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Abstract

Spatial multiplexing systems employing a large number (tens to hundreds) of transmit

and receive antennas have been considered in order to meet the requirement of high data

rates and spectral efficiency of the Ąfth generation (5G) wireless communication standard.

However, these systems present some challenges that must be overcome. One of them is

the increasing complexity in spatial multiplexing detection, when the number of antennas

is large. Thus, this thesis proposes detector algorithms that perform as close as possible

to the performance of the optimum maximum likelihood (ML) detector, while yielding

the complexity of spatial multiplexing systems with large number of antennas low.

In the Ąrst part of this thesis, the case where the number of receive antennas is much

larger than the number of transmit antennas is analyzed, where a closed-form expression

is derived to determine the performance difference between ML detector and zero-forcing

(ZF) detector. Thus, ZF detector achieves near-optimum performance when the number

of receive antennas is much larger than the number of transmit antennas due to the

asymptotically orthogonal channel matrix property. Thus, two detectors for this case are

proposed, which are based on the damped Jacobi (DJ) and Newton-Schultz iterative

(NSI) algorithms to avoid the matrix inversion used in the ZF detector and consequently

reducing the complexity. Numerical results show that the proposed algorithms achieve

the ZF performance, keeping the low-complexity, where NSI outperforms DJ algorithm in

performance and complexity. In the second part of this thesis, the case where the number

of transmit antennas is equal to the number of receive antennas is considered. In this case,

the ZF detector is not more able to achieve near-optimum performance. Thus, a precoding

approach is proposed, which is based on channel matrix orthogonalization achieves the

optimum performance using the ZF detector. Despite the precoding approach achieves the

optimum performance at the expense of power transmission increase, its drawback is that

the transmitter needs to know the channel matrix through the feedback link. Finally, a

low-complexity detector based on symbol-Ćipping (SF) algorithm, which is based on local

sub-optimum solution searching, is proposed. It achieves a quasi-optimum performance

for spatial-multiplexing systems with very large number of transmit and receive antennas

by employing simple SF procedures.

Keywords: spatial multiplexing; MIMO; massive MIMO; symmetric MIMO; bit error

rate; optimum performance; Rayleigh fading; complexity; detection.



Resumo

Os sistemas de multiplexação espacial que empregam uma grande quantidade de antenas

transmissoras e receptoras, na ordem de dezenas a centenas, têm sido considerados para

cumprir com os requsitos de altas taxas de dados e eĄciência espectral do padrão de

comunicação sem Ąo da quinta geraçõ (5G). No entanto, esses sistemas apresentam alguns

desaĄos que devem ser superados. Um desses desaĄos é a crescente complexidade na

detecção uma vez que o número de antenas é grande. Assim, esta tese propõe algoritmos

de detecção cujo desempenho seja o mais próximo possível do desempenho ótimo do

detector de máxima verossimilhança (ML), atingindo uma baixa complexidade para os

sistemas de multiplexação espacial que empregam um grande número de antenas.

Na primeira parte desta tese, o caso em que o número de antenas de recepção é bem maior

que o número de antenas de transmissão é avaliado. Neste quesito, uma expressão fechada

é obtida para determinar a diferença de desempenho entre o detector ML e o detector zero-

forcing (ZF). Assim, o detector ZF atinge um desempenho quase ótimo quando o número

de antenas receptoras é bem maior que o número de antenas transmissoras devido a que

a matriz de canal apresenta a propriedade de ortogonalidade assintótica. Baseados nesta

premissa, dois detectores para este caso são propostos, os quais são baseados nos algo-

ritmos iterativos de damped Jacobi (DJ) e Newton-Schultz (NSI). Esses algoritmos têm

como objetivo evitar a inversão de matrizes usada no detector ZF e consequentemente

reduzir a complexidade. Os resultados numéricos mostram que os dois algoritmos propos-

tos atingem o desempenho do detector ZF mantendo uma baixa complexidade, onde o

algoritmo NSI supera ao algoritmo DJ em termos de desempenho e de menor complexi-

dade. Na segunda parte desta tese, considera-se o caso em que o número de antenas de

transmissão é igual ao número de antenas de recepção. Neste caso, o detector ZF não é

mais capaz de atingir um desempenho ótimo. Assim, um novo pré-codiĄcador é proposto,

o qual é baseado na ortogonalização da matriz de canal a Ąm de atingir o desempenho

ótimo ao usar o detector ZF. Apesar do que o pré-codiĄcador atinge o desempenho ótimo

à custa do aumento da potência de transmissão, sua desvantagem é que o transmissor

precisa conhecer a matriz do canal através de um enlace de retroalimentação. Finalmente,

um detector de baixa complexidade baseado no algoritmo de inversão de símbolos (SF),

cujo principio é a procura de soluções sub-ótimas locais, é proposto. Dito detector atinge

um desempenho quase ótimo para sistemas de multiplexação espacial com um grande

número de antenas de transmissão e recepção ao empregar procedimentos simples de SF.

Palavras-chaves: multiplexação espacial; MIMO; MIMO massivo; MIMO simétrico; tasa

de erro de bit; desempenho ótimo; desvanecimento Rayleigh; complexidade; detecção.
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1 Introduction

Over the last years, wireless communications traffic has experimented an ex-

ponential growth, due to the increasing demand for broadband internet access and mul-

timedia services, such as voice, data and video transmission. In this context, wireless

communications are in continuous development motivated by the growing requirements

in terms of data rates, reliability and spectral efficiency. Thus, new challenges have arisen

for researchers of both academic and industry to pursue solutions, which must be able to

deliver higher data rates with lower probability of error.

In wireless communications, two obvious solutions for increasing the date rates

are to increase the bandwidth and the transmission power. However, increasing the band-

width is not so simple, since the frequency spectrum is a limited and a controlled resource.

In contrast, increasing transmission power raises system implementation and operating

costs, since it can Ąnd regulatory barriers that seek to limit system interference and

possible health damage.

Nowadays, multiple antennas at the transmitter and receiver is a technique

know as multiple-input multiple-output (MIMO) systems (ANDREWS et al., 2007). It

is being considered as a solution to achieve higher data rates and reliability without any

expansion of the required bandwidth or increase in the system transmission power by

the exploitation of both spatial multiplexing and diversity. Thus, the spectral efficiency

of MIMO systems increases with the number of transmit antennas. MIMO presents high

data rates transmission as possible. On the other hand, multiple receive antennas is the

key to combat fading and provide receive diversity gain. Because of these advantages,

MIMO systems have been extensively researched. In fact, it can be safely argued that

MIMO systems employing 4 to 8 antennas are a fairly mature area nowadays. Thus,

the technological issues in such small MIMO systems are well understood and practical

implementation of these systems have become common (CHOCKALINGAM; RAJAN,

2014). Indeed, small MIMO systems have already become part of wireless standards like

802.11n/Wi-Fi for local area networks (PEFKIANAKIS et al., 2013), 802.16e/WiMAX

for broadband wireless networks (ANDREWS et al., 2007) and long term evolution (LTE)

for cellular networks (DAHLMAN et al., 2008).

For the next generation of wireless communications, 5th Generation (5G) is

the candidate which promises higher data rates, higher user densities and signiĄcant

improvement in usersŠ perceived Quality of Service (Q.o.S) (XIANG et al., 2016). In

this context, the deployment of MIMO systems with large number of (tens to hundreds)
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antennas in large-scale MIMO systems, has attracted signiĄcant attention of the research

community, since this technology allows a much higher spectral efficiency and consequently

very high data rates, serving a large number of users at the same time without requiring

extra bandwidth resources or additional transmit power (MARZETTA, 2010; RUSEK

et al., 2013). This large-scale version of conventional MIMO systems, where a restricted

number of antennas is employed, is designed to exploit the advantages of extra degrees

of freedom obtained by using more antennas. Thus, large-scale MIMO systems are strong

candidates for the 5G wireless communications. standard.

The remainder of this chapter is organized as follows. In Section 1.1, some

related works are summarized and the motivations of this thesis are introduced. Finally,

the contributions and the outline of this thesis are presented in Section 1.2.

1.1 Related Works and Motivation

The concept of large-scale MIMO systems with tens to hundreds of transmit

and receive antennas was Ąrst proposed in (RUSEK et al., 2013) in order to achieve

high spectral efficiencies. However, several challenges need to be addressed in realizing

practical large-scale MIMO systems. One of them is to develop detection algorithms that

practically implement low complexity high-performance MIMO systems (MARZETTA et

al., 2016).

The MIMO detector jointly detect the symbols that are transmitted simulta-

neously by the multiple transmit antennas subject to the contamination of fading and ran-

dom noise. Unfortunately, in MIMO systems the optimum detection problem was proven

non-deterministic polynomial-time hard (NP-hard) (YANG; HANZO, 2015),. Thus, the

detectors projected for optimum detection have exponential complexity that increases

with the number of transmit antennas. This makes these detectors impractical for large-

scale MIMO systems.

On the other hand, several works have been published in the literature on

MIMO detection (LARSSON, 2009; HUANG et al., 2011; BAI; CHOI, 2014; YANG;

HANZO, 2015), which are predominantly focused to conventional small-scale MIMO sys-

tems, that is until a maximum of eight antennas. In this context, known small-scale

MIMO detectors either perform well but present high complexity, or behave well in com-

plexity but perform poorly in large-scale MIMO systems (CHOCKALINGAM; RAJAN,

2014). Fortunately, since a large number of antennas are deployed in MIMO systems,

the channel hardening phenomenon, which is discussed in sub-section 2.5.2, observed in

these systems becomes helpful to explore low-complexity high-performance detectors for

practical large-scale MIMO systems. Thus, large-scale MIMO detection is one of the main
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research challenges for 5G wireless communications.

Furthermore, since in 5G it is expected that a large number of users or devices,

such as sensors, environmental monitoring devices, smart grid components, smartphones

and tablets - which represents the internet of things (IoT) (LIN et al., 2017) - with different

conĄgurations and requirements are connected to the network (AGIWAL et al., 2016).

Receivers capable of detecting the transmitted information must be designed according

to their different data requirements, which has motivated the research of low-complexity

detectors for large-scale MIMO systems. Finally, once wireless communication standards

do not impose how network providers design their detectors, thus opens up the opportunity

for the implementation of different kind of detectors capable of self adjusting according

to the goals required at any instant of the transmission.

1.2 Contributions and Thesis Outline

This thesis comprises most of the research results in the Ąeld of large-scale

MIMO detection algorithms. In general, this thesis proposes the implementation of novel

detector algorithms that are suitable for large-scale MIMO systems in terms of perfor-

mance and complexity. For this, the study of MIMO systems basic concepts, the beneĄts

of scaling-up MIMO systems, the implementation of existing state-of-the-art detectors

and a consequent comparative analysis through Monte Carlo simulations are included.

The remainder of the thesis is structured as follows:

∙ Chapter 2. This chapter contains the basic concepts for understanding the the-

sis. An introduction to MIMO systems is made, including a brief review of fun-

damental concepts and their mathematical representation, Moreover, the beneĄts

of traditional MIMO are described, together with the advantages and challenges

of deployment of large-scale MIMO systems. Finally, optimum and sub-optimum

MIMO detectors are also presented, along with the distinction between massive and

symmetric MIMO systems.

∙ Chapter 3. This chapter contains the contribution published in (MINANGO et

al., 2018). At Ąrst, based on the channel hardening phenomenon, it is veriĄed that

in massive MIMO systems with hundreds of antennas at the base station (BS) and

tens users with a single transmitter antenna, linear detectors, such as zero-forcing

(ZF), are able to achieve near-optimum performance due to the property of asymp-

totically orthogonal channel matrix. However, how far away is ZF from the optimum

performance in massive MIMO systems?. In order to answer this question, in this

chapter closed-form bit error rate (BER) expressions of the ZF and optimum detec-
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tor are derived. Then, these BER expressions are subsequently used to evaluate the

performance difference between ZF and the optimum detector, which is a function

of the number of antennas at the BS and the number of users. Finally, numerical

results verify the tightness of the expressions obtained.

∙ Chapter 4. This chapter contains the contributions published in (MINANGO;

ALMEIDA, 2017c; MINANGO et al., 2017). Once linear ZF detector is able to

achieve the near-optimum performance in massive MIMO systems, its practical im-

plementation becomes of interest. Unfortunately, ZF detector involves matrix inver-

sion with high complexity especially when the number of users is large. In order to

reduce this complexity, in this chapter, a low-complexity ZF detector based on the

Damped Jacobi (DJ) algorithm is proposed. Further, a simple approach to deter-

mine the optimum and quasi-optimum damped parameter by exploiting the channel

property of asymptotic orthogonality is developed. The analysis shows that the DJ

algorithm can reduce the complexity of the ZF detector by about one order of mag-

nitude without performance loss. Finally, it is veriĄed through numerical simulations

that the ZF detector based on DJ algorithm achieves the same near-optimum per-

formance of the ZF detector employing matrix inversion, but with a reduced number

of iterations, keeping the complexity low.

∙ Chapter 5. This chapter contains the contribution published in (MINANGO;

ALMEIDA, 2018b). Although ZF detector based on DJ algorithm achieves a near-

optimum performance with low-complexity, its convergence is linear. Thus, in this

chapter, a low-complexity ZF detector based on the Newton-Schultz Iterative (NSI)

algorithm is proposed, which yields similar performance that ZF detector with ex-

act matrix inversion. Moreover, a relationship between NSI and DJ algorithms is

introduced, which shows that NSI outperforms DJ in terms of convergence rate. Be-

sides, in order to further accelerate the convergence rate and reduce the complexity

of NSI algorithm, a novel initial matrix inversion solution of NSI algorithm based

on Tchebychev polynomial is proposed. Numerical results show that NSI algorithm

with the proposed initial matrix inversion solution achieves the near-optimum ZF

performance in just two iterations outperforming DJ algorithm in terms of perfor-

mance and complexity.

∙ Chapter 6. This chapter contains the contribution published in (MINANGO;

ALMEIDA, 2018a). This chapter is focused on large-scale symmetric MIMO sys-

tems, where ZF detector is unable to achieve near-optimum performance, because

the symmetric channel matrix is not asymptotically orthogonal. Thus, ZF perfor-

mance is clearly inferior to the optimum detector. However, this is no longer true if
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the symmetric channel matrix was orthogonal. Motivated by this statement, in this

chapter, a novel precoding approach for channel matrix orthogonalization of sym-

metric MIMO systems is proposed. In general, at the transmitter, the precoding

matrix that transforms a symmetric channel matrix into an orthogonal matrix is

Ąrst obtained. After that, at the receiver, ZF detector is applied to the equivalent or-

thogonal channel matrix. Thus, ZF with precoding presents the same performance

that the optimum detector. Numerical results show that the proposed approach

achieves the optimum performance with reduced complexity at the expense of a

small increase in the total average transmitted power.

∙ Chapter 7. In this chapter a low-complexity detector based on symbol-Ćipping

(SF) algorithm is proposed. This detector algorithm achieves the same optimum

performance of the ML detector for symmetric spatial-multiplexing MIMO systems

with very large number of transmit and receive antennas by employing simple SF

procedures, whose starting-point is the matched Ąlter (MF) vector solution. How-

ever, if the number of antennas is on the order of tens, several SF procedures must

be employed, whose starting-points are a set generated by the MF vector solution

changed by random vectors. The best SF result is chosen as the detected solution.

Numerical results indicate that the proposed detector algorithm achieves the op-

timum performance, presenting a quadratic low-complexity in comparison to the

exponential ML detector.

∙ Chapter 8. This chapter presents the Ąnal conclusions followed by a discussion

of open research directions for future works within the spatial multiplexing MIMO

systems and 5G context.
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2 Basic Concepts and System Model

2.1 Introduction

In this chapter, the basic concepts and the wireless communication system

model are described. Firstly, some channel types, such as additive white Gaussian noise

(AWGN) and AWGN with fading, are described. In the following, there is a brief summary

of the diversity techniques used to mitigate the fading effects. Later, a description of some

digital modulation schemes is presented, which is an important aspect in order to increase

the data rate of a wireless communication service.

Furthermore, in this chapter, the system model of a spatial multiplexing multiple-

input multiple-output (MIMO) is discussed, where the beneĄts and issues when the num-

ber of antennas is increased are presented. Later, some theoretical background of MIMO

channel model is presented. Finally, an introduction to the conventional spatial multi-

plexing MIMO detector algorithms is discussed.

For better understanding this chapter is organized as follows. Channel model

is described in Section 2.2. The diversity techniques are described in Section 2.3. Digital

modulation schemes are described in Section 2.4. Finally, spatial multiplexing MIMO

system, its system model, MIMO channel and detector algorithms are detailed in Section

2.5.

2.2 Channel Model

The signals or messages transmitted through wireless channels has as main

characteristic the low reliability detection inherent to these channels. The signals that

propagate in wireless channels suffer additions, distortions and attenuations due to the

peculiarities of the environment, such as noise, fading and attenuation with distance. In

the following, some of these degradation factors are described.

2.2.1 AWGN Channel

The additive white Gaussian noise (AWGN) is a basic and generally accepted

model for thermal noise and also for shot noise in a communication channel. In this

thesis, the density spectrum noise is constant and present in the entire frequency range.

The noise is added to the received signal and its samples follow a gaussian probability
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density function (PDF), given by (PAPOULIS; PILLAI, 2002):

𝑓(𝑛) =
1√

2Þàn

𝑒
⊗(n⊗µn)2

2σ2
n , (2.1)

where Ûn and à2
n denote the mean and variance of the random variable 𝑛.

2.2.2 Fading Channel

Fading is a physical phenomenon caused by receiving multiple replicas of the

same transmitted signal at the destination. Each of these replicas undergoes differences

in phase shift, attenuation and time delay during the path between transmitter and re-

ceiver over a wireless communication channel. This can result in either constructive or

destructive interference, amplifying or attenuating the signal power at the destination.

In the following, the characteristics of the fading in wireless communication

channels in relation to their variability in time and frequency domains of the transmitted

signal are described.

2.2.2.1 Slow and Fast Fading

An important parameter used to measure the temporal variability of the wire-

less channel is the coherence time interval, 𝑇c. This parameter is deĄned as the time

interval where received signals have non-zero amplitude correlation. Based on this param-

eter, the fading can be classiĄed as slow or fast (PROAKIS; MANOLAKIS, 2006).

2.2.2.2 Slow Fading

Slow fading occurs when the coherence time interval of the channel is greater

than the symbol time interval, 𝑇s, that is 𝑇c ⪰ 𝑇s. Thus, the amplitude and phase changes

imposed by the channel can be considered roughly constant during the symbol duration.

2.2.2.3 Fast Fading

Fast fading occurs when the coherence time interval of the channel is less than

the symbol time interval, that is 𝑇c ⪯ 𝑇s. Therefore, the amplitude and phase changes

imposed by the channel varies during the symbol duration.

2.2.2.4 Flat and Selective Fading

Another important parameter related to wireless channels is the coherent band-

width, 𝐵c, which is a statistical measure of the frequency interval in which the fading

presents high correlation. Thus, if two signals are separated by frequency interval greater
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than 𝐵c, they are affected differently by the channel, that is, both signals are affected by

statistically independent fadings (RAPPAPORT, 2002). The presence of Ćat or selective

fading can be determined by comparing the channel coherence bandwidth, 𝐵c, and the

bandwidth of the transmitted signal, 𝐵 = 1/𝑇s.

2.2.2.5 Flat Fading

Non-selective or Ćat fading appears when the coherence bandwidth is larger

than the bandwidth of the transmitted signal, that is, 𝐵c > 𝐵. In this case, the spectral

components of the signal are subject to practically the same magnitude of fading. Thus,

there is no inter-symbolic interference between consecutively transmitted signals.

2.2.2.6 Selective Fading

The channels with selective fading appear when the coherence bandwidth is

smaller than the bandwidth of the transmitted signal, that is, 𝐵c < 𝐵. In this scenario,

different spectral components of the signal are subjected to different magnitudes of fading

causing signiĄcant distortion in the signal and, therefore, inter-symbolic interference (ISI)

and inter-carrier interference (ICI) occur.

Throughout this thesis, slow and Ćat fading channels are considered, charac-

terized by a Rayleigh fading, whose PDF is represented by:

𝑓(𝑎) =

∏︁
⋁︁⨄︁
⋁︁⋃︁

a
σ2

a
𝑒

⊗a2

2σ2
a 𝑎 ⊙ 0

0 𝑎 < 0,
(2.2)

where àa is the parameter of the Rayleigh PDF.

The Rayleigh random variable 𝑎, which represents the fading amplitude, is

obtained by two independent and identically distributed (i.i.d) Gaussian random variables

with zero mean and variance à2 as follows:

𝑎 =
√︁

𝑎2
I + 𝑎2

Q, (2.3)

where 𝑎I and 𝑎Q are Gaussian random variables (PAPOULIS; PILLAI, 2002). Further-

more, the mean square value of the fading amplitude is related to the variance of the

in-phase and quadrature components as:

E¶𝑎2♢ = 2à2. (2.4)

In this thesis, it is considered that the mean square value of the fading ampli-

tude is unitary. Therefore, the variances of 𝑎I and 𝑎Q of the Rayleigh parameter is equal

to à2 = 1
2
.
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2.3 Diversity

The increasing demand of wireless communications users that seek high data

rate transmission with high reliability and hence low error probability has motivated the

study of different diversity techniques in order to combat the performance loss over fading

channels (PROAKIS; MANOLAKIS, 2006; TSE; VISWANATH, 2005).

Diversity is a common technique for combating the low performance of fading

channels. It is based on the fact that different transmitted signals affected by uncorrelated

fadings have a small probability of reaching signiĄcant performance loss at the same time.

Thus, the basic idea is to have different replicas of the transmitted signal, which are

affected by uncorrelated fadings. This number of replicas is known as the diversity order.

The greater the diversity order, the better the system performance.

Several diversity techniques have been studied in the literature (TSE; VISWANATH,

2005), among the main ones, there are frequency diversity, time diversity and spatial di-

versity, which are described below.

2.3.1 Frequency Diversity

This technique consists of transmitting the same information-bearing signal on

𝐿 different carrier frequencies available in the channel. The frequency separation must be

enough to achieve uncorrelated fadings. This frequency separation is a function of the co-

herent bandwidth, 𝐵c. As a disadvantage, frequency diversity requires greater bandwidth

and the number of receivers is equal to the number of carriers used.

2.3.2 Time Diversity

In time diversity a signal is transmitted in 𝐿 different time slots. The time

separation between two sucessive instants of time must exceed the coherent time of the

channel, which allow uncorrelated fading channels. The disadvantage of this technique is

the reduction of the effective transmission rate, since the time slots used in the transmis-

sion increases proportionally with diversity.

2.3.3 Spatial Diversity

Spatial diversity technique, also named as antenna diversity technique, is usu-

ally achieved by employing multiple 𝐿 antennas at the transmitter and/or the receiver.

These 𝐿 antennas must have enough distance separation between them in order to be

pairwise independent, in such a way that the received replicas of the signal are uncor-

related. Ideally, the transmitted or received antennas should be separated by a distance
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Figure 2.2 Ű Constellation diagrams for (a) BPSK, (b) QPSK, (c) 4-QAM, (d) 16-QAM
and (e) 64-QAM modulations.
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2.4.1 BPSK Modulation

The binary phase shift keying (BPSK or 2-PSK) is a two phase modulation

scheme in which the phase of a carrier is varied according to the bit to be transmitted.

The amplitude and frequency of the carrier are constant. Fig. 2.2a shows the BPSK

constellation diagram. The BPSK modulated signal can be written as (ALMEIDA, 2014):

𝑠n(𝑡) =
∞∑︁

i=⊗∞

𝐴 cos[2Þ𝑓c(𝑡 ⊗ 𝑖𝑇b) + Þ𝑛], for 𝑛 = 0, 1, (2.5)

where 𝐴 represents the amplitude, 1/𝑇b the bit rate. Therefore, the energy per bit of the

BPSK signal, given by (2.5), is 𝐸b = 𝐴2𝑇b/2.

2.4.2 QPSK Modulation

The quadrature phase-shift keying modulation is without doubt, the most

important of all PSK modulations (ALMEIDA, 2014). QPSK modulation is equivalent

to two BPSK modulations, one being transmitted in phase and the other in quadrature.

Fig. 2.2b shows the QPSK constellation diagram. Thus, the QPSK modulated signal can

be denoted by:

𝑠n(𝑡) =
∞∑︁

i=⊗∞

𝐴 cos
[︂
2Þ𝑓c(𝑡 ⊗ 𝑖𝑇s) +

Þ𝑛

2

]︂
, for 𝑛 = 0, 1, 2, 3, (2.6)

Note from (2.6) that the carrier can assume 4 different phase values. Therefore,

QPSK can modulate two bits per symbol and consequently 𝑇s = 2𝑇b. The energy per bit

of the QPSK signal is 𝐸b = 𝐴2𝑇b.

2.4.3 𝑀 -QAM Modulation

Quadrature amplitude modulation (QAM) is a digital modulation in which

the amplitude and phase of two orthogonal carriers are simultaneously varied. Thus, 𝑀 -

QAM requires less energy per symbol than 𝑀 -PSK modulations for 𝑀 ⊙ 8. For 𝑀 -QAM

modulation, there are 𝑀 symbols and log2 𝑀 bits, where 𝑀 is known as the modulation

order. An 𝑀 -QAM modulated signal can be written as (ALMEIDA, 2014):

𝑠n(𝑡) =
∞∑︁

i=⊗∞

𝑎i cos[2Þ𝑓c(𝑡 ⊗ 𝑖𝑇s) + ã] ⊗
∞∑︁

i=⊗∞

𝑏i sin[2Þ𝑓c(𝑡 ⊗ 𝑖𝑇s) + ã], (2.7)

where 𝑎i and 𝑏i are independent random amplitude variables, that can assume the values

∘𝐴, ∘3𝐴, ≤ ≤ ≤ , ∘(
√

𝑀 ⊗ 1)𝐴. Fig. 2.2c, 2.2d and 2.2e show 4-QAM, 16-QAM and 64-

QAM modulation constellation diagrams, respectively. The energy per symbol of 𝑀 -QAM

modulated signal, expressed in (2.7), is given by:

𝐸s =
(𝑀 ⊗ 1)𝐴2𝑇s

3
. (2.8)
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Furthermore, the relation between symbol energy and bit energy is obtained

as:

𝐸s = 𝑏𝐸b

= 𝐸b log2 𝑀. (2.9)

Note from Fig. 2.2b and Fig. 2.2c, that 4-QAM can be obtained by a phase

shift of Þ/4 on QPSK and an amplitude increase of
√

2 times. Thus, their performances

are equivalents, as long as their average powers are equal.

2.4.4 Gray Mapping

Gray mapping is a technique that digital modulation schemes often use to

minimize the bit error rate (BER). It consists of labeling the modulation symbols, so that

the binary representations of adjacent symbols differ by only one bit. Thus, one symbol

error corresponds exactly to one bit error.

2.4.5 Euclidean Minimum Distance

The distance between any two symbols of a constellation determines the prob-

ability of one of them to be confused with the other. This distance is named Euclidean

distance. Moreover, the smaller the Euclidean distance between two symbols, the greater

is the susceptibility of error. The minimum Euclidean distance of the constellation (dmin)

represents the minimum distance between two symbols of a constellation (ALMEIDA,

2014).

2.4.6 Bit Rate

By considering a digital modulation with 𝑀 symbols and since 1/𝑇s symbols

are transmitted per second, the bit rate of this modulation is given by (ALMEIDA, 2014)

𝑅b =
log2 𝑀

𝑇s

, (2.10)

where its unit is bits/s, or loosely, b/s. Note that the bit rate given by (2.10) can be

increased by increasing the modulation order 𝑀 , or by increasing the symbol rate 1/𝑇s.

However, the symbol rate is bounded by the bandwidth 𝐵 of the channel. Thus, the

combination of these two parameters limits the available bit rate of a given channel.

2.4.7 Spectral Efficiency

Spectral efficiency refers to the information rate that can be transmitted

through a given channel bandwidth (BARRY et al., 2003). Thus, spectral efficiency Ý
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is given as the ratio of the information bit rate 𝑅b to the channel bandwidth 𝐵, that is:

Ý =
𝑅b

𝐵
, (2.11)

where its unit is bits/sec-Hz, or loosely b/s/Hz. Considering that the minimum Nyquist

bandwidth is equal to 𝐵 = 1/𝑇s and substituting (2.10) into (2.11), the spectral efficiency

can be rewritten as:

Ý = log2 𝑀. (2.12)

2.5 Spatial Multiplexing MIMO System

In ordinary wireless communication systems, the structure of a link is com-

posed of one transmit and one receive antenna. This system, denoted as single-input

single-output (SISO), was widely used in the past few decades for both mobile and Ąxed

wireless communications (ANDREWS et al., 2007). For SISO systems it is well known

that given a Ąxed bandwidth, bit rate and consequently spectral efficiency can only be in-

creased by increasing the modulation order. However, this approach could have limitations

to support higher data rates, once higher modulation orders are more susceptible to fading

effects (ALMEIDA, 2014). Therefore, approaches with increased spectral efficiencies are

required.

From a spectral efficiency standpoint, the most interesting type of MIMO

systems is spatial multiplexing (SM) (CLERCKX; OESTGES, 2013), which refers to

the use of multiple transmit and receive antennas in order to accomplish a multiplexing

gain, thus enhancing the bit rate and spectral efficiency with the number of transmit

antennas employed without requiring extra bandwidth. In fact, it has been demostrated

in (MINANGO, 2014) that to achieve a given spectral efficiency, using a small modulation

order and increasing the number of transmit antennas is more efficient than using a single

transmit antenna and increasing the modulation order.

2.5.1 System Model

The basic idea behind spatial multiplexing is transmitting different symbols

across different transmit antennas at the same time and in the same bandwidth in order

to increase the bit rate and consequently the spectral efficiency. At the receiver, the trans-

mitted symbols are detected by employing an interference cancellation-type of algorithm.

In this thesis, a spatial multiplexing MIMO system with 𝑁T transmit and

𝑁R receive antennas, where 𝑁T symbols are simultaneously transmitted over the 𝑁T

antennas is considered, as depicted in Fig. 2.3. Thus, the corresponding received signal
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vector y = [𝑦1, 𝑦2, ≤ ≤ ≤ , 𝑦NR
]T ∈ C

NR×1 at the 𝑁R antennas is given by:

y = Hx + n, (2.13)

where x = [𝑥1, 𝑥2, ≤ ≤ ≤ , 𝑥NT
]T ∈ 𝑀NT is the transmitted signal vector, whose elements be-

long to a given symbol constellation with modulation order 𝑀 , n = [𝑛1, 𝑛2, ≤ ≤ ≤ , 𝑛NR
]T ∈

C
NR×1 represents the additive complex white Gaussian noise (AWGN) vector, whose en-

tries consists of independent and identically distributed (i.i.d) complex Gaussian random

variables with zero mean and variance à2
n and H ∈ C

NR×NT denotes the Ćat Rayleigh

fading MIMO channel matrix, whose entries consists of i.i.d. complex Gaussian random

variables with zero mean and unit variance. The MIMO channel matrix in particular is

of the form:

H =

⋃︀
⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⋁︀⨄︀

ℎ1,1 ℎ1,2 ≤ ≤ ≤ ℎ1,NT

ℎ2,1 ℎ2,2 ≤ ≤ ≤ ℎ2,NT

...
...

. . .
...

ℎNR,1 ℎNR,2 ≤ ≤ ≤ ℎNR,NT

⋂︀
⎥⎥⎥⎥⎥⎥⎥⋀︀

, (2.14)

where ℎi,j ≍ 𝒞𝒩 (0, 1) denotes the entry associated with the link between the 𝑖-th receive

antenna and the 𝑗-th transmit antenna.
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Figure 2.3 Ű Spatial multiplexing MIMO system.

Since the elements of the transmitted signal vector x are independent, then,

the vector x has zero-mean and a covariance matrix Rx = E¶xxH♢ = à2
xINT

, where à2
x is

the signal power of each transmit antenna. Similarly, the covariance of the independent

AWGN vectors is Rn = E¶nnH♢ = à2
nINR

. Furthermore, the vectors x and n are assumed

to be independent, that is E¶xnH♢ = 0. Based on this, the covariance matrix of y for a

given H can be found, using the fact that, if both x and n have zero mean, then y has
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zero mean as well:

Ry = E¶yyH♢ = E¶(Hx + n)(Hx + n)H♢
= HRxHH + Rn

= à2
xHHH + à2

nINR
(2.15)

Furthermore, from (2.13), the overall signal-to-noise ratio (SNR) at the receiver

is:

Ò =
E¶‖Hx‖2♢
E¶‖n‖2♢

=
E¶∑︀NR

i=1

∑︀NT

j=1 ♣ℎi,j𝑥j♣2♢
E¶∑︀NR

i=1 ♣𝑛i♣2♢
=

𝑁T 𝑁Rà2
x

𝑁Rà2
n

= 𝑁T
à2

x

à2
n

, (2.16)

which is in fact the same as 𝑁T times the SNR of a SISO system, since each receive antenna

receives the incoming power from 𝑁T transmit antennas, while each one of the 𝑁R receive

antennas perceive the same amount of noise power as of a SISO system. This analysis

is only valid on the average and when ℎi,j ≍ 𝒞𝒩 (0, 1), i.e., 𝑦i receives the sum of 𝑁T

transmitted symbols weighted by unitary power channel random variables E¶♣ℎi,j♣2♢ = 1.

Once the signal power of each transmit antenna and the noise power of each

receive antenna can be expressed, respectively, as à2
x = 𝐸s/𝑇s and à2

n = 𝐵𝑁0, where 𝑁0

is the noise unilateral power spectral density. Then, its ratio is given by:

à2
x

à2
n

=
𝐸s

𝑇s𝐵𝑁0

=
𝐸s

𝑁0

, (2.17)

where 𝐵 = 1/𝑇s by assuming the minimum Nyquist bandwidth and 𝐸s/𝑁0 denotes the

average energy per symbol to the noise power spectral density. Since the average energy

per bit is 𝐸b = 𝐸s/ log2 𝑀 and by considering (2.17), the overall SNR given by (2.16) can

be rewritten as:

Ò = 𝑁T
𝐸b

𝑁0

log2 𝑀, (2.18)

where 𝐸b/𝑁0 represents the energy per bit to the noise power spectral density ratio.

2.5.1.1 Spectral Efficiency

In spatial multiplexing MIMO systems, by employing 𝑁T transmit antennas,

the overall bit rate compared to SISO systems is thus enhanced by a factor of 𝑁T . There-

fore, the bit rate of a MIMO system measured in b/s is given by:

𝑅b = 𝑁T
log2 𝑀

𝑇s

b/s. (2.19)

where 𝑇s is the symbol time interval. Since spatial multiplexing MIMO systems do not

require extra bandwidth to increase the bit rate, thus, their bandwidth is equal to 𝐵 =

1/𝑇s Hz and as a consequence the spectral efficiency of a MIMO system measured in

b/s/Hz is given by:

Ý =
𝑅b

𝐵
= 𝑁T log2(𝑀). (2.20)
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This is certainly exciting, as it implies that adding transmit antennas can

increase the viability of the high data rates desired in wireless communications.

2.5.2 MIMO Channel

This section presents some relevant theoretical background about MIMO chan-

nels in order to address the properties and issues which arise in spatial multiplexing MIMO

systems with large number of antennas.

2.5.2.1 Useful Definitions

2.5.2.1.1 Orthogonal Matrix

A 𝑛 × 𝑚 matrix A is an orthogonal matrix if (GOLUB; LOAN, 1996):

AHA = Im, (2.21)

where AH is the conjugate transpose or the Hermitian of A and Im is the 𝑚 × 𝑚 identity

matrix. Note that to satisfy (2.21), the column vectors of A are pairwise orthogonal;

likewise for the row vectors. Furthermore, an orthogonal matrix is always invertible, with:

A⊗1 = AH . (2.22)

Since A is an orthogonal matrix, so are AH and A⊗1. Moreover, the relation

given by (2.22) makes orthogonal matrices particularly easy to compute with, since the

Hermitian operation is much simpler than computing an inverse. Moreover, since A is an

orthogonal matrix, its eigenvalues are equal, i.e., Ú1 = Ú2 = ≤ ≤ ≤ = Úm

2.5.2.1.2 Diagonal Dominant Matrix

An 𝑛 × 𝑛 square matrix A is diagonal dominant (DD) if for every row or

column of A, the absolute value of its diagonal entry is larger than or equal to the sum

of the absolute value of all the other (non-diagonal) entries in that row or column. More

exactly, matrix A is DD if:

♣𝑎i,i♣ ⊙
n∑︁

j=1,j ̸=i

♣𝑎i,j♣ or ♣𝑎i,i♣ ⊙
n∑︁

j=1,j ̸=i

♣𝑎j,i♣ (2.23)

where 𝑎i,j denotes the entry in the 𝑖-th row and 𝑗-th column of matrix A. On the other

hand, matrix A is called strictly diagonal dominant (SDD) if:

♣𝑎i,i♣ >
n∑︁

j=1,j ̸=i

♣𝑎i,j♣ or ♣𝑎i,i♣ >
n∑︁

j=1,j ̸=i

♣𝑎j,i♣ (2.24)
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The following metric is considered in order to know the diagonal dominance

of matrix A:

𝐷 =

∑︀n
i=1 ♣𝑎i,i♣∑︀n

i=1

∑︀n
j=1,j ̸=i ♣𝑎i,j♣

. (2.25)

2.5.2.1.3 Hermitian and Positive Definite Matrix

A 𝑛×𝑛 complex square matrix A is Hermitian, if it is equal to its own conjugate

transpose, that is:

A = AH . (2.26)

On the other hand, a 𝑛 × 𝑛 Hermitian matrix A is said to be positive-deĄnite

if:

zHAz > 0 (2.27)

for all nonzero complex vectors z ∈ 𝒞n, where zH represents the conjugate transpose of

the vector z.

2.5.2.1.4 Eigen-decomposition

The eigen-decomposition of a 𝑛 × 𝑛 square matrix A is given by (GOLUB;

LOAN, 1996):

A = VΛVH , (2.28)

where the matrix V contains the eigenvectors of A, and Λ = diag = [Ú1, Ú2, ≤ ≤ ≤ , Ún]

denotes the diagonal matrix containing the eigenvalues of A. Matrix V is invertible as

long as matrix A is Hermitian. Furthermore, if matrix A is Hermitian and positive-deĄnite

(HPD), then all its eigenvalues are positive and real.

2.5.2.1.5 Spectral Radius

The spectral radius of a 𝑛×𝑛 square matrix A, denoted as 𝜌(A), is the largest

absolute value of its eigenvalues. Thus, let Ú1, ≤ ≤ ≤ , Úi, ≤ ≤ ≤ , Ún be the eigenvalues of matrix

A, its spectral radius is deĄned as:

𝜌(A) = max
1⊘i⊘n

♣Úi♣

= ♣Úmax (A)♣ , (2.29)

where Úmax(A) denotes the largest eigenvalue of A.
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2.5.2.1.6 Condition Number

Applying the eigen-decomposition given by (2.28) to a 𝑛×𝑛 HPD matrix A and

by assuming that the 𝑛 nonzero eigenvalues are sorted in decreasing order of magnitude,

that is Ú1 ⊙ Ú2 ⊙ ≤ ≤ ≤ ⊙ Ún, then the condition number of A is given by (GOLUB; LOAN,

1996):

Ù(A) =
Úmax(A)

Úmin(A)
, (2.30)

where Úmin(A) represents the smallest eigenvalue of A. A condition number of one, Ù(A) =

1, means that matrix A is orthogonal therefore Úmax(A) = Úmin(A), while a large condition

number, Ù(A) ⪰ 1, implies that matrix A is highly non-orthogonal or ill-conditioned.

2.5.2.1.7 Vector and Matrix Norm

In this thesis, the Euclidean norm of a vector z ∈ 𝒞n×1 is given by:

‖z‖ =
(︁
zHz

)︁1/2
. (2.31)

On the other hand, given a 𝑛 × 𝑚 complex matrix A, a matrix norm ‖A‖ is

a non-negative number associated with A. Following, some matrix norms are discussed:

∙ The maximum absolute column sum norm or 1-norm ‖A‖1 is deĄned as:

‖A‖1 = max
1⊘j⊘m

n∑︁

i=1

♣𝑎i,j♣ . (2.32)

∙ The maximum absolute row sum norm or inĄnite-norm ‖A‖∞ is given by:

‖A‖∞ = max
1⊘i⊘n

m∑︁

j=1

♣𝑎i,j♣ . (2.33)

∙ Since matrix A is HPD, its spectral norm or 2-norm ‖A‖2 is the square root of the

largest eigenvalue of A, that is:

‖A‖2 =
√︁

Úmax(A). (2.34)

∙ The Frobenius norm ‖A‖F is given by:

‖A‖F =

⎯⎸⎸⎷
m∑︁

j=1

n∑︁

i=1

♣𝑎i,j♣2 =
√︁

Tr [AHA], (2.35)

where Tr[≤] denotes the trace of a matrix.



Chapter 2. Basic Concepts and System Model 40

2.5.2.2 Channel Hardening

The advantages of spatial multiplexing MIMO systems with large number of

antennas are the increase in the spectral efficiency and diversity gain. Furthermore, the

large dimensionality results in other advantages that do not appear in spatial multiplexing

MIMO systems with low number of antennas as shown below.

Once the channel matrix H ∈ C
NR×NT given by (2.14) becomes larger, that

is both 𝑁T and 𝑁R increases with ratio Ñ = 𝑁T /𝑁R, the distribution of its eigenvalues

becomes less sensitive to the current distribution of its entries ℎi,j of the channel matrix H.

This is a result of the Marc̆enko-Pastur law, which is described in the following theorem

(TULINO; VERDú, 2004).

Theorem 1 Since the entries of the channel matrix H ∈ C
NR×NT are i.i.d. complex

Gaussian random variables with zero mean and unit variance, that is 𝒞𝒩 (0, 1), then the

distribution of the eigenvalues of HHH, which is a HPD matrix, converges, as 𝑁T , 𝑁R ⊃
∞ to the PDF 𝑓(Ú) given by:

𝑓(Ú) =

(︃
1 ⊗ 1

Ñ

⎜

+

Ó(Ú) +

√︁
(Ú ⊗ 𝑎)+(𝑏 ⊗ Ú)+

2ÞÑÚ
, (2.36)

where Ó(Ú) is the Dirac delta function, (𝑥)+
∆
= max(0, 𝑥), 𝑎

∆
= (1⊗√

Ñ)2 and 𝑏
∆
= (1+

√
Ñ)2

for 𝑎 ⊘ Ú ⊘ 𝑏 and 0 ⊘ Ñ ⊘ 1.

Fig. 2.4 shows the theoretical PDF of the eigenvalues of HHH given by (2.36)

and the equivalent simulated PDF for different Ñ. The simulated PDF has been obtained

by averaging over 105 MIMO channels. From this Ągure, notice that when Ñ decreases,

the range of the eigenvalues of HHH decreases too, which means that the eigenvalues

becomes deterministic as the number of receive antennas is larger than the number of

transmit antennas, once Ñ = 𝑁T /𝑁R. Note that for Ñ = 0, there is an impulse at Ú = 1.

This behavior is known in the literature as channel hardening (TULINO; VERDú, 2004).

Moreover, an interesting feature of the channel hardening is that as the dimen-

sionality of H increases, the off-diagonal entries of the matrix HHH become increasingly

smaller in comparison to the diagonal entries. In particular, two scenarios are distinguished

in literature (RUSEK et al., 2013; MARZETTA et al., 2016):

∙ Larger 𝑁R than 𝑁T , that is 𝑁R ⪰ 𝑁T , which is named as massive MIMO channel.

∙ Large 𝑁R and 𝑁T with 𝑁R = 𝑁T , which is named as symmetric MIMO channel.
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Figure 2.4 Ű PDF of the eigenvalues of HHH for different values of the ratio Ñ.

2.5.2.3 Massive MIMO Channel

Consider a spatial multiplexing MIMO system, where the number of receive

antennas is much larger than the number of transmit antennas, that is 𝑁R ⪰ 𝑁T . In this

case, the product HHH convergences asymptotically to 𝑁RINT
, once 𝑁R tends to inĄnity

for Ąxed 𝑁T , where each entry of the tall channel matrix H is an i.i.d. random variable

that follows a 𝒞𝒩 (0, 1) distribution, that is:

lim
NR⊃∞

(︁
HHH

)︁
= 𝑁RINT

. (2.37)

Under the condition (2.37), all eigenvalues of HHH become equal to one, i.e.,

Ú1 = Ú2 = ≤ ≤ ≤ = ÚNT
= 1. Thus, its condition number is equal to one and therefore the

matrix H becomes asymptotically orthogonal. More exactly, the column channel vectors

of H satisĄes (RUSEK et al., 2013; NGO et al., 2013):

hH
i hj =

∏︁
⨄︁
⋃︁

0, 𝑖, 𝑗 = 1, ≤ ≤ ≤ , 𝑁T , 𝑖 ̸= 𝑗

‖hk‖2 = 𝑁R, 𝑘 = 1, ≤ ≤ ≤ , 𝑁T

(2.38)

Note that the idealistic conditions given by (2.37) is based on the assumptions

that the number of receive antennas 𝑁R tends to inĄnite. However, since the employment

of an inĄnite number of receive antennas is impractical, it seems natural to know the

number of receive antennas required to the channel begins to exhibit this condition.

In practical spatial multiplexing massive MIMO systems, the number of receive

antennas 𝑁R is large. However, condition (2.37) shows the asymptotic results when 𝑁R
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goes to inĄnity. Thus, it does not give an account for how close the product HHH is from

the identity matrix 𝑁RINT
, when 𝑁R is Ąnite. The convergence of HHH to 𝑁RINT

can

be numerically evaluated by considering the condition number and the Frobenius norm

of the error matrix E = HHH ⊗ 𝑁RINT
metrics, given, respectively, by (2.30) and (2.35).

Both metrics are evaluated and averaged over 105 channel realizations.

Fig. 2.5 shows the condition number of HHH versus the number of receive

antennas 𝑁R, where 𝑁T is Ąxed at 16 and 64 transmit antennas. It is evident that for

both number of transmit antennas of 𝑁T , the condition number tends to one, that is

Ù
(︁
HHH

)︁
≡ 1, when 𝑁R is very large in the order of ten thousands receive antennas.

Furthermore, note that even for values of 𝑁R as large as 100 receive antennas, the condition

number for 𝑁T = 64 antennas is more than 12 times larger than the corresponding

condition number for 𝑁T = 16 antennas. Therefore, when the number of transmit antennas

increases, it is necessary to employ more receive antennas in order to satisfy the relation

𝑁R ⪰ 𝑁T , which is the principle of spatial multiplexing massive MIMO systems.
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Figure 2.5 Ű Condition number of HHH against the number of receive antennas 𝑁R with
the number of transmit antennas 𝑁T Ąxed, where 𝑁R ⪰ 𝑁T .

On the other hand, Fig. 2.6 shows the Frobenius norm of the error matrix E as

a function of the number of receive antennas 𝑁R, for 𝑁T =16 and 64 transmit antennas.

Matrix E represents the mean absolute error of HHH from the identity matrix, 𝑁RINT
.

From this Ągure, notice that this error tends quickly to zero as the number of receive

antennas increases, which demonstrate that the tall channel matrix H, for 𝑁R ⪰ 𝑁T ,

becomes very well conditioned and deterministic.
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Figure 2.6 Ű Frobenius norm of the error matrix E against the number of receive antennas
𝑁R with the number of transmit antennas 𝑁T Ąxed, where 𝑁R ⪰ 𝑁T .

Finally, for 𝑁R ⪰ 𝑁T and using that the eigenvalues of HHH follow the PDF

given by (2.36) and considering the analysis conducted in (EDELMAN, 1989, Proposi-

tion 5.1 and 6.1), the smallest and the largest eigenvalue of HHH can be approximated,

respectively, by:

Úmin

(︁
HHH

)︁
≡ 𝑁R

(︂
1 ⊗

√︁
Ñ
)︂2

, (2.39a)

Úmax

(︁
HHH

)︁
≡ 𝑁R

(︂
1 +

√︁
Ñ
)︂2

, (2.39b)

where Ñ = 𝑁T /𝑁R. Fig. 2.7 shows a comparison between the approximated and simulated

smallest and largest eigenvalues of HHH as a function of the ratio Ñ, where 𝑁T = 16

antennas. Note that the approximated smallest and largest eigenvalues of HHH are given,

respectively, by (2.39a) and (2.39b). Note that the approximated values of the smallest

and largest eigenvalues of HHH are quite close to the simulated results.

2.5.2.4 Symmetric MIMO Channel

In the case that of both 𝑁R and 𝑁T grow to inĄnity, that is 𝑁R, 𝑁T ⊃ ∞,

with 𝑁R = 𝑁T , the eigenvalues of HHH are not equal anymore as in the massive MIMO

scenario and therefore the eigenvalues range does not decrease any more. Thus, in general

the condition number is larger than 1, that is Ù(HHH) ⪰ 1, which implies that the

channel matrix H is highly non-orthogonal or ill-conditioned.
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Figure 2.7 Ű The largest and the smallest eigenvalue of the matrix HHH against the ratio
Ñ = 𝑁T /𝑁R, where 𝑁T = 16 antennas.

To corroborate the last affirmation, Fig. 2.8 shows the condition number of

HHH as a function of the number of receive and transmit antennas, where 𝑁R = 𝑁T .

This simulation result is averaged over 105 channel realizations. From this Ągure, notice

that as 𝑁T and 𝑁R increase, the condition number increases too. Therefore, channel matrix

H become even worse ill-conditioned as 𝑁R, 𝑁T ⊃ ∞. For example, for a channel matrix

H with 𝑁R = 𝑁T = 1000 antennas, its condition number, on average, is Ù(HHH) ≡ 3500,

therefore H is highly non-orthogonal.

On the other hand, since the dimensionality of the symmetric MIMO channel

matrix H increases with 𝑁R and 𝑁T , the off-diagonal entries of the product HHH becomes

increasingly weaker in comparison to the diagonal entries. This is illustrated in Fig. 2.9,

where the average diagonal dominance 𝐷 metric given by (2.25) for HHH is plotted as

a function of the number of receive and transmit antennas with 𝑁R = 𝑁T . From this

Ągure, notice that as 𝑁R and 𝑁T increase, HHH is more DD, even for a large number of

antennas, i.e., 𝑁R = 𝑁T > 100. the matrix HHH can be considered as SDD.

2.5.3 Spatial Multiplexing MIMO Detectors

A predominant aspect of spatial multiplexing MIMO systems is the effective-

ness of the detection algorithms (BAI; CHOI, 2014). In comparison to SISO detection in

fading channels, detection in spatial multiplexing MIMO systems is more complicated.
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Figure 2.8 Ű Condition number of HHH against the number of receive and transmit an-
tennas where 𝑁R = 𝑁T .
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Figure 2.9 Ű Diagonal dominance metric of HHH as a function of the number of receive
and transmit antennas with 𝑁R = 𝑁T .

This is because, besides the fading, the 𝑁R receive antennas need to combat against spa-

tial interference produced by simultaneous transmission from the 𝑁T transmit antennas.

Thus, efficient detection algorithms in the presence of fading and spatial interference are
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a demanding task for spatial multiplexing MIMO systems.

In this section, the most important detector algorithms for spatial multiplexing

MIMO systems are examined. For the detection process, it is assumed that the channel

state information (CSI) at the receiver side was previously estimated.

2.5.3.1 Optimum Detector

Considering the spatial multiplexing MIMO system model given by (2.13), the

main purpose of a detector is, from the given received signal vector y and from the MIMO

channel matrix H, to reveal the transmitted signal vector x. Supposing that the transmit

vector x is chosen uniformly from a symbol constellation with modulation order 𝑀 , the

detector that minimizes the probability of error 𝑃 (x ̸= x̂ ♣ y, H) is the optimum, which

is achieved by the maximum likelihood (ML) detector described below.

2.5.3.1.1 Maximum Likelihood Detector

Maximum likelihood (ML) detector achieves the optimum performance by

choosing the transmit signal vector x̂ML among all possible x̂ ∈ 𝑀NT transmit signal

vectors which is the nearest, in terms of square Euclidean distance, to the received signal

vector y for a given channel matrix H. Mathematically, this is established as (ANDREWS

et al., 2007):

x̂ML = arg min
x̂∈MNT

‖y ⊗ Hx̂‖2 . (2.40)

where ‖y ⊗ Hx̂‖2 denotes the ML metric.

Computing (2.40) through an exhaustive search requires exponential complex-

ity in 𝑁T , that is 𝑂(𝑀NT ). Even though ML detector attains the optimum performance

and a diversity order of 𝑁R (full diversity), its complexity is not feasible even for a mod-

erate number of transmit antennas (𝑁T > 5) and constellation with order 4, i.e., 4-QAM.

A more efficient ML implementation can be obtained using the sphere detector (SD)

(ANDREWS et al., 2007; BAI; CHOI, 2014).

2.5.3.1.2 Sphere Detector

The sphere detector (SD) is a variant algorithm of the ML detector with lower

complexity than the ML detector (MURUGAN et al., 2006; JALDEN; OTTERSTEN,

2005). The idea behind SD is to calculate the same ML metric given by (2.40) by only

transmit signal vectors x̂ that are located within a hyper-sphere of radius 𝑟 centered at

the received signal vector y, that is, all the vectors x̂ which satisfy the criterion:

‖y ⊗ Hx̂‖2 ⊘ 𝑟2. (2.41)
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Thus, SD avoids the complexity of an exhaustive search by only considering

the vectors x̂ that satisfy (2.41). Note that the radius 𝑟 of the hyper-sphere must be chosen

carefully. If 𝑟 is too small, there will be no vectors x̂ inside, and if 𝑟 is too big, there will be

little beneĄt over an exhaustive search (BARRY et al., 2003). By assuming that at least

one possible transmit vector x̂ satiĄes (2.41), it then follows that this nearest vector x̂ to

y in the smaller SD search set must also be the nearest one in the entire ML search set

𝑀NT . Although the SD has less complexity than the ML detector, its complexity is still

exponential but with a smaller exponent for low and medium SNR, that is 𝑂
(︁
𝑀ηNT

)︁
,

where 0 < Ö < 1 (HASSIBI; VIKALO, 2005), making it also impractical for large 𝑁T .

On the other hand, knowing ML or SD solution is desired since it serves as

a benchmark to assess how various detector algorithms work relative to the optimum

performance. When 𝑁T is large, that is from tens of transmit antennas, computing ML

or SD solution becomes infeasible due to the exponential complexity. However, the opti-

mum performance can also be achieved by the hypothetical Genie-Aided (GA) detector

(BARRY et al., 2003) described below.

2.5.3.1.3 Hypothetical Genie-Aided Detector

From the spatial multiplexing MIMO system model given by (2.13) considers

the product:

r = HHy

= HH(Hx + n)

= Gx + w, (2.42)

where G = HHH is a Gram matrix that can be interpreted as a matrix of cross-

correlations, once its 𝑔i,j entry is equal to the correlation between 𝑖-th and 𝑗-th column

of the channel matrix H, that is 𝑔i,j = hH
i hj. Let Gd = diag[‖h1‖2 , ≤ ≤ ≤ , ‖hNT

‖2] denotes

the diagonal matrix of G, then, (2.42) can be rewritten as:

r = Gdx + (G ⊗ Gd)x + w, (2.43)

where Gdx and (G ⊗ Gd)x represents the desired and the spatial interference terms,

respectively. The basic idea behind the genie-aided (GA) detector is that somehow the

spatial interference term (G⊗Gd)x is known. Thus, since (G⊗Gd)x is deterministic and

known at the receiver side, the best one can do is to subtract it from (2.43), obtaining:

z = r ⊗ (G ⊗ Gd)x

= Gdx + w. (2.44)



Chapter 2. Basic Concepts and System Model 48

Once the spatial interference has been eliminated, each entry of the vector z

given by (2.44) can be quantized with respect to the employed symbol constellation with

order 𝑀 , that is:

x̂GA = 𝑄 ¶z♢ , (2.45)

where 𝑄 ¶≤♢ and x̂GA represent the quantization process and the GA detected vector of

the transmitted signal vector x, respectively.

The GA presents a BER bound that is lower of any practical detector and is

commonly named as the Şperfect-cancellationŤ bound or Şsingle-userŤ bound (KRAMER,

2001; BARRY et al., 2003; XIANG et al., 2016).

2.5.3.2 Linear Detectors

From a complexity viewpoint, a low complexity option for spatial multiplexing

MIMO are linear detectors (LDs) that are sub-optimum detectors. The LDs attempt

to eliminate the spatial interference between the 𝑁T transmitted signals through linear

operations performed at the receiver side (MINANGO, 2014).

The idea behind LDs is that the detected transmitted signal vector of x, de-

noted as x̂LD, is achieved by multiplying the received signal vector y given by (2.13) by

the equalization matrix A, followed by a component-wise quantization over the employed

symbol constellation in the following way:

x̂LD = 𝑄 ¶Ay♢ . (2.46)

Althogh LDs possess the advantage of low complexity, their performance is bad

if the channel matrix H is highly non-orthogonal or ill-conditioned, that is LDs do not

achieve the full diversity of the optimum detector. However, when the channel matrix H

is orthogonal, these detectors are able to achieve the optimum performance, as is veriĄed

in the following chapters. The most common LD algorithms are next.

2.5.3.2.1 Matched-Filter Detector

The matched-Ąlter (MF) detector is the simplest of the LDs, which essentially

ignores the spatial interference. Thus, MF detector treats spatial interference produced

by the 𝑁T transmit antennas as pure noise by making A = HH . Therefore, from (2.13),

the MF detection of the transmitted signal vector x is given by:

x̂MF = 𝑄
{︁
HHy

}︁
. (2.47)

Note that computing (2.47) requires a complexity of order 𝑁T 𝑁R, that is

𝑂(𝑁T 𝑁R), which is quite attractive. However, MF detector only works properly when
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𝑁R ⪰ 𝑁T , that is in massive MIMO channels. On the other hand, MF performance

degrades severely when 𝑁T increases, due to high levels of spatial interference.

2.5.3.2.2 Zero-Forcing Detector

The principal aim of zero-forcing (ZF) detector is to eliminate spatial inter-

ference completely, regardless of noise enhancement. Thus, the ZF equalization matrix

that eliminates the spatial interference between the transmit antennas 𝑁T is given by

(MINANGO, 2014):

A = H† = (HHH)⊗1HH , (2.48)

where (≤)† denotes the Moore-Penrose pseudoinverse of the channel matrix H (GOLUB;

LOAN, 1996). In order for the pseudoinverse to exist, the number of transmit antennas

𝑁T must be less than or equal to the number of receive antennas 𝑁R, that is 𝑁T ⊘ 𝑁R.

On the other hand, if 𝑁T is larger than 𝑁R, HHH is singular and its inverse does not exit

(GOLUB; LOAN, 1996). Thus, from (2.13), the ZF detection of the transmitted signal

vector x is given by:

x̂ZF = 𝑄
{︁
H†y

}︁
. (2.49)

The complexity of ZF detector is in computing H†, which has cubic complexity

on the number of transmit antennas, that is 𝑂(𝑐𝑁3
T ), where 𝑐 is a multiplicative factor

that depends on the procedure used to obtain H†.

On the other hand, in terms of performance, ZF detector achieves, on average,

a diversity order of 𝑁R ⊗𝑁T +1 for highly non-orthogonal channel matrices (MINANGO,

2014), which is still 𝑁T ⊗ 1 less than the diversity order of the optimum detector.

2.5.3.2.3 Minimum Mean-Square Error Detector

An alternative to the ZF detector is the minimum mean-square error (MMSE)

detector, which attempts to strike a balance between noise enhancement and spatial inter-

ference suppression in the receiver. Therefore, MMSE detector aims to Ąnd the equaliza-

tion matrix that minimizes the mean-square error (MSE) between the transmitted signal

vector x and the transformed received signal vector Ãy, which is given by the solution of

the following minimization problem (ANDREWS et al., 2007):

min
Ã

E¶‖x ⊗ Ãy‖2♢. (2.50)

The solution of (2.50) is given by:

A = (HHH + à2INT
)⊗1HH , (2.51)
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where à2 = 𝑁T /Ò and Ò is the overall SNR given by (2.16). For high SNR, à2 ⊃ 0,

then, (2.50) becomes the ZF equalization matrix given by (2.48). Finally, from (2.13) and

(2.50), the MMSE detection of the transmitted signal vector x is given by:

x̂MMSE = 𝑄
{︁
(HHH + à2INT

)⊗1HHy
}︁

. (2.52)

Like ZF detector, because of the matrix inversion involved in (2.50), the com-

plexity of the MMSE detector is cubic with the number of transmit antennas. Furthermore,

for highly non-orthogonal channel matrix MMSE does not improve the diversity order,

which is still 𝑁R ⊗ 𝑁T + 1 (TSE; VISWANATH, 2005; MINANGO, 2014)

2.5.3.3 Non-linear Lattice Reduction Detector

The non-linear lattice reduction (LR) detector has the potential to achieve the

full diversity of the optimum detector by reducing the condition number of the channel

matrix H, thus allowing to use LDs and consequently a reduced computational complexity

(BAI; CHOI, 2014; WUBBEN et al., 2011).

The basic idea behind LR detector is to turn the channel matrix H in near-

orthogonal as possible. For this purpose, the system model given by (2.13) is transformed

into an equivalent system model using the LR technique. The equivalent system model

is:

y = H̃s + n, (2.53)

where H̃ = HT and s = T⊗1x are the near-orthogonal channel matrix and the trans-

formed transmitted signal vector, respectively, where T is an unimodular matrix which

entries belong to the set of complex integers. This can be obtained by appling LR

techniques as: Minkowski (AFFLERBACH; GROTHE, 1985), HermiteŰKorkin-Zolotarev

(HKZ) (ZHANG et al., 2012), Lenstra-Lenstra-Lovasz (LLL) (YANG; KIM, 2013; WEN

et al., 2014) and Seysen (SEETHALER et al., 2007), which have polynomial average com-

plexity. In fact, the most used technique in the literature is the LLL (WUBBEN et al.,

2011), mainly due to its polynomial complexity 𝑂(𝑁4
T ).

Once the equivalent system given by (2.53) has been obtained, ZF or MMSE

detectors can be employed in order to perform the quantization on s instead of x. For LR

followed by ZF (LR-ZF), the output signal vector is written as:

ŝLR⊗ZF = H̃†y = s + H̃†n, (2.54)

where the multiplication by H̃† usually causes less noise ampliĄcation due to near-orthogonal

columns of the equivalent channel matrix H̃. Finally, from (2.54) the detection of the

transmitted signal vector x is obtained by applying the following transformation:

x̂LR⊗ZF = TŝLR⊗ZF. (2.55)
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Note that a similar procedure can be used for LR followed by MMSE (LR-

MMSE). It can be shown that LR-ZF detector has the potential to achieve full diversity

at the expense of a SNR gap in comparison to the optimum performance. This is due to

the LR technique can reduce the condition number of the channel matrix but never to

the unity. That is, the LR technique does not obtain a true orthogonal channel matrix

(WUBBEN et al., 2011; YANG; KIM, 2013). On the other hand, the LR-ZF detector

has a computational complexity of 𝑂(𝑁4
T log10 𝑁T ) (YANG; KIM, 2013), which can be

infeasible for large spatial multiplexing MIMO systems.

2.5.4 Detection of Large-Scale Spatial Multiplexing MIMO Systems

From the antennas deployment point of view, it can be distinguished two

conĄgurations of large-scale spatial multiplexing systems. Fig. 2.10 shows the Ąrst conĄg-

uration which essentially deals with the large-scale MIMO detection problem encountered

on an underloaded uplink. This conĄguration is known in the literature as spatial mul-

tiplexing massive MIMO system (RUSEK et al., 2013). In these systems only the base

station (BS) receiver is equipped with a large number of antennas, while the total number

of transmit antennas is signiĄcantly smaller (one antenna per mobile station). Hence, the

antenna conĄguration of spatial multiplexing massive MIMO systems can be characterized

as:

𝑁R ⪰ 𝑁T . (2.56)

In spatial multiplexing massive MIMO systems, since the number of receive

antennas is signiĄcantly higher than the total number of transmit antennas, a high receive

diversity order is obtained. On the other hand, in the extreme case, that is when 𝑁R ⊃ ∞,

the receive diversity gain obtained is so high, that the effects of both multi-antenna spatial

interference and noise disappears. In addition, the channel vectors associated with distinct

transmit antennas become asymptotically orthogonal, as shown in (2.37). Furthermore,

another advantage of spatial multiplexing massive MIMO systems is that very tall, with

large 𝑁R, channel matrices H are very well conditioned, as it was veriĄed in Fig. 2.5.

Thus, in spatial multiplexing massive MIMO systems, even the simplest MF detector is

capable of achieving a near-optimum performance, as is shown in the next chapter.

In the second conĄguration of large-scale MIMO systems, a large number of

antennas are deployed at receiver, and also at the transmitter (YANG; HANZO, 2015) as

is shown in Fig. 2.11. This conĄguration is characterized by:

𝑁R = 𝑁T , (2.57)

Thus, this second conĄguration is known in the literature as symmetric spatial multiplex-

ing MIMO systems.
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Figure 2.10 Ű Spatial multiplexing massive MIMO systems with 𝑁R ⪰ 𝑁T , multi-user
application.
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Figure 2.11 Ű Symmetric spatial multiplexing massive MIMO systems with 𝑁R = 𝑁T ,
poit-to-point application.

For symmetric spatial multiplexing MIMO systems, it has been shown in Fig.

2.8 that as the symmetric channel matrix H becomes large, in terms of both 𝑁R and 𝑁T , its

condition number becomes large too. Thus, H becomes an ill-conditioned matrix. On the

other hand, as the size of H increases, the diagonal entries of HHH become increasingly

larger in magnitude than the off-diagonal entries (see Fig. 2.9). This behavior is associated

with the channel-hardening phenomenon, which is considered in Chapter 7.
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2.6 Chapter Conclusions

In this chapter, the basic concepts and spatial multiplexing MIMO system

model used throughout the thesis were presented. BrieĆy, the concepts of channel model,

diversity and digital modulation were covered.

Furthermore, spatial multiplexing, which is a multiple transmit/receive an-

tenna technique (MIMO), transmits independent symbols by the transmit antennas at

the same bandwidth in order to increase the overall bit rate and consequently the spec-

tral efficiency of wireless communication systems. In addition, the background theory

of MIMO systems were presented, where two scenarios were considered: massive and

symmetric MIMO systems. Finally, optimum, linear and non-linear detectors for spatial

multiplexing MIMO detection were reviewed.
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3 Performance Difference Between ZF and

ML Detector in Massive MIMO Systems

3.1 Introduction

In chapter 2, the beneĄts of increasing the number of antennas from a spectral

efficiency point of view were discussed for a point-to-point spatial multiplexing MIMO

system as shown in Fig. 2.3. However, in recent years the focus has deviated to multi-user

spatial multiplexing MIMO systems where 𝑁T single-antenna users transmit information

simultaneously to a BS with 𝑁R antennas at the same bandwidth achieving multiplexing

gain and greater chances of uncorrelated fading. This leads to channel matrices with higher

rank, which is much more desirable. Another important advantage of multi-user spatial

multiplexing MIMO systems is tha 𝑁T users require a cheap single-antenna transceivers,

while the most expensive equipment is located at the BS. Based on these advantages,

multi-user spatial multiplexing MIMO systems have been progressively used as a part

of wireless communication standards, such as LTE-A (LIM et al., 2013; NAGEL et al.,

2016), 802.11 (Wi-Fi) (BEJARANO et al., 2013) and 802.16 (Wi-MAX) (LI et al., 2010).

In 5G cellular networks, higher data rates and user densities are demanded

(AGIWAL et al., 2016). But, BS typically employs a small number of antennas in the de-

ployed multi-user spatial multiplexing MIMO systems, i.e., at most 8 antennas for LTE-A

(LIM et al., 2013), which limits the data rates and therefore the spectral efficiency. Re-

cently, several works (RUSEK et al., 2013; NGO et al., 2013; NARASIMHAN et al., 2014;

MARZETTA et al., 2016) have considered a multi-user spatial multiplexing MIMO sys-

tems with tens of users to simultaneously transmit information to a very large number of

antennas at BS in order to achieve high spatial multiplexing gains and energy efficiency

than conventional multi-user spatial multiplexing MIMO systems. The jargon used in

the literature when tens of users transmit information to a large number of BS anten-

nas is known as spatial multiplexing massive MIMO systems(MARZETTA et al., 2016),

which is considered as a promising technology for 5G cellular network (VANNITHAMBY;

TALWAR, 2017).

On the other hand, an additional advantage of using large number of receive

antennas at the BS is that linear detectors (LDs), such as ZF, are able to achieve a

near-optimum performance due to property of asymptotically orthogonal channel matrix,

that is due to the massive MIMO channel hardening phenomenon described earlier in the

sub-section 2.5.2.3. However, how far away is LDs from the optimum ML performance in
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spatial multiplexing massive MIMO systems? In this chapter, Ąrstly it is veriĄed through

Monte Carlo simulation that LDs perform near to the optimum detector. Next, closed-form

BER expressions for ZF and ML detectors employing 𝑀 -QAM modulation are derived.

Then, these BER expressions are subsequently used to evaluate the performance difference

between both detectors, which is a function of the number of antennas at the BS and the

number of users, but it is not a function of the modulation order. Note that this chapter

focuses on the BER as a performance measure in contrast to the ergodic capacity-approach

commonly used in the literature (MARZETTA et al., 2016). Finally, the derived BER

expressions together with the performance difference are validated by means of numerical

results. The remainder of this chapter is organized as follows. Section 3.2 reviews the

near-optimality of LDs for spatial multiplexing massive MIMO systems. The BER of ML

and ZF together with the performance difference expression between ZF and ML detector

are obtained in Section 3.3. Numerical results are presented in Section 3.4. Finally, the

conclusions are drawn in Section 3.5.

3.2 On the Near-Optimality of Linear Detectors

Consider the uplink of a spatial multiplexing massive MIMO system as shown

in Fig. 3.1, which employs 𝑁R antennas at the BS to receive the 𝑁T × 1 signal vector x

transmitted by the 𝑁T single-antenna users simultaneously and at the same bandwidth,

where 𝑁R ⪰ 𝑁T , i.e., 𝑁R = 128 and 𝑁T = 16 was considered in (MINANGO; ALMEIDA,

2017c). Thus, the corresponding 𝑁R ×1 received signal vector y at the BS antennas can be

expressed by (2.13). Note that the elements of x are symbols of a 𝑀 -QAM constellation

of order 𝑀 .

The ML detector algorithm given by (2.40), achieves the optimum perfor-

mance. But, its complexity increases exponentially with the number of users, that is

𝑂(𝑀NT ), making it impractical. Fortunately, since 𝑁R ⪰ 𝑁T , LDs are able to achieve

the near-optimum performance due to the property of asymptotically orthogonal channel

matrix, as shown in the following.

LDs multiplies the received signal vector y given by (2.13) by the equalization

matrix A, that is

r = Ay

= AHx + An, (3.1)

where r ∈ C
NT ×1 is the vector containing information about the 𝑁T transmit symbols

and A for the three conventional detectors MF, ZF and MMSE, described in sub-section
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which indeed represents the symbol transmitted by the 𝑘-th user. However, it is evident

that the condition (3.6) is rather unrealistic, once 𝑁R is large but Ąnite. Nevertheless (3.6)

provides a useful insight of the advantages of increasing the number of antennas at BS.

Since 𝑁R is large but Ąnite, ZF detector is widely considered in spatial multi-

plexing massive MIMO systems, as it can eliminate the multi-user interference, regardless

of noise enhancement (MINANGO, 2014). On the other hand, MMSE detector achieves

an optimal balance between multi-user interference suppression and noise enhancement.

Thus, from the three usual LDs, MMSE is expected to be the best. Further, from (3.2)

note that the Ąltering matrix A for both ZF and MMSE detector involves the matrix

inverse computation, which yields a non-negligible complexity when a very large number

of users are served. This issue will be addressed in the following two chapters.

In the following, numerical results obtained via Monte Carlo simulations are

presented in order to demonstrate the near-optimum performance of LDs in spatial multi-

plexing massive MIMO systems. In the simulations, an uncorrelated Ćat Rayleigh fading

channel matrix is considered. Moreover, during each channel use, all 𝑁T users transmit si-

multaneously 64-QAM symbols to the BS antennas. The 64-QAM modulation is employed

due to its high spectral efficiency of 6 b/s/Hz.

Fig. 3.2 shows the BER simulation results as a function of SNR for spatial

multiplexing massive MIMO systems with 𝑁T = 16 single-antenna users and a BS with

𝑁R = 64, 128, 256 and 512 antennas. The performances of MF, ZF and MMSE detector

are compared to the optimum ML detector. Note that the optimum ML performance is

achieved by the hypothetical GA detector described earlier in sub-section 2.5.3.1.

From the sub-Ągures of Fig. 3.2, the performance of LDs are shown versus

Òb for different number of BS antennas. Notice that, the performance penalty of MF

detector in comparison to ML detector is reduced signiĄcantly by increasing 𝑁R. However,

MF performance is still far away from the optimum performance in all considered cases.

On the other hand, both ZF and MMSE detector achieves a close performance to ML

detector, once 𝑁R ⪰ 𝑁T . Thus, the performance penalty of both ZF and MMSE detector

in comparison to ML detector tends to vanish as 𝑁R increases, which veriĄes the near-

optimum performance of ZF and MMSE detectors in spatial multiplexing massive MIMO

systems. In summary, MF, ZF and MMSE detectors approach the ML performance as

𝑁R increases, however, both ZF and MMSE performance penalty to ML performance

diminishes faster in comparison to the MF performance penalty. Therefore, ZF and MMSE

detector for spatial multiplexing massive MIMO systems are considered.

Furthermore, despite that MMSE detector is expected to achieve a better

performance than ZF detector, almost from sub-Ągures of Fig. 3.2, notice that both ZF and
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Figure 3.2 Ű BER as a funtion of Òb for spatial multiplexing massive MIMO systems with
𝑁T = 16 users and (a) 𝑁R = 64, (b) 𝑁R = 128, (c) 𝑁R = 256 and (d)
𝑁R = 512 BS antennas.

MMSE detector achieves the same performance for spatial multiplexing massive MIMO

systems. Also, both ZF and MMSE detector yields the same complexity 𝑂(𝑁3
T ) and

diversity order of 𝑁R ⊗ 𝑁T + 1 ≡ 𝑁R, for 𝑁R ⪰ 𝑁T . For these reasons, in this chapter

only ZF detector is considered in order to establish the performance difference between

near-optimum and optimum detector in spatial multiplexing massive MIMO systems.

3.3 Performance Difference

In this section, closed-form BER expressions based on pairwise error proba-

bility (PEP) for ML and ZF detector in spatial multiplexing massive MIMO systems are

derived. Then, these BER expressions are used to determine the performance difference

between both detectors.
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3.3.1 ML Performance Analysis

The vector x is transmitted and the ML detector makes an erroneous detection

x̂ML of x based on the received signal vector y given by (2.13). Then, the PEP of the ML

detector, Pr(x ⊃ x̂ML), for a given channel matrix H is deĄned as the probability that y

is closer to Hx̂ML than Hx̂ once x̂ was transmitted. Mathematically, this is established

as (BARRY et al., 2003):

Pr(x ⊃ x̂ML) = Pr(‖y ⊗ Hx̂ML‖2 ⊘ ‖y ⊗ Hx‖2)

= Pr(‖H(x ⊗ x̂ML) + n‖2 ⊘ ‖n‖2)

= Pr(‖HdML‖2 + 2ℜ¶nHHdML♢ + ‖n‖2 ⊘ ‖n‖2)

= Pr(‖HdML‖2 ⊘ ⊗2ℜ¶nHHdML♢), (3.7)

where dML = x ⊗ x̂ML denotes the ML error vector and ℜ¶≤♢ the real-part operation.

Since n is a zero-mean circular symmetric complex Gaussian (CSCG) random

vector with E¶nnH♢ = à2
nINR

, then the product nHHd is also a CSCG random vector,

that has the following properties:

E¶nHHdML♢ = 0, (3.8a)

E¶nHHdMLdH
MLHHn♢ = E¶dH

MLHHnnHHdML♢
= dH

MLHH
E¶nnH♢HdML

= à2
ndH

MLHHHdML

= à2
n‖HdML‖2. (3.8b)

Let Ψ = ℜ¶nHHdML♢. According to the properties given by (3.8), it can be

show that Ψ ≍ 𝒩 (0, σ2
n

2
‖HdML‖2). Then, from (3.7) the PEP of the ML detector can be

obtained as (BARRY et al., 2003):

Pr(x ⊃ x̂ML) = Pr(‖HdML‖2 ⊘ ⊗2Ψ)

= 𝑄

∏︀
∐︁

⎯⎸⎸⎷‖HdML‖2

2à2
n

∫︀
⎠ , (3.9)

where

𝑄 (𝑥) =
1√
2Þ

∫︁ ∞

x
𝑒⊗y2/2𝑑𝑦 (3.10)

is the 𝑄-function (PAPOULIS; PILLAI, 2002).

Considering that the ML detector makes a single error detection for the 𝑖-th

user, which indeed represents the most probable error detection (BIGLIERI et al., 2007),
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the PEP given by (3.9) can be written as:

Pr(x ⊃ x̂ML) = 𝑄

∏︀
∐︁

⎯⎸⎸⎷‖hi‖2d2
min

2à2
n

∫︀
⎠ , (3.11)

where hi is the 𝑖-th column vector of H and dmin denotes the minimum distance of the

constellation belonging to the 𝑖-th user.

Since the entries of H are i.i.d. random variables with distribution 𝒞𝒩 (0, 1)

and assuming that 𝑁R ⊃ ∞, it can be shown that (NGO et al., 2013):

lim
NR⊃∞

1

𝑁R

‖hi‖2 = 1. (3.12)

Finally, replacing (3.12) into (3.11), the PEP of the ML detector for spatial

multiplexing massive MIMO systems is given by:

Pr(x ⊃ x̂ML) = 𝑄

∏︀
∐︁

⎯⎸⎸⎷𝑁Rd2
min

2à2
n

∫︀
⎠ . (3.13)

For 𝑀 -QAM constellation, dmin and à2
n are given, respectively, by (ALMEIDA,

2014):

d2
min =

6𝐸b

(𝑀 ⊗ 1) 𝑇b

, (3.14)

and

à2
n =

𝐸b

Òb𝑇b log2 𝑀
, (3.15)

where 𝐸b and 1/𝑇b represent the energy per bit and the bit rate, respectively, Òb = 𝐸b/𝑁0

is the SNR and 𝑁0 is the noise unilateral power spectral density. Substituting (3.14) and

(3.15) into (3.13), the PEP of the optimum ML detector for spatial multiplexing massive

MIMO systems employing 𝑀 -QAM is given by:

Pr (x ⊃ x̂ML) = 𝑄

∏︀
∐︁
√︃

3𝑁RÒb,ML log2 𝑀

𝑀 ⊗ 1

∫︀
⎠ (3.16)

3.3.2 ZF Performance Analysis

Employing ZF detector to the received signal vector y given by (2.13), the ZF

equalized received vector is given by:

H†y = x + H†n, (3.17)

which shows that the multi-user interference is completely eliminated from H†y. The

metric used with ZF detector is then ‖H†y ⊗ x‖2.
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Assuming again that the vector x is transmitted, while x̂ZF is erroneously

detected, from (2.13) and (3.17), the PEP for the ZF detector is given by:

Pr(x ⊃ x̂ZF) = Pr(‖H†y ⊗ x̂ZF‖2 ⊘ ‖H†y ⊗ x‖2)

= Pr(‖x + H†n ⊗ x̂ZF‖2 ⊘ ‖H†n‖2)

= Pr(‖dZF + H†n‖2 ⊘ ‖H†n‖2)

= Pr(‖dZF‖2 + 2ℜ¶nH(H†)HdZF♢ + ‖H†n‖2 ⊘ ‖H†n‖2)

= Pr(‖dZF‖2 ⊘ ⊗2ℜ¶nH(H†)HdZF♢), (3.18)

where dZF = x ⊗ x̂ZF is the ZF error vector.

Since n is a zero-mean CSCG random vector, the following properties can be

written:

E¶nH(H†)HdZF♢ = 0, (3.19a)

E¶nH(H†)HdZFdH
ZFH†n♢ = E

{︁
dH

ZFH†nnH(H†)HdZF

}︁

= dH
ZFH†

E

{︁
nnH

}︁
(H†)HdZF

= à2
ndH

ZF(HHH)⊗1dZF

= à2
nTr[(HHH)⊗1dZFdH

ZF], (3.19b)

where the following relation is used (GOLUB; LOAN, 1996):

H†(H†)H = (HHH)⊗1. (3.20)

Thus, from (3.18) and based on the properties given by (3.19), the PEP for

the ZF detector is given by:

Pr(x ⊃ x̂ZF) = 𝑄

∏︀
∐︁

⎯⎸⎸⎷Tr[(HHH)⊗1dZFdH
ZF]

2à2
n

∫︀
⎠ . (3.21)

In spatial multiplexing massive MIMO systems, when both the number of BS

antennas 𝑁R and the number of users 𝑁T are large, but with a Ąxed ratio Ð = 𝑁R/𝑁T ,

the matrices (HHH)⊗1 and dZFdH
ZF are asymptotically independent (TULINO; VERDú,

2004; RUSEK et al., 2013), and hence the following properties can be written:

E

{︁
Tr

[︁
(HHH)⊗1ddH

]︁}︁
= 𝑁TE

{︁
Tr

[︁
(HHH)⊗1

]︁}︁
E

{︁
Tr

[︁
ddH

]︁}︁
, (3.22a)

E

{︁
Tr

[︁
(HHH)⊗1

]︁}︁
=

𝑁R ⊗ 𝑁T

𝑁T

. (3.22b)

Considering (3.22) into (3.21), then the PEP of the ZF detector for spatial

multiplexing massive MIMO systems is given by:

Pr(x ⊃ x̂ZF) = 𝑄

∏︀
∐︁

⎯⎸⎸⎷(𝑁R ⊗ 𝑁T ) ‖dZF‖2

2à2
n

∫︀
⎠ . (3.23)
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Finally, considering the most probable event in which ZF detector makes a

single error detection for the 𝑖-th user, then (3.23) can be expressed as:

Pr(x ⊃ x̂ZF) ♠ 𝑄

∏︀
∐︁

⎯⎸⎸⎷(𝑁R ⊗ 𝑁T )d2
min

2à2
n

∫︀
⎠ . (3.24)

On the other hand, considering (3.14) and (3.15) into (3.24), the PEP of the

ZF detector employing 𝑀 -QAM is given by:

Pr(x ⊃ x̂ZF) = 𝑄

∏︀
∐︁
√︃

3 (𝑁R ⊗ 𝑁T ) Òb,ZF log2 𝑀

𝑀 ⊗ 1

∫︀
⎠ (3.25)

3.3.3 Performance Gap

In order to obtain the performance gap, in terms of SNR, between detectors

ZF and ML for spatial multiplexing massive MIMO systems, the PEPs expressions given

by (3.16) and (3.25) are equaled, then:

Òb,ZF

Òb,ML

=
𝑁R

𝑁R ⊗ 𝑁T

=
Ð

Ð ⊗ 1
, where Ð = 𝑁R/𝑁T . (3.26)

Note that the performance gap or SNR penalty between detectors ZF and

ML for spatial multiplexing massive MIMO systems given by (3.26) depends only on the

relation between the number of BS antennas 𝑁R and the number of users 𝑁T .

3.4 Numerical Results

Fig. 3.3 shows the BER versus Òb for ML and ZF detectors. In the simulation,

different Ð = 𝑁R/𝑁T (Ð = 4, 8, 16) were considered for 64-QAM modulation. Note again

that the simulation performance of the optimum ML detector is achieved by the GA

detector.

From Fig. 3.3, note that as Ð increases, the performance gap between ML

and ZF detector decreases. Thus, for a BER = 10⊗6 with Ð = 4, Ð = 8 and Ð = 16,

the performance gap between both detectors is around 1.25 dB, 0.6 dB and 0.3 dB,

respectively. Therefore, the penalty between ML and ZF detector is a shift of the BER

curve, which varies according with the relation between the number of BS antennas 𝑁R

and the number of users 𝑁T . On the other hand, note that the BER expressions of ML and

ZF detector, given respectively by (3.16) and (3.25), Ąt perfectly the simulation results.

Table 3.1 shows the performance gap, in terms of Òb, obtained theoretically

in (3.26) and by simulation in Fig. 3.3. Notice that both theoretical and simulated per-

formance gap Ąt perfectly for different Ð. Thus, through the performance gap obtained
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Figure 3.3 Ű Performance gap comparison between ML and ZF detector as a function of
Òb for spatial multiplexing massive MIMO systems with different Ð = 𝑁R/𝑁T

employing 64-QAM.

Table 3.1 Ű Performance gap comparison.

Ð Performance gap simulation Performance gap theoretical
from Fig. 3.3 from (3.26)

4 1.25 dB 1.24 dB
8 0.60 dB 0.58 dB
16 0.30 dB 0.28 dB

theoretically it is possible to know the performance gap for the design of spatial multiplex-

ing massive MIMO systems employing ZF detector. Thus, for example, it is possible to

know a priori that a spatial multiplexing massive MIMO system with 𝑁R = 128 antennas

and performance difference of 2 dB, then from (3.26) the maximum number of users that

achieves this requirement is 𝑁T = 47. Fig. 3.4 shows the theoretical and numerical results

of an 𝑁R ×𝑁T = 128×47 spatial multiplexing massive MIMO system employing 64-QAM

modulation. It is evident that for a BER = 10⊗6, the performance difference between ZF

and ML detector is around 2 dB, which validates the requirement previously established

for the spatial multiplexing massive MIMO design.



Chapter 3. Performance Difference Between ZF and ML Detector in Massive MIMO Systems 64

-10 -5 0 5
10

-8

10
-6

10
-4

10
-2

10
0

Figure 3.4 Ű BER against Òb for 𝑁R × 𝑁T = 128 × 47 spatial multiplexing massive MIMO
system employing 64-QAM.

3.5 Chapter Conclusions

In this chapter, the advantages of increasing the number of antennas at the

BS have been identiĄed. In particular, it has been shown that under the assumption

that 𝑁R ⪰ 𝑁T linear detectors, such as ZF and MMSE, were shown to perform close

to optimum. Thus, spatial multiplexing massive MIMO systems offer the opportunity of

increasing the spectral efficiency by employing low complexity linear detectors.

Moreover, closed-form BER expressions for the optimum ML and the near-

optimum ZF detector for spatial multiplexing massive MIMO systems have been derived

and used to obtain the performance difference between both detectors. This performance

difference depends only on the ratio between the number of base station antennas 𝑁R and

the number of users 𝑁T . Numerical results Ąt perfectly to the BER theoretical equation

and to the performance difference equation. The expressions obtained in this chapter

are fundamental and tight to know the difference in performance between ML and ZF

detectors in the design of spatial multiplexing massive MIMO systems.
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4 Low-Complexity ZF Detector for Massive

MIMO Systems Based on Damped Jacobi

Algorithm

4.1 Introduction

As it was pointed out in Chapter 3, due to the large number of BS antennas,

ZF detector is able to achieve near-optimum performance. Unfortunately, this detector

involves complicated exact channel matrix inversion, especially when the dimension of the

spatial multiplexing massive MIMO system is large (NARASIMHAN et al., 2014).

Recently, several approximated ZF detector algorithms were proposed in order

to avoid channel matrix inversion (GAO et al., 2014; YIN et al., 2014a; DAI et al., 2015).

Richardson and conjugate gradient (CG) algorithms were proposed in (GAO et al., 2014)

and (YIN et al., 2014a), respectively, to achieve near-optimum performance, but both

requires large numbers of iterations to converge and CG involves also many divisions.

In order to reduce the numbers of iterations, the approach based on Gauss-Seidel (GS)

algorithm was presented, respectively, in (DAI et al., 2015) and (MINANGO; ALMEIDA,

2017a), where only a small number of iterations is needed to achieve the near-optimum

performance. However, the GS inner iterations make it not suitable for parallel imple-

mentation. On the other hand, for a large number of BS antennas, a ZF detector based

on the popular Jacobi (CJ) algorithm was proposed in (KONG; PARK, 2016), but its

convergence rate is low. Besides, the authors of (KONG; PARK, 2016) have adopted the

real-valued spatial multiplexing massive MIMO system model to propose a new initial

solution for the CJ algorithm in order to accelerate the convergence rate. However, it is

well known that the the real-valued spatial multiplexing massive MIMO system model

representation doubles its dimensionality and consequently the computational complexity.

Thus, in this chapter, a low-complexity ZF detector based on the Damped

Jacobi (DJ) algorithm is proposed in order to reduce the computational complexity of

ZF detector employing exact matrix inversion for spatial multiplexing massive MIMO

systems. In order to ensure the fast convergence rate of the DJ algorithm, a simple way

to determine the quasi-optimum damping parameter by exploiting the channel matrix

property of asymptotic orthogonality is developed. This quasi-optimum damping param-

eter depends only on the dimension of the spatial multiplexing massive MIMO system,

that is, the number of BS antennas and the number of users. Numerical results show



Chapter 4. Low-Complexity ZF Detector for Massive MIMO Systems Based on Damped Jacobi

Algorithm 66

that the proposed algorithm outperforms the CJ algorithm, and it can also achieve the

near-optimum performance with about one order of magnitude less in complexity than

the ZF detector employing exact matrix inversion.

The remainder of this chapter is organized as follows. Section 4.2 describes

brieĆy the system model together with the CJ algorithm. Section 4.3 details the proposed

algorithm. Numerical results are presented in Section 4.4. Finally, the conclusions are

drawn in Section 4.5.

4.2 System Model

In this chapter, the uplink of a spatial multiplexing massive MIMO system

equipped with 𝑁T single-antenna users and 𝑁R antennas at BS where 𝑁R ⪰ 𝑁T is

considered. The 𝑁T users map their own information bits to the symbols of a modulation

of order 𝑀 . The 𝑁T × 1 vector x, which contains the modulated symbols, is transmitted

over the 𝑁R × 𝑁T massive MIMO channel matrix H and the 𝑁R × 1 signal vector y

received at the BS antennas is given by (2.13).

Since 𝑁R ⪰ 𝑁T , the column channel vectors of H are asymptotically orthog-

onal, i.e., H is a near-orthogonal or well-conditioned channel matrix (TULINO; VERDú,

2004), and the ZF detector is able to achieve near-optimum performance.

4.2.1 ZF Detector

Appling a ZF detector, described in sub-section 2.5.3.2, to the received signal

vector y, the detected signal vector of x before the quantization process is given by:

x̂ZF = H†y =
(︁
HHH

)︁⊗1
HHy

= G⊗1ỹ, (4.1)

where

ỹ = HHy (4.2)

represents the matched-Ąlter output of y, and

G = HHH (4.3)

is the 𝑁T × 𝑁T Gram matrix, which is strictly diagonal dominant (SDD), that is satisfy

(2.24), and it is Hermitian positive deĄnite (HPD), that is satisĄes (2.26) and (2.27),

respectively.

From (4.1), note that ZF detector involves the exact matrix inversion G⊗1 with

large size which has complexity 𝑂 (𝑐𝑁3
T ), where 𝑐 is a multiplicative factor that depends
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on the algorithm used to obtain G⊗1. Thus, the computational complexity to obtain the

exact matrix inversion of G is high, since 𝑁T is usually large in spatial multiplexing

massive MIMO systems.

4.2.2 Conventional Jacobi Algorithm

Based on the property that the Gram matrix G is SDD, in (KONG; PARK,

2016) the conventional Jacobi (CJ) algorithm was employed to detect the transmitted

signal vector x in an iterative way without the need to compute G⊗1, as follows:

x̂CJ
t+1 = D⊗1

(︁
ỹ ⊗ Rx̂CJ

t

)︁

= D⊗1ỹ ⊗ D⊗1Rx̂CJ
t , 𝑡 = 0, 1, 2, . . . (4.4)

where D and R are matrices composed, respectively, by the diagonal and the off-diagonal

elements of G, that is G = D + R, and x̂CJ
t+1 is the solution of the 𝑡-th iteration. Note

that from (4.1), Gx̂ZF = ỹ. Thus, substituting that G = D + R, it can get to (4.4) easily.

4.2.2.0.1 Convergence Rate of CJ Algorithm

From (4.4), the iteration matrix of the CJ algorithm is deĄned by:

BCJ = ⊗D⊗1R

= ⊗D⊗1 (G ⊗ D)

= INT
⊗ D⊗1G. (4.5)

Thus, the necessary and sufficient condition for the convergence of (4.4) is that

the spectral radius of the iteration matrix, given by (4.5), should satisfy (OLSHEVSKY;

TYRTYSHNIKOV, 2010) that:

𝜌
(︁
BCJ

)︁
=

⧹︃⧹︃⧹︃Úmax

(︁
BCJ

)︁⧹︃⧹︃⧹︃ < 1. (4.6)

where Úmax

(︁
BCJ

)︁
is the greatest eigenvalue of BCJ.

On the other hand, since 𝑁R ⪰ 𝑁T , the smallest and largest eigenvalue of the

Gram matrix G can be approximated, respectively, by (see Theorem 1):

Úmin (G) ≡ 𝑁R

(︃
1 ⊗

√︃
𝑁T

𝑁R

⎜2

, (4.7a)

Úmax (G) ≡ 𝑁R

(︃
1 +

√︃
𝑁T

𝑁R

⎜2

(4.7b)

and also, due to the massive MIMO channel hardening phenomenon, it is possible to

approximate the diagonal matrix D by:

D = 𝑁RINT
. (4.8)
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Thus, from (4.5), considering (4.7b) and (4.8), the largest eigenvalues of the

iteration matrix BCJ is given by:

Úmax

(︁
BCJ

)︁
= Úmax (INT

) ⊗ Úmax

(︁
D⊗1G

)︁

= 1 ⊗ 1

𝑁R

Úmax (G)

≡ 1 ⊗
(︃

1 +

√︃
𝑁T

𝑁R

⎜2

. (4.9)

Finally, substituting (4.9) into (4.6), the spectral radius of the CJ iteration

matrix can be approximated by:

𝜌
(︁
BCJ

)︁
≡

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
1 ⊗

(︃
1 +

√︃
𝑁T

𝑁R

⎜2
⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
< 1, (4.10)

which satisfy its condition once NT

NR
⪯ 1.

4.3 Proposed Damped Jacobi Algorithm

Substituting R = G⊗D in (4.4) and the CJ iterative algorithm can be written

as:

x̂CJ
t+1 = x̂CJ

t ⊗ D⊗1rt, 𝑡 = 0, 1, 2, . . . (4.11)

where D⊗1rt is a correction factor and

rt = Gx̂CJ
t ⊗ ỹ (4.12)

denotes the residual vector at the 𝑡-th iteration. Then, a damped parameter æ ∈ R

is introduced in (4.11) in order to accelerate the convergence rate, i.e., to reduce the

number of iterations. This algorithm is now referred as damped Jacobi (DJ) algorithm.

Thus, from (4.11) the detection of x using the DJ iterative algorithm is deĄned as:

x̂DJ
t+1 = x̂DJ

t ⊗ æD⊗1rt, 𝑡 = 0, 1, 2, . . . (4.13)

From (4.13), it can be shown that:

x̂DJ
t+1 = x̂DJ

t ⊗ æD⊗1
(︁
Gx̂DJ

t ⊗ ỹ
)︁

= x̂DJ
t ⊗ æD⊗1

(︁
[D + R] x̂DJ

t ⊗ ỹ
)︁

= (1 ⊗ æ)x̂DJ
t + æD⊗1

(︁
ỹ ⊗ Rx̂DJ

t

)︁

= (1 ⊗ æ)x̂DJ
t + æ

(︁
D⊗1ỹ ⊗ D⊗1Rx̂DJ

t

)︁

= (1 ⊗ æ)x̂DJ
t + æx̂CJ

t+1, (4.14)
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where the new DJ solution x̂DJ
t+1 results from the weighted mean of the old DJ solution x̂DJ

t

and one step ahead of the CJ solution x̂CJ
t+1, given by (4.4). Therefore, the DJ algorithm

accelerates the convergence rate of the CJ algorithm. Note that if æ equals to one, then

x̂DJ
t+1 = x̂CJ

t+1, therefore the DJ algorithm can be considered as a generalization of the CJ

algorithm. Thus, an important issue of DJ algorithm is the choice of æ, which inĆuences

on the convergence rate (MINANGO; ALMEIDA, 2017c; MINANGO et al., 2017).

4.3.1 Convergence Rate of DJ Algorithm

From (4.13), the iteration matrix of DJ algorithm is given by:

BDJ = INT
⊗ æD⊗1G. (4.15)

Then, the convergence of the DJ algorithm is guaranteed if the spectral radius

of its iteration matrix BDJ given by (4.15) is less than 1, that is:

𝜌
(︁
BDJ

)︁
=

⧹︃⧹︃⧹︃Úmax

(︁
BDJ

)︁⧹︃⧹︃⧹︃ < 1. (4.16)

Again, since 𝑁R ⪰ 𝑁T , and considering (4.7b) and (4.8), the largest eigenvalue

of the iteration matrix BDJ given by (4.15) can be expressed as:

Úmax

(︁
BDJ

)︁
= Úmax (INT

) + æÚmax

(︁
D⊗1G

)︁

≡ 1 ⊗ æ

(︃
1 +

√︃
𝑁T

𝑁R

⎜2

. (4.17)

Replacing (4.17) into (4.16), the spectral radius of BDJ is given by:

𝜌
(︁
BDJ

)︁
≡

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
1 ⊗ æ

(︃
1 +

√︃
𝑁T

𝑁R

⎜2
⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
. (4.18)

4.3.1.1 Damped Parameter

From (4.18), the correct choice of the damped parameter æ plays an important

role in the convergence rate of the DJ algorithm for any initial solution x̂DJ
0 .

Theorem 2 For the convergence of the DJ algorithm and given any initial solution x̂DJ
0 ,

the damped parameter æ must satisfy that:

0 < æ <
2

Úmax(D⊗1G)
, (4.19)

where Úmax(D⊗1G) is the largest eigenvalue of the matrix D⊗1G.



Chapter 4. Low-Complexity ZF Detector for Massive MIMO Systems Based on Damped Jacobi

Algorithm 70

Proof 1 Consider the smallest and the largest eigenvalues of the matrix D⊗1G, denoted

as Úmin(D⊗1G) and Úmax(D⊗1G), respectively, which are real and positive (OLSHEVSKY;

TYRTYSHNIKOV, 2010). Then, from (4.15) the eigenvalues of BDJ = INT
⊗æD⊗1G are

in the range:

1 ⊗ æÚmin(D⊗1G) ⊘ Úi(B
DJ) ⊘ 1 ⊗ æÚmax(D⊗1G), (4.20)

where Úi(B
DJ) denotes the 𝑖-th eigenvalue of the iteration matrix BDJ.

From (4.16) and (4.20), the following conditions must be satisĄed for the con-

vergence of the DJ algorithm (MINANGO et al., 2017):

1 ⊗ æÚmin(D⊗1G) < 1, (4.21a)

1 ⊗ æÚmax(D⊗1G) > ⊗1. (4.21b)

The Ąrst condition (4.21a) implies that æ > 0, while the second (4.21b) requires

that æ < 2
λmax(D⊗1G)

. In other words, the DJ algorithm converges for any initial solution

x̂
(0)
DJ, since æ ∈ R satisfy:

0 < æ <
2

Úmax(D⊗1G)
, (4.22)

which completes the proof of Theorem 1.

From Theorem 1, the damped parameter æ can be chosen in the range given

by (4.19) for helping in the convergence of the DJ algorithm. However, it is desirable to

choose the optimum value of æ, that minimizes 𝜌
(︁
BDJ

)︁
. Thus, considering the conditions

given by (4.21), the spectral radius 𝜌
(︁
BDJ

)︁
given by (4.16) can be rewritten as:

𝜌
(︁
BDJ

)︁
= max

{︁⧹︃⧹︃⧹︃1 ⊗ æÚmin(D⊗1G)
⧹︃⧹︃⧹︃ ,

⧹︃⧹︃⧹︃1 ⊗ æÚmax(D⊗1G)
⧹︃⧹︃⧹︃
}︁

. (4.23)

Fig. 4.1 shows the spectral radius 𝜌
(︁
BDJ

)︁
as a function of æ for 0 < æ <

2
λmax(D⊗1G)

. From this Ągure, for low values of æ, the quantity ♣1 ⊗ æÚmin(D⊗1G)♣ dom-

inates, i.e., ♣1 ⊗ æÚmin(D⊗1G)♣ > ♣1 ⊗ æÚmax(D⊗1G)♣, whereas for high values of æ, the

quantity ♣1 ⊗ æÚmax(D⊗1G)♣ dominates, i.e., ♣1 ⊗ æÚmax(D⊗1G)♣ > ♣1 ⊗ æÚmin(D⊗1G)♣.
Thus, the optimum æ is reached at the point where the curve ♣1 ⊗ æÚmax(D⊗1G)♣ crosses

the curve ♣1 ⊗ æÚmin(D⊗1G)♣. This occurs, when:

⊗1 + æÚmax(D⊗1G) = 1 ⊗ æÚmin(D⊗1G). (4.24)

Solving (4.24), the optimum damped parameter is given by:

æopt =
2

Úmin(D⊗1G) + Úmax(D⊗1G)
. (4.25)
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Figure 4.1 Ű The spectral radius 𝜌
(︁
BDJ

)︁
as a function of the damped parameter æ.

Note clearly that to compute (4.25), it is necessary to know a priori Úmin(D⊗1G)

and Úmax(D⊗1G), which is hard to obtain in practice. Moreover, if the channel matrix H

changes rapidly in fast time-varying channels, G changes rapidly too, consequently æopt

given by (4.25) needs to be recalculated constantly. Thus, using (4.25) to determine the

optimum damping parameter is not the best way in practical spatial multiplexing massive

MIMO systems. However, by exploiting the channel property of asymptotic orthogonality

(TULINO; VERDú, 2004), a quasi-optimum damped parameter æ̂opt can be obtained in

a much simpler way.

Theorem 3 For spatial multiplexing massive MIMO systems, the quasi-optimum damped

parameter of the DJ algorithm can be obtained by:

æ̂opt =
𝑁R

𝑁R + 𝑁T

, (4.26)

which depends only on the number of BS antennas 𝑁R and the number of users 𝑁T .

Proof 2 Considering (4.7a), (4.7b) and (4.8), the smallest and the largest eigenvalues of

the matrix D⊗1G can be approximated, respectively, by:

Úmin

(︁
D⊗1G

)︁
=

1

𝑁R

Úmin (G) ≡
(︃

1 ⊗
√︃

𝑁T

𝑁R

⎜2

, (4.27a)

Úmax

(︁
D⊗1G

)︁
=

1

𝑁R

Úmax (G) ≡
(︃

1 +

√︃
𝑁T

𝑁R

⎜2

. (4.27b)



Chapter 4. Low-Complexity ZF Detector for Massive MIMO Systems Based on Damped Jacobi

Algorithm 72

Finally, replacing (4.27) into (4.25), the quasi-optimum damped parameter is

given by:

æ̂opt ≡ 𝑁R

𝑁R + 𝑁T

, (4.28)

which completes the proof of Theorem 2.

Theorem 2 indicates that the quasi-optimum damped parameter æ̂opt depends

only on the number of receive antennas 𝑁R at BS and the number of users 𝑁T , which

are deterministic and known. Thus, æ̂opt does not need to be recomputed when H and

consequently G vary. Furthermore, æ̂opt does not need to calculate Úmin(D⊗1G) and

Úmax(D⊗1G) given by (4.25), whereby æ̂opt is ideal for practical low-complexity spatial

multiplexing massive MIMO detectors based on DJ algorithm.

Fig. 4.2 shows the difference between the optimum damped parameter given

by (4.25) and the quasi-optimum damped parameter given by (4.28) versus the number

of BS antennas 𝑁R, while 𝑁T is Ąxed as 𝑁T = 16 users. It can be seen that æ̂opt is quite

close to æopt, especially when 𝑁R is large.
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Figure 4.2 Ű Comparison between the optimum, æopt, and the quasi-optimum damped
parameter, æ̂opt, as a function of the number of BS antennas 𝑁R for 𝑁T = 16
users.

Finally, substituting (4.28) into (4.18), the spectral radius of the DJ iteration
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matrix BDJ can be approximated by:

𝜌
(︁
BDJ

)︁
≡

⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
1 ⊗ 𝑁R

𝑁R + 𝑁T

(︃
1 +

√︃
𝑁T

𝑁R

⎜2
⧹︃⧹︃⧹︃⧹︃⧹︃⧹︃
< 1, (4.29)

which is satisĄed once 𝑁R ⪰ 𝑁T .

Fig. 4.3 shows both the theoretical and approximate spectral radius for both

CJ and DJ algorithm as a funtion of the number of BS antennas 𝑁R, where the number

of users is Ąxed, 𝑁T = 16. The theoretical spectral radius for CJ and DJ algorithm were

computed by using, respectively, (4.6) and (4.16) over 105 channel realizations, while the

approximate spectral radius for CJ and DJ algorithm are given, respectively, by (4.10)

and (4.29).
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Figure 4.3 Ű Spectral radius of CJ and DJ algorithm as a funtion of the number of BS
antennas 𝑁R for 𝑁T = 16 users.

From this Ągure, note that the gap between the theoretical and approximate

values of the spectral radius for both CJ and DJ algorithm is negligible, which means

that the approximate spectral radius is tight to the theoretical spectral radius of both

algorithms. Furthermore, notice that DJ algorithm enjoys an obviously faster convergence

rate than CJ algorithm, which is equivalent to a reduced number of iterations in order to

achieve near-optimum performance.

In general, practical spatial multiplexing massive MIMO systems consider that

BS can be equipped with 𝑁R = 64, 𝑁R = 128 or 𝑁R = 256 receive antennas, which

represents realistic scenarios (MINANGO; ALMEIDA, 2017c). Thus, considering Fig. 4.3
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and these three scenarios of BS antennas, notice that when 𝑁R is equal to 128 or 256

antennas, the spectral radius of both CJ and DJ algorithms is lesser than one consequently

both algorithms converge. However, for 𝑁R = 64 antennas the spectral radius of CJ

algorithm is higher than one, and thus CJ algorithm does not converge while DJ algorithm

is able to converge once its spectral radius is still lesser than one. This observation will

be more evident in the numerical results section.

4.3.2 Initial Solution

In order to start the iterative process of the DJ method, given by (4.13), as

the Gram matrix G is SDD, the initial solution can be written as:

x̂DJ
0 = æ̂optD

⊗1ỹ, (4.30)

where the computational complexity to invert the diagonal matrix D is low.

4.4 Numerical Results

In this section, numerical results of the BER against the SNR are provided

in order to show the efficiency of DJ algorithm in comparison to CJ algorithm (KONG;

PARK, 2016). The BER of ZF detector employing exact matrix inversion is also included

as a benchmark. Three typical spatial multiplexing massive MIMO systems are considered

with 𝑁R ×𝑁T = 64×16, 𝑁R ×𝑁T = 128×16 and 𝑁R ×𝑁T = 256×16 on an uncorrelated

Ćat Rayleigh fading channel and 64-QAM modulation.

Fig. 4.4 shows the BER of DJ and CJ algorithms for a 𝑁R ×𝑁T = 64×16 spa-

tial multiplexing massive MIMO system, where 𝑡 denotes the number of iterations. Notice

that the BER of DJ algorithm improves with the number of iterations. Thus, for 𝑡 = 14

iterations the performance difference between DJ algorithm and ZF detector employing

exact matrix inversion is within 0.1 dB, which results in an excellent performance with

reduced complexity. In contrast and despite the increasing number of iterations, CJ algo-

rithm does not converge, producing obvious BER Ćoor, which corroborate the simulation

results of the spectral radius presented in Fig. 4.3.

The BER comparisons between DJ and CJ algorithm for 𝑁R × 𝑁T = 128 × 16

and 𝑁R×𝑁T = 256×16 are shown, respectively, in Fig. 4.5 and Fig. 4.6. From these Ągures,

notice that the BER of both DJ and CJ algorithm improves with the number of iterations.

However, DJ algorithm outperforms CJ algorithm for equal number of iterations. Thus,

only 𝑡 = 8 and 𝑡 = 5 iterations are necessary to DJ algorithm achieves the ZF near-

optimum performance for 𝑁R × 𝑁T = 128 × 16 and 𝑁R × 𝑁T = 256 × 16, respectively.

Therefore, DJ algorithm outperforms notably CJ algorithm.
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Figure 4.4 Ű BER versus Òb of DJ and CJ algorithms for a 𝑁R × 𝑁T = 64 × 16 spatial
multiplexing massive MIMO system employing 64-QAM.
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Figure 4.5 Ű BER versus Òb of DJ and CJ algorithms for a 𝑁R × 𝑁T = 128 × 16 spatial
multiplexing massive MIMO system employing 64-QAM.
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Figure 4.6 Ű BER versus Òb of DJ and CJ algorithms for a 𝑁R × 𝑁T = 256 × 16 spatial
multiplexing massive MIMO system employing 64-QAM.

Comparing Fig. 4.4, Fig. 4.5 and Fig. 4.6, in summary notice that the BER

of CJ algorithm becomes worse with a decreasing number of BS antennas 𝑁R, to the

point where the algorithm does not converge, presenting a BER Ćoor. In contrast, DJ

algorithm is able to achieve the near-optimum performance as the number of iteration

increases for all spatial multiplexing massive MIMO systems considered. This indicates

that the convergence rate of DJ algorithm is more robust with respect to the number of

BS antennas. Furthermore, given the same number of iterations, a faster convergence rate

is reached by DJ algorithm in comparison to CJ algorithm as the number of BS antennas

𝑁R increases. Note that a faster convergence rate means a smaller number of iterations

required to achieve a certain accuracy and therefore less computational complexity.

4.4.1 Complexity Analysis

For the sake of analyzing the computational complexity of the proposed DJ

algorithm, the term ŞĆopŤ is used to describe multiply-add operations.

The total computational complexity is split into two parts. In the Ąrst part,

the initialization step computes x̂DJ
0 given by (4.30), which has 2𝑁T Ćops, including the

inverse of D and the matrix-vector multiplication D⊗1ỹ. The second part comes from

the 𝑡 iterations given by (4.13), which involves matrix-vector multiplication and addition.
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Thus, the number of operations for each iteration is 2𝑁2
T ⊗ 𝑁T . Finally, the total number

of Ćops is given by the sum of Ćops of the Ąrst and second part, given as:

𝐶DJ = 2𝑁T + 𝑡
(︁
2𝑁2

T ⊗ 𝑁T

)︁
. (4.31)

Fig. 4.7 shows the computational complexity as a function of the number of

users 𝑁T for a spatial multiplexing massive MIMO system employing DJ detector algo-

rithm with different number of iterations 𝑡. Note that the computational complexity is

given in term of the number of Ćops. Furthermore, ZF detector with exact matrix inver-

sion, which is obtained through singular value decomposition (SVD) (GOLUB; LOAN,

1996), is also included as benchmark. Remark that using SVD for obtaining a matrix

inversion could be considered ŞexactŤ due to its numerical stability. Thus, the number of

Ćops for computing ZF detector is given by (HIGHAM, 2008):

𝐶ZF = 11𝑁3
T + 2𝑁2

T . (4.32)
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Figure 4.7 Ű Complexity as a function of the number of users 𝑁T for a spatial multiplexing
massive MIMO system employing DJ detector algorithm.

From Fig. 4.7, notice that the complexity of ZF detector is drastically reduced

by employing the proposed DJ algorithm. Therefore, DJ algorithm can reduce the com-

plexity from 𝑂 (𝑁3
T ) to 𝑂 (𝑁2

T ).
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4.5 Chapter Conclusion

In this chapter, a low-complexity detector based on the Damped Jacobi (DJ)

algorithm was proposed in order to achieve the near-optimum performance of ZF detec-

tor that employs exact matrix inversion in spatial multiplexing massive MIMO systems.

Moreover, by exploiting the channel matrix property of asymptotic orthogonality, a simple

way to compute the quasi-optimum damped parameter of DJ algorithm was developed,

which depends only on the dimensions of the spatial multiplexing massive MIMO systems,

that is, on the number of received antennas at the base station and the number of users.

This parameter is essential to accelerate the convergence rate of DJ algorithm in com-

parison to the known Jacobi (CJ) algorithm. Finally, it was veriĄed through numerical

results that DJ outperforms CJ algorithm achieving the near-optimum performance of

ZF detector with a small number of iterations that reduces the complexity from 𝑂(𝑁3
T )

to 𝑂(𝑁2
T ).
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5 Low-Complexity ZF Detector Based on

Newton-Schultz Iterative Algorithm for

Massive MIMO Systems

5.1 Introduction

In spatial multiplexing massive MIMO systems, since the number of antennas

at the base station (BS) is much larger than the number of users, as was pointed out in

Chapter 3, ZF detector can achieve near-optimum performance due to the asymptotic or-

thogonal channel property (RUSEK et al., 2013). However, it faces exact matrix inversion

challenging problems, whose complexity grows with the cubic of the number of users.

Matrix inversion methods can be divided into two categories: direct and it-

erative. Direct methods basically compute the solution in a Ąnite number of operations.

Iterative methods, in turn, do not Ąnd an exact inversion solution in Ąnite time but they

converge to the inversion solution asymptotically for a prescribed tolerance (HIGHAM,

2008). Direct methods, such as Gaussian elimination, Cholesky decomposition and SVD

(GOLUB; LOAN, 1996; HIGHAM, 2008) may require a not acceptable time to compute

the matrix inversion when the size of the matrices is high, becoming unfeasible for prac-

tical spatial multiplexing massive MIMO systems. On the contrary, iterative methods

such as Neumann series (MINANGO; ALMEIDA, 2017b), Damped Jacobi (MINANGO

et al., 2017), Gauss-Seidel (MINANGO; ALMEIDA, 2017a) and Newton-Schultz (BAR-

RETT et al., 1994) are preferred in problems of medium/large matrices size, due to their

smaller storage requirements and computational time efficiency, becoming ideal in soft-

ware/hardware implementation of spatial multiplexing massive MIMO systems.

In order to reduce the complexity of matrix inversion, (MINANGO; ALMEIDA,

2017b) and (YIN et al., 2014b) have presented an approximate matrix inversion algo-

rithm based on the polynomial expansion of Neumann series. However, this approximate

approach suffers from signiĄcant performance loss when massive MIMO scales up (MI-

NANGO; ALMEIDA, 2017b). On the other hand, although Damped Jacobi (DJ) algo-

rithm for signal detection in spatial multiplexing massive MIMO systems described in

Chapter 4 achieves a near-optimum performance with low-complexity, however, it con-

verges linearly. Very recently, Newton-Schultz Iterative (NSI) algorithm has been em-

ployed to Ąnd the approximate matrix inversion for sphere decoding of MIMO systems

(WANG; LEIB, 2013) and for massive MIMO signal detection (TANG et al., 2016), respec-
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tively. Unfortunately, the number of NSI iterations are strongly dependent on the initial

matrix inversion solution. Although, there are many initial matrix inversion solutions and

in general, such initial solutions take a high number of iterations.

The convergence of NSI algorithm is fully related to the choice of the initial

matrix inversion solution. In this chapter, it is established a relationship between DJ and

NSI algorithm, where the solution after 𝑡 iterations employing NSI algorithm can be seen

as the solution after 2t ⊗ 1 iterations employing DJ algorithm. Thus, based on this rela-

tionship and due to the low latency and good numerical stability (BEN-ISRAEL, 1965) of

NSI algorithm, an improvement of this algorithm for spatial multiplexing massive MIMO

signal detection is proposed. The improvement is obtained by a novel initial matrix in-

version solution based on Tchebychev polynomial in order to substantially accelerate the

convergence rate and reduce the number of iterations of NSI algorithm. It means that

when the number of iterations is limited, NSI algorithm with the proposed initial matrix

inversion solution presents a faster convergence rate and consequently a low-complexity

approximate matrix inversion useful for the signal detection of spatial multiplexing mas-

sive MIMO. Numerical results show that NSI algorithm can achieve the near-optimum

ZF performance in just two iterations. Additionally, the band matrix (BM) concept is

employed in NSI algorithm in order to further reduce the computational complexity.

The remainder of this chapter is organized as follows. Section 5.2 brieĆy de-

scribes the spatial multiplexing massive MIMO system model. Section 5.3 details the

NSI algorithm employed to obtain the approximated matrix inversion and discusses the

relationship between DJ and NSI algorithm. The proposed improved initial matrix inver-

sion is described in Section 5.4. Then, Section 5.5 shows the performance results through

simulation. Finally, conclusions are drawn in Section 5.6.

5.2 System Model

The uplink of a spatial multiplexing massive MIMO system employing 𝑁R BS

receiving antennas and 𝑁T single-antenna transmitting users, where 𝑁R ⪰ 𝑁T .

Let x denotes the 𝑁T ×1 transmitted signal vector containing the transmitted

symbols from all 𝑁T users, H denotes the 𝑁R × 𝑁T Ćat Rayleigh fading channel matrix

and n is the 𝑁R × 1 AWGN vector. Then, the 𝑁R × 1 received signal vector y at the BS

antennas can be presented (2.13).
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5.2.1 ZF Detector

For 𝑁R ⪰ 𝑁T , ZF detector presents as shown in Chapter 3 close to opti-

mum performance due to the asymptotic orthogonality channel property. Then, a matrix

inversion-dependent ZF detector is considered for analysis purposes in this chapter. Thus,

the ZF detection of the transmitted signal vector x before the quantization process is

given by (4.1), which was described in sub-section 4.2.1.

From (4.1), it is again emphasized that ZF detector involves the exact matrix

inversion of the 𝑁T ×𝑁T Gram matrix G given by (4.3), whose computational complexity

is 𝑂(𝑐𝑁3
T ), where 𝑐 denotes a multiplicative factor that depends on the algorithm used to

compute G⊗1.

5.3 Newton-Schultz Iterative Algorithm for Computing Matrix In-

version

An iterative algorithm for computing G⊗1 is a procedure for generating a

sequence ¶Zt : 𝑡 = 0, 1, . . . ♢, where 𝑡 is the number of iterations, that converges to G⊗1.

This procedure speciĄes how to select the initial matrix inversion solution Z0, how to

proceed from Zt to Zt+1 for each 𝑡, and when to stop after having obtained a reasonable

approximation of G⊗1.

In this chapter, the NSI algorithm is employed in order to compute an approx-

imate matrix inversion. As it involves only matrix multiplications-additions, it can be

implemented very efficiently on high-performance computer or hardware (BEN-ISRAEL;

COHEN, 1966; TANG et al., 2016). Thus, the inverse of G can be obtained by the NSI

algorithm using the following procedure:

Zt+1 = Zt + Zt (INT
⊗ GZt)

= Zt (2INT
⊗ GZt) , (5.1)

where Zt is the approximate matrix inversion solution of G after 𝑡 iterations.

The initial matrix inversion solution Z0 should be chosen properly, as it deter-

mines the number of iterations required for the iterative algorithm to converge. Thus, let

E0 = INT
⊗ GZ0 (5.2)

be the initial error matrix, for the convergence of (5.1). Then, E0 must satisfy the following

condition:

𝜌 (E0) = ♣Úmax (E0)♣ < 1, (5.3)
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where 𝜌 (E0) and Úmax (E0) denote, respectively, the spectral radius and the largest eigen-

value of matrix E0.

In the literature, there are some known initialization matrix inversion solution

which guarantee convergence. In (BEN-ISRAEL; COHEN, 1966), Theorem 1 shows that

the initial matrix inversion solution should be given by:

Z0 = ÖINT
, (5.4)

where Ö is positive and sufficiently small, satisfying that:

0 < Ö <
2

Úmax (G)
, (5.5)

where Úmax (G) is the largest eigenvalue of matrix G.

Finally, the ZF solution of (4.1) at the (𝑡 + 1)-th iteration using the NSI

algorithm given by (5.1) is computed by the matrix-vector product given by:

x̂NSI
t+1 = Zt+1ỹ. (5.6)

5.3.1 Convergence Rate of the NSI Algorithm

In the following, it is shown that NSI algorithm converges to G⊗1 in a quadratic

form. Let,

Et = INT
⊗ GZt, (5.7)

be the error matrix at the 𝑡-th iteration. Then, substituting 𝑡 + 1 by 𝑡 into (5.1) and then

in (5.7), Et can be rewritten as:

Et = INT
⊗ GZt⊗1 (INT

+ Et⊗1)

= Et⊗1 ⊗ GZt⊗1Et⊗1

= (INT
⊗ GZt⊗1) Et⊗1

= E2
t⊗1. (5.8)

where it is used that INT
⊗ GZt⊗1 = Et⊗1. Thus, by induction, it can be shown that:

Et = (E0)
2t

, (5.9)

which proves that NSI algorithm has quadratic convergence order.

From (BEN-ISRAEL, 1965), it is shown that:

lim
t⊃∞

Et = lim
t⊃∞

(E0)
2t

= 0. (5.10)

Then, from the deĄnition of Et given by (5.7)

Zt = G⊗1 (INT
⊗ Et) . (5.11)
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Therefore:

lim
t⊃∞

Zt = lim
t⊃∞

G⊗1 (INT
⊗ Et)

= G⊗1. (5.12)

5.3.2 Initial Matrix Inversion Solution Z0

In (BEN-ISRAEL; COHEN, 1966), Theorem 5 shows that the optimum choice

of Ö in (5.4) is given by:

Ö =
2

Úmax (G) + Úmin (G)
, (5.13)

where Úmin (G) is the smallest eigenvalue of G. This optimum Ö has been employed in

(WANG; LEIB, 2013).

In practice, it is difficult to calculate Úmax (G) and Úmin (G). Thus, a sub-

optimum alternative for Ö employs (HAGHANI; SOLEYMANI, 2014):

Ö ≍= 1

‖G‖1 ‖G‖∞

, (5.14)

where

‖G‖1 = max
j

∏︀
∐︁

NT∑︁

i=1

♣𝑔ij♣
∫︀
⎠ , (5.15)

and

‖G‖∞ = max
i

∏︀
∐︁

NT∑︁

j=1

♣𝑔ij♣
∫︀
⎠ . (5.16)

On the other hand, since the 𝑁T ×𝑁T Gram matrix G given by (4.3) is SDD, it

can be approximated by G ≡ D (RUSEK et al., 2013), where D is the diagonal matrix of

G. Thus, another choice of Ö which does not require an estimate of Úmax (G) and Úmin (G)

is available in (TANG et al., 2016), that is given by:

Ö = D⊗1 ≡ 1

𝑁T

. (5.17)

However, as both (5.14) and (5.17) are sub-optimal solutions of Ö, the number

of iterations necessary to converge increases, as well as, the complexity.

In Section 5.4, a new method for Ąnding an improved initialization matrix in-

version solution Z0 is proposed, which reduces the number of iterations and the complexity

ensuring convergence.

5.3.3 Stopping Criteria

The stopping criterion is one of the most important factors, which could affect

the computational time of NSI algorithm in practical implementations.
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A termination criterion is to stop the algorithm after a Ąxed number of iter-

ations, until the required tolerance in relation to the exact matrix inversion solution is

obtained. An alternative is the a posteriori stopping criteria, which use already computed

iterations to decide when to stop. The main drawback is that the exact matrix inver-

sion solution is unknown. In this paper, based on (5.7), the error matrix Frobenius norm

termination is used as stopping criterion, given by:

‖Et‖F ⊘ 𝜖, (5.18)

where 𝜖 is the prescribed tolerance.

5.3.4 Comparison between DJ and NSI algorithm

In this sub-section, it is shown that the ZF solution of (4.1) after 𝑡 iterations

employing NSI algorithm given by (5.6) is the ZF solution after 2t ⊗ 1 iterations em-

ploying DJ algorithm given by (4.13). For this, Ąrstly a relationship between DJ and

Neumann series (NS) algorithm is established. Then, based on this relationship, DJ and

NSI algorithms are compared.

5.3.4.1 Relationship between DJ and NS algorithm

5.3.4.1.1 NS algorithm

NS algorithm is employed to carry out the approximate matrix inversion

through polynomial expansion. Thus, according to NS algorithm the matrix inversion

of G can be written by a 𝑡-order matrix polynomial as

G⊗1 ≡
t∑︁

n=1

(︁
INT

⊗ D⊗1G
)︁n⊗1

D⊗1

≡
t∑︁

n=1

(⊗1)n⊗1
(︁
D⊗1R

)︁n⊗1
D⊗1, (5.19)

where R is the off-diagonal matrix of G.

The convergence of (5.19) is guaranteed if the spectral radius of (INT
⊗ D⊗1G)

is less than one, that is:

𝜌
(︁
INT

⊗ D⊗1G
)︁

< 1. (5.20)

If condition (5.20) is satisĄed, the approximation approaches equality as 𝑡 ⊃
∞ (MINANGO; ALMEIDA, 2017b). However, note that for 𝑡 = 3, the complexity of

NS algorithm is 𝑂(𝑁3
T ), which shows that only a marginal complexity reduction can be

obtained.
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5.3.4.1.2 Revisited DJ Algorithm

Rewriting the DJ iterative algorithm given by (4.13)

x̂DJ
t+1 = x̂DJ

t ⊗ æD⊗1
(︁
Gx̂DJ

t ⊗ ỹ
)︁

=
(︁
INT

⊗ æD⊗1G
)︁

x̂t + æD⊗1ỹ

= BDJx̂t + æD⊗1ỹ, 𝑡 = 0, 1, 2, . . . (5.21)

Expanding it for 𝑡 = 0, 1, 2 in terms of the initial solution x̂DJ
0 = æD⊗1ỹ, that

is:

x̂DJ
1 = BDJx̂0 + æD⊗1ỹ =

[︁
BDJD⊗1 + D⊗1

]︁
æỹ,

x̂DJ
2 = BDJx̂1 + æD⊗1ỹ =

[︁
(BDJ)2D⊗1 + BDJD⊗1 + D⊗1

]︁
æỹ,

x̂DJ
3 = BDJx̂2 + æD⊗1ỹ =

[︁
(BDJ)3D⊗1 + (BDJ)2D⊗1 + BDJD⊗1 + D⊗1

]︁
æỹ.

It is easy to shown that the general form of this expansion that represents the

(𝑡 + 1)-th iteration of DJ algorithm is given by:

x̂DJ
t+1 =

⎟
t+1∑︁

n=1

(︁
BDJ

)︁n⊗1
D⊗1

⟨
æỹ

=

⎟
t+1∑︁

n=1

(︁
INT

⊗ æD⊗1G
)︁n⊗1

D⊗1

⟨
æỹ

=

⎟
t+1∑︁

n=1

(⊗1)n⊗1
(︁
æD⊗1R

)︁n⊗1
D⊗1

⟨
æỹ (5.22)

Comparing (5.19) and (5.22), observe that the ZF solution after 𝑡 iterations of

the DJ algorithm is equivalent to 𝑡 terms of the polynomial expansion of the NS algorithm,

which means that both algorithms have the same precision.

5.3.4.2 Relationship between DJ and NSI Algorithm

Consider the ZF solution employing the NSI algorithm given by (5.6). Expand-

ing Zt+1 for 𝑡 = 0, 1, 2 in terms of the initial matrix inversion solution Z0, given by (5.4)

with Ö = D⊗1, observe that:

x̂NSI
1 = Z1ỹ = [2D⊗1 ⊗ D⊗1GD⊗1]ỹ,

x̂NSI
2 = Z2ỹ = [4D⊗1 ⊗ 6(D⊗1G)D⊗1 + 4(D⊗1G)2D⊗1 ⊗ (D⊗1G)3D⊗1]ỹ,

x̂NSI
3 = Z3ỹ = [8D⊗1 ⊗ 28(D⊗1G)D⊗1 + 56(D⊗1G)2D⊗1 ⊗ 70(D⊗1G)3D⊗1 + 56(D⊗1G)4D⊗1

⊗ 28(D⊗1G)6D⊗1 + 8(D⊗1G)6D⊗1 ⊗ (D⊗1G)7D⊗1]ỹ.
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Thus, the general form of the expansion of the ZF solution employing the NSI

algorithm is given by:

x̂NSI
t+1 =

⋃︀
⨄︀

2t∑︁

n=1

(︃
2t

𝑛

⎜
(⊗1)n⊗1

(︁
D⊗1G

)︁n⊗1
D⊗1

⋂︀
⋀︀ ỹ, (5.23)

where the number of terms to be added grows exponentially with 2t. Therefore, NSI

algorithm converges quadratically.

Comparing (5.22) and (5.23), notice that the ZF solution employing NSI algo-

rithm after 𝑡 iterations is the ZF solution employing DJ algorithm after 2t ⊗ 1 iterations.

Thus, the following relationship between DJ and NSI algorithm can be established:

x̂NSI
t = x̂DJ∑︀t⊗1

n=0
2n

. (5.24)

From (5.24) observe that the NSI algorithm converges much faster than the DJ

algorithm for the same spatial multiplexing massive MIMO system. In order to conĄrm

this, the normalized mean-square error (MSE) is considered as a metric to evaluate the

convergence rate of the ZF solution employing DJ and NSI algorithms. Thus, for the exact

ZF solution x̂ZF, given by (4.1), and the ZF solution employing DJ and NSI algorithms

given, respectively, by (5.22) and (5.23), their normalized MSE are given, respectively,

by:

MSEDJ =
E

{︁⧸︁⧸︁⧸︁x̂ZF ⊗ x̂DJ
t

⧸︁⧸︁⧸︁
}︁

𝑁2
T

and MSENSI =
E

{︁⧸︁⧸︁⧸︁x̂ZF ⊗ x̂NSI
t

⧸︁⧸︁⧸︁
}︁

𝑁2
T

. (5.25)

Fig. 5.1 shows the normalized MSE of DJ and NSI algorithm versus the number

of iterations for a 𝑁R × 𝑁T = 128 × 16 spatial multiplexing massive MIMO system

employing 64-QAM. From this Ągure, note that the normalized MSE of NSI algorithm

decreases faster in comparison to the the normalized MSE of DJ algorithm. Thus, after 5

iterations, NSI algorithm has achieved an accurate ZF solution with a normalized MSE

less than 10⊗15, while DJ algorithm requires about 31 iterations in order to achieve the

same normalized MSE, which veriĄes the relationship between DJ and NSI algorithm

given by (5.24).

5.4 An Improved Initial Matrix Inversion Solution for Newton-Schultz

Iterative Algorithm

Be the eigen-decomposition of matrix G as (HIGHAM, 2008):

G = VΛVH , (5.26)
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Figure 5.1 Ű Normalized MSE of DJ and NSI versus algorithm versus the number of iter-
ations for a 𝑁R × 𝑁T = 128 × 16 spatial multiplexing massive MIMO system
employing 64-QAM.

where V is a orthogonal matrix of size 𝑁T × 𝑁T , whose 𝑖-th column is the eigenvector vi

of G and

Λ = diag [Úmax (G) ⊙ ≤ ≤ ≤ ⊙ Úi (G) ⊙ ≤ ≤ ≤ ⊙ Úmin (G)] (5.27)

is a diagonal matrix, whose elements are the corresponding eigenvalues. The initial matrix

inversion solution is proposed as:

Z0 = ÕINT
+ ãG. (5.28)

From (5.28), the matrix product GZ0 can be written as:

GZ0 = G (ÕINT
+ ãG) . (5.29)

Doing the eigen-decomposition of G in (5.29), using (5.26), (5.29) can be

rewritten as:

GZ0 =
(︁
VΛVH

)︁ (︁
ÕINT

+ ãVΛVH
)︁

= V
(︁
ÕΛ + ãΛ2

)︁

⏟  ⏞  
P

VH (5.30)

As Λ is a diagonal matrix, P is a diagonal matrix too. Thus, the 𝑖-th diagonal

element of P is given by:

𝑝i = ÕÚi (G) + ãÚ2
i (G) , 𝑖 = 1, . . . , 𝑁T , (5.31)
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where Úi (G) is the 𝑖-th diagonal element of Λ.

Therefore, from (5.30) and (5.31), Õ and ã can be chosen such that the spectral

radius of the initial error matrix:

𝜌 (INT
⊗ GZ0) = 𝜌 (INT

⊗ P)

= max
1⊘i⊘NT

♣1 ⊗ 𝑝i♣ , (5.32)

is minimized. In (FABER et al., 2010), 1 ⊗ 𝑝i is a scaled Tchebyshev polynomial on the

interval:

[Úmin (G) , Úmax (G)] (5.33)

that is represented by:

1 ⊗ 𝑝i = T2 [Úi (G)] ,
2 [Úi (G) ⊗ Úmid (G)]2 ⊗ Ó2

2Ú2
mid (G) ⊗ Ó2

, (5.34)

where

Úmid (G) =
Úmax (G) + Úmin (G)

2
, (5.35)

and

Ó = Úmax (G) ⊗ Úmid (G) . (5.36)

Therefore, using (5.34) - (5.36) into (5.32), it can be shown that:

𝜌 (INT
⊗ GZ0) = max

1⊘i⊘NT

♣T2 [Úi (G)]♣

= ♣T2 [Úmax (G)]♣

=
Ó2

2Ú2
mid (G) ⊗ Ó2

. (5.37)

To Ąnd Õ, ã and hence Z0, the following equations should be used:

𝑝i = ÕÚi + ãÚ2
i = 1 ⊗ T2 [Úi (G)]

=
2Ú2

mid (G) ⊗ Ó2 ⊗ 2 [Úi (G) ⊗ Úmid (G)]2 + Ó2

2Ú2
mid ⊗ Ó2

=
⊗2Ú2

i (G) + 4Úi (G) Úmid (G)

2Ú2
mid (G) ⊗ Ó2

. (5.38)

Hence:

Õ =
4Úmid (G)

2Ú2
mid (G) ⊗ Ó2

; and ã = ⊗ 2

2Ú2
mid (G) ⊗ Ó2

. (5.39)

From (5.28) and the previous developments, notice that the proposed initial-

ization matrix inversion solution Z0 depends on the knowledge of Úmin (G) and Úmax (G),

which is difficult to obtain in practice. However, in massive MIMO systems, as 𝑁R is
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very large in comparison to 𝑁T , the largest and the smallest eigenvalues of G can be

approximated, respectively, by (4.7a) and (4.7b).

Thus, based on (4.7), (5.35) and (5.36), the following equation can be rewritten

as:

Úmid (G) ≡ 𝑁R

(︃
1 +

1

Ñ

⎜
, (5.40)

Ó ≡ 2𝑁R

√︃
1

Ñ
. (5.41)

where Ñ = NT

NR
.

Finally, the practical Õ̂ and ã̂ are obtained, respectively, by:

Õ̂ =
2Ñ (1 + Ñ)

𝑁R (1 + Ñ2)
and ã̂ = ⊗ Ñ2

𝑁2
R (1 + Ñ2)

, (5.42)

where Õ̂ and ã̂ depends only on the number of transmit, 𝑁T , and receive, 𝑁R, antennas.

Thus, once the massive MIMO system conĄguration is Ąxed, that is 𝑁T and 𝑁R are

established, the computation of the proposed initial matrix inversion solution Z0 is easy.

Fig. 5.2 shows the theoretical and practical 𝜌 (Z0) obtained by employing, re-

spectively, (5.39) and (5.42) versus Ñ. Notice that the gap between theoretical and practi-

cal values is negligible, especially when 𝑁R ⪰ 𝑁T , which reĆects the good approximation

between (5.39) and (5.42) to compute Z0.

5.5 Numerical Results

In this section, Ąrstly, the numerical convergence rate and the stopping criteria

of NSI algorithm for distinct initialization matrices inversion solution Z0 are analyzed.

Subsequently, the effects of the number of iterations on the NSI performance using the

proposed Z0 are investigated. Then, the complexity of NSI algorithm is determined. Fi-

nally, a method to reduce further the complexity is presented. The 64-QAM modulation

is employed in all simulations.

5.5.1 Numerical Convergence Rate and Stopping Criteria

Fig. 5.3 presents ‖Et‖F given by (5.18) as a function of the number of iterations

for four distinct initial solution for 𝑁R = 128 and 𝑁T = 16.

Observe in Fig. 5.3 that the proposed Z0 (5.28) has a very fast convergence rate.

Only two NSI iterations are necessary to obtain that ‖Et‖F ⊘ 10⊗3, which is an excellent

prescribed tolerance 𝜖 to stop the iterative algorithm and Ąnd a good approximation of
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Figure 5.2 Ű Comparison between the theoretical and practical 𝜌 (X0) against Ñ = NR

NT

where 𝑁T = 16.
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Figure 5.3 Ű Error matrix Frobenius norm ‖Et‖F as a function of the number of iterations
for a 16 × 16 matrix G.
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the inverse of G. On the other hand, using the initial solution given by (5.4) with the

optimum Ö given by (5.13) and the sub-optimums Ö given by (5.17) and (5.14) more than

5, 6 and 7 iterations are necessary, respectively, in order to reach that ‖Et‖F ⊘ 10⊗3.

Hence, the proposed initial solution, given by (5.28), clearly outperforms the solutions

proposed in the literature.

5.5.2 BER Performance

In order to evaluate the performance of NSI algorithm with the proposed Z0

given by (5.28), the BER simulation results includes also DJ algorithm. Furthermore,

the BER of ZF detector with exact matrix inversion using SVD decomposition is also

included as benchmark. In this section, two spatial multiplexing massive MIMO systems

with 𝑁R ×𝑁T = 128×16 and 𝑁R ×𝑁T = 128×32, respectively, are considered. Note that

𝑁R = 128 received antennas represents a realistic scenario nowadays (MARZETTA et al.,

2016). Perfect knowledge of the Rayleigh channel matrix H is assumed at the receiver.

Fig. 5.4 shows the BER versus Òb for NSI algorithm with the proposed ini-

tial solution Z0 and DJ algorithm. The spatial multiplexing massive MIMO system is

𝑁R × 𝑁T = 128 × 16, where 𝑡 denotes the number of iterations. Notice that the BER

performance of both algorithms improves with the number of iterations. However, NSI

algorithm outperforms DJ algorithm. Observe that NSI algorithm with the proposed Z0

can achieve ZF performance in just 2 iterations, which evidences the faster convergence

rate of NSI algorithm.

Fig. 5.5 shows the BER versus Òb for NSI algorithm with the proposed Z0 and

DJ algorithm for a massive MIMO system with 𝑁R × 𝑁T = 128 × 32. By comparing Fig.

5.4 and Fig. 5.5, note that increasing 𝑁T , the BER performance of DJ algorithm becomes

worse. DJ algorithm needs around 8 iterations to approach near-optimum ZF performance

for 𝑁R × 𝑁T = 128 × 16 (see Fig. 4.5 in chapter 4), while for 𝑁R × 𝑁T = 128 × 32 around

12 iterations are needed. In contrast, NSI algorithm with the proposed Z0 requires just 2

iterations in both spatial multiplexing massive MIMO systems. This indicates that, as it

has addressed in Section 5.3, a suitable initialization solution produces faster convergence

rate, that requires a smaller number of iterations to achieve a certain accuracy.

Finally, Fig. 5.6 shows the BER versus 𝑁T for ZF detector with exact matrix

inversion and NSI algorithm with the proposed Z0 after 2 iterations, employing 64-QAM,

for Òb = ⊗15 dB and 𝑁R = 128 antennas. Also, the GA detector is employed as a

benchmark. Note that NSI performance Ąts perfectly the ZF performance for 𝑁T ⊘ 60.

For 𝑁T > 60, the NSI performance is pretty close to ZF performance.

Furthermore, from Fig. 5.6 notice that the performance gap between GA de-
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Figure 5.4 Ű BER versus Òb of NSI and DJ algorithm for a 𝑁R × 𝑁T = 128 × 16 spatial
multiplexing massive MIMO system employing 64-QAM.
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Figure 5.5 Ű BER versus Òb of NSI and DJ algorithm for a 𝑁R × 𝑁T = 128 × 32 spatial
multiplexing massive MIMO system employing 64-QAM.
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tector and NSI algorithm increases as 𝑁T increases. Thus, for relatively low 𝑁T , NSI algo-

rithm achieves near-optimum performance (valid for spatial multiplexing massive MIMO

systems), while for 𝑁T = 𝑁R, NSI algorithm does not achieves the near-optimal per-

formance (symmetric spatial multiplexing MIMO systems). However, in this situation,

NSI algorithm can be employed as an initial vector solution for algorithms in symmetric

spatial multiplexing MIMO systems (QIN et al., 2015; GYAMFI et al., 2015).
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Figure 5.6 Ű BER as a function of the number of users 𝑁T , employing 64-QAM, for a
Òb = 15dB and 𝑁R = 128 antennas.

5.5.3 Complexity Analysis

The term ŞĆopŤ is used again to denote multiply-add pair operations in order

to analyze the computational complexity of NSI algorithm. From (5.1), each NSI iteration

𝑡 essentially amounts to two matrix multiplications. Thus, by exploiting the symmetry

of GZt, NSI algorithm has a complexity of 2
3
𝑁3

T ⊗ 1
3
𝑁2

T Ćops by iteration. However, once

NSI algorithm with the proposed Z0 in 2 iterations is able to achieve near-optimum

performance for spatial multiplexing massive MIMO systems, the number of Ćops is given

by:

𝐶NSI =
4

3
𝑁3

T ⊗ 2

3
𝑁2

T . (5.43)

Although NSI algorithm presents cubic complexity, that is 𝑂
(︁

4
3
𝑁3

T

)︁
, it has

high accuracy, strong numerical stability and contains only matrix additions and multi-
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plications, which is strongly preferred in software/hardware implementation and it is also

less complex than the exact matrix inversion obtained through SVD decomposition given

by (4.32).

Fig. 5.7 shows the complexity of DJ and NSI algorithms given respectively,

by (4.31) and (5.43) as a function of the number of users 𝑁T for different number of

iterations 𝑡. The ZF detector with exact matrix inversion given by (4.32) is also included

as benchmark. In order to ensure near-optimum performance, a large number of iterations

(𝑡 ⊙ 8) is required by DJ algorithm, as shown in Fig. 5.4 and Fig. 5.5. In contrast, NSI

algorithm with the proposed Z0 requires only 2 iterations. However, from Fig. 5.7 observe

that both algorithms have similar computational complexity in terms of the number of

Ćops. In the following, a complexity reduction for NSI algorithm is presented.
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Figure 5.7 Ű Complexity comparison as a function of the number of users 𝑁T for NSI, DJ
and ZF with exact matrix inversion.

5.5.4 Complexity Reduction of NSI Algorithm

In order to reduce the computational complexity of NSI algorithm, the band

matrix (BM) concept applied to NSI algorithm is proposed. A BM is a matrix with non-

zero entries conĄned only to a band around the diagonal, that comprises the diagonal and

secondary diagonals.
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Consider the diagonal dominance of the initial solution Z0 (RUSEK et al.,

2013), where the elements outside the band matrix are set to zero. Thus, the Ąrst iteration

can be written as:

̂︀Z1 = Z0

(︁
2INT

⊗ G̃(υ)Z0

)︁
(5.44)

where Z0 = diag [Z0] and G̃(υ) is the BM of G given by:
∏︁
⨄︁
⋃︁

𝑔
(υ)
ij = 𝑔ij ♣𝑗 ⊗ 𝑖♣ ⊘ â,

𝑔
(υ)
ij = 0 ♣𝑗 ⊗ 𝑖♣ > â.

(5.45)

where â represents the bandwidth, that means that only â adjacent diagonals in the band

matrix consist of non-zero entries.

Employing ̂︀Z1, given by (5.44), as the input for the second iteration,

̂︀Z2 = ̂︀Z1

(︁
2INT

⊗ G̃(υ) ̂︀Z1

)︁
. (5.46)

Thus, the number of Ćops in the Ąrst and second iterations are 𝑁T (2â + 1) ⊗
2â (â + 1) and 𝑁2

T (2â + 1) ⊗ 𝑁T (2â2 + 2â ⊗ 1), respectively. Then, the total number of

Ćops is given by:

𝐶NSI,BM = 𝑁2
T (2â + 1) ⊗ 2𝑁T

(︁
â2 ⊗ 1

)︁
⊗ 2â (â + 1) . (5.47)

From (5.47), observe that the complexity of NSI algorithm is now quadratic.

Thus, through the BM concept, the complexity has been reduced from 𝑂
(︁

4
3
𝑁3

T

)︁
to

𝑂 (𝑁2
T (2â + 1)).

The bandwidth parameter â inĆuences on the accuracy and complexity of the

NSI algorithm. As â increases, the number of Ćops also increases monotonically. Fig.

5.8 shows the effects of â in the BER for a 𝑁R × 𝑁T = 128 × 32 massive MIMO system.

Notice that as â increases, the BER improves, but the computational complexity increases.

However, for a relatively small â = 4, similar BER performance is achieved in relation to

the near-optimum ZF performance.

Despite that there is a compromise between performance and complexity when

employing NSI algorithm with BM, for relatively small â the computational complexity is

inferior to NSI algorithm without BM. Thus, Fig. 5.9 shows the complexity comparison as

a function of the number of users 𝑁T for NSI algorithm with and without the application

of BM, where 2 iterations are considered for both NSI algorithms. In the case of NSI

algorithm with BM, a â = 4 is considered. Furthermore, both the complexity of ZF

detector with exact matrix inversion and DJ algorithm with 𝑡 = 8 iterations are included

as benchmark. From this Ągure, observe that the complexity reduction employing NSI

algorithm with BM is effective for all 𝑁T , which means that the application of BM in the

NSI algorithm is effective for large 𝑁T .
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Figure 5.8 Ű BER versus Òb for different â of a 𝑁R × 𝑁T = 128 × 32 spatial multiplexing
massive MIMO system employing 64-QAM.
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Figure 5.9 Ű Complexity as a function of the number of users 𝑁T for NSI with and without
BM, DJ and ZF with exact matrix inversion.
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5.6 Chapter Conclusions

In this chapter, the NSI algorithm for the detection of spatial multiplexing

massive MIMO systems has been proposed, avoiding the complex exact matrix inversion

of the ZF detector. Furthermore, in order to speed up the convergence of NSI algorithm, a

novel initial matrix inversion solution based on Tchebychev polynomial has been proposed.

The numerical results reveal that NSI algorithm with the proposed initial matrix inversion

solution outperforms Damped Jacobi (DJ) algorithm. It achieves the near-optimum ZF

performance in just two iterations, keeping the complexity low. Finally, in order to reduce

additionally the complexity, the band matrix concept has been employed, which reduces

the complexity from 𝑂
(︁

4
3
𝑁3

T

)︁
to 𝑂 (𝑁2

T (2â + 1)), which is effective when the number of

users 𝑁T is large.
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6 Achieving Optimum Performance with ZF

Detector by Using a Novel Precoding Ap-

proach in Symmetric Spatial Multiplexing

MIMO Systems

6.1 Introduction

Despite ZF detector is attractive in spatial multiplexing massive MIMO sys-

tems due to their small complexity in comparison to the optimum ML detector. When the

number of users 𝑁T is equal to the number of BS antennas 𝑁R, a high spectral efficiency

is achieved in contrast to massive MIMO systems where 𝑁T ⪯ 𝑁R. However, the per-

formance of ZF detector is severely degraded when 𝑁R = 𝑁T . In this case, the condition

number of HHH is high (see Fig. 2.8), and consequently, the channel matrix H is highly

non-orthogonal. Furthermore, the degraded performance of ZF detector when 𝑁R = 𝑁T

can also be explained by its diversity order, which is given, on average, by 𝑁R ⊗ 𝑁T + 1

where 𝑁R ⊙ 𝑁T (MINANGO, 2014). Thus, when 𝑁R = 𝑁T , the ZF detector attains

a mean diversity order of 1, which is far away from the full diversity order 𝑁R of the

optimum ML detector. Therefore, the key challenge in practical realizing of systems with

𝑁R = 𝑁T , which are known as symmetric spatial multiplexing MIMO, is the detection

complexity at the receiver if full diversity order is desirable.

In order to guarantee full diversity and optimum performance, ML detector

should be employed, whose complexity is 𝑂(𝑀NT ), where 𝑀 is the modulation order.

Thus making it impractical to perform detection in symmetric spatial multiplexing MIMO

systems with large 𝑁T (ANDREWS et al., 2007). Though ZF detector achieves a poor

performance compared to the optimum detector in symmetric spatial multiplexing MIMO

systems. This is no longer true if the symmetric channel matrix H is orthogonal (MAU-

RER et al., 2007; ROGER et al., 2008; WUBBEN et al., 2011). Thus, several studies

have focused on the implementation of ZF detector preceded by lattice reduction (LR)

(WUBBEN et al., 2011; JING et al., 2016; LIU et al., 2017; IZADINASAB et al., 2017),

whose purpose is to reduce the condition number. For a condition number of one, sym-

metric channel matrices are orthogonal and therefore the ZF detector has optimum per-

formance, i.e., equivalent to ML detector (WUBBEN et al., 2011).

Although the ZF detector with lattice reduction (ZF-LR) has the potential
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to achieve full diversity, there is a SNR gap from the ML performance. This is due to

LR can signiĄcantly reduce the condition number of the symmetric channel matrix but

never to the unity. Furthermore, as the symmetric channel matrix has large dimension,

the probability that the channel matrix has large condition number is high (WUBBEN et

al., 2011). Consequently the SNR gap is also large. To summarize this point, the major

problem with the ZF detector is its poor performance for symmetric channel matrices

with large condition number or ill-conditioned symmetric channel matrices.

Thus, in this chapter, in order to corroborate the above affirmations, Ąrstly the

effects of the symmetric channel matrix condition number on the ZF detector performance

are studied. SpeciĄcally, simulations show that the poor ZF performance is heavily linked

to symmetric channel matrices with large condition number. Motivated by this insight, a

novel precoding approach for symmetric channel matrix orthogonalization is proposed. In

general form, the proposed approach Ąrst Ąnd out the precoder matrix at the transmitter

side, which transforms the symmetric channel matrix with any condition number into

an orthogonal matrix. At the receiver side, the received signal can then be applied to a

ZF detector achieving optimum performance. Simulation results show the validity of the

proposed approach, where the price to be paid to achieve the optimum performance is a

small increase in the transmitted average power.

Furthermore, the proposed precoding approach for symmetric spatial multi-

plexing MIMO systems consider perfect channel state information (CSI) available at both

transmitter and receiver side. The CSI could be sent by the receiver to the transmitter,

when there are separate frequency bands for uplink and downlink transmission, frequency

division duplex (FDD), or the transmitter could estimate the channel, if it is reciprocal,

like in a time division duplexing (TDD) system, by receiving pilot signals from the receiver

(ZHOU et al., 2011; THOMAS; VOOK, 2014).

The remainder of this chapter is organized as follows. Section 6.2 presents

the system model. In Section 6.3, the effects of the symmetric channel matrix condition

number on the ZF performance are discussed. Section 6.4 details the proposed precoding

approach, while in Section 6.5, the simulation results are presented. Finally, the conclu-

sions are drawn in Section 6.6.

6.2 System Model

A symmetric spatial multiplexing MIMO system with 𝑁T transmit and 𝑁R

receive antennas, where 𝑁R = 𝑁T is considered in this chapter. Thus, 𝑁T symbols are

simultaneously transmitted over 𝑁T antennas and the corresponding received signal vector

y at the 𝑁R antennas is given by (2.13).
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Furthermore, the total average transmit power 𝑃 is equal to the sum of the

average powers of all transmit antennas 𝑁T , that is:

𝑃 =
NT∑︁

i=1

𝑃o = 𝑁T 𝑃o, (6.1)

where 𝑃o is the transmit average power by each antenna.

Besides, both ML and ZF detectors, which were described in chapter 2, are

considered in this chapter.

6.3 Effects of the Symmetric Channel Matrix Condition Number

on the ZF Detector Performance

Applying the ZF equalization matrix given by (2.48) on the received signal

vector y, given by (2.13), the ZF equalized vector r, before the quantization process, can

be written as:

r = H†y =
(︁
HHH

)︁⊗1
HHy = x + n′, (6.2)

which is equal to the transmitted signal vector x corrupted by the modiĄed noise n′ =

H†n, which has correlation matrix given by (CHOCKALINGAM; RAJAN, 2014):

Rn′ = à2
n

(︁
HHH

)︁⊗1
. (6.3)

From (6.2), notice that the interference caused by the symmetric channel ma-

trix H has been completely removed (forced to zero). However, the variance of n′ is equal

or greater than the original variance of n, i.e., there is an increase in noise power (ROGER

et al., 2008; CHOCKALINGAM; RAJAN, 2014).

As ZF equalization does not produce loss of information, the ML detector given

by (2.40) can use the ZF equalized vector r. Thus, the ML detector based on r becomes:

x̂ML = arg min
x̂∈MNT

{︁
(r ⊗ x̂)H

HHH (r ⊗ x̂)
}︁

. (6.4)

which is proved in appendix B.

Equation (6.4) may be interpreted as ŞML detection after ZF equalizationŤ,

different of Şdirect ML detectionŤ given by (2.40). Note, however, that (2.40) and (6.4)

are strictly equivalent.

On the other hand, a channel matrix H is orthogonal, if the following condition

is satisĄed (GOLUB; LOAN, 1996):

HHH = INT
. (6.5)
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Hence, for an orthogonal symmetric channel matrix H, the noise correlation

matrix given by (6.3) becomes:

Rn′ = à2
n, (6.6)

that is the noise power is not increased.

As a consequence, the components of the noise vector n′ = H†n = n are

uncorrelated, and the ML detector in (6.4) can be simpliĄed to:

x̂ML = arg min
x̂∈MNT

‖r ⊗ x̂‖2 . (6.7)

From (6.7), since each component of x̂ affects only the corresponding compo-

nent of r = x + n′, and since n′ is uncorrelated, the ML detector given by (6.7) can be

decoupled into a set of symbol-by-symbol optimizations as:

x̂ML [𝑖] = arg min
x̂[i]∈M

‖r [𝑖] ⊗ x̂ [𝑖]‖2 , 𝑖 = 1, ≤ ≤ ≤ , 𝑁T , (6.8)

which can be solved using a component-wise quantization with respect to the symbol

constellation of order 𝑀 . Thus, (6.8) can be rewritten as:

x̂ML = 𝑄 ¶r♢ , (6.9)

which is equivalent to the linear ZF detector solution given by (2.49).

In general, the above analysis shows that when the symmetric channel matrix

H is orthogonal, ZF detector is equivalent to ML detector, achieving optimum performance

and full diversity. In order to corroborate this statement, it is shown through simulation

that the bad performance of ZF detector in comparison to ML detector is mainly caused

by the occurrence of ill-conditioned symmetric channel matrices.

Fig. 6.1 shows the BER performance of the ML and ZF detectors as a function

of the condition number of H, given by Ù(HHH) = λmax(HHH)
λmin(HHH)

⊙ 1, where Úmax(HHH) and

Úmin(HHH) denote the largest and the smallest eigenvalues of HHH, respectively. In this

simulation, a symmetric spatial multiplexing MIMO system with 𝑁R = 𝑁T = 5, 4-QAM

modulation, and a Òb of -9 dB is considered. Observe that for Ù(HHH) < 3, ZF detector

has approximately the same performance of ML detector. However, as Ù(HHH) > 3, the

performance of both detectors separates, emphasizing that ML detector is obviously the

one that has better performance.

From Fig. 6.1, notice that the bad performance of ZF detector depends on

the probability of channel matrices with large Ù(HHH). The simulated probability den-

sity function (PDF) of Ù(HHH) is presented in Fig. 6.2a, whereas Fig. 6.2b shows the

cumulative distribution function (CDF) of Ù(HHH). From Fig. 6.2b, observe that the
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Figure 6.1 Ű BER as a function of the condition number Ù(HHH) for random symmetric
channel matrices H for a spatial multiplexing MIMO system with 𝑁R =
𝑁T = 5, 4-QAM modulation, and Òb = ⊗9 dB.

probability that Ù(HHH) exceeds 10, 15, and 20 is 50%, 25%, and 15%, respectively.

This suggests that ill-conditioned channel matrices occur frequently enough to cause a

signiĄcant degradation on the BER performance of ZF detectors. Furthermore, increasing

both 𝑁T and 𝑁R, the PDF and CDF are basically spreaded (TULINO; VERDú, 2004).

Thus, by increasing 𝑁T and 𝑁R with 𝑁R = 𝑁T , channel matrices become even worse

ill-conditioned.

6.4 Proposed Precoding Approach

As already stated in the previous section, in symmetric spatial multiplexing

systems, linear ZF detector is optimum if the channel matrix H is orthogonal, but has

poor performance otherwise. It is therefore natural to apply the ZF detector not directly

to H, but rather to a transformed symmetric spatial multiplexing MIMO system with

channel matrix H̆, which is orthogonal. Thus, according to Fig. 6.3 the system model

(2.13) can be rewritten as:

y = H̆x + n,

= HVx + n, (6.10)
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6.4.1 Determination of the Precoder Matrix

The main idea of the proposed approach is to Ąnd out the precoder matrix V

that transforms the symmetric channel matrix H into an orthogonal channel matrix HV.

The symmetric channel matrix H is assumed to be perfectly known at the

transmitter side through the feedback link.

Solving (6.11), it can be shown that:

VHV =
(︁
HHH

)︁⊗1
, (6.14)

where it was used that (HV)H = VHHH . From (6.14) and supposing that V is a sym-

metric matrix, i.e., V = VH , the precoder matrix is given by:

V =
(︁
HHH

)︁⊗1/2
. (6.15)

Note that computing V from (6.15) has cubic complexity with respect to the

number of transmit antennas, 𝑂 (𝑁3
T ), due to the inverse of HHH.

6.4.2 Total Transmitted Power

The total average transmit power using the precoder matrix V is given by:

𝑃 = ‖V‖2
F

NT∑︁

i=1

𝑃o = ‖V‖2
F 𝑁T 𝑃o. (6.16)

By comparing the total average transmit power, 𝑃 , of the symmetric spatial

multiplexing MIMO system given by (6.1) with the total average transmitted power em-

ploying the precoding matrix given by (6.16), it is concluded that the precoding approach

increases the total average transmit power by ‖V‖2
F . This means, that the proposed pre-

coding approach increments the transmit power in order to get the optimum performance.

However, since the wireless channels experienced by each transmit antenna

are different. Consequently. It is desirable to allocate different power (FANG et al., 2011)

to the transmit antennas based on their respective channel quality in order to achieve

optimum performance.

6.5 Numerical Results

In this section, the simulation results of the BER of the proposed precoding

approach for symmetric spatial multiplexing MIMO systems is presented.

Fig. 6.4 shows the BER performance against Òb of the precoding approach in

comparison to ML and ZF detectors for a symmetric MIMO system with 𝑁R = 𝑁T = 20
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antennas employing 64-QAM modulation. The optimum ML performance is achieved by

the hypothetical GA detector, which was described earlier in sub-section 2.5.3.1. From

this Ągure, observe that the precoding approach achieves the optimum performance with

the full diversity order of 𝑁R = 20, that is, the same performance of the ML detector.
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Figure 6.4 Ű BER as a function of Òb for a symmetric spatial multiplexing MIMO with
𝑁R = 𝑁T = 20 antennas and 64-QAM employing the precoding approach,
ML and ZF detector.

Fig. 6.5 and Fig. 6.6 present the BER as a function of Òb for the symmetric spa-

tial multiplexing MIMO systems with 𝑁R = 𝑁T = 50 and 𝑁R = 𝑁T = 100 antennas for

16-QAM and 4-QAM modulations, respectively. In both symmetric MIMO systems, the

precoding approach, ML and ZF detector are employed. In both Ągures, similar conclu-

sions to Fig. 6.4 are obtained, where the precoding approach outperforms ZF detector and

achieves the optimum performance with full diversity order of 𝑁R = 50 and 𝑁R = 100,

respectively.

Notice from Fig. 6.4, Fig. 6.5 and Fig. 6.6 that the precoding approach achieves

the optimum performance independently of the modulation order and the number of

transmit 𝑁T and receive 𝑁R antennas. As stated earlier, the price to be paid is a small

increase in the average transmit power due to the precoder matrix V. Thus, more transmit

power in order to modify the ill-conditioned channel matrix into an orthogonal matrix.

Fig. 6.7 shows that the total average transmit power of the precoding approach is about
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Figure 6.5 Ű BER as a function of the Òb for a symmetric spatial multiplexing MIMO with
𝑁R = 𝑁T = 50 antennas and 16-QAM employing the precoding approach,
ML and ZF detector.

1.5 times (approximately 2 dB) the total average transmit power of a symmetric spatial

multiplexing MIMO system without precoding. Note that the total average transmit power

increases linearly with the number of transmit antennas 𝑁T .

6.6 Chapter Conclusions

In this chapter, a novel precoding approach was proposed, which makes ZF

detector to have the same optimum performance of ML detector in symmetric spatial

multiplexing MIMO systems. At Ąrst, it was shown that if a symmetric channel matrix

is orthogonal, ML and ZF detectors have same performance. Otherwise, ZF detector has

poor performance that is justiĄed heavily by the occurrence of ill-conditioned symmetric

channel matrices. Based on the above, the precoding approach orthogonalizes the sym-

metric equivalent channel matrix in order to apply, at the receiver, the ZF detection

that achieves the same performance of ML detector, but with much lower complexity.

As the equivalent channel matrix is orthogonal, its inverse is easily calculate by taking

its Hermitian (HV)⊗1 = (HV)H , whose complexity is 𝑂(𝑁2
T ). The drawback is a small

increase in the total average transmit power. Simulation results have showed that the
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Figure 6.6 Ű BER as a function of the Òb for a symmetric spatial multiplexing MIMO with
𝑁T = 𝑁R = 100 antennas and 4-QAM employing the precoding approach,
ML and ZF detector.

precoding approach achieves optimum performance. Remark that the precoding approach

allow low-complexity implementation of symmetric MIMO systems with very high spec-

tral efficiency.
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7 Low-Complexity Symbol-Flipping Algo-

rithm Detector for Symmetric Spatial Mul-

tiplexing MIMO Systems with Large Num-

ber of Antennas

7.1 Introduction

In Chapter 6 the optimum performance was achieved with a ZF detector by

using a novel precoding approach in symmetric spatial multiplexing MIMO systems. The

principal goal of the precoding approach is to transforms the channel matrix into an or-

thogonal matrix, such that a ZF detector can achieve optimum performance. Thus, during

each transmission, the transmitter needs to know a priori the channel matrix in order to

compute the precoder matrix for the channel orthogonalization. In general, a transmitter

has no knowledge of the current channel matrix. Therefore, current channel matrix must

be estimated at the receiver side and then, fedback to the transmitter side. The main

drawback of this process is that additional resource is required for transmitting the feed-

back information, where the amount of feedback information increases with the number of

transmit and receive antennas (THOMAS; VOOK, 2014). Therefore, the overhead prob-

lem together with the feedback delay become critical when symmetric MIMO systems

with large number of antennas are employed. Therefore, alternative detection approaches

with low-complexity and near-optimum performance should be developed.

On the other hand, ML detector has high complexity because it searches for

the global optimum solution over all possible transmitted signal vectors, which depends

on the modulation order and on the number of transmit antennas employed in the MIMO

system. In this chapter, by focusing in the spatial search, the probability of Ąnding the

global optimum solution from local sub-optimum solutions using symbol-Ćipping (SF)

procedures is veriĄed to increase with the number of transmit and receive antennas. As a

consequence, the SF procedure present very close performance to the optimum detector in

spatial multiplexing MIMO systems with hundreds or more transmit and receive antennas.

SpeciĄcally, the SF procedure, which is a heuristic local search (LS) algorithm for solving

computationally hard optimization problems (BLUM; ROLI, 2003; AARTS; LENSTRA,

1997), allows to move among different local sub-optimum solutions in the spatial search

of limited possible transmitted signal vectors until a solution deemed optimum is found.
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However, for symmetric spatial multiplexing MIMO systems with tens to hun-

dreds of antennas, SF procedure does not achieve the optimum performance, once gener-

ally it is trapped in local sub-optimum solutions, which can be far away from the global

optimum solution. In this situation, some SF procedures with different initial solution

vectors used as starting-point is considered. The set of initial solution vectors allows to

escape from local sub-optimum solutions reaching to the solution deemed as optimum and

consequently approaching to the ML performance.

In summary, the main contribution of this chapter is the proposition of a low-

complexity detector algorithm based on SF procedure for symmetric spatial multiplexing

MIMO systems in order to achieve very close performance to ML detector. The algorithm

can be easily extended for non-symmetric spatial multiplexing MIMO systems.

The remainder of this chapter is organized as follows. Section 7.2 presents

the system model. In Section 7.3, the proposed detector algorithm is described. The

performance simulation together with the complexity results are presented in Section 7.4.

Finally, the conclusions are drawn in Section 7.5.

7.2 System Model

In this chapter, similar to Chapter 6, a symmetric spatial multiplexing MIMO

system with 𝑁T transmit and 𝑁R receive antennas is considered, where 𝑁T independent

symbols are simultaneously transmitted over 𝑁T antennas. Thus, the corresponding 𝑁R×1

complex received signal vector y at the 𝑁R antennas is given by (2.13)

7.3 Proposed Detector Algorithm

7.3.1 Symbol Flipping Procedure

Symbol Ćipping (SF) procedure is based on an iterative exploration of local

sub-optimum solutions in order to get to the global optimum solution. The SF procedure

that is applied to an initial solution is deĄned by the set of symbols of a constellation of

order 𝑀 .

7.3.1.1 Initial solution vector

The SF procedure starts from an initial solution vector that iteratively moves

to neighbor sub-optimum solutions. Thus, let 𝑘 be the index of x̂(k) that denotes the

iteration number. The initial solution vector x̂(0) that starts the SF procedure can be
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obtained by:

x̂(0) = 𝑄 ¶By♢ , (7.1)

where B is the initial solution matrix Ąlter, which can be a matched-Ąlter (MF), a zero-

forcing (ZF) Ąlter or an identity matrix for a random initial solution vector. The operation

𝑄 ¶By♢ denotes the quantization of the vector By to the set of symbols of a constellation

of order 𝑀 .

For MF, B = HH and hence x̂(0) = 𝑄
{︁
HHy

}︁
, which is used as the initial

solution vector of the SF procedure. The reason for this choice is that unlike MF detector

which minimizes noise, ZF detector mitigates the inter-antenna interference to zero but

fails to treat noise. In fact, this mitigation comes at the cost of noise enhancement, which

in the low SNR regime leads to a performance inferior in comparison to MF detector.

For a numerical demonstration of this fact, Fig. 7.1 shows the BER as a function of the

number of transmit and receive antennas 𝑁T = 𝑁R, for Òb = ⊗15 dB, and as a function

of Òb, for 𝑁T = 𝑁R = 100 antennas, respectively, for MF and ZF detector employing

4-QAM modulation. In both Ągures, ML detector is also shown as an ideal objective. Fur-

thermore, since simulating the performance of ML detector for large number of antennas

involves prohibitively high complexity, the optimum ML performance is achieved by the

GA detector introduced in sub section 2.5.3.1.3.

From Fig. 7.1a notice that MF detector outperforms ZF detector for any num-

ber of transmit antennas. Furthermore, from Fig. 7.1b, MF detector presents better per-

formance for low values of Òb. Thereby, in these cases, the best strategy is to use MF.

Another reason to choose MF detector is that computing B for MF involves

only the conjugate transposition of H, whose complexity is quadratic, while computing

B for ZF involves the matrix inversion of H, whose complexity is cubic. Therefore, x̂(0)

obtained with the MF detector is a low-complexity initial solution vector that can be used

in the SF procedure.

7.3.1.2 Symbol Flipping

From (2.40), let

Φ[x̂] = x̂HGx̂ ⊗ 2ℜ¶x̂H ỹ♢ (7.2)

be the ML cost function of vector x̂, where G = HHH represents the Gram matrix and

ỹ = HHy. Then, once x̂(0) is obtained, the SF procedure is applied from the Ąrst to the

last element of vector x̂(0), which consists of Ćipping x̂(0) one symbol position at a time.

The SF procedure discards x̂(0) when the ML cost of x̂(1), which differs from x̂(0) in one

symbol position, is lesser than the ML cost of the current solution x̂(0). In the following,

the SF procedure is applied from the Ąrst to the last position of x̂(1) and so on.
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Figure 7.1 Ű (a) BER as a function of 𝑁T = 𝑁R for a Ąxed Òb = ⊗15 dB employing MF
and ZF detector. (b) BER as a function of Òb for a SM-MIMO system with
𝑁T = 𝑁R = 100 antennas employing MF and ZF detector. ML detector
perform is included as a target.

The SF procedure stops when no solution is achieved, i.e., there is no new

solution, that differs from the current solution by one symbol position, presents lower

ML cost. Note that when no local additional sub-optimum solution is achieved, one could

pass to a second stage where the SF are performed by Ćipping two consecutive symbol

positions of the current solution, then three symbol positions and so forth. However, in

order to maintain the complexity low, in this chapter it is considered one SF at a time

of the current solution. The SF procedure is formally described in the following in more

detail.

Let x̂(k) be the solution of the 𝑘-th iteration whose elements are �̂�
(k)
i , for

𝑖 = 1, ≤ ≤ ≤ , 𝑁T . In the (𝑘 + 1)-th iteration, the solution x̂(k+1) can be obtained from x̂(k)

by Ćipping the 𝑖-th element, that is:

x̂(k+1) = x̂(k) + Ó
(k)
i ei, (7.3)

where ei represents a column vector whose 𝑖-th entry is equal to +1 and all other elements

are zero. The possible values of Ó
(k)
i = �̂�

(k+1)
i ⊗ �̂�

(k)
i depends on the constellation of order

𝑀 employed and the current value of �̂�
(k)
i . For example, the symbols of constellations of

the 4-QAM modulation are given by ¶1 + 𝑗, 1 ⊗ 𝑗, ⊗1 ⊗ 𝑗, ⊗1 + 𝑗♢. If �̂�
(k)
i = 1 + 𝑗, the

possible values of Ó
(k)
i are P = ¶⊗2, ⊗2𝑗, ⊗2 ⊗ 2𝑗♢.

The SF is successful, if the ML cost function given by (7.2) decreases, that is

if:

∆(k+1) = Φ[x̂(k+1)] ⊗ Φ[x̂(k)] < 0. (7.4)
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On the other hand, if ∆(k+1) ⊙ 0, the SF procedure is terminated in the last

vector position. Then x̂(k) is declared the detected signal vector.

From (7.2) and (7.3) into (7.4), the decrement in ∆(k+1) of the ML cost function

can be written as:

∆(k+1) = [(x̂(k) + Ó
(k)
i ei)

HG(x̂(k) + Ó
(k)
i ei) ⊗ 2ℜ¶(x̂(k) + Ó

(k)
i ei)

H ỹ♢] ⊗ [x̂(k)H

Gx̂(k) ⊗ 2ℜ¶x̂(k)H

ỹ♢]

=
⧹︃⧹︃⧹︃Ó(k)

i

⧹︃⧹︃⧹︃
2
eH

i Gei + Ó
(k)
i x̂(k)H

Gei + Ó
(k)*

i eH
i Gx̂(k) ⊗ 2ℜ

{︁
Ó

(k)
i eH

i ỹ
}︁

=
⧹︃⧹︃⧹︃Ó(k)

i

⧹︃⧹︃⧹︃
2
(G)i,i + Ó

(k)
i x̂(k)H

gi + Ó
(k)*

i gH
i x̂(k) ⊗ 2ℜ

{︁
Ó

(k)*

i 𝑦i

}︁

=
⧹︃⧹︃⧹︃Ó(k)

i

⧹︃⧹︃⧹︃
2
(G)i,i + Ó

(k)
i x̂(k)H

gi + Ó
(k)*

i (x̂(k)H

gi)
H ⊗ 2ℜ

{︁
Ó

(k)*

i 𝑦i

}︁
, (7.5)

where (G)i,i denotes the (𝑖, 𝑖)-th entry of G, gi is the 𝑖-th column vector of G, and 𝑦i is

the 𝑖-th element of vector ỹ.

From (7.5), note that ∆(k+1) depends on the current solution x̂(k) and on the

value of Ó
(k)
i , which takes only integer values according to the constellation employed.

Then, the minimum of ∆(k+1) can be evaluated as:

∆(k+1) = min
δ∈P

⎭⧹︃⧹︃⧹︃Ó(k)
⧹︃⧹︃⧹︃
2
(G)i,i + Ó(k)x̂(k)H

gi + Ó
(k)*

i (x̂(k)H

gi)
H ⊗ 2ℜ

{︁
Ó(k)*

𝑦i

}︁}︂
, (7.6)

where P is the set of all possible Ó
(k)
i values. Finally, from (7.6), the 𝑘-th SF is successful

if ∆(k+1) < 0.

In summary, the SF procedure starts from the MF initial solution x̂(0) and

performs SF from the 1st to 𝑁T -th symbol position of x̂(0). Based on the symbol in the

𝑖-th position of x̂(0) and on the constellation, the minimum value of Ó
(0)
i given by (7.6) is

determined. If ∆(1) < 0, a new solution x̂(1) by updating the 𝑖-th position of x̂(0) as in (7.3)

is employed. This new solution replaces the early one and the SF procedure is applied

from the 1st to 𝑁T -th symbol position of the new solution x̂(1). When no better solution

is found, the SF procedure is Ąnished. The SF procedure is presented in Algorithm 7.1.

Fig. 7.2 shows the BER versus the number of transmit and receive antennas,

𝑁T = 𝑁R, for a MIMO system employing the SF procedure for 4-QAM and Òb of ⊗15 dB.

From this Ągure, note that for a low number of transmit and receive antennas, there is a

degradation on the BER for the SF procedure in comparison to the optimum performance

represented by the ML detector.

The above behavior can be explained according to the random matrix theory

(BAI; CHOI, 2014; EDELMAN, 1989), where it is known that when 𝑁T and 𝑁R are high,

the matrix G = HHH becomes a diagonal matrix 𝑁RINT
for an uncorrelated Rayleigh

fading channel, which is known in the literature as channel hardening (RUSEK et al.,

2013).
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Pseudocódigo 7.1 SF procedure

1: Input:

2: ỹ = HHy;
3: x̂(0) = 𝑄 ¶ỹ♢;
4: G = HHH;
5: 𝑘 = 0;
6: 𝑖 = 1;
7: SF iterative process:

8: while 𝑖 ⊘ 𝑁T do

9: Based on �̂�
(k)
i generate P = ¶Ó

(k)
i,j ♢, 𝑗 = 1, ≤ ≤ ≤ , 𝑀 ⊗ 1;

10: ∆(k+1) = min
δ∈P

⎭⧹︃⧹︃⧹︃Ó(k)
⧹︃⧹︃⧹︃
2
(G)i,i + Ó(k)x̂(k)H

gi + Ó
(k)*

i (x̂(k)H

gi)
H ⊗ 2ℜ

{︁
Ó(k)*

𝑦i

}︁}︂
;

11: if ∆(k+1) < 0 then

12: x̂(k+1) = x̂(k) + Ó
(k)
i ei;

13: 𝑖 = 0;
14: 𝑘 = 𝑘 + 1;
15: end if

16: 𝑖 = 𝑖 + 1;
17: end while

18: Output:

19: Detected vector x̂(k).
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Figure 7.2 Ű BER as a function of the number of transmit and receive antennas (𝑁T = 𝑁R)
for Òb = ⊗15 dB.

Fig. 7.3 shows the channel hardening behavior of spatial multiplexing MIMO

systems for 𝑁T = 𝑁R = 20 and 𝑁T = 𝑁R = 100 antennas. Notice that as the dimension

of H increases, the modulus of the diagonal elements of G becomes larger than the
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Figure 7.3 Ű Channel hardening behavior of G = HHH for spatial multiplexing MIMO
systems for (a) 𝑁T = 𝑁R = 20, (b) 𝑁T = 𝑁R = 100 antennas.

modulus of the off-diagonal elements. Thus, local sub-optimum solutions converge easily

to the global optimum solution for 𝑁T > 130 antennas. Nevertheless, for a low number of

antennas, the SF procedure gets trapped stuck at local sub-optimum solutions, as shown

in Fig. 7.2. In such a situation, an action should take place in order to escape from a local

sub-optimum solution and to reach to the global optimum solution.

Based on the above, in the following subsection, a simple but very effective

method to improve further the performance of SF procedure for a low number of transmit

and receive antennas is proposed.

7.3.2 Initial Solution Vectors

In order to the SF procedure to escape from a local sub-optimum solution, new

initial solution vectors are necessary. These initial solution vectors are used as a starting-

point for the SF procedure to increase the probability of achieving the global optimum

solution.

A set of 𝐿 initial solution vectors is constructed, where the Ąrst initial solution

vector is the MF x̂(0) solution. Thus, 𝐿 ⊗ 1 initial solution vectors should be generated,

which are different from x̂(0) in 𝑐 symbol positions. For x̂(0), 𝑐 random positions are

replaced with symbols from the chosen constellation. Then, the SF procedure for each

one of the 𝐿 initial solution vectors in order to obtain 𝐿 local sub-optimum solutions

is performed, i.e., x̂
(k0)
0 , x̂

(k1)
1 , ≤ ≤ ≤ , x̂

(kL⊗1)
L⊗1 , where 𝑘p denotes the number of steps to SF

convergence. Finally, the local sub-optimum solution that presents lesser ML cost is chosen

as the Ąnal solution, deemed as the global optimum.
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Figure 7.4 Ű BER as a function of the number of transmit and receive antennas with
𝑁T = 𝑁R for Òb = ⊗15 dB.

Fig. 7.4 shows the BER versus the number of transmit and receive antennas

for a MIMO system employing different number of initial solution vectors 𝐿, for 4-QAM,

Òb = ⊗15 dB and 𝑐 = ⌊NT

2
⌉. Observe that as the number of initial solution vectors 𝐿

increases, better performance is obtained especially for low number of antennas. Thus,

for example, for 𝑁T = 𝑁R = 40 antennas, 𝐿 = 7 initial solution vectors are necessary to

achieve the optimum performance, which demonstrates the effectiveness of this approach.

In order to obtain the 𝐿 ⊗ 1 initial solutions, the number of symbols changed

from x̂(0) in Fig. 7.4 was given by 𝑐 = ⌊NT

2
⌉. As the maximum number of possible symbol

changes is 𝑐max = 𝑁T , an interesting task is to determine the optimum number of symbols

to be changed from x̂(0). This is answered in the next Ągure.

Fig. 7.5 shows the BER as a function of Òb for a MIMO system with 𝑁T =

𝑁R = 20 antennas and 4-QAM employing the SF procedure for 𝐿 initial solution vectors

with 𝑐 random positions changed from x̂(0). In Fig. 7.5a for 𝐿 = 1, obviously, increasing

on 𝑐 does not improve SF performance. However, as 𝐿 and 𝑐 increase, better performance

is achieved by the SF procedure (see Fig. 7.5b, Fig. 7.5c and Fig. 7.5d ). Furthermore,

note from Fig. 7.5d that for 𝐿 = 10, to change 𝑐 = 5 random positions from x̂(0) is enough

to approximate the ML curve for a BER of 10⊗5. Changing 𝑐 = 10 positions maintain the

performance of 𝑐 = 5. Increasing 𝑐 from ⌊NT

2
⌉, it is expected the performance gets worsen

again.
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Figure 7.5 Ű BER as a function of Òb for a spatial multiplexing MIMO system with 𝑁T =
𝑁R = 20 antennas and 4-QAM employing the SF procedure for different 𝑐
for (a) 𝐿 = 1, (b) 𝐿 = 3, (c) 𝐿 = 6 and (d) 𝐿 = 10 initial solution vectors

7.4 Numerical Results

In this section, the performance and complexity of the SF algorithm for MIMO

systems are presented.

7.4.1 BER Performance

Fig. 7.6 and Fig. 7.7 show the BER of SF algorithm for 𝑁T = 𝑁R = 50 and

𝑁T = 𝑁R = 100 antennas and for 16-QAM, respectively. From these Ągures, notice that

since 𝑁T is large, for 𝐿 = 5 with 𝑐 = 3 the BER is near ML until 10⊗5, respectively.
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Figure 7.6 Ű BER as a function of Òb for a spatial multiplexing MIMO system for 𝑁T =
𝑁R = 50 antennas and 16-QAM employing SF algorithm.
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Figure 7.7 Ű BER as a function of Òb for a spatial multiplexing MIMO system with 𝑁T =
𝑁R = 100 antennas and 16-QAM employing SF algorithm.

7.4.2 Computational Complexity

Basically, the complexity of SF procedure depends on the number of initial

solution vectors 𝐿 and the number of antennas 𝑁T .
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Thus, the total complexity of the SF procedure is split in two parts. In the Ąrst

part, the initialization step computes the MF initial vector solution x̂(0), which consists of

a matrix-vector multiplication and a component-wise quantization, whose complexity is

equal to 2𝑁2
T ⊗𝑁T Ćops. The complexity of generating 𝐿⊗1 initial vector solutions which

differ in 𝑐 random position from x̂(0), is 𝑁T (𝐿 ⊗ 1) Ćops. Therefore, the computational

complexity of the Ąrst part is equal to:

𝐶I = 2𝑁2
T + 𝑁T 𝐿 ⊗ 2𝑁T . (7.7)

The second part of the SF iterative process (lines 8 to 18 of algorithm 7.1) is

due to each of the 𝐿 initial solution vectors. Once the SF iterative process involves the

computation of ∆(k+1) (line 10) for the 𝑖-th element of the current solution x̂(k), whose

complexity is (𝑀 ⊗ 1)(2𝑁T + 10) Ćops. Then, if the condition ∆(k+1) < 0 (line 11) is

satisĄed, 2 Ćops are required for updating x̂(k+1) (see line 12). Otherwise, if condition

∆(k+1) < 0 is not satisĄed, the iterative process involves just the computation of ∆(k+1).

Therefore, considering 𝐿 initial solution vectors, the computational complexity of the

second part of the procedure is equal to:

𝐶II = 𝐿𝐾(2𝑁T 𝑀 + 10𝑀 ⊗ 2𝑁T ⊗ 8) (7.8)

Ćops, where 𝐾 is the average number of successful iterations, that is when ∆(k+1) < 0 is

satisĄed.

Fig. 7.8a shows the average number of successful iterations 𝐾 against Òb for

MIMO systems with 𝑁T = 𝑁R = 20, 50, 100 antennas and 4-QAM. Note, as expected, 𝐾

increases with 𝑁T . On the other hand, Fig. 7.8b presents the relation between 𝐾 and 𝑁T

for Òb = ⊗10 dB, 4-QAM and 𝑐 optimum that has been obtained by simulation. From

this Ągure, observe that 𝐾 has a linear increase with 𝑁T , that is

𝐾 = 0.59𝑁T ⊗ 1.2. (7.9)

Finally, adding the Ąrst and second part given by (7.7) and (7.8), respectively,

the total number of Ćops by employing SF algorithm is given by:

𝐶T = 2𝑁2
T + 𝑁T 𝐿 ⊗ 2𝑁T + 2𝑁T 𝐿𝐾𝑀 + 10𝐿𝐾𝑀 ⊗ 2𝑁T 𝐿𝐾 ⊗ 8𝐿𝐾

≡ 𝑁2
T (2 + 1.8𝐿𝑀 ⊗ 1.18𝐿), (7.10)

where (7.9) was used in (7.8) plus (7.7).

7.5 Chapter Conclusions

In this chapter, a low-complexity SF detector for spatial multiplexing MIMO

systems with a large number of transmit and receive antennas was presented. The pro-
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Figure 7.8 Ű Average number of successful iterations 𝐾 against (a) Òb for MIMO systems
with 𝑁T = 𝑁R = 20, 50 and 100 antennas, (b) 𝑁T = 𝑁R for Òb = ⊗10 dB
and 𝑐 optimum.

posed SF detector was shown to have excellent attributes in terms of both low complexity

as well as quasi-optimum performance, achieving high spectral efficiency of the order of

tens to hundreds of bps/Hz. In general, it achieves optimum performance by employing

one simple SF procedure, when the number of antennas is of the order of hundreds. On

the contrary, when the number of antennas is on the order of tens to achieve the optimum

performance several SF procedures must be employed, presenting a quadratic complexity

with 𝑁T . Finally, numerical results have conĄrmed that the proposed detector algorithm

achieves optimum performance.
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8 Conclusions and Future Works

This chapter presents the concluding remarks of the thesis and future research

works.

8.1 Conclusions

This thesis was focused on aspects of design and implementation of low-

complexity detector algorithms for spatial multiplexing MIMO systems with large number

of transmit and receive antennas. These systems constitute one of the most promising tech-

niques to achieve higher spectral efficiency in 5G wireless communications standard. Thus

the proposal of novel detector algorithms with high-performance and low-complexity are

necessary.

The contributions of this thesis are two-fold. Firstly, when the number of

receive antennas is much larger than the number of transmit antennas, that is named

spatial multiplexing massive MIMO systems, linear ZF detector was proven to achieve

near-optimum performance and full diversity order due to the property of asymptotically

orthogonal channel matrix. Thus, a closed-form BER expression were derived in order to

determine the performance difference between ZF and the optimum ML detector. In this

context, ZF detector has attracted interest for its employ in spatial multiplexing massive

MIMO systems.

However, once ZF detector involves the computation of an inverse matrix,

its practical implementation might be cumbersome. Thus, by exploiting the property of

asymptotically orthogonal channel matrix of spatial multiplexing massive MIMO systems,

two low-complexity ZF detectors based on Damped Jacobi (DJ) and Newton-Schultz it-

erative (NSI) algorithm were proposed in order to avoid the computation of an inverse

matrix. The performance of both algorithms were veriĄed resulting in acceptable BER

performance, especially when the number of iterations increases. Furthermore, both algo-

rithms are able to reduce the number of required computations from 𝑂(𝑁3
T ) to 𝑂(𝑁2

T ). Be-

side that, NSI algorithm outperforms signiĄcantly DJ algorithm in terms of performance

and complexity, which makes it ideal for spatial multiplexing massive MIMO detection.

Secondly, contrary to the previous case, when the number of transmit and

receive antennas is large and equal (𝑁T = 𝑁R), that is named symmetric spatial multi-

plexing MIMO systems, ZF detector achieves a poor performance in comparison to the

optimum ML performance, attaining a diversity order of one, which is undesirable. Since
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ML detector is impractical for large number of transmit antennas, due to its exponen-

tial complexity, more suitable algorithms that yield low complexity and perform as close

to optimum, as possible, are necessary. In this context, a novel precoding approach and

a symbol-Ćipping (SF) detector algorithm were proposed and evaluated for symmetric

spatial multiplexing MIMO detection. The proposed precoding approach transforms a

symmetric channel matrix into an orthogonal matrix in order to apply ZF detector at

the receiver side achieving optimum performance at the expense of a small increase in

the total average transmitted power. Despite achieving optimum performance through

precoding approach, its disadvantage is that the transmitter needs to know perfectly the

channel matrix, which limits its practical implementation. On the other hand, the pro-

posed SF detector algorithm, which is based on local sub-optimum searching, is able to

achieve the optimum ML performance when a large number, in the order of hundreds,

of transmit and receive antennas is available. However, if the number of antennas is in

the order of tens, SF detector algorithm must employ different random starting-point in

order to achieve the optimum performance.

As a general conclusion, it was shown in this thesis that problems arising in

large-scale spatial multiplexing MIMO detection can be efficiently overcome.

8.2 Future Works

In this section, some proposals related to the contributions and results of this

thesis can be studied in the future, such as:

∙ The detection algorithms proposed in this thesis considers single-cell scenarios. How-

ever, some additional challenges could appear in multi-cell scenarios due to the

inter-cell interference. In this context, the proposed detection algorithms should be

generalized to multi-cell scenarios.

∙ In this thesis, error correcting codes were not considered. For this reason, in order

to improve the performance of large-scale spatial multiplexing MIMO systems, it is

suggested as future research to consider error correcting codes, such as convolutional

codes, turbo codes and low-density parity-check (LDPC) codes. Thus, developing

iterative detection and decoding algorithms can be an interesting challenge.

∙ Throughout this thesis, the Rayleigh fading channels have been considered. In this

context, other fading channel models can be considered. For example, Nakagami-

m, Rician fading channels or a combination of channel models with and without

line-of-sight.
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∙ Perfect channel state information (CSI) at receiver was assumed in this thesis. How-

ever, in practice, the CSI is not perfect. Thus, it is proposed as a future research to

consider imperfect CSI in a more real large-scale spatial multiplexing MIMO sys-

tem model. Furthermore, it would be interesting to study and implement channel

estimation algorithms for large-scale spatial multiplexing MIMO systems.

∙ Hardware implementation of the algorithms proposed in this thesis is an interesting

challenge for future works.

∙ Employing large-scale spatial multiplexing MIMO systems in cooperative networks.
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APPENDIX B – Derivation of Equation

(6.4)

Here, it is proved that:

x̂ML = arg min
x̂∈MNT

‖y ⊗ Hx̂‖2 ∆
= arg min

x̂∈MNT

{︁
(r ⊗ x̂)H

HHH (r ⊗ x̂)
}︁

, (B.1)

where r = (HHH)⊗1HHy is the unconstrained ZF solution.

From (B.1), the Euclidean distance ‖y ⊗ Hx̂‖2 of the ML detector in (2.40)

can be expanded as:

‖y ⊗ Hx̂‖2 = ‖y ⊗ Hx̂ ⊗ Hr + Hr‖2

= (y ⊗ Hx̂ ⊗ Hr + Hr)H (y ⊗ Hx̂ ⊗ Hr + Hr)

= ¶(y ⊗ Hr)H + (Hr ⊗ Hx̂)H♢¶(y ⊗ Hr) + (Hr ⊗ Hx̂)♢
= (y ⊗ Hr)H (y ⊗ Hr) + (y ⊗ Hr)H (Hr ⊗ Hx̂)

+ (Hr ⊗ Hx̂)H (y ⊗ Hr) + (Hr ⊗ Hx̂)H (Hr ⊗ Hx̂) . (B.2)

Since r is the ZF solution, then:

(Hr ⊗ Hx̂)H (y ⊗ Hr) = (y ⊗ Hr)H (Hr ⊗ Hx̂) = 0. (B.3)

Thus (B.2) reduces to:

‖y ⊗ Hx̂‖2 = (y ⊗ Hr)H (y ⊗ Hr) + (Hr ⊗ Hx̂)H (Hr ⊗ Hx̂) . (B.4)

Substituting r with (HHH)⊗1HHy into (B.4), it is obtained that:

‖y ⊗ Hx̂‖2 = ¶y ⊗ H(HHH)⊗1HHy♢H¶y ⊗ H(HHH)⊗1HHy♢ + (r ⊗ x̂)H
HHH (r ⊗ x̂) .

(B.5)

Since

y ⊗ H(HHH)⊗1HHy = ¶INR
⊗ H(HHH)⊗1HH♢y, (B.6)
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the Ąrst term of (B.5) becomes:

¶y ⊗ H(HHH)⊗1HHy♢H¶y ⊗ H(HHH)⊗1HHy♢
= yH¶INR

⊗ H(HHH)⊗1HH♢H¶INR
⊗ H(HHH)⊗1HH♢y

= yH¶INR
⊗ H(HHH)⊗HHH♢¶INR

⊗ H(HHH)⊗1HH♢y

= yH¶INR
⊗ H(HHH)⊗1HH ⊗ H(HHH)⊗HHH + H(HHH)⊗HHHH(HHH)⊗1HH♢y

= yH¶INR
⊗ H(HHH)⊗1HH ⊗ H(HHH)⊗1HH + H(HHH)⊗1HHH(HHH)⊗1HH♢y

= yH¶INR
⊗ 2H(HHH)⊗1HH + (H(HHH)⊗1HH)2♢y

= yH¶(INR
⊗ H(HHH)⊗1HH)2♢y, (B.7)

where it is used that (HHH)⊗1 = (HHH)⊗H once HHH is a SPD matrix. Then, substi-

tuting (B.7) into (B.5), it can be show that:

‖y ⊗ Hx̂‖2 = yH¶(INR
⊗ H(HHH)⊗1HH)2♢y + (r ⊗ x̂)H

HHH (r ⊗ x̃) . (B.8)

Note that the Ąrst term on the right side of (B.8) is constant with respect to

x̂. Hence, this term can be ignored on the minimization. Thus, the equivalence in (B.1)

immediately follows:

x̂ML = arg min
x̂∈MNT

‖y ⊗ Hx̂‖2 ∆
= arg min

x̂∈MNT

{︁
(r ⊗ x̂)H

HHH (r ⊗ x̂)
}︁

, (B.9)

which completes the proof.
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