectives of statistics. The frequentist analysis considers parameters as Ąxed constant

values of the estimation model, whereas the Bayesian analysis considers parameters as random

variables of the estimator with given prior distributions (WAKEFIELD, 2013).

4.4.1 Frequentist Approach

In the frequentist approach, an iterative non-linear programming method is used to

optimize the values of 𝜃 and Θ̂ every time new data is attained, as follows:

Step 1 Let 𝑘 ⊂ 0. Use initial estimations of 𝜃k ⊂ 𝜃 and Θ̂k ⊂ Θ̂.

Step 2 Use Algorithm 1 for calculating the 𝑎k
t Šs of the time series for a set of updated

measurements of 𝑧t, and use (4.12) to estimate the variance à̂2
a𝑘 .

Step 3 Determine the negative derivatives 𝑥θ̂𝑘

t and 𝑥Θ̂𝑘

t , in which each term is calculated

using (4.13) and (4.14), for 𝑡 ∈ ¶1, . . . , á♢ and a small Ó.

𝑥θ̂𝑘

t =
1

Ó

[︁

𝑎k
t ♣θ̂𝑘,Θ̂𝑘 ⊗ 𝑎k

t ♣θ̂𝑘+δ,Θ̂𝑘

]︁

(4.13)
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𝑥Θ̂𝑘

t =
1

Ó

[︁

𝑎k
t ♣θ̂𝑘,Θ̂𝑘 ⊗ 𝑎k

t ♣θ̂𝑘,Θ̂𝑘+δ

]︁

(4.14)

Step 4 Update the parameters using the least square estimator as in (4.15), where coeffici-

ents 𝑓11, 𝑓12, 𝑓21 and 𝑓22 are given by (4.16).

⋃︀

⨄︀

𝜃k+1

Θ̂k+1

⋂︀

⋀︀ =

⋃︀

⨄︀

𝜃k

Θ̂k

⋂︀

⋀︀ +

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

𝑓11

τ
∑︁

t=1

𝑥θ̂𝑘

t 𝑎k
t + 𝑓12

τ
∑︁

t=1

𝑥Θ̂𝑘

t 𝑎k
t

𝑓21

τ
∑︁

t=1

𝑥θ̂𝑘

t 𝑎k
t + 𝑓22

τ
∑︁

t=1

𝑥Θ̂𝑘

t 𝑎k
t

⋂︀

⎥

⎥

⎥

⎥

⋀︀

(4.15)

⋃︀

⨄︀

𝑓11 𝑓12

𝑓21 𝑓22

⋂︀

⋀︀

⊗1

=

⋃︀

⋁︀

⋁︀

⋁︀

⋁︀

⨄︀

τ
∑︁

t=1

⎞

𝑥θ̂𝑘

t

)︁2 τ
∑︁

t=1

𝑥θ̂𝑘

t 𝑥Θ̂𝑘

t

τ
∑︁

t=1

𝑥θ̂𝑘

t 𝑥Θ̂𝑘

t

τ
∑︁

t=1

⎞

𝑥Θ̂𝑘

t

)︁2

⋂︀

⎥

⎥

⎥

⎥

⋀︀

(4.16)

Step 5 If ‖𝜃k+1 ⊗ 𝜃k‖ < 𝜖 and ‖Θ̂k+1 ⊗ Θ̂k‖ < 𝜖, then Stop. Otherwise, let 𝑘 ⊂ 𝑘 + 1 and

return to Step 2.

The aforementioned frequentist approach was used to optimize parameters 𝜃 and Θ̂

using the preliminary values obtained in Section 4.3.2 as initial guesses, and Ó = 𝜖 = 0.001.

After 54 iterations, the optimized values are 𝜃 = 0.6033 and Θ̂ = 0.9567, which has an

estimated variance of à̂2
a = 8.53, i.e., 16.4% lower than the same variance obtained with the

preliminary values.

4.4.2 Bayesian Approach

Let 𝑝 (𝜃, Θ) be the joint probability distribution function for random variables 𝜃 and

Θ, prior to the data. Then, BayesŠs theorem in (4.17) states that the posterior probability

distribution function of 𝜃 and Θ given a collection of data z, i.e., 𝑝 (𝜃, Θ♣z), is proportional

to the product between prior distribution 𝑝 (𝜃, Θ) and the joint distribution of the data given

parameters 𝜃 and Θ, i.e., 𝑝 (z♣𝜃, Θ).

𝑝 (𝜃, Θ♣z) ∝ 𝑝 (z♣𝜃, Θ) 𝑝 (𝜃, Θ) (4.17)

Assuming 𝑎tŠs and 𝑤tŠs are normally distributed, it can be demonstrated that the joint

distribution function of data given parameters 𝜃 and Θ is (4.18), where 𝑆 (𝜃, Θ) =
√︁τ

⊗s⊗1 𝑎2
t

is the conditional sum-of-squares function, and 𝑓 (𝜃, Θ) is a non-linear function of 𝜃 and Θ

(BOX et al., 2008).

𝑝 (z♣𝜃, Θ) = 𝑓 (𝜃, Θ) exp

∮︁

⊗
1

2à̂2
a

𝑆 (𝜃, Θ)

⨀︀

(4.18)
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Figure 22 Ű Joint PDF of the posterior 𝑝 (𝜃, Θ♣z) and expected value E [𝜃, Θ♣z].

Source: Lopez et al. (2019).

Using JefferyŠs prior (JEFFREYS, 1961) for both parameters, and assuming a cons-

tant value for à̂2
a, the posterior probability distribution function 𝑝 (𝜃, Θ♣z) has the form of

(4.19), where 𝑁 is the number of data samples of the time series z.

𝑝 (𝜃, Θ♣z) ∝ [𝑆 (𝜃, Θ)]⊗N/2 (4.19)

Taking samples from 0 ⊘ 𝜃 ⊘ 1 and 0 ⊘ Θ ⊘ 1, and using Algorithm 1 for calculating

the 𝑎k
t Šs, the posterior probability distribution function 𝑝 (𝜃, Θ♣z) in (4.19) can be plotted to

identify the mean values and statistical moments of 𝜃 and Θ, using the most recent available

information of z. Fig. 22 shows the resulting joint probability distribution of 𝑝 (𝜃, Θ♣z) which

not only indicates the expected values of 𝜃 = 0.5421 and Θ̂ = 0.7274 but also, it provides a

conĄdence interval of 95% for 0.4 ⊘ 𝜃 ⊘ 0.8 and 0.7 ⊘ Θ ⊘ 1.0.

4.4.3 Adaptability

In practice, the process of updating the values of 𝜃 and Θ̂ using either the frequentist

or Bayesian approach is done independently for each time series (and smart meter) as follows:

whenever a new realization of the time series is available at time á , use the previous 𝑁 samples

to deploy the model estimation approach of choice and disregard any sample before á ⊗𝑁 .

The forecasted values of 𝑧t are only calculated when the OOP requires them using (4.11) for

a lag time 𝑙.
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Figure 23 Ű Frequentist approach: Estimated autocorrelation function of the residuals 𝑎tŠs.

Source: Lopez et al. (2019).

Figure 24 Ű Bayesian approach: Estimated autocorrelation function of the residuals 𝑎tŠs.

Source: Lopez et al. (2019).

4.5 Model Adequacy

Low values of the estimated variances à̂2
a are not a sufficient indication of the fore-

casting methodŠs accuracy. Checking the autocorrelation function of the residuals is also an

important aspect because high autocorrelations indicate that critical information from the

original series has been left behind by the model. Figs. 23 and 24 show the estimated auto-

correlation function of the residuals 𝑎tŠs for both model estimation approaches, frequentist

and Bayesian, considering lags between 1 to 4,500 samples (i.e., up to two weeks). Despite

some cyclical deviations, which are expected in random series, there are no noticeable large

autocorrelations that indicate an evident lack-of-Ąt from both methods.

A more systematic way for checking the adequacy of the model is to assess the sta-

tistical signiĄcance of apparent deviations of the residuals. To do so, the Ljung-Box-Pierce
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(LJUNG; BOX, 1978) statistic test can be performed using (4.20).

�̄� = 𝑁 (𝑁 + 2)
K

∑︁

k=1

(𝑁 ⊗ 𝑘)⊗1 𝜌2
k (4.20)

where 𝑁 is the interval of the data series used to Ąt the model and 𝐾 is the interval of

the lags under study. If the model is appropriate the statistic �̄� is approximately distributed

as ä2 (𝐾 ⊗ 𝑝⊗ 𝑞), where 𝑝 = 0 and 𝑞 = 2 in the ARIMA model (4.1). Thus, considering

𝐾 = 4, 032 (i.e., two weeks) and Ątting the model using 𝑁 = 34, 944 samples (i.e., one year)

the value of �̄� was approximately 3,032 using the frequentist approach, and 3,472 for the

Bayesian approach. Both �̄�Šs are below the adequacy level of 4,179 that corresponds to the

5%-ä2 test, with 4,030 degrees of freedom. In his case, the Ljung-Box-Pierce statistic test

does not provide any evidence of inadequacy in the model.

4.6 Tests and Results

In order to test the efficiency of the proposed short-term load forecasting technique in

the context of solving OOP problems, a robust self-healing scheme was simulated. To that end,

the real-size 13.2 kV EDS in Fig. 25 was used for tests. The system comprises Ąve radial feeders

that supply electricity to 38,000 users of three types: residential, commercial and industrial

consumers. Individual load proĄles were randomly generated using the LoadProĄleGenerator

software in PĆugradt and Muntwyler (2017), PĆugradt et al. (2013). The real-size EDS has

5,181 nodes, from which 955 are primary distribution transformers with smart meters. The

meters are constantly measuring average three-phase current and voltage magnitudes with a

resolution of 5 minutes per sample. Thus, each smart meter supervises at least six time series

per transformer and, it is assumed that at least four years of measurements are available to

the OOP system. Blue and magenta feeders in Fig. 25 are connected to a main substation

of 40 MVA (nominal capacity), whereas red, yellow, and green feeders are connected to a

different substation of 60 MVA. Moreover, the EDS has three 5 MVA dispatchable distributed

generation (DG) units with islanded operation capabilities. The total installed capacity of the

distribution transformers is approximately 81 MVA. Also, there are 32 remotely-controlled

normally closed (NC) switches and 14 remotely-controlled normally open (NO) switches that

participate in the self-healing scheme.

The proposed short-term load forecasting model in (4.1) is used to predict the three-

phase consumption at each transformer. Thus, all the 955 meters in Fig. 25 are set to be

constantly measuring at least six different time series (three-phase voltage magnitudes and

load currents) and deploying one-week ahead forecasts with a lag of 𝑙 = 2, 016 samples,

whenever the self-healing scheme requires them. Note that, in theory, any lag 𝑙 can be used,
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Figure 25 Ű Real-size 13.2 kV EDS with an AMI.

Source: Lopez et al. (2019).

but the standard deviation of the forecast errors increases with the length of 𝑙 (BOX et al.,

2008). Hence, the proposed ARIMA model can only be employed for short-term planning,

because the forecasted data for the next week will have larger errors than the forecasts for

the next day.

Two fault scenarios are discussed in sections 4.6.1 and 4.6.2, respectively. In Case 1,

the restoration after a permanent fault of the main breaker at feeder 5 (magenta) is simulated.

In Case 2, a permanent fault of the main breaker of feeder 1 (yellow) is deployed. In both

cases, the fault requires one day to be totally repaired. Thus, only the Ąrst 288 forecasts are
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Figure 26 Ű Self-healing solution for Case 1: a) using nominal approach; b) day-before ap-
proach; c) frequentist approach; d) Bayesian approach.

Source: Lopez et al. (2019).

used to deploy the self-healing system.

For each case, the two proposed methods used to estimate parameters 𝜃 and Θ, i.e.,

the frequentist approach in Section 4.4.1 and the Bayesian approach in Section 4.4.2, are

compared with a basic restoration plan obtained either by using the nominal capacities of all

transformers as conventional demands, a.k.a., the nominal approach, or the load diagram of

the previous day as an estimation of future consumption, a.k.a., the day-before approach.

Finally, as mentioned in Section 4.2.1, the centralized self-healing scheme was deployed

using an heuristic solution of the restoration model presented in (LOPEZ et al., 2018). The

heuristic is an adaptation of the Tabu Search algorithm (GROVER; LAGUNA, 1997) that

returns the best restoration sequence found after 60 seconds. In all cases, the objective func-

tion minimizes the unsupplied demand and the number of switch operations, and penalizes

the violations of the operational limits. The Tabu Search attribute has been set to 1 for all

simulations (see Grover and Laguna (1997) for more information).

4.6.1 Case 1: Fault at the main breaker of feeder 5

A permanent fault of the main breaker in feeder 5 (magenta) disconnects all loads

downstream the circuit. Thus, a restoration sequence is deployed using the load forecasts

from four different approaches, as follows:
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Figure 27 Ű Realization (black), frequentist (blue) and Bayesian (yellow) forecasts of the
maximum current magnitude.

Source: Lopez et al. (2019).

4.6.1.1 Nominal approach

In this case, demands are considered as constant balanced three-phase active and

reactive power injections, equal to the nominal capacities of the distribution transformers

with an inductive power factor of 0.9. Thus, given a permanent fault of the main breaker of

feeder 5 (magenta), the solution generated by the self-healing scheme using nominal capacities

is shown in Fig. 26a. Note that, using the nominal capacities of the transformers, the self-

healing scheme was not able to Ąnd a feasible solution that minimizes the unsupplied demand.

Thus, as shown in Fig. 26a, all nodes and circuits of feeder 5 were de-energized by the opening

of the main breaker at the substation, and no further restoration actions were performed.

4.6.1.2 Day-before approach

As an alternative to the nominal approach, a more simplistic method based on the load

proĄle curve of the previous day can be used to predict the moment of maximum consump-

tion after the fault. The solution generated by the self-healing scheme using the day-before

approach is shown in Fig. 26b. In this case, the moment of maximum consumption of the

previous day was 8% lower than the actual realization of the moment of maximum consump-

tion after the fault. Thus, even though the solution in Fig. 26b transferred all demands from

feeder 5 to feeder 3 (blue), the underestimation of the day-before approach produced several

lines with overcurrent limits transgressions, mostly concentrated at the beginning of feeder 3,

for approximately one hour during the post-fault operation. The mean absolute percentage

error (MAPE) of this approach for all the 955 meters considering a one-day ahead forecast

was 16%.
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Figure 28 Ű Realization (black), frequentist (blue) and Bayesian (yellow) forecasts of the
minimum voltage magnitude.

Source: Lopez et al. (2019).

Figure 29 Ű Self-healing solution for Case 2: a) using nominal approach; b) day-before ap-
proach; c) frequentist approach; d) Bayesian approach.

Source: Lopez et al. (2019).

4.6.1.3 Frequentist approach

Clearly, assuming nominal capacities is very conservative because it is unrealistic to

believe that all demands require the complete installed capacity of the EDS, simultaneously.

Thus, after using the frequentist approach to generate forecasts, the moment of maximum

consumption was identiĄed by comparing the maximum forecasted currents and the minimum

forecasted voltages in Fig. 27 and Fig. 28. Note that, since the expected time to repair the

outage is one day, only the blue area of Fig. 27 and Fig. 28 were considered. In this case, the

moment of maximum consumption occurs at lag 𝑙 = 78, i.e., approximately after 6.5 hours

after the outage. Thus, using the demands from the moment of maximum consumption, plus

the standard deviation of the forecast errors provided by the ARIMA model, the restoration
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plan shown in Fig. 26d was obtained by the centralized self-healing scheme. In this case, all

demands were supplied after transferring most of the loads from feeder 5 to feeder 3 (blue),

and the remaining loads from feeder 5 to feeder 4 (red). During post-fault operation, three

lines of feeder 3 have slight overcurrent of 109% of their maximum current capacities. The

one-day ahead MAPE of this approach was 12%.

4.6.1.4 Bayesian approach

In this case, the Bayesian approach is used to generate the forecasts, and the moment

of maximum consumption is identiĄed as before. With the Bayesian approach, the moment

of maximum consumption occurs at lag 𝑙 = 81, i.e., approximately after 6.75 hours after

the outage. Thus, using the demands from the moment of maximum forecasted consumption,

plus the standard deviation of the forecast errors, the solution shown in Fig. 26c was obtained

by the self-healing scheme. Unlike the frequentist approach, the restoration plan using the

Bayesian estimation did not supplied all demands from feeder 5. Instead, only a portion of the

consumers were transferred to feeder 3 (blue), while the rest remained de-energized. However,

in terms of number of de-energized consumers, the Bayesian solution was still better than the

solution using nominal transformer capacities, with no limits transgressions during post-fault

operation. The one-day ahead MAPE of this approach was 12%.

A summary of all four restoration plans in Fig. 26 is shown in Table 7. The minimum

voltage, maximum current and limits transgressions are taken from the post-fault operation.

Thus, as evidenced by the results in Table 7, the impact and efficiency of the self-healing

scheme is highly improved when suitable forecasted demands are used instead of nominal

references or simplistic previous days reproductions.

4.6.2 Case 2: Fault at the main breaker of feeder 1

A permanent fault of the main breaker in feeder 1 (yellow) disconnects all loads

downstream the circuit. The restoration plans for the four different load forecasting methods

are shown in Fig. 29. Note that, using the nominal approach, the solution provided by the

service restoration method has created an island to supply a fraction of the users in feeder 1.

As shown in Fig. 29a, the island used DG unit 3 as the main supply, and it was isolated

due to the opening of two NC switches. On the other hand, in the day-before, frequentist

and Bayesian approaches, all users in feeder 1 were transferred to different feeders, but

with unique conĄgurations for each case. As shown in Table 8, the underestimation of the

forecasted loads provided by the day-before approach leaded to overcurrent events during the

post-fault operation in feeder 2. Finally, the solutions obtained with the frequentist and the
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Table 7 Ű Self-healing results for each approach in Fig. 26.

Approach Nominal Day-before Frequentist Bayesian
Unsupplied

demand
[MW]

30.56 0.0 0.0 20.62

De-energized
users [#]

9441 0 0 7505

Switch
operations

[#]
0 1 3 2

Minimum
voltage [p.u.]

0.9802 0.9706 0.9788 0.9802

Maximum
current [A]

417 502 458 417

Limits
transgression

None
Eighteen
lines with

overcurrent

Three lines
with

overcurrent
None

Table 8 Ű Self-healing results for each approach in Fig. 29.

Approach Nominal Day-before Frequentist Bayesian
Unsupplied

demand
[MW]

15.23 0.0 0.0 0.0

De-energized
users [#]

10697 0 0 0

Switch
operations

[#]
2 1 3 3

Minimum
voltage [p.u.]

0.9802 0.9680 0.9709 0.9744

Maximum
current [A]

417 455 430 417

Limits trans-
gressions

None
Three lines

with
overcurrent

None None

Bayesian approaches supplied all demands of feeder 1 and they did not lead to any operational

limits transgressions during the post-fault operation.

4.6.3 Frequentist approach vs Bayesian approach

In this case, if future outcomes of the series æt behave mostly as a Gaussian process

with zero mean and lower values of à̂2
a, then the frequentist approach should be used be-
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cause it is based on the least-square estimator that minimizes the variance of the forecast

errors. However, if large portions of the series æt present non-homogeneous behavior (see

Section 4.3.1) or large values of à̂2
a are obtained, then the non-informative nature of JefferyŠs

prior used in the Bayesian approach could produce more accurate results because there might

be an underlying randomness in the nature of Θ and 𝜃, that is not captured by the frequentist

approach. Thus, a good rule-of-thumb would be to use the frequentist approach Ąrst, and

then, depending on the range of the recurring values of Θ̂ and 𝜃, the Bayesian approach can

be deployed using tight intervals for both unknown parameters.

From the statistical point-of-view, there are no good reasons for using one inference

method over the other (WAKEFIELD, 2013). However, some practical aspects might be

considered for implementation. For example, the convergence of the iterative process in Sec-

tion 4.4.1 is not always guaranteed, whereas the Bayesian estimation does not rely on any

convergence process. One major drawback of the Bayesian approach in Section 4.4.2 is that,

for large data samples, the posterior in (4.19) can result in extremely low numbers that

cannot be computationally handled, thus lower values of 𝑁 must be required.

4.7 Conclusion

Assuming three-phase electrical measurements as univariate non-stationary seasonal

time series, this chapter investigates two parsimonious short-term load forecasting techniques

to estimate future aggregated demands for the OOP of EDS: a frequentist and a Bayesian

multiplicative seasonal ARIMA model. Both approaches are shown to satisfy the four par-

simonious requirements: low computational complexity, fair accuracy in terms of expected

value and residuals, few tuning parameters, and adaptability. Thus, they are suitable for

solving OOP problems in highly supervised EDS. Results show that the use of the propo-

sed parsimonious short-term forecasting techniques have a signiĄcant impact on the quality

of the OOP methods, such as the centralized self-healing scheme, especially compared with

other approaches that use nominal references or simplistic day-before approaches.
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5 Designing and Implementation of a Self-

Healing Scheme for Modern Electrical Dis-

tribution Systems

Abstract

In case of a permanent fault at the electrical distribution system (EDS), a centralized self-

healing scheme (SHS) is deployed to automatically identify the location of the fault and to

restore the electrical service to as many users as possible, in a short amount of time and

with minimal human intervention. The service restoration must be done while considering

topological and operational constraints, such as radiality, current and voltage magnitude

limits, substation capacities, distributed generation (DG) units operation, among others. A

fully automated SHS is only possible within a smart grid context, wherein electrical and

topological variables of the network are supervised via smart meters, and remotely controlled

via supervisory control and data acquisition (SCADA) system. Thus, this chapter presents a

centralized SHS that continuously gathers and analyzes data from the SCADA to estimate the

location of a permanent fault, to forecast the maximum post-fault demand, and to restore the

service. Once a fault has been located, the SHS will automatically return a set of sequenced

actions that isolate the faulty section of the network and maximize the supplied demand.

The proposed SHS has been simulated in real distribution networks and uses a geographic

information system (GIS) to display results.

Acronyms of Chapter 5

AMI Advanced metering infrastructure

ARIMA Autoregressive integrated moving average

DG Distributed generation

EDS Electrical distribution system

GIS Geographic information system

GUI Graphical user interface
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MINLP Mixed-integer nonlinear programming

NLP Nonlinear programming

RMSE Root-mean-square error

SCADA Supervisory control and data acquisition

SHS Self-healing scheme

5.1 Introduction

In the context of modern electrical distribution systems (EDS), a centralized self-

healing scheme (SHS) is a set of equipment, software and communication technologies that,

after a permanent fault, can determine and deploy a sequence of restorative actions, aiming

to isolate the faulted section of the network and to minimize the total unsupplied demand

(AGUERO, 2012). Among those restorative actions, the operation of remote-controlled swit-

ching devices and the injections of the dispatchable distributed generation (DG) resources

are the most common. A truly automated SHS does not only restore the EDS in case of a

fault, but also, it is able to identify the location of the fault and estimate the total amount of

unsupplied demand that needs to be minimized by the restoration process (CAVALCANTE

et al., 2016). As shown in Fig. 30, a centralized SHS uses the information gathered by the

SCADA system (e.g., Ąeld measurements and status of switching devices) to identify the

most probable location of a permanent fault and respond to it as soon as possible, with

minimal human intervention. Finally, once the faulted section of the zone has been isolated,

maintenance crews can be sent to Ąnd and repair the outageŠs cause (LIU et al., 2014).

Self-healing

Software
Permanent fault detected

Fault location

Service restoration

Fault repair

Figure 30 Ű Centralized self-healing scheme.

Source: author.
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The term self-healing has been mostly coined to name sophisticated service restoration

algorithms in EDS. Authors in Srivastava and Butler-Purry (2007) used it for the Ąrst time in

2007 to name a rule-based restoration approach for shipboard power systems, whose functi-

onality needs to be preserved during battle. More recently, various multi-agent systems have

been proposed as plausible SHS (ZIDAN; EL-SAADANY, 2012; ELMITWALLY et al., 2015;

ERIKSSON et al., 2015; HAFEZ et al., 2018; SHIRAZI; JADID, 2018; SHIRAZI; JADID,

2019). These techniques have proved to be successful for deploying the service restoration

aspect of the SHS, but other important aspects are not addressed, such as the fault-location

method and post-fault load estimation. Since the service restoration is a combinatorial op-

timization problem, modern heusritic techniques and mathematical programming have been

used to solve it (AREFIFAR et al., 2013; WANG; WANG, 2015; GOLSHANI et al., 2017).

However, once again, self-healing encompasses other processes besides the service restora-

tion aspect. To the best of our knowledge, only two works in Drayer et al. (2018) and Leite

and Mantovani (2017) approximate the most to the true self-healing philosophy. Authors in

Drayer et al. (2018) and Leite and Mantovani (2017) address the fault-location method and

the service restoration aspect of the proposed SHS. However, other practicalities have been

overlooked: post-fault load estimation, unbalanced three-phase networks, switching sequence

and scalability assessment.

In this chapter, the designing and implementation of a true SHS for modern EDS is

presented. Besides the service restoration, the proposed SHS comprises a fully automated

fault-location method, post-fault load estimation based on smart metersŠ data, and it consi-

ders practical aspects, such as unbalanced networks, DG units and switching sequence. The

software has been developed in Python (SUMMERFIELD, 2009), and it includes a graphical

user interface (GUI) with geographic information system (GIS) functionalities. The proposed

self-healing scheme has been tested in real EDS to prove its scalability and efficiency.

5.2 Proposed Self-Healing Scheme

Flowchart in Fig. 31 summarizes the steps of the proposed SHS. Using data gathered

by smart meters and the EDSŠs topological and electrical information, the proposed SHS:

a) estimates the nodal demands during pos-fault operation, using a three-phase steady-state

estimator and a parsimonious short-term load forecasting method; b) efficiently identiĄes

the zone wherein the permanent fault is located; and c) generates the sequence of switching

actions and DG outputs that minimizes the total unsupplied demand. Thus, the modules of

the proposed SHS work in tandem: once data from the SCADA system have been consolida-

ted, the state estimator and the load forecasting module establishes the post-fault operating
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Post-fault operation

not

yes

Faulty Zone

- Switching Sequence

- Dispatch DG units

Figure 31 Ű Flowchart of the proposed self-healing scheme.

Source: author.

point of the EDS, based on the most recent measurements from the smart meters. Then,

if a permanent fault has been identiĄed by the protection coordination, the fault location

algorithm establishes the zone of the network where the outage most probably is, a.k.a., the

faulty zone. Finally, given a faulty zone and the estimation of the demands after the fault, a

robust service restoration algorithm is executed.

The main characteristics of the modules will be discussed in the following subsections,

i.e., the state estimation and load forecasting module, the fault-location module and the

service restoration module.

5.2.1 Three-phase State Estimator

The function of a state estimator is to assess the operating point of the EDS based on

available measurements (BARAN; KELLEY, 1995). In this particular case, the purpose of the
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three-phase state estimator is to determine the unknown active and reactive demands before

the fault, based on the three-phase current and voltage magnitudes provided by smart meters.

This information is used to deploy the short-term load forecasting method that estimates the

post-fault demands required by the service restoration process. Most state estimators for

EDS are based on weighted least square methods and require the inversion of large Jacobian

matrices (PRIMADIANTO; LU, 2017). These approaches are mostly suitable for observable

systems and require powerful computational resources. Thus, a generalized three-phase state

estimator will be presented in this subsection based on mathematical optimization, which can

be solved for any level of observability and within limited amount of time and computational

resources.

The nonlinear programming (NLP) model shown in (5.1)Ű(5.12) is a mathematical

representation of a three-phase state estimator for unbalanced EDS. Ωb is the set of nodes,

Ωl is the set of branches, Ωsw is the set of remote-controlled switches, and Ωz is the set of

measurement areas, where each area is a connected portion of the network whose nodes share

a common feature. In this case, the common feature will be the upstream remote-controlled

switching device of each node that participates in the service restoration process.

min

∏︁

⨄︁

⋃︁

∑︁

i∈Ω𝑏

∑︁

f∈¶a,b,c♢

æb
i

⎞

𝑉i,f ⊗ 𝑉 meas
i,f

)︁2
+

∑︁

ij∈Ω𝑙

∑︁

f∈¶a,b,c♢

æl
ij

⎞

𝐼ij,f ⊗ 𝐼meas
ij,f

)︁2

∫︁

⋀︁

⋂︁

(5.1)

subject to:

∑︁

ji∈Ω𝑙

𝑖r
ji,f ⊗

∑︁

ij∈Ω𝑙

𝑖r
ij,f +

∑︁

ji∈Ωsw

𝑖swr
ji,f ⊗

∑︁

ij∈Ωsw

𝑖swr
ij,f = 𝑖Dr

i,f ⊗ 𝑖Gr

i,f ;

∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.2)

∑︁

ji∈Ω𝑙

𝑖i
ji,f ⊗

∑︁

ij∈Ω𝑙

𝑖i
ij,f +

∑︁

ji∈Ωsw

𝑖swi
ji,f ⊗

∑︁

ij∈Ωsw

𝑖swsw
ij,f = 𝑖Di

i,f ⊗ 𝑖Gi

i,f ;

∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.3)

𝑣r
i,f ⊗ 𝑣r

j,f =
∑︁

h∈¶a,b,c♢

⎞

𝑅ij,f,h𝑖r
ij,h ⊗𝑋ij,f,h𝑖i

ij,h

)︁

; ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.4)

𝑣i
i,f ⊗ 𝑣i

j,f =
∑︁

h∈¶a,b,c♢

⎞

𝑋ij,f,h𝑖r
ij,h + 𝑅ij,f,h𝑖i

ij,h

)︁

; ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.5)

𝑃 G
i,f = 𝑣r

i,f 𝑖Gr

i,f + 𝑣i
i,f 𝑖Gi

i,f ; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.6)
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𝑄G
i,f = ⊗𝑣r

i,f 𝑖Gi

i,f + 𝑣i
i,f 𝑖Gr

i,f ; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.7)

𝜌ẑ𝑖
𝑃 nom

i,f = 𝑣r
i,f 𝑖Dr

i,f + 𝑣i
i,f 𝑖Di

i,f ; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.8)

𝜌ẑ𝑖
𝑄nom

i,f = ⊗𝑣r
i,f 𝑖Di

i,f + 𝑣i
i,f 𝑖Dr

i,f ; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.9)

𝑉i,f =

√︂

⎞

𝑣r
i,f

)︁2
+

⎞

𝑣i
i,f

)︁2
; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.10)

𝐼ij,f =

√︂

⎞

𝑖r
ij,f

)︁2
+

⎞

𝑖i
ij,f

)︁2
; ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ (5.11)

0 ⊘ 𝜌z ⊘ 1; ∀𝑧 ∈ Ωz (5.12)

The objective function in (5.1) is a weighted minimization of the square difference

between the calculated voltage and current magnitudes (𝑉i,f and 𝐼ij,f ) and their measured

counterparts (𝑉 meas
i,f and 𝐼meas

ij,f ). Equations (5.2)Ű(5.9) formulate the three-phase power Ćow

in unbalanced EDS using a rectangular form. Superscripts 𝑟 and 𝑖 represent the real and

imaginary part of the state variables 𝑣i,f (nodal voltages), 𝑖ij,f (branch currents) and 𝑖sw
ij,f

(switch currents). Active and reactive generation are considered by (5.6) and (5.7). Note

that the nominal active and reactive consumption at each load node (𝑃 nom
i,f and 𝑄nom

i,f ) are

multiplied by the decision variable 𝜌z in (5.8) and (5.9), where 𝑧i maps the area of node

𝑖. Continuous variable 𝜌z is a load factor at each area, bounded as in (5.12). Voltage and

current magnitudes are calculated in (5.10) and (5.11), respectively. The NLP model in

(5.1)Ű(5.12) is a non-convex optimization problem and, for practical applications, quality

solutions can be obtained via modern heuristics within reasonable computational times and

resources. Finally, note that the state estimator will no be necessary if an advanced metering

infrastructure (AMI) is available (MOHASSEL et al., 2014).

5.2.2 Short-term Load Forecasting Method

Based on the current demands obtained either by the aforementioned three-phase

state estimator or the AMI, the next step of the proposed SHS is the forecasting of the post-

fault demands. To do so, an adaptive version of the multiplicative autoregressive integrated

moving average (ARIMA) model will be used (BOX et al., 2008). The proposed seasonal

ARIMA model shown in (5.13) is used to predict the three-phase consumption at each load

node, given by 𝑧t, based on its previous realizations.

æt = 𝑧t ⊗ 𝑧t⊗s ⊗ (𝑧t⊗1 ⊗ 𝑧t⊗s⊗1) = 𝑎t ⊗ 𝜃𝑎t⊗1 ⊗Θ𝑎t⊗s + 𝜃Θ𝑎t⊗s⊗1 (5.13)
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]

Figure 32 Ű Forecasting of a demand-type series 𝑧t, obtained using the seasonal ARIMA
model in (5.13) with a lag 𝑙 = 2, 016.

Source: Lopez et al. (2019).

Time series 𝑧t in (5.13) is an equivalent of the three-phase active and reactive demands

at each node at time 𝑡. Thus, for a resolution of 5 minutes per sample, it is expected that a

stationary random signal æt can be obtained if the original consumption is transformed as in

æt = 𝑧t⊗𝑧t⊗s⊗(𝑧t⊗1 ⊗ 𝑧t⊗s⊗1), where 𝑠 = 2, 016 for a weekly seasonal component. Aggregated

demands usually follow a period of one week because human activities are conditioned to the

hour of the day and the day of week. Henceforth, the seasonal ARIMA in (5.13) has been

proved to be a parsimonious method for short-term load forecasting of EDS demands (LOPEZ

et al., 2019).

The ARIMA model in (5.13) can be used to estimate the moment of maximum con-

sumption after the fault for any lag time 𝑙. However, the standard deviation of the forecast

errors increases with the length of 𝑙 (BOX et al., 2008). Thus, the seasonal ARIMA is only

intended for short-term load forecasting (TAYLOR; MCSHARRY, 2017). Finally, it is worth

mentioning that the proposed load forecasting method is an adaptable and adequate predic-

tor of future demands using the model estimation techniques described in Lopez et al. (2019).

As an example, Fig. 32 shows the forecasts of a demand-type series 𝑧t, obtained using the

aforementioned technique for a lag 𝑙 = 2, 016, i.e., one-week ahead.

5.2.3 Fault-Location Method

Once a permanent fault has been identiĄed by the protection coordination system,

the next step of the proposed SHS is to immediately locate the fault. This can be done

using a fault-location method in Chapter 3, based on asynchronous voltage measurements

before and after the fault. The proposed fault-location method is an enhanced version of

the bus-impedance-matrix-based method proposed by authors in Trindade et al. (2014) and
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Cavalcante and Almeida (2018). Given a three-phase voltage drop at each smart meter Δ𝑉 abc
m

and the impedance bus matrix 𝑍abc
n,m, the origin of the fault is located by calculating the fault

current at each node 𝑛 ∈ Ωb, as perceived by each smart meter 𝑚 ∈ Ωm, using (5.14).

𝐼abc
n,m

fault
=

⎞

𝑍abc
n,m

)︁⊗1
Δ𝑉 abc

m ; ∀𝑛 ∈ Ωb, 𝑚 ∈ Ωm (5.14)

Thus, the location of the fault is identiĄed through an index Ón calculated using (5.15).

Term
⧹︃

⧹︃

⧹︃𝐼abc
n

⧹︃

⧹︃

⧹︃

fault
in (5.15) is the average fault current at node 𝑛 as perceived by all meters.

The node with the lowest value of Ón is considered as the faulty node.

Ón =
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; ∀𝑛 ∈ Ωb (5.15)

This fault-location method is fast, accurate and easy to implement. Details regarding

the construction of 𝑍abc
n,m and the methodŠs performance can be obtained at Trindade et

al. (2014). Moreover, an enhanced version of the method is proposed in this chapter by

calculating the average fault current
⧹︃

⧹︃

⧹︃𝐼abc
n

⧹︃

⧹︃

⧹︃

fault
using the weighted arithmetic mean in (5.16).
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n,m
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⧹︃
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⧹︃

⧹︃

fault
; ∀𝑛 ∈ Ωb (5.16)

Where 𝑑n,m is the distance between node 𝑛 ∈ Ωb and the smart meter 𝑚 ∈ Ωm. The

weighted arithmetic mean in (5.16) is a better approach than the regular arithmetic mean

because it is less susceptible to erroneous fault locations when some of the measurements are

missing or unreliable.

5.2.4 Service Restoration of Unbalanced Three-phase EDS

Once the fault has been located and the post-fault maximum demands have been

forecasted, the next step of the proposed SHS is to deploy the service restoration. The optimal

restoration of unbalanced three-phase EDS, considering switching sequence and DGs, is given

by the mixed-integer nonlinear programming (MINLP) model in (5.17)Ű(5.29) (LOPEZ et al.,

2018). Set Ωs represents the number of sequenced steps from ¶1 . . . 𝑠max♢ and ΩS
s represents

the areas with 𝑉 Θ nodes, i.e., feeder root nodes.

min

∏︁

⨄︁

⋃︁

∑︁

z∈Ω𝑧

∑︁

s∈Ω𝑠

𝑐U
z,s (1⊗ 𝑥z,s) + 𝑐sw

∑︁

ij∈Ωsw

∑︁

s∈Ω𝑠

⎞

Δ𝑦+
ij,s + Δ𝑦⊗

ij,s

)︁

∫︁

⋀︁

⋂︁

(5.17)

subject to:

(5.2)Ű(5.7), (5.10) and (5.11); ∀𝑠 ∈ Ωs (5.18)
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𝑃 max
i,f = 𝑣r

i,f,s𝑖
Dr

i,f,s + 𝑣i
i,f,s𝑖

Di

i,f,s; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ , 𝑠 ∈ Ωs (5.19)

𝑄max
i,f = ⊗𝑣r

i,f,s𝑖
Di

i,f,s + 𝑣i
i,f,s𝑖

Dr

i,f,s; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ , 𝑠 ∈ Ωs (5.20)

♣𝑉i,f,s ⊗ 𝑉j,f,s♣ ⊘ 𝑉 (1⊗ 𝑦ij,s) ; ∀𝑖𝑗 ∈ Ωsw, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ , 𝑠 ∈ Ωs (5.21)

𝑉 𝑥ẑ𝑖,s ⊘ 𝑉i,f,s ⊘ 𝑉 𝑥ẑ𝑖,s; ∀𝑖 ∈ Ωb, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ , 𝑠 ∈ Ωs (5.22)

0 ⊘ 𝐼ij,f,s ⊘ 𝐼ij𝑥ẑ𝑖𝑗 ,s; ∀𝑖𝑗 ∈ Ωl, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ , 𝑠 ∈ Ωs (5.23)

0 ⊘ 𝐼sw
ij,f,s ⊘ 𝐼sw

ij 𝑦ij,s; ∀𝑖𝑗 ∈ Ωsw, 𝑓 ∈ ¶𝑎, 𝑏, 𝑐♢ , 𝑠 ∈ Ωs (5.24)

𝑦ij,s ⊗ 𝑦ij,s⊗1 = Δ𝑦+
ij,s ⊗Δ𝑦⊗

ij,s; ∀𝑖𝑗 ∈ Ωsw, 𝑠 ∈ Ωs♣y𝑖𝑗,0=sini

𝑖𝑗
(5.25)

∑︁

ij∈Ωsw

⎞

Δ𝑦+
ij,s + Δ𝑦⊗

ij,s

)︁

⊘ 1; ∀𝑠 ∈ Ωs (5.26)

⧹︃

⧹︃

⧹︃𝑥ẑ𝑖,s ⊗ 𝑥ẑ𝑗 ,s

⧹︃

⧹︃

⧹︃ ⊘ 1⊗ 𝑦ij,s; ∀𝑖𝑗 ∈ Ωsw, 𝑠 ∈ Ωs (5.27)

∑︁

ij∈Ωsw

𝑦ij,smax𝑥ẑ𝑖𝑗 ,smax =
∑︁

z∈Ω𝑠\ΩS
𝑠

𝑥z,smax ; (5.28)

𝑦ij,s, 𝑥z,s, Δ𝑦+
ij,s, Δ𝑦⊗

ij,s ∈ ¶0, 1♢ ; ∀𝑖𝑗 ∈ Ωsw, 𝑧 ∈ Ωz, 𝑠 ∈ Ωs (5.29)

In order to model the service restoration problem in (5.17)Ű(5.29), binary decision

variables 𝑦ij,s and 𝑥z,s are required. 𝑦ij,s represents the status of each remote-controlled switch

𝑖𝑗 ∈ Ωsw at step 𝑠 ∈ Ωs, either open (𝑦ij,s = 0) or closed (𝑦ij,s = 1). 𝑥z,s represents the status

of each area 𝑧 ∈ Ωsw at step 𝑠 ∈ Ωs, either energized (𝑥z,s = 1) or de-energized (𝑥z,s = 0).

The objective function in (5.17) minimizes the unsupplied demand at each step of

the restoration process, using a cost of de-energization 𝑐U
z,s. Furthermore, the second term

of the objective function minimizes the cost of swtiching operations using a cost 𝑐sw, and

auxiliary binary variables Δ𝑦+
ij,s and Δ𝑦⊗

ij,s, both of which are related to 𝑦ij,s due to (5.25).

The unbalanced three-phase load Ćow at each step of the restoration process is calculated in

(5.18). Equations (5.19) and (5.20) establish the relationship between the forecasted maxi-

mum active and reactive demands (𝑃 max
i,f and 𝑄max

i,f ) and the state variables (i.e., three-phase
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nodal voltages and demand currents). Constraint (5.21) guarantees that nodal voltages at

closed switches share the same magnitude. Constraint (5.22) limits the voltage magnitudes

at all nodes, considering that de-energized nodes (i.e., 𝑥ẑ𝑖,s = 0) have zero voltage. Likewise,

constraint (5.23) limits the current magnitudes at all branches, considering that de-energized

branches (i.e., 𝑥ẑ𝑖𝑗 ,s = 0) have zero current. Current magnitude limits are given by (5.23),

considering that open switches (i.e., 𝑦ij,s = 0) have zero current. As mentioned before, (5.25)

relates 𝑦ij,s with Δ𝑦+
ij,s and Δ𝑦⊗

ij,s, considering that 𝑦ij,0 = 𝑠ini
ij , where 𝑠ini

ij represents the initial

status of the remote-controlled switches. Constraint (5.26) guarantees that one, and only one

switching action will be performed at each step of the process. Constraint (5.27) guarantees

that two areas interconnected by a closed switch (i.e., 𝑦ij,s = 1) will share the same status.

Constraint (5.28) assures that a radial topology will be obtained at the end of the restoration

process. The binary nature of 𝑦ij,s, 𝑥z,s, Δ𝑦+
ij,s and Δ𝑦⊗

ij,s is given by (5.29). Finally, in order

to isolate the fault during the restoration process, the binary variable 𝑥z,s must be Ąxed to

zero for the area 𝑧 that contains the faulty node. A comprehensive discussion of the charac-

teristics and performance of the optimal restoration model for unbalanced three-phase EDS

can be found at Lopez et al. (2018).

Similar to the three-phase state estimator, the MINLP model in (5.17)Ű(5.29) is a non-

convex combinatorial optimization problem and, for practical applications, quality solutions

can be obtained via modern heuristics within reasonable computational times and resources.

5.2.5 Proposed SHS software

The proposed SHS was developed as a GIS-based software, comprising the GUI de-

veloped in Python/TkInter (PYTHON, 2019). A snapshot of the GUIŠs prototype is shown

in Fig. 33. All aforementioned modules: the three-phase state estimator, the short-term load

forecasting module, the fault-location method and the service restoration were developed and

executed in the proposed SHS software. Optimization problems in (5.1)Ű(5.12) and (5.17)Ű

(5.29) where solved using an adaptation of the Tabu Search algorithm (GROVER; LAGUNA,

1997) that returns the best solution after 60 seconds. To do so, the continuous decision va-

riable 𝜌z in (5.12) was discretized and the remaining state variables (voltages and currents)

were calculated using a backward/forward three-phase unbalanced load Ćow in Cheng and

Shirmohammadi (1995). A similar approach was used to solve (5.17)Ű(5.29) via Tabu Search,

considering the binary nature of the decision variables in (5.29) to code the solutions. The

workstation used to run the SHS software has a standard Intel R÷ CoreTM i7-4510U, with a

2.00 GHz CPU and 8.00 GB RAM, running on Microsoft R÷ Windows 8TM. Maps were gene-

rated using the Google R÷Maps JavaScript API (GOOGLE MAPS API, 2019).
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Figure 33 Ű GUI of the proposed SHS software.

Source: author.

5.3 Tests and Results

In order to demonstrate the performance of the proposed SHS software, the real-size

13.2 kV EDS in Fig. 34 was used for tests. The system comprises Ąve radial feeders that supply

electricity to 38,000 users of different types. The real-size EDS has 5,181 nodes, from which

955 are primary distribution transformers. The EDS has more than 115 km of distribution

lines installed. Blue and magenta feeders in Fig. 34 are connected to a main substation

of 40 MVA (nominal capacity), whereas red, yellow, and green feeders are connected to a

different substation of 60 MVA. Moreover, the EDS has three 5 MVA dispatchable distributed

generation (DG) units with islanded operation capabilities. The total installed capacity of the

distribution transformers is approximately 81 MVA. Also, there are 32 remotely-controlled

normally closed (NC) switches and 14 remotely-controlled normally open (NO) switches that

participate in the SHS.
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Figure 34 Ű Real 13.2 kV EDS with an AMI.

Source: author.

Two cases will be tested over the EDS in Fig. 34:

Case 1 Only 46 smart meters are considered to participate in the SHS. All meters are located

in the same branches as the remote-controlled switches. This case will be known as the

ŞBasic SHSŤ and its intention is to show the performance of the proposed SHS when

deployed in poorly supervised systems.

Case 2 In this case, 955 smart meters are considered to participate in the SHS. All meters

are located in the primary distribution transformers. This case will be known as the
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Case 1: Basic SHS Case 2: AMI/SHS

Figure 35 Ű Estimated loads obtained in Case 1 and 2.

Source: author.

ŞAMI/SHSŤ and its intention is to show the performance of the proposed SHS when

deployed in highly supervised systems, i.e., with AMI.

5.3.1 Case 1: Basic SHS

As shown by the Ćowchart in Fig. 31, the Ąrst step of the proposed SHS is the three-

phase state estimator. Considering a snapshot of the pre-fault steady-state operation, the

three-phase state estimator in (5.1)Ű(5.12) has been solved via Tabu Search, with a stopping

criterion of 30 seconds and a Tabu search attribute of 5 iterations (GROVER; LAGUNA,

1997). Each feeder is solved separately in parallel to improve the computational performance

of the heuristic. The root-mean-square error (RMSE) is used to assess the quality of the three-

phase state estimator for one snapshot. In this case, the RMSE of the current magnitudes was

4.2 A, and RMSE of the voltage magnitudes was 15 V. Fig. 35 compares the estimated loads

obtained in Case 1 and 2. Each marker in Fig. 35 represents a distribution transformer. The

lightness of each marker represents the loading factor of the transformer, where white makers

have 0% loading and black markers have 120% loading. The number within each marker

represents the average power factor at each transformer, obtained through the three-phase

state estimator.

Once a permanent fault has been identiĄed by the protection system, the next step of
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the SHS is to identify the moment of maximum consumption during the restoration time. To

do so, the short-term load forecasting method discussed in section 5.2.2 is deployed. In this

case, a frequentist approach has been chosen to dynamically calculate parameters 𝜃 and Θ of

the ARIMA model in (5.13). However, a Bayesian approach can also be adopted as discussed

in Lopez et al. (2019). In this case, we considered that the average restoration time is two

hours after the fault has been identiĄed.

Given the pre-fault estimation and the post-fault forecasted demands, the next step of

the SHS is to identify the location of the fault and to execute the service restoration process.

Thus, for each fault, the fault-location method in section 5.2.3 has been executed, considering

the voltage magnitude measurements by the 46 smart meters. Then, the optimized restora-

tion of unbalanced EDS in (5.17)Ű(5.29) has been solved via Tabu Search, with the same

parameters as in the state estimator, i.e., a stopping criterion of 30 seconds and an attribute

of 5 iterations (GROVER; LAGUNA, 1997). Three different faults have been simulated at

feeder 1 (green), feeder 3 (blue) and feeder 5 (magenta) in Fig. 34. For each fault, Fig. 36

shows the real and the calculated location obtained with the fault-location method, and the

Ąnal step of the restoration process.

5.3.1.1 Fault at feeder 5

As depicted by the lighting bolt in Fig. 36a, the Ąrst fault was simulated at the extreme

end of feeder 5. Note that the service restoration isolated the fault by simply opening the

upstream switch. The reason for this is that the isolated area contains the faulty node, and

no other load can be transferred among feeders. The magnifying glass represents the location

of the fault obtained by the fault-location method. Note that, with only 46 meters, the fault-

location method is very unreliable. However, the faulty zone was properly identiĄed and

isolated by the SHS.

5.3.1.2 Fault at feeder 3

As shown in Fig. 36b, the fault was simulated at the origin of feeder 3. Thus, the

service restoration isolated the fault by opening the feederŠs main breaker at the substation,

and by opening the closest downstream switch. Then, most of the unsupplied demand at

feeder 3 was restored by transferring it to feeder 2 (orange) by closing the tie switch. The

switching sequence was as follows: 1) open feeder 5Šs main breaker; 2) open downstream NC

switch in feeder 5; 3) close tie switch between feeders 2 and 5.
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5.3.1.3 Fault at feeder 1

Finally, a permanent fault was simulated at a middle point of feeder 1, as shown

in Fig. 36c. In this case, a more complex switching sequence was generated with the aim

of restoring a portion of costumers in feeder 1, by transferring them to feeder 4 (red). The

restored portion is highlighted in Fig. 36c. Note that besides the faulty area, another area was

de-energized by the service restoration. The reason to this is because the SHS must guarantee

the operational constraints of the service restoration problem, i.e., three-phase voltage and

current magnitude within their limits.

5.3.2 Case 2: AMI/SHS

Considering a snapshot of the pre-fault steady-state operation, the three-phase state

estimator in (5.1)Ű(5.12) has been solved via Tabu Search, with the same parameters as in

the previous case. The RMSE of the current magnitudes was 3.3 A, and RMSE of the voltage

magnitudes was 12 V. Note that both RMSE are better than those obtained in the basic SHS.

This is expected because more measurements are available (955 smart meters). Hence, they

contribute with the accuracy of the state estimator. Fig. 35 compares the estimated loads

obtained in Case 1 and 2. The frequentist approach has been used to dynamically estimate

the moment of maximum consumption through the ARIMA model in (5.13), for a horizon of

two hours after the fault.

Once again, the fault-location method in section 5.2.3 has been used, considering the

voltage magnitude measurements of the AMI. The optimized restoration of unbalanced EDS

in (5.17)Ű(5.29) has been solved via Tabu Search. The same three permanent faults have

been simulated at feeder 1 (green), feeder 3 (blue) and feeder 5 (magenta). Fig. 37 shows the

results of the fault-location method, and the Ąnal step of the restoration process.

Note that all three restoration actions in Fig. 37 are identical to those in Fig. 36,

except for the fault at feeder 1. In Fig. 37c, the SHS transferred all unsupplied demand from

feeder 1 to feeder 5 (magenta). The difference between both solutions in Fig. 37c and Fig. 36c

is due to the estimated loads. As shown by the results in Fig. 35, the estimated loads obtained

with and without AMI are different. As expected, the estimated and forecasted demands in

Case 2: AMI/SHS are more accurate than those obtained in Case 1: Basic SHS. Thus, the

SHS with AMI will be more precise and reliable.

5.3.3 DG Units Operation

The contribution of DG units in the proposed SHS software is considered as follows:

given the MILP model in (5.17)Ű(5.29), DGs are only operated if the zones wherein the DGs
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are located are energized at the end of the restoration process. Nonetheless, by disregarding

the topological constraint in (5.28), the service restoration can be improved if grid-forming

DG units are used to create isolated energized areas. Fig. 38 shows the solution of the

proposed AMI/SHS software if a fault at the beginning of feeder 5 is simulated, considering

DG units operation. Note that an isolated area, called ŞDG ZoneŤ, was created to reduce

the impact of the outage and to alleviate the load transferring among feeders during the

restoration process. The location of the fault and the switching sequence are also presented

by the GIS-based GUI in Fig. 38.

5.4 Conclusion

This chapter presents the design and implementation of a GIS-based SHS software

for modern EDS. In the presence of a permanent fault, the proposed SHS software is able to

dynamically estimate the demands after the fault, using a state-of-the-art three-phase state

estimator and a parsimonious short-term load forecasting method. Then, the location of the

fault is identiĄed, based the operation of the protection coordination system and an enhanced

bus-impedance-matrix-based fault-location method. Finally, a holistic service restoration for

unbalanced three-phase EDS is deployed in less than one minute, to obtain the switching

sequence that minimizes the impact of the outage and that isolates the faulty zone. Results

have been conducted over a real EDS and displayed using a GIS-based GUI. The proposed

SHS software is shown to be more efficient and reliable under the paradigm of AMI networks

with grid-forming DG units. However, it can also be implemented in EDS with basic SCADA

systems.
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a) Fault at feeder 5

b) Fault at feeder 3

c) Fault at feeder 1

Figure 36 Ű Results of the Basic SHS (Case 1): a) Fault location and restoration due to a
fault at feeder 5. b) Fault location and restoration due to a fault at feeder 3. c)
Fault location and restoration due to a fault at feeder 1.

Source: author.
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Figure 37 Ű Results of the AMI/SHS (Case 2): a) Fault location and restoration due to a
fault at feeder 5. b) Fault location and restoration due to a fault at feeder 3. c)
Fault location and restoration due to a fault at feeder 1.

Source: author.
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OPEN

OPEN

DG

Zone

Figure 38 Ű Results of the AMI/SHS considering DG operation.

Source: author.
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6 Conclusions and Future Works

6.1 Conclusions

In this thesis, a truly automated self-healing scheme for unbalanced three-phase EDS,

considering DG units and switching sequence, has been designed and implemented through

a GIS-based GUI software developed in Python. The proposed self-healing system is able

to: a) estimate the nodal demands during the pre and post-fault status, using a three-phase

state estimator and a short-term load forecasting algorithm, b) efficiently identify the zone

where a permanent fault is located, and c) generate the sequence of operations that must be

preformed by the remote-controlled switches installed along the system. Ultimately, the self-

healing scheme will isolate the faulty zone of the network and restore the service of as many

customers as possible, in the least amount of time and with minimal human intervention.

Mathematical optimization models were used to represent the state estimator and the three-

phase restoration aspect of the self-healing scheme. An enhanced fault-location method based

on smart meters was also implemented. The methodology used to solve the optimization

models was the metaheuristic Tabu Search. The short-term load forecasting method is a

parsimonious seasonal ARIMA model. The proposed self-healing scheme was tested using

real EDS, with thousands of consumers and distributed energy resources.

As shown by the results Chapter 5, the proposed self-healing system can be deployed

in networks with different levels of automation. Either low level, i.e., minimum deployment of

smart meters and remote-controlled switching devices, or high level, i.e., AMI-based networks.

In both cases, the software is able to produce quality restorative actions for real EDS, within

limited computational resources and minimum time (less than 1 minute).

Several contributions to the state-of-the-art in self-healing systems have been achieved

during the implementation of this PhD project: the approach in Chapter 2 is a holistic

service restoration model that considers the unbalanced nature of three-phase EDS, in the

presence of DG units and coordinated remote-controlled switches. The fault-location method

in Chapter 3 uses a simple strategy to enhance the well-behaved bus-impedance-matrix-based

fault-location method proposed by Trindade et al. (2014). A parsimonious short-term load

forecasting method has been implemented in Chapter 4 to determine the maximum demand

that needs to be considered by the service restoration. Finally, a true self-healing scheme has

been designed, implemented, and tested in Chapter 5 using real EDS.

As expected, technical challenges and concerns arose during the designing and imple-
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mentation of the proposed self-healing system. The solution method for the service restoration

and the three-phase state estimation is a key component that needs to be properly selected

and adjusted in order to obtain quality solutions in reasonable time. Tabu search is a well-

known, easy to adapt and implement metaheuristic, but other methods might be suitable as

well. Another concern is the reliability of the fault-location method. Clearly, the proposed

fault-location method is proved to be efficient, but it does not mean that it will be infallible.

Finally, the cyber-security aspect of the proposed self-healing system has not been addressed

in this project, but it is a critical issue that must to be regarded in real-world applications.

6.2 Future Works

1. A comparison of different methods used to solve the optimization models developed in

this project (i.e., the service restoration process and the three-phase state estimator)

and their efficiency in terms of computational complexity and solution quality.

2. Considering other Ćexibility assets during the service restoration, such as capacitor

banks, voltage regulators, controllable loads, storage units, mobile DG units, electric

vehicles, microgrids, among others.

3. Besides the short-term load forecasting method, an additional short-term renewable ge-

neration forecasting engine can be developed, in order to integrate distributed renewable

resources into the net demand that must be considered by the service restoration.

4. Instead of a centralized approach, the self-healing system could also be deployed in a

distributed fashion, by considering the most recent advances in distributed optimization

and point-to-point telecommunication technologies.

5. Finally, the proposed self-healing scheme can be integrated into a larger resiliency plan

that optimizes the available energy resources during a critical event that compromises

the EDS infrastructure, such as a natural disaster.
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