
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Pattam Gyanesh Kumar Patra

MACSAD: Multi-Architecture Compiler System

for Abstract Dataplanes

MACSAD: Sistema de Compilador
Multi-Arquitetura para Planos de Dados

Abstratos

Campinas

2019

Pattam Gyanesh Kumar Patra

MACSAD: Multi-Architecture Compiler System for

Abstract Dataplanes

MACSAD: Sistema de Compilador Multi-Arquitetura

para Planos de Dados Abstratos

Thesis presented to the Faculty of Electrical
and Computer Engineering of the University
of Campinas in partial fulĄllment of the re-
quirements for the degree of Doctor, in the
area of Computer Engineering.

Tese apresentada à Faculdade de Engenharia
Elétrica e de Computação da Universidade
Estadual de Campinas como parte dos req-
uisitos exigidos para a obtenção do título de
Doutor em Engenharia Elétrica, na Área de
Engenharia de Computação.

Supervisor: Prof. Dr. Christian Rodolfo Esteve Rothenberg

Este exemplar corresponde à versão
Ąnal da tese defendida pelo aluno
Pattam Gyanesh Kumar Patra, e
orientada pelo Prof. Dr. Christian
Rodolfo Esteve Rothenberg

Campinas

2019

COMISSÃO JULGADORA – TESE DE DOUTORADO

Candidato: Pattam Gyanesh Kumar Patra RA: 153806

Data da Defesa: 21 de Maio de 2019

Título da Tese: ŞMACSAD: Multi-Architecture Compiler System for Abstract Data-

planesŤ.

Prof. Dr. Christian Rodolfo Esteve Rothenberg

Prof. Dr. Rodolfo Jardim de Azevedo

Prof. Dr. Leonardo de Souza Mendes

Prof. Dr. Rodolfo da Silva Villaca

Prof. Dr. Fernando Manuel Valente Ramos

A ata de defesa, com as respectivas assinaturas dos membros da Comissão Jul-

gadora, encontra-se no SIGA (Sistema de Fluxo de Dissertação/Tese) e na Secretaria de

PósGraduação da Faculdade de Engenharia Elétrica e de Computação.

Dedicated To

My family who gave me reason to smile, to cry, to get angry, who challenge me to reach

beyond myself. My friend circle, JWALKERS, for being with me for the last 15 years,

offered their shoulders to lean on, opened their arms to offer solace, stood by me to

protect, and gave me a sense of existence, importance and aliveness everyday. A friend

whom i met accidentally here in Brazil after 8 long years turning out to be a great thing

as he continue to provide critical advises in every important juncture of my personal life

& became the magic glue to keep both my personal and professional life sane. The

amazing new friends i made in INTRIG who welcomed me to their hearts and to their

home out of curiosity, love and respect, whom i now carry with me for life. Gergely

Pongrácz for showing faith, for listening and for offering the valuable guidance i needed.

Specially, to the stranger i put my complete faith on even before coming to Brazil, who

became much more than a friend or an advisor, my YODA, Christian Rothenberg.

Acknowledgements

This work was supported by the Innovation Center, Ericsson Telecomunicações

S.A., Brazil under grant agreement UNI.61 through Funcamp/Unicamp intermediation.

Cognizance of newth & vicissitude is all i long,

for it To live until I live.

(speaking for myself)

Abstract

Software-DeĄned Networking (SDN) strives for programmable data plane, yet Ćexible and

scalable control and application planes. Despite having received less attention compared

to control and application aspects of SDN, data planes are a critical piece of the SDN

puzzle. We envision a Ćexible data plane showing characteristics, namely, Programmability,

Portability, Performance, and Scalability (3PS) as different aspects of Ćexibility. While

Programmability & Portability aspects focus on the architecture and design of the data

plane, Performance & Scalability appears during the evaluation of it. We extend the focus

of data plane evolution from Programmability from SDN school of thought to include Por-

tability aspect of Ćexibility. Programmable data plane conĄrms to protocol-independent

nature, whereas Portability addresses multi-architecture requirements of data plane de-

sign. P4 language, a new entrant, being a protocol-independent and target-independent

high-level programming language is capable to take data plane evolution to the next level

by unlocking the desired facets of data plane Ćexibility. To bring this required level of Ćexi-

bility to a data plane, a multi-architecture compiler system is necessary which can compile

a P4 program conforming to protocol & target independence nature of P4; However, such

a uniĄed compiler system solution is what we lack of. The main contribution of this thesis,

the Multi-Architecture Compiler System for Abstract Dataplanes (MACSAD) proposal,

is an effort to Ąll the gap by extending the Top-Down approach of P4 towards programma-

bility with Bottom-Up approach of OpenDataPlane (ODP) towards target-independence

with its low-level but cross-platform (HW & SW) APIs. We strengthen the contributions

of this thesis by including Performance, and Scalability aspects of Ćexibility too as part

of our evaluation of MACSAD in multiple realistic scenarios.

Keywords: MACSAD; P4; OpenDataPlane; Software-DeĄned Networking; Programma-

ble Dataplane; Performance analysis.

RESUMO

Redes DeĄnidas por Software (Software-DeĄned Networking - SDN) almejam um plano de

dados programável, além de planos de controle e aplicação Ćexíveis e escaláveis. Apesar de

ter recebido menor atenção quando comparado aos aspectos dos planos de controle e apli-

cação, o plano de dados concerne uma peça chave nos enigmas de SDN. Nós contemplamos

um plano de dados Ćexível apresentando as características, nomeadas, Programabilidade,

Portabilidade, Desempenho e Escalabilidade (Programmability, Portability, Performance,

and Scalability - 3PS) como diferentes aspectos de Ćexibilidade. Enquanto os aspectos

de Programabilidade e Portabilidade focam na arquitetura e projeto do plano de dados,

Desempenho e Escalabilidade aparecem durante a avaliação do mesmo. Estendemos o

foco da evolução do plano de dados de Programabilidade da escola de pensamento SDN

para incluir Portabilidade como aspecto de Ćexibilidade. O plano de dados programável

conĄrma a natureza independente do protocolo, enquanto a Portabilidade atende aos re-

quisitos de arquitetura múltipla do projeto do plano de dados. A linguagem P4, uma nova

entrante, sendo uma linguagem de programação de alto nível independente do protocolo

e independente do alvo, é capaz de levar a evolução do plano de dados ao próximo ní-

vel, desbloqueando as facetas desejadas da Ćexibilidade do plano de dados. Para trazer

esse nível necessário de Ćexibilidade para um plano de dados, é necessário um sistema de

compilador com várias arquiteturas que possa compilar um programa P4 em conformi-

dade com o protocolo e a natureza de independência de destino de P4; No entanto, essa

solução de sistema de compilador uniĄcado é o que nos falta. A principal contribuição

desta tese, a proposta do Sistema de Compiladores de Arquitetura Múltipla para Planos

de Dados (Multi-Architecture Compiler System for Abstract Dataplanes - MACSAD), é

um esforço para preencher a lacuna estendendo a abordagem Top-Down de P4 em direção

à programabilidade com a abordagem Bottom-Up do OpenDataPlane (ODP) em direção

à independência de destino com suas APIs de baixo nível, mas de plataforma cruzada

(HW & SW). Reforçamos as contribuições desta tese incluindo aspectos de Desempenho

e Escalabilidade da Ćexibilidade também como parte de nossa avaliação do MACSAD em

múltiplos cenários realistas.

Palavras-chaves: MACSAD; P4; OpenDataPlane; Redes DeĄnidas por Software; Plano

de Dados Programável; Análise de Desempenho.

List of Figures

Figure 1 Ű Supported Features envisioned by MACSAD 26

Figure 2 Ű Where ODP is situated? . 35

Figure 3 Ű PISA Architecture. Based on:(MCKEOWN, 2015) 38

Figure 4 Ű P4 Abstract Forwarding Model . 40

Figure 5 Ű Components of a P4 Program . 40

Figure 6 Ű P4 Parser Graph Example . 43

Figure 7 Ű P4Runtime Reference Architecture . 47

Figure 8 Ű High-level Reference Architecture & Use Case WorkĆow. 52

Figure 9 Ű Three Step Compilation Process. 55

Figure 10 Ű Code-autogeneration Flow Diagram. 61

Figure 11 Ű L2FWD Use Case Pipeline. 78

Figure 12 Ű L2FWD Performance Evaluation (1 core, 100 Table entries) on Testbed

A. 79

Figure 13 Ű L3FWDv(4/6) Use Case Pipeline. 80

Figure 14 Ű L3FWD (IPv4 & IPv6) Performance Evaluation (1 core, 100 Table

entries) on Testbed A. 81

Figure 15 Ű NAT Use Case Pipeline. 82

Figure 16 Ű NAT (UL & DL) Performance Evaluation (1 core, 100 Table entries)

on Testbed A. 83

Figure 17 Ű Data Center Gateway (DCG) use case scenario. 84

Figure 18 Ű DCG pipeline featuring the UL and DL table details. 85

Figure 19 Ű DCG (UL & DL) Performance Evaluation (1 core, 100 Table entries)

on Testbed A. 86

Figure 20 Ű BNG use case illustrating a subscriber and an external public service. . 88

Figure 21 Ű Implemented BNG pipeline featuring the main UL and DL tables. . . . 89

Figure 22 Ű BNG (UL & DL) Performance Evaluation (1 core, 100 Table entries)

on Testbed A. 90

Figure 23 Ű Packet Rate for all Use Cases with different CPU Cores (128 Bytes,

100 Table entries) on Testbed A. 92

Figure 24 Ű Packet Rate for Different Use Cases and CPU cores (128 Bytes) on

Testbed A. 93

Figure 25 Ű Packet Rate of different Use Cases & packet sizes. (100 Entries, 4 CPU

Cores) on Testbed D . 94

Figure 26 Ű Packet rate for different Use Cases & CPU Cores. (64 Bytes, 100 En-

tries) on Testbed D . 95

Figure 27 Ű Packet rate for different Use Cases, FIB sizes. (2 core, DPDK) on

Testbed E . 96

Figure 28 Ű Packet Rate for different Use Cases, burst sizes. (100 Entries, 2 CPU

cores, DPDK) on Testbed E . 97

Figure 29 Ű Forwarding performance of different Use Cases, Pkt sizes, TG. (100

Entries, 2 Cores) on Testbed E . 98

Figure 30 Ű Understanding Boxplot for Latency Measurements 100

Figure 31 Ű Latency of L2FWD DPDK Example for different packet sizes & burst

sizes. (2 CPU, 99% line rate) on Testbed E 101

Figure 32 Ű Latency of L2FWD Use Case for different packet sizes & burst size.

(100 Entries, DPDK, 2 CPU, 99% line rate) on Testbed E 102

Figure 33 Ű Latency of L2FWD Use Case (TX part re-implemented similar to DPDK

example) for different packet sizes & burst size. (100 Entries, DPDK,

2 CPU, 99% line rate) on Testbed E 103

Figure 34 Ű Latency of different Use Cases, packet sizes, Fib Sizes. (64 Bytes and

1580 Bytes, 100 Entries, DPDK, 10% line rate) on Testbed E 104

Figure 35 Ű Packet Rate comparison of different platforms and switches for selected

use cases (100 FIB size) and varying CPU cores. 105

Figure 36 Ű Packet Rate for L2FWD (100 entries, 64 Bytes) on Testbed B. 107

Figure 37 Ű Packet Rate for L3FWDv4 (100 entries, 64 Bytes) on Testbed B. . . . 107

Figure 38 Ű Forwarding performance for different MacS (VNF) Use Cases with dif-

ferent CPU Cores (64B, Testbed A). 109

Figure 39 Ű IPv4 and IPv6 forwarding performance of different I/O drivers, FIB

size, VNFs (4 CPU cores). 109

Figure 40 Ű Performance (Mpps) when dynamically (30s intervals) changing the

sets of CPU cores allocated to packet processing for different FIB sizes

on Testbed A. 111

Figure 41 Ű Performance (Mpps) when dynamically (30s intervals) changing the

sets of CPU cores allocated to packet processing for different FIB sizes

on Testbed B. 112

Figure 42 Ű Residual Plot for Linear Regression . 127

Figure 43 Ű Packet Rate (Predicted Value vs Measured Value). 129

Figure 44 Ű Abstract Packet Processing Pipeline 132

Figure 45 Ű Packet Rate comparison for all Use Cases with batch optimization for

different CPU Cores (64 Bytes, 100 Table entries) on Testbed A. 134

Figure 46 Ű BB-Gen Architecture and Integration with NFPA and MACSAD &

T4P4S . 141

Figure 47 Ű L2FWD Dependency Graphs . 159

Figure 48 Ű L3FWDv4 Dependency Graphs . 167

Figure 49 Ű L3FWDv6 Dependency Graphs . 168

Figure 50 Ű NAT Dependency Graphs . 174

Figure 51 Ű DCG Dependency Graphs . 185

Figure 52 Ű BNG Parser Dependency Graph . 197

Figure 53 Ű BNG Table Dependency Graph . 198

List of Tables

Table 1 Ű Research Directions. 24

Table 2 Ű ODP supported platforms . 36

Table 3 Ű Year-on-Year Evolution of OpenFlow 45

Table 4 Ű Scope, Approach, and Feature Comparison List of different Programmable

Switch Projects . 49

Table 5 Ű Packet Processing Functions . 53

Table 6 Ű P4 Object List in HLIR . 57

Table 7 Ű Backend APIs Categorical Examples . 59

Table 8 Ű Transformation of P4 Constructs to ŚCŠ Language 61

Table 9 Ű Auto-generated Code for Header Instances 63

Table 10 Ű Auto-generated Code for Header Field Instances 63

Table 11 Ű Auto-generated Table APIs for Control Plane 73

Table 12 Ű Testbed Summary . 78

Table 13 Ű Packet Rate Behavior for Different FIB Sizes 96

Table 14 Ű Processing Time for a Single Network Packet 98

Table 15 Ű Latency of BNG-UL use case for different FIB sizes & packet sizes in

Testbed E . 104

Table 16 Ű P4 Use Case Complexity Details . 117

Table 17 Ű MACSAD Switch (MacS) Dataset Sample 119

Table 18 Ű Coefficient Vector of Linear Regression Model 126

Table 19 Ű Ridge Regression Model 𝑅2 Scores . 128

Table 20 Ű Regularized Model with Ð value as 0.001 128

Table 21 Ű Performance Measures of Different Regression Models 129

Table 22 Ű Use Case Performance Results (64 Bytes, 100 Table Entries, DPDK,

Testbed A) . 135

Acronyms

AAA Authentication, Authorization and Accounting.

API Application Programming Interface.

ARM Advanced RISC Machine.

BNG Broadband Network Gateway.

BRAS Broadband Remote Access Server.

CISC Complex Instruction Set Computing.

CPE Customer Premise Equipment.

DCG Data Center Gateway.

DL Download.

DPDK Data Plane Development Kit.

dRMT disaggregated ReconĄgurable Match-Action Table.

DSL Domain SpeciĄc Language.

EO Elementary Operation.

FIB Forwarding Information Base.

GCC GNU Compiler Collection.

GRE Generic Routing Encapsulation.

HLIR High Level Intermediate Representation.

IR Intermediate Representation.

ISP Internet Service Provider.

JSON JavaScript Object Notation.

LLVM Low Level Virtual Machine.

LPM Longest PreĄx Match.

MacS MACSAD Switch.

MACSAD Multi-Architecture Compiler System for Abstract Dataplanes.

NAT Network Address Translation.

NF Network Function.

NFPA Network Function Performance Analyzer.

NFV Network Function Virtualization.

NOS Network Operating System.

NUMA Non-Uniform Memory Access.

ODP OpenDataPlane.

OF OpenFlow.

OPX OpenSwitch.

OvS OpenvSwitch.

P4 Programming Protocol-Independent Packet Processors.

PI Protocol Independence.

PISA Protocol Independent Switch Architecture.

POF Protocol-oblivious Forwarding.

PRT P4Runtime.

RISC Reduced instruction set computing.

RMT ReconĄgurable Match Tables.

RSS Receive Side Scaling.

SAI Switch Abstraction Interface.

SDK Software Development Kit.

SDN Software-DeĄned Networking.

SONiC Software for Open Networking in the Cloud.

T4P4S Translator for P4 Switches.

UL Upload.

VM Virtual Machine.

VNF Virtual Network Function.

VTEP Virtual Tunnel End Point.

VXLAN Virtual eXtensible Local Area Network.

Contents

1 Introduction . 21

1.1 Background and Motivation . 21

1.2 Research Hypothesis . 24

1.3 Thesis Approach & Contributions . 24

1.3.1 Multi-Architecture Compiler System for Abstract Dataplanes 26

1.3.2 Multidimensional Evaluation . 27

1.3.3 Use Case Complexity Analysis . 28

1.3.4 Compiler Optimization . 28

1.3.5 Additional Open-source Artifacts 28

1.3.6 Noted Contributions . 29

1.4 Outline . 31

2 Literature Review . 32

2.1 Related Technologies . 33

2.1.1 Packet IOs . 33

2.1.1.1 FD.io (Fast data Ű Input/Output) 34

2.1.1.2 Netmap . 34

2.1.1.3 Data Plane Development Kit (DPDK) 34

2.1.1.4 OpenDataPlane (ODP) 35

2.1.2 Packet Switch Pipeline Architectures 36

2.1.2.1 ReconĄgurable Match-Action Table (RMT) 36

2.1.2.2 disaggregated ReconĄgurable Match-Action Table (dRMT) 37

2.1.2.3 Protocol Independent Switch Architecture (PISA) 37

2.1.3 High Level Domain SpeciĄc Languages 38

2.1.3.1 Pyretic . 38

2.1.3.2 Protocol-Oblivious Forwarding (POF) 38

2.1.3.3 Network Assembly Language (NetASM) 39

2.1.3.4 Programming Protocol-Independent Packet Processors (P4) 39

2.1.4 Control Plane API Abstractions . 44

2.1.4.1 OpenFlow (OF) . 44

2.1.4.2 Switch Abstraction Interface (SAI) 45

2.1.4.3 Ethernet Switch Device Driver Model (switchdev) 46

2.1.4.4 P4Runtime (PRT) . 46

2.2 Related Work . 47

2.3 Concluding Remarks . 50

3 Multi-Architecture Compiler System for Abstract Dataplanes 51

3.1 Architecture . 51

3.1.1 Auxiliary Frontend . 52

3.1.2 Auxiliary Backend . 52

3.1.3 Core Compiler . 53

3.1.3.1 Transpiler . 53

3.1.3.2 Compiler . 54

3.2 Compilation Process . 55

3.3 P4 to IR Code Generation . 56

3.4 Internal & Helper APIs . 59

3.5 Source to Source Code Transformation . 60

3.5.1 Transforming Language Abstractions 62

3.5.2 Auto-generating Data Path Logic 66

3.6 Features of Architecture . 69

3.6.1 Programmability . 69

3.6.1.1 Protocol Independent Parser 70

3.6.1.2 Protocol Independent Dataplane 71

3.6.2 Portability . 71

3.6.3 Contoller Support . 72

3.7 Concluding Remarks . 73

4 Experimental Evaluation . 74

4.1 Testbed Details . 75

4.2 Use Case Descriptions . 78

4.2.1 Port Forwarding (PortFWD) . 78

4.2.2 Layer-2 Forwarding (L2FWD) . 78

4.2.3 Layer-3 Forwarding (L3FWDv4/v6) 80

4.2.4 Network Address Translation (NAT) 82

4.2.5 Data Center Gateway (DCG) with VXLAN 83

4.2.5.1 Download (DL) . 84

4.2.5.2 Upload (UL) . 85

4.2.6 Broadband Network Gateway (BNG) 87

4.2.6.1 Upload (UL) . 88

4.2.6.2 Download (DL) . 88

4.3 MacS Evaluation & Analysis . 91

4.3.1 Packet Rate Analysis . 91

4.3.1.1 Impact of FIB Sizes . 95

4.3.1.2 Impact of Burst Sizes . 96

4.3.1.3 Impact of Traffic Generators 97

4.3.2 Latency Analysis . 99

4.3.3 Performance Comparison Against Related Works 105

4.4 Performance Evaluation of MacS as Network Function 108

4.5 Adaptive Scalability by Dynamic CPU Core Allocation 110

4.5.1 Results Analysis . 110

4.5.2 Discussion . 112

4.6 Concluding Remarks . 113

5 Complexity Analysis . 114

5.1 Use Case Complexity . 114

5.2 Machine Learning (Regression) Analysis 117

5.2.1 Data Processing . 119

5.2.2 Regression Models . 121

5.2.3 Regression Analysis . 125

5.3 Concluding Remarks . 129

6 Optimization . 131

6.1 MACSAD Packet Processing Optimization 131

6.2 Evaluation and Analysis . 134

6.3 Concluding Remarks . 137

7 Open Source Artifacts . 139

7.1 BB-Gen Tool . 139

7.2 OpenDataPlane (ODP) . 142

7.2.1 Issues and Fixes for ODP . 142

7.2.2 IPv6 support for LPM Lookup in ODP 143

7.2.3 Contribution for odp-thunderx . 143

7.3 Additional Open-source Contributions . 143

7.4 Concluding Remarks . 145

8 Future Works & Conclusions . 146

8.1 Future Works . 146

8.2 Conclusions . 147

Bibliography . 149

ANNEX A Layer 2 Forwarding (L2FWD) . 155

A.1 L2FWD 𝑃414 Program . 155

A.2 L2FWD 𝑃416 Program . 156

A.3 Dependency Graphs for L2FWD Use Case 159

ANNEX B Layer 3 Forwarding (L3FWD) . 160

B.1 L3FWDv4 𝑃414 Program . 160

B.2 L3FWDv6 𝑃414 Program . 162

B.3 L3FWDv4 𝑃416 Program . 164

B.4 Dependency Graphs for L3FWDv4 Use Case 167

B.5 Dependency Graphs for L3FWDv6 Use Case 168

ANNEX C Network Address Translation (NAT) 169

C.1 NAT 𝑃414 Program . 169

C.2 Dependency Graphs for NAT Use Case . 174

ANNEX D Data Center Gateway (DCG) . 175

D.1 DCG 𝑃414 Program . 175

D.2 Dependency Graphs for DCG Use Case . 185

ANNEX E Broadband Network Gateway (BNG) 186

E.1 BNG 𝑃416 Program . 186

E.2 Dependency Graphs for BNG Use Case . 197

21

1 Introduction

Internet ubiquity paints networking devices as gateways which guides the net-

work packets across, and depicts the task as simple and mundane. In fact, according to

(CLARK, 1988), the design philosophy behind the fundamental structure of the Internet

was to make it simple and easy for the Internet to grow, and to allow different networks

to connect together using routers. The advancements in switch & router hardware tech-

nologies tell a different story though. To bring myriads of different networks of Internet

together, and to accommodate newer requirements of data centers and other private net-

works, switches & routers are becoming much more complex supporting multitudes of

protocols.

Although switch evolution is predominantly performance driven, recent past has

seen a steady increase in the number of protocols too. supported raising the complexity

of switch design. This protocol driven development process is archaic and relatively slow

being of 3-5 years cycle. while slow development cycle limits the fallback option for man-

ufacturer when the new protocol is not adopted by consumers, it also keeps increasing

the complexity of hardware design making the maintenance a difficult task. This inher-

ent inĆexibility in switch design, or simply data plane design, restricts manufacturers to

stay involved in proprietary switch development driving platform speciĄc developments.

Research works focusing on network Ćexibility are sparse at best. The difficulty in un-

derstanding the Ćexibility of network design and data plane design can be attributed to

its multiple deĄnitions focusing on different aspects of network. To strengthen our un-

derstanding of Ćexibility, our thesis tries conceptualizing innovative ideas of networking

to bring Ćexibility to switches describable in terms of many different measures, such as

programmability, portability, performance, and scalability (3PS).

1.1 Background and Motivation

Networking industry has been virtuous to borrow different technologies from other

Ąelds of research. A cursory throwback at the history of network evolution reveals that

two of the promising solutions for networking hardwares namely Disaggregation and Vir-

tualization are borrowed from other industries to bring Ćexibility to networking hardware,

network functions and the network itself. Disaggregation was the key to Śopen networkingŠ

and allowed the industry to move towards standard products with an open design to drive

the networking industry. It gave birth to todayŠs bare metal switches followed by numer-

ous Network Operating System (NOS). By opening the hardware design, Switch costs

plummeted and put hardware in the hands of the researchers and academicians. Similarly,

Chapter 1. Introduction 22

following the footsteps of server and storage virtualization, network professionals started

rethinking networking devices as virtualized devices instead as standalone devices help-

ing data center advancements. Then the advent of cloud pushed networking industry to

adopt virtualization as a Ąrst citizen and put central control as a new requirement bring-

ing centrally managed networks. Although these developments did not directly translate

to bringing programmability to devices for which SDN strives for, they indeed set the

foundation for our current research discussions and for the future networks.

In general, any packet switch1 architecture comprises of two main components

consisting of data plane and control plane where data plane is responsible for packet

forwarding, while control plane serves data plane to deĄne the datapath and its rules.

Software-DeĄned Networking (SDN) (KREUTZ et al., 2015) paradigm, a new school of

thought, advocates separation of the control plane from the data plane in the switch. It al-

lows programming the network control plane by managing the routing protocols on a logi-

cally centralized server instead of at the switch. To truely adopt SDN paradigm, a equally

similar level of Ćexibility is necessary from data plane too. However, only limited pro-

grammability was also brought to data plane by the programmable chips. Programmable

chips bring Ćexibility, speciĄcally programmability, to switch in terms of loosely deĄned

tables characterized by its size, lookup algorithm, and so forth. To be exact, OpenFlow

protocol (MCKEOWN et al., 2008) became fundamental in guiding the industry to pop-

ularize and adopt match + action abstractions to conĄgure switch tables, and can be

considered as a de facto standard for deĄning programmable data planes facilitated by

programmable chip designs. As a result of this movement, some equipment vendors suc-

cessfully released products in limited numbers supporting SDN and OpenFlow. But none

the less a data plane design independent of supported protocol and underlying target

remained far from reach.

This brief history leads us to our current research work and discussion. In a con-

ventional network, each comprising network device maintain a set of network applications

running routing algorithms to generate the network rules for the network traffic to follow.

The control plane of these devices are responsible to propagate these rules to the data

planes which simply forward packets accordingly. The co-existence of both control plane

and data plane has limited the development to the opening and standardization of the

APIs between them. Disaggregation bridles the inĆexibility to a small extent in designing

the network devices and brings support for different NOSs ushering Portability. Further-

more, following SDN principle, control plane and data plane i.e., software and hardware

entity of switches can be separated in every network device in a network by centralizing

all the control planes in a separate uniĄed logical entity leaving the data planes to operate

individually bringing programmability to the network architecture over its control plane.
1 Switch is used to refer both switch and router in this thesis as modern literature considers switches

as L2-L7 switches.

Chapter 1. Introduction 23

And we envision the proliferation of Programmability into the less explored entity, the

data plane too; realization of a fully Ćexible network device. With this we bring focus to

the Ćexibility requirements in terms of Portability and Programmability of switches.

Data plane programmability related research mainly focuses on three different

levels: data plane architecture, domain speciĄc language and low-level SDK to deĄne a

data plane. Current advancements in programmable data plane architectures, ReconĄg-

urable Match Tables (RMT) (BOSSHART et al., 2013), disaggregated ReconĄgurable

Match-Action Table (dRMT) (CHOLE et al., 2017), or Protocol Independent Switch

Architecture (PISA) (MCKEOWN, 2015) to name a few, promise to offer Ćexibility in

data plane allowing post-fabrication reconĄguration by manufacturers and consumers. In

a simple manner, a switch data plane extracts network packet header informations and

matches the extracted information against the Ćow table rules followed by performing

associated actions before forwarding the network packet out. These two packet processing

activities, also known as header parsing & table lookup, are identiĄed as design abstrac-

tions in data plane architectures: parser and match + action table abstractions. Do-

main SpeciĄc Languages (DSLs) such as Protocol-oblivious Forwarding (POF) (SONG,

2013) and Programming Protocol-Independent Packet Processors (P4) (P. Bosshart et

al, 2014) understand these design abstractions and offers intuitive language constructs to

implement these design abstractions. Meanwhile, OpenDataPlane (ODP) (OPENDATA-

PLANE, 2018), a powerful low-level SDK, provides a compiler system necessary to deĄne

a target switch using these design abstractions. In a nutshell, we feel the necessity of a

uniĄed multi-architecture compiler system comprising of compatible set of data plane ar-

chitecture, DSL, low-level SDK, and a target compiler crucial for Ćexible programmable

data plane.

Introduction of programmability into data plane has its own side effects and brings

new challenges. Data plane programmability gives away with the Ąxed protocol set, and

allows consumers and operators to deĄne custom protocols transforming the data plane

from Ąxed-function Protocol Dependent into Protocol Independent. Flexibility in data

plane brings challenges to control plane which until recently have been beneĄted by stan-

dardized Application Programming Interfaces (APIs) towards data plane. With custom

protocols in place, the control plane needs to adapt to the pipeline deĄnition every time

the consumer redeĄnes it. This gives rise to a new school of thought which advocates a al-

ternate way to deĄne a pipeline which can be input to both data plane and control plane,

and helps in deĄning the messages and APIs among them. P4Runtime (PRT) (P4API,

2018), OpenconĄg, etc are some of the solutions currently available exploring this ideology.

This allows a control plane to control any forwarding plane regardless of what protocols

and features the underlying data plane supports.

Chapter 1. Introduction 24

1.2 Research Hypothesis

In the previous section, we explored data plane Ćexibility and the three aspects

of data plane development. We have also identiĄed different aspects of Ćexibility such

as programmability, portability, performance, and scalability (3PS). The advancements

in data plane architectures, availability of supported DSL to implement data plane de-

sign abstractions, and a powerful low-level SDK over a compiler system are the dictating

factors to achieve a Ćexible data plane. By deĄning a data plane using the ŚparserŠ &

Śmatch+actionŠ design abstractions from data plane architectures, it is possible to have a

protocol independent data plane. We identify protocol independent nature as Programma-

bility aspect of Flexibility in a data plane. Following up, by adopting a multi-architecture

low-level SDK we can bring the same data plane to different platforms while focusing on

portability aspect of Ćexibility of the data plane. While Programmability & Portability

are related to the design of the data plane, Performance & Scalability aspects of Ćexibility

are more apt for the evaluation of the data plane. Simply put, our research encompasses

both design and evaluation of Ćexible data plane. To deĄne, our research hypothesis to

aim for would be, An open-source multi-architecture compiler system towards

data plane flexibility satisfying the ever so important contending features

3PS; programmability, portability, performance, and scalability; in our ad-

vancement to the future networks.

1.3 Thesis Approach & Contributions

The breadth of this research proposal spans along data plane Ćexibility while ig-

noring the interaction towards the control plane. Being said that, the primary focus is

towards the practical aspects of building our proposed compiler system, MACSAD, with

open-source or free components (whenever possible) available addressing data plane fea-

tures and a thorough evaluation of MACSAD addressing different aspects of Ćexibility

(i.e., 3PS). The contributions of this thesis includes different facets of MACSAD develop-

ment and evaluation: A muti-architecture compiler system, MACSAD, to achieve Ćexible

data plane; Evaluation of MACSAD inline to different aspects of Ćexibility; Complexity

analysis of different use case pipelines & performance prediction using machine learning

algorithms; Additional compiler optimization for MACSAD performance improvement;

Multiple open-source artifacts developed along with MACSAD development. All the

contributions are brieĆy explained and summarized in Table 1.

Table 1 Ű Research Directions.

Chapter 1. Introduction 25

Continuation of Table 1

multi-architecture compiler system

Our Solution: We explore our proposed MACSAD compiler system which can

deĄne a protocol-independent and target-independent pipeline by bringing

P4 and ODP together.

Challenges: Lack of SOA. Slim research community.

Missing supporting tools such as benchmarking.

Explored In: chapter 3.

Related Publication: (PATRA et al., 2016)

multidimensional evaluation of MACSAD

Our Solution: MACSAD is evaluated for programmability, portability, performance,

and scalability (3PS). We also evaluate MACSAD as VNF towards functional scalability.

Finally we evaluate resource scalability with adaptive dynamic CPU allocation method.

Challenges: Creating similar test bed for different target architectures.

Choosing a common tool across architectures for benchmarking.

Explored In: chapter 4.

Related Publications: (PATRA et al., 2017)(PATRA et al., 2018)

use case complexity analysis

Our Solution: We compiled a list of complexity factors for different use cases.

We apply Regression based Machine Learning algorithms to create a model and predict

performance of MACSAD.

Challenges: Lack of SOA related to complexity analysis. Difficulty in collecting

data for Machine Learning algorithm.

Explored In: chapter 5.

compiler optimization

Our Solution: We improved MACSAD code auto-generation phase maximizing

CPU-memory parallelism.

Challenges: Identifying common approach to code auto-generation for different

pipelines where the underlying compiler can optimize the generated code efficiently.

Explored In: chapter 6.

Chapter 1. Introduction 26

Continuation of Table 1

additional open-source artifacts

Our Solution: We created BB-Gen packet generator tool, and used it for all our

evaluation experiments. We have multiple contributions as bug Ąxes and feature

additions to P4 and ODP code bases.

Challenges: Necessity to have modular and user-friendly code base for BB-Gen.

Adding P4 support for BB-Gen. Developing competence over the complex

P4 and ODP code base to contribute.

Explored In: chapter 7.

Related Publications: (RODRIGUEZ et al., 2018) (CESEN et al., 2018a)

End of Table 1

1.3.1 Multi-Architecture Compiler System for Abstract Dataplanes

Our thesis proposal Multi-Architecture Compiler System for Abstract Dataplanes

(MACSAD) blends the Top-Down approach of P4 towards protocol-independence and

Bottom-Up approach of ODP towards target-independence. It is a cross-platform com-

piler system which incorporates low-level but target-independent (HW & SW) APIs from

ODP to offer data plane over various network platforms including CPUs (Ćexible data

path, lower performance) based on Complex Instruction Set Computing (CISC) like x86,

Reduced instruction set computing (RISC) like Advanced RISC Machine (ARM) (highly

multi-core) etc,. In addition, MACSAD brings support to different packet I/Os too. In

the big picture,dd MACSAD incorporates support for a number of features as shown in

Figure 1 and provides us with numerous opportunities, albeit challenging, for carrying

out different research activities.

MACSAD Switch

(MacS)

APIs

Architectures

SDKs

ARCH

· Packet I/Os -DPDK, NETMAP, Socket-mmap, etc.

· Targets -Raspberry, Virtual Machine, Container, Cavium,

 Kalray, Freescale, Texas Instruments, etc.

· Architectures -x86, x86_64, ARM, AARCH64, etc.

· Chipsets -Intel Chipsets, ARMv8, ThunderX, Octeon, etc.

· Auto generated.

 Ex. P4 Run me, SAI, OF etc.

Figure 1 Ű Supported Features envisioned by MACSAD

Chapter 1. Introduction 27

1.3.2 Multidimensional Evaluation

We evaluate MACSAD with respect to Programmability, Performance, Portabil-

ity, and Scalability (3PS) factors as explained here.

Programmability of MACSAD is affirmed by various use case pipelines pre-

sented in (PATRA et al., 2018), (MEJIA et al., 2018), (CESEN et al., 2018b). In our effort

towards protocol-independence, we bring diverse use cases with increasing complexity in

terms of number of table lookups and table actions, and present a detailed evaluation of the

use cases. The use cases supported on MACSAD include Layer 2 Forwarding (L2FWD),

Layer 3 Forwarding (L3FWDv4/L3FWDv6), Network Address Translation (NAT), Data

Center Gateway (DCG), and Broadband Network Gateway (BNG), to name them all.

Portability of MACSAD is explored by bringing the aforementioned use cases to

different platforms like x86, ARMv6, and ARMv8 spanning Intel Servers, Raspberry Pi2,

and Cavium switches. Apart from showing the feasibility of running MACSAD based

data planes, we also evaluate the performance of data planes on the supported target

platforms.

Performance & Scalability of MACSAD are evaluated and measured in terms

of packet rate and latency of different use cases. We explore the performance results of on

different platforms with a varied number of CPUs exploring the scalability aspect. We also

put MACSAD against two related works (such as the P4 based switch T4P4S (LAKI et

al., 2016) and the DPDK-capable production quality open source software switch Open-

vSwitch (OvS) (PFAFF et al., 2015)) from Table 4 and evaluated their performance over

different use cases.

In addition to the 3PS, we also explore two other aspects Ćexibility during evalu-

ation of MACSAD. We evaluate the resource scalability by analyzing a novel technique

providing dynamic CPU scaling through run-time (de)allocation of CPU cores in MAC-

SAD data plane. Scaling up/down can be adaptive based on system load, on traffic

workload, or other factors (e.g., energy consumption). Such behavior is instrumental in a

multi-tenant environment, where de-allocated CPU cores could be used for other tasks.

We stretched our evaluation activities to include functional scalability too. Func-

tional scaling is achieved by deploying multiple instances of the network function, MAC-

SAD data plane in our case, to achieve higher performance. This behavior is more promi-

nent in a Network Function Virtualization (NFV) environment where scaling is achieved

by instantiating a network function in multiple. We present MACSAD as a Virtual Net-

work Function (VNF) and carry out the performance evaluation for the same to provide

a glimpse into how MACSAD will behave in a NFV environment.

Chapter 1. Introduction 28

1.3.3 Use Case Complexity Analysis

For evaluation of a switch or a Network Function (NF), it is necessary to build

a methodology to identify the key components and factors (a.k.a. Complexity Factors)

inĆuencing the performance. This gives us an insight into the complexity of the use cases

and opens more opportunity to bring complexity into consideration while discussing per-

formance, portability or scalability. With sufficient information, it might be possible to

come up with techniques to bring performance improvements too to the use cases. An

earlier work (SAPIO et al., 2015) tried to measure the performance of NFs by identifying

recurring execution patterns Elementary Operation (EO) and mapping them to the hard-

ware. This work solely focuses on measuring performance in terms of packet rate. This

gives us a glimpse into the Complexity Factors responsible for a NFs. We present our

take on complexity analysis of P4 based pipelines and extend it to MACSAD. Based on

(DANG et al., 2017), we have identiĄed our Complexity Factors from the P4 programming

language constructs. We explored all the use cases supported by MACSAD, and present

the complexity details for all the P4 programs in Table 4. Then, we bring machine learn-

ing algorithms to analyze the complexity of the use cases using the Complexity Factors

as features. We use Regression methodologies to learn the relationship between the use

case complexities and their performance, and train different machine learning models to

predict the performance of a MACSAD use case from its P4 program. This will allow to

predict performance a data plane deĄned by a P4 program even before compiling it over

to the target platform.

1.3.4 Compiler Optimization

MACSAD implements a number of optimization techniques across its different

modules. However, our work towards exploiting the memory-level parallelism between

CPU and main memory (BHARDWAJ et al., 2017) is important due to its clear impact

on performance by targeting the memory-bound steps of packet processing, i.e., the table

lookup step which consists of table key creation and the actual lookup step. Taking into

account that the steps involved in different types of table lookups are most of the times

similar, we implement batched table key creation and table lookup to exploit the memory

level parallelism while hiding the CPU-memory latency. As explored in (WANG et al.,

2018), more than 70% of packet processing time is spent on table lookup in the datapath,

and therefore this task focuses explicitly on table lookup.

1.3.5 Additional Open-source Artifacts

Our work with MACSAD has pushed us to work on different ideas and projects

giving rise to multiple contributions to the research community. We faced many difficul-

ties in procuring test traffic data to evaluate MACSAD use cases. This inspired us to

Chapter 1. Introduction 29

come up with our own tool BB-Gen (RODRIGUEZ et al., 2018) to overcome the hurdles

towards agile data plane performance evaluation by its simplicity and effectiveness to

generate network traffic and P4 table entries for different P4 use cases with augmenting

complexity. Our other contributions are more focused on P4 and ODP source code and

their features. We have contributed with new features such as IPv6 based LPM lookup

method, and an extension to dependent graph generation module to the ODP and P4

repositories respectively. Apart from this, we have offered our help in providing a testbed

for bug reproduction, for validating the patches for bug Ąxes, and also directly contribut-

ing patches to Ąx issues in ODP and P4 code repositories. In addition to these, we have

provided all our research artifacts as open source for the research community to take

advantage of.

1.3.6 Noted Contributions

We present here all the contributions in terms of scientiĄc publications accom-

plishing the breadth of this thesis from different fronts. All the collaborative efforts are

described and referenced to the corresponding scientiĄc article indicating the co-authors

and their contributions. The inclusive list of publications is shown below.

(A) Towards a Sweet Spot of Dataplane Programmability, Portability and Performance:

On the Scalability of Multi-Architecture P4 Pipelines, IEEE JSAC issue on Scala-

bility Issues and Solutions for Software Defined Networks, 2018, P. Gyanesh Patra,

F. R. Cesen, J. S. Vallejo, D. L. Feferman, L. Csikor, C. E. Rothenberg, and G.

Pongrácz.

(B) Towards Realization of High Performance Programmable Datapaths using Domain

SpeciĄc Language, Décimo Primeiro Encontro dos Alunos e Docentes do Departa-

mento de Engenharia de Computação e Automação Industrial (XI EADCA),Campinas,

Brazil, 2018, P. Gyanesh Patra, C. E. Rothenberg.

(C) BB-Gen: A Packet Crafter for P4 Target Evaluation, ACM SIGCOMM’18 Demo and

Poster Session, 2018, F. R. Cesen, P. Gyanesh Patra, L. Csikor, C. Rothenberg, P.

Vörös, S. Laki, and G. Pongrácz.

(D) Design, Implementation and Evaluation of IPv4/IPv6 Longest PreĄx Match support

in P4 Dataplanes, Csbc 2018 – 17o wperformance, 2018,F. R. Cesen, P. Gyanesh

Patra, C. E. Rothenberg, and G. Pongrácz.

(E) MACSAD: An Exemplar Realization of Multi-Architecture P4 Pipelines, 5th P4

Workshop, June 2018, P. Gyanesh Patra, F. Rodriguez, J. Mejia, D. Feferman, C.

Rothenberg and G. Pongrácz.

Chapter 1. Introduction 30

(F) BB-Gen: A Packet Crafter for Performance Evaluation of P4 Data Planes, 5th P4

Workshop, June 2018, Fabricio Rodriguez Cesen, P. Gyanesh Patra, Christian E.

Rothenberg, Gergely Pongrácz.

(G) BB-Gen: A Packet Crafter for Data Plane Evaluation, Salão de Ferramentas, 36th

Brazilian Symposium on Computer Networks and Distributed Systems (SBRC 2018),

May 2018, F. R. Cesen, P. Gyanesh Patra, and C. E. Rothenberg.

(H) MACSAD: high performance dataplane applications on the move, 18th IEEE in-

ternational conference on high performance switching and routing (HPSR), Brazil,

2017, P. Gyanesh Patra, C. E. Rothenberg, and G. Pongrácz.

(I) MACSAD: Multi-Architecture Compiler System for Abstract Dataplanes (aka Part-

nering P4 with ODP), Acm sigcomm’16 demo and poster session, August 2016, P.

Gyanesh Patra, C. E. Rothenberg, and G. Pongrácz.

The complete effort around MACSAD incorporates a number of collaborative

activities which comprises tasks such as writing of P4 programs, contributing to open

source projects and more. We acknowledge the contributions towards the development

of P4 programs of the use cases such as L3FWDv6, Data Center Gateway (DCG), and

Broadband Network Gateway (BNG) by the co-authors from item (A) (PATRA et al.,

2018). In addition to the P4 programs, efforts contributing towards MACSAD source

code in line to the DCG and BNG use cases are also acknowledged here. Likewise, item (D)

shows the contributions to MACSAD implementing L3FWDv6 use case by the co-author.

The contributions from the collaborators helping in carrying out the experiments, and

collecting the results for burst size analysis and latency evaluation of MACSAD are

detailed in chapter 4. Furthermore, a big credit to the co-author of (CESEN et al., 2018b)

and (RODRIGUEZ et al., 2018) for the contributions towards additional artifacts of

MACSAD (subsection 1.3.5) identiĄed as IPv6 based LPM support for ODP and BB-

Gen. Continuing on acknowledgments, we want to mention the Translator for P4 Switches

(T4P4S) project team as the MACSAD development was bootstrapped from a part of

the seed code that we shared with the initial phase of T4P4S project and became a

part of Transpiler sub-module of MACSAD mentioned in subsubsection 3.1.3.1. Finally,

We also acknowledge Ericsson Research Brazil for the Ąnancial support, and Ericsson

Research Hungary for their support during the development of this thesis proposal.

We are delighted to receive contributions touching upon different aspects of MAC-

SAD, and at the same time also immensely satisĄed to be able to contribute to otherŠs

works as part of this thesis proposal and related tasks.

Chapter 1. Introduction 31

1.4 Outline

We begin with the state of the art and literature review of related technologies and

related works presented in chapter 2. Following on, this thesis explores different problem

classes while explaining the design and development of our proposed MACSAD (PATRA

et al., 2016; PATRA et al., 2017; PATRA et al., 2018) project in chapter 3. We present our

evaluation of MACSAD around four characteristics of Ćexibility, namely, performance,

portability, programmability and scalability (3PS) in chapter 4. We explore data plane

complexity of different use cases followed by complexity analysis using machine learning

algorithms in chapter 5. Then we bring our Ąndings on compiler optimization activities

in chapter 6. In chapter 7, we explain all our additional contributions that came out from

our research activities which include an open source tool, addition of features to open

source code repositories, bug Ąxes and many more. Finally, we present our conclusion

with remarks for future goals and activities in chapter 8.

32

2 Literature Review

Programmable switches go way back to the beginning when the Ąrst ever switch,

also known as Interface Message Processors (IMPs), was implemented in software with

an initial data rates of 56kbit/s. Broad adoption of internet and growing demand of the

World Wide Web (WWW) pushed the bandwidth requirement which was not feasible

with the software switches anymore. In 1998 Juniper brought to market the wire-speed

ASIC based router M40 with ten times the throughput of comparable contemporary Cisco

products like CISCO 12000. After this, we see a Ćurry of ASIC based switches came out

providing higher throughput year on year. Switches adhere to a vertically integrated two

layers design with control plane and data plane, and referred as Ąxed-function devices.

Although manufacturers kept adding more programmability to the hardware, it was al-

ways to support newer features whereas switches remain Ąxed-function for the consumers

and operators.

OpenFlow (OF) (MCKEOWN et al., 2008) came as a new effort from the re-

search community to bring Ćexibility to the data plane. It permits Ćow entry updates of

the switch lookup tables at runtime using standardized interfaces. Although this brings

conĄgurability to the data plane, OF still is restricted with its reliance on the Ąxed

header structures of the supported standardized protocols. But, SDN (KREUTZ et al.,

2015) sought to break the vertical integration and advocates decoupling of control and

data plane in a switch. It also takes the control plane to a centralized server bringing pro-

grammability to the control plan. A SDN control plane can control, conĄgure and manage

a whole network as it can have a network-wide view instead of a standalone device local

view. Without vertical integration in a switch, and with sufficient programming capabil-

ity of the hardware made the research community to rethink the internet in terms as it

was created, i.e., over software. However, we extend the thought and present the idea as

protocol-independent and target-independent data plane instead of just software based.

We focus our discussion on the switch data plane aligning the discussions to our thesis.

Data plane programmability is reimagined after the match+action table abstrac-

tion popularized by OF. Different DSLs (such as POF (SONG, 2013), P4 (P. Bosshart

et al, 2014), Frenetic (FOSTER et al., 2011), etc,.) tried to present the data plane in terms

of design abstractions based on match action abstractions, and are explained later in this

chapter. RMT (BOSSHART et al., 2013) and dRMT (CHOLE et al., 2017) are some of

the packet switch architectures for designing the data plane which explored these abstrac-

tions in a more detailed manner as explained later. These DSL based design abstractions

and packet switch architectures bring newer way to deĄne protocol-interdependent and

target-independent data plane which does not depend on any Ąxed header structures or

Chapter 2. Literature Review 33

protocols. This provides researchers an opportunity to run experimental protocols in their

switches and internal networks.

Without the Ąxed protocols the controller or control plane are not aware of the

data plane constructs to conĄgure or manage the data plane. As a result project like PRT

(P4API, 2018) came out of incubation which is a protocol-independent API and can be

auto-generated from data plane deĄnitions written in P4 DSL. PRT envisions to be able

to control any data plane and remain auto updated when data plane features changes.

We will present a brief description of PRT in this chapter for the sake of completeness of

the discussion though PRT is out of the purview of this thesis.

Apart from these a number of different tools and projects are also discussed which

are essential in shaping our research proposal. We present the state of the art under two

different sections such as "related technologies" and "related works". Related Technologies

section includes the tools and projects which has been part of our proposal project and

been an inĆuencer. Similarly, Related Works section presents the many projects form the

community which are more closer to our research proposal among the state of the art and

had direct or indirect impact towards Ąnalizing this thesis.

In a nutshell, our research proposal integrates PISA (MCKEOWN, 2015) (subsub-

section 2.1.2.3) design abstraction, P4 DSL (subsubsection 2.1.3.4), and ODP (OPEN-

DATAPLANE, 2018) (subsubsection 2.1.1.4) packet IO framework under the MACSAD

umbrella system to create programmable software switch for multiple target architectures.

2.1 Related Technologies

Given the reborn interest in network programmability through SDN and the grow-

ing interest in data plane abstraction activities (e.g., P4, SAI, ODP), we focused ourselves

on studying the emergent ecosystem of data plane abstraction technologies. Feasibility

studies along with performance and portability comparison among various data plane

abstraction technologies and HW targets will provide the required understanding about

where the current solutions stand at and where we are heading to. Results from these stud-

ies contribute to the roadmap of our proposal by contributing knowledge about different

technologies and in general contributing towards making more informed technological

decisions.

2.1.1 Packet IOs

Until recently the software-based packet forwarding was limited by the capability of

Linux kernel based packet forwarding infrastructure. Soon it became clear that to achieve

better packet rate it is necessary to take the feature out of the kernel and provide more

Ćexibility to the user. Features such as userspace memory-mapping to the packet buffers

Chapter 2. Literature Review 34

of NICs and introduction of hugepage memory system were a boost to this development

giving rise to fast packet processing solution like DPDK (DPDK. . . , 2010). We witness

a number of new advancements in relation to different packet IO frameworks leading the

race headed for high forwarding throughput in programmable software switches.

2.1.1.1 FD.io (Fast data – Input/Output)

FD.io is the recent entrant and brings several open source projects and libraries

to support Ćexible and programmable data plane application on a generic hardware plat-

form. It can deliver high-throughput and low-latency services over different architectures

and deployment environments. The key component of FD.io would be the Vector Packet

Processing (VPP) library donated by Cisco which is extremely modular and allows adding

new capabilities as additional graph nodes with zero modiĄcation to the underlying code

base. It was adopted under The Linux Foundation Networking Fund (ŞLFNŤ) in January

2018 demonstrating the conĄdence of the Linux community for this project and providing

long term support for the code base.

2.1.1.2 Netmap

Netmap (RIZZO, 2012) is also a fast packet processing I/O framework imple-

mented as a kernel module. It allows the data applications to work using netmap seam-

lessly driver when available without requiring any changes to the applications. It offers

zero-copy, batched IO and other features while limited by the absence of any APIs sup-

porting inherent hardware acceleration. It achieves high performance by implementing

memory mapping to the packet buffers of NICs. Netmap drivers exist completely in the

kernel, and the system does not rely on IOMMU or other special mechanisms. It is a

clean solution without disrupting the Linux Kernel-based packet IO framework and is

integrated by the BSD kernel. It can be a go-to solution if upstream support of Netmap

for relevant NIC drivers and kernel developers can be possible.

2.1.1.3 Data Plane Development Kit (DPDK)

Data Plane Development Kit (DPDK) (DPDK. . . , 2010) is the most commonly

used and widely adopted user space fast packet processing IO driver collection used for

deĄning data plane and fast packet processing on a wide variety of CPU architectures.

Started by Intel in 2010, it is currently an open-source project under the Linux Foundation.

It offers a multi-core framework for users to build vendor-neutral software and data plane

applications. DPDK is heavily optimized for Intel R÷ architectures. It uses hugepages to

reduce TLB Ćushes and achieve higher packet throughput performance. It also implements

features like zero-copy, batched I/O and Non-Uniform Memory Access (NUMA) support.

Chapter 2. Literature Review 35

2.1.1.4 OpenDataPlane (ODP)

OpenDataPlane (ODP) (OPENDATAPLANE, 2018), a new entrant, has emerged

to provide an abstract APIs speciĄcation to support Linux based network applications.

ODP establishes a set of higher level common APIs spanning equivalent features across

multiple targets mentioned in Table 2 making data plane applications portable. ODP

can be compared to OpenGL as being the common standard for programming network-

ing devices instead of video graphics. ODP establishes itself as a higher abstraction than

DPDK and Netmap, and provide support for them as underlying fast packet IO technolo-

gies. It extends the highly-optimized vendor-speciĄc Software Development Kits (SDKs)

while abstracting the hardware acceleration features (e.g., Crypto) of the underlying hard-

ware. OpenDataPlane project is created to offer an open-source, and cross-platform set

of APIs for any networking data plane. Two important components of ODP are ODP

API speciĄcation and ODP API implementation.

Figure 2 Ű Where ODP is situated?

ODP API speciĄcation describes a functional model for data plane applications.

It covers the common features across multiple targets and also common programming

requirements. Basic data plane application programming requirements such as packet

receive and send (also known as Packet IO) are deĄned under the speciĄcation without

specifying their implementation. It goes beyond this by describing the ODP APIs using

abstract data types leaving their deĄnition to the ODP implementers. For example, ODP

packets are referenced by abstract type odp_packet_t whereas the actual implementation

of it is the responsibility of ODP implementers.

Under current practice, the ODP implementations available for different platforms

are implementations of the ODP API speciĄcation tailored for each platform. This design

practice allows hardware offloading to be implemented for some APIs in a speciĄc platform

which might not be possible in another platform. From the application point of view,

the underlying functional behavior is independent of the platform level implementation

details of the ODP APIs. This is very important as ODP thrives on the balance of ODP

Implementations to be open sourced vs. left up to the semiconductor vendor. The vendors

Chapter 2. Literature Review 36

decide whether to opt for open sourced or proprietary implementation of the ODP APIs.

Developers can write data plane applications without being an expert of the underlying

platform only by conĄrming to the ODP API speciĄcation.

Figure 2 shows the scope of ODP in a switch platform complementing the ven-

dor speciĄc SDKs by providing common set of APIs transforming ODP portable across

supported platforms mentioned in Table 2. The blue rectangle in Figure 2 shows how the

data plane applications and ODP APIs co-relate to the vendor speciĄc hardware blocks

and libraries. We use ODP as part of our compiler system to bring portability for the

data plane applications.

Table 2 Ű ODP supported platforms

Company Supported Platforms Architecture

Cavium Networks
Cavium OcteonTM SoCs MIPS64

Cavium ThunderXTM SoC ARMv8

Kalray MPPA platform MPPA

Hisilicon Hisilicon Platform ARMv8

Freescale QorIQ SoCs Power & ARMv8

Texas Instruments TI Keystone II SoCs ARM Cortex-A-15

Marvell Marvell ARMADA 8K SoCs ARM Cortex-A72

Linaro
Uses DPDK as pacet I/O acceleration layer. Intel x86

Not a performance target.
Reference for any Linux kernel.

Software-based with Netmap & DPDK support.
Any

2.1.2 Packet Switch Pipeline Architectures

Traditionally the high-speed switch pipeline is composed of multiple Ąxed stages of

match-action where each stage is responsible for a speciĄc packet processing operation like

extract 𝑀𝐴𝐶dest and perform a lookup for this address. The supported protocols are the

result of these stages presented in a pipeline format which little to no possibility to make

any changes by the consumer. However, with programmable switch development in place,

it is a requirement for the switches to offer an option to program the match-action stages

using different DSL. Programmable switches have offered a lower performance compared

to Ąxed-function switches. We present here various switch pipeline architectures evolved

to bring programmability without sacriĄcing performance.

2.1.2.1 Reconfigurable Match-Action Table (RMT)

For SDN switches OF speciĄcation brings Ćexibility to deĄne the switch pipeline

by using multi-table matching. At the same time it can not conĄgure the width, depth or

number of table of the underlying platform, and is also limited by the header structures

Chapter 2. Literature Review 37

supported (e.g., Ethernet, IP, UDP) for parsing and matching and actions supported (e.g.,

forwarding, dropping, decrementing TTLs, pushing VLAN header) to process packets. The

inability to extend a Ąxed-function switch in use contributes to the limitation of OF. As an

answer, RMT (BOSSHART et al., 2013) explores the multi-table matching architecture

to bring programmability to switch pipeline. RMT deĄnes abstracts for header parsing

and also represent the table actions in an abstract way which allow supporting custom

protocol headers and custom actions on any header Ąelds as necessary. RMT uses match-

action stages to deĄne a pipeline where each stage consists of 3 components such as (1)

match component to extract header and create match keys, (2) Table component with Ćow

entries for lookup, (3) Action component to process and modify packet Ąelds and headers.

RMT architecture brings multiple stages in a sequence to create a packet process pipeline.

2.1.2.2 disaggregated Reconfigurable Match-Action Table (dRMT)

dRMT (CHOLE et al., 2017) addresses the limitations and improves over RMT

in deĄning programmable data plane pipeline. RMT pipeline stages has local memory to

deĄne tables which may not be sufficient for a large table which can end up spreading

over multiple stages resulting in poor resource utilization. In another note, RMT deĄnes

a Ąxed pipeline where a packet follows the stages sequentially. This may result in under-

utilization of resources when in a stage only default action is deĄned without any preceding

match, or when a packet has to traverse through all the stages in cases of recirculation

independent of the actual number of stages necessary. dRMT creates a pool of memory

and a cluster of processors to dynamically adapt them according to the pipeline. This

allows deĄning a pipeline without any Ąxed order of the stages with Ćexible memory and

processor allocation for each stage.

2.1.2.3 Protocol Independent Switch Architecture (PISA)

Bottom-up from the data plane perspective, Protocol Independent Switch Archi-

tecture (PISA) (MCKEOWN, 2015) is becoming the obvious approach for programmable

hardware. PISA architecture paradigm resides at a higher abstract level than RMT and

dRMT, and brings programmability to users by going contrary to the traditional wisdom

that programmability always comes with a cost in terms of performance. Unlike RMT

& dRMT, PISA deĄnes higher level generic abstractions for packet pipeline as shown in

Figure 3. It deĄnes a pipeline as a chained set of match+action table abstraction preceded

by a programmable parser where each stage can accommodate a single table or multiple

tables which may or may not include a partial table spreading from a previous stage.

PISA can deliver rich Ćexibility without compromising performance for comparable chip

area and energy consumption. PISA identiĄed various primitive instruction sets for pro-

cessing packets based on which data plane applications can be written using a high-level

DSL such as P4 to deĄne and conĄgure the underlying packet pipeline. To summarize,

Chapter 2. Literature Review 38

PISA advocates that a programmable data plane can be deĄned by conĄguring the un-

derlying tables, and, in turn, supporting (re-)conĄguration of data plane at a far later

stage unlike during the fabrication phase as is the case of traditional networking ASICs

while keeping the pipeline simple and performance at par.
P
ro
g
ra
m
a
b
le

P
a
rs
e
r

Match

Match

Match

Match

Action

Action

Action

Action

Match

Match

Match

Match

Action

Action

Action

Action

Match

Match

Match

Match

Action

Action

Action

Action

Match

Match

Match

Match

Action

Action

Action

Action

Figure 3 Ű PISA Architecture. Based on:(MCKEOWN, 2015)

2.1.3 High Level Domain Specific Languages

Continuing with our discussion over programmable data plane, we bring focus to

the importance of high-level DSL to deĄne a data plane. Currently, switches require a

priori knowledge of the protocol header format and application semantics for the control

plane and data plane to work seamlessly. Otherwise known as protocol dependent switch

architecture, this brings out the fundamental Ćaw hindering the support for SDN. DSL

can introduce design abstractions to deĄne a data plane supporting custom protocols and

header Ąelds, and does not mandate any priori knowledge of any protocol. We explore

here a number of DSLs developed towards achieving protocol independent data plane.

2.1.3.1 Pyretic

Pyretic (MONSANTO et al., 2013) introduces abstractions to build SDN appli-

cations from multiple, independent modules represented as network policies to manage

network traffic. The network policies pass through parallel or sequential composition be-

fore being executed on an abstract network topology reproducing the constraints applica-

ble to the modules. It also introduces an abstract packet model which introduces virtual

Ąelds on the packets supporting packet metadata. Pyretic can even be used to design

large, sophisticated controller applications comprising of smaller modules. BrieĆy, Pyretic

can be seen as a language, and a system able to compose network policies representing

SDN applications in different ways and execute them on an abstract network topology

to evaluate.

2.1.3.2 Protocol-Oblivious Forwarding (POF)

Protocol-oblivious Forwarding (POF) (SONG, 2013) focuses on removal of protocol-

speciĄc conĄgurations from the forwarding devices to achieve programmable data plane.

Chapter 2. Literature Review 39

It deĄnes a concise set of protocol independent and platform independent instructions

known as Flow Instruction Set (FIS) which can be used to deĄne any network service

turning the forwarding device into protocol oblivious. POF assembles the search keys

from the packet header, perform the table lookups, and then perform the associated ta-

ble action function and related instructions. The packet processing is done under the

guidance of the controller through a sequence of generic key assembly and table lookup

instructions. It also decouples the match and action function of each Ćow and allows reuse

of action functions across multiple Ćows tables. We consider POF to be one of the Ąrst

solutions with a vision towards a fully programmable data plane to achieve true Ćexible

SDN implementation.

2.1.3.3 Network Assembly Language (NetASM)

The concept of an Intermediate Representation (IR) is not new in the domain of

compiler technology. While understanding the different pipeline architecture and DSLs,

we realize that there is a place for an IR when we bring DSL to the target platform.

To Ąll the gaps between higher-level programming languages (e.g., P4, POF, etc.) and

the underlying hardware targets, NetASM (Network Assembly Language) (M. Shahbaz

et al, 2015) has been proposed for programmable data planes. NetASM is a low-level in-

termediate programming language providing a 1-to-1 correspondence with the underlying

platform based on well-deĄned constructs to deĄne various low-level packet operations.

NetASM enables some optimization methods to improve the performance and resource

utilization of data plane applications. Currently, a prototype of NetASM is available by

the developer which provides limited support for P414.

2.1.3.4 Programming Protocol-Independent Packet Processors (P4)

Programming Protocol-Independent Packet Processors (P4) (P. Bosshart et al,

2014; BUDIU; DODD, 2017) is a high-level declarative language which can use high-level

network abstractions to express packet processing pipeline for any data plane. P4 de-

velopment is motivated by three primary goals as (1) Protocol Independence, (2) Target

Independence and (3) (re-)conĄgurability of a target. P4 abstractions includes header,

table, action etc., to deĄne a data plane pipeline conĄrming to the abstract model at

Figure 4. P4 supported abstract model consists of a parser & match+action tables sand-

wiched between ingress and egress. When a packet arrives, the headers are parsed and

then passed through the match+action table resources carrying out lookup over header

Ąelds and applying actions to the packet headers upon match in the table followed by the

deparser to serialize metadata into the packet, and Ąnally send the packet out at egress.

P4 achieves ŚTarget IndependenceŠ as the P4 programs are built for PISA in Figure 3

conĄrming to the P4 abstract model. Similarly, protocol independence is achieved by the

ŚheaderŠ abstractions which allow to deĄne any arbitrary network protocol header for the

Chapter 2. Literature Review 40

programmable parser of the PISA model. P4 being an abstract programming language

achieves (re-)conĄgurability on a programmable data plane as the target and protocol

independence traits help to change the packet forwarding behavior and reprogram the

target device.

PARSER DEPARSER

INGRESS EGRESS

Match+Ac✁on

Metadata Bus

Tables

Figure 4 Ű P4 Abstract Forwarding Model

P4 language consortium has recently released a newer version of P4 called P416

while the previous version is referred to as P414. P416 brings language and architecture

separation in support of a new Portable Switch Architecture (PSA) to bring P416 support

to more diverse platforms, unlike P414 which supports only PISA architecture. Extern

function support is added to P416 instead of a Ąxed set of primitive actions as in P414.

This allows programmers to deĄne different action functions corresponding to the newer

underlying supported architectures when necessary. Apart from this P416 also brings new

syntax and semantics to the P4 language making P4 programs more descriptive and

feature rich. P416 implements PISA as one of the architecture as part of the PSA. We

explore P4 using PISA in this thesis while using both P414 and P416 as our choice of

DSLs. For the sake of brevity, we use the notation P4 to refer both P414 and P416

versions of the language while explicit reference to a speciĄc P4 version is done only when

necessary.

Header

Parser

Table + Ac on

Control Flow

Ac ons

Architecture De ni on

Externs

P414 P416

Figure 5 Ű Components of a P4 Program

Chapter 2. Literature Review 41

We now bring our focus onto P4 programs written in bot P414 and P416. A P4

program consists of four crucial elements similar to the depiction in Figure 5 with two

additional components available speciĄcally for P416. The following description of the

language components is based on P414 syntax and semantics. Although with P416 the

syntax has been modiĄed and language has become leaner with fewer keywords, the basic

functionalities remain the same. The P416 related details can be referred at (BUDIU;

DODD, 2017).

1. Header Declaration

The P4 construct Header can be used to declare both header and metadata instances

as metadata is identiĄed as a special type of header. Header type speciĄes the

associated Ąelds and their widths of a header and normally sits at the beginning

of a P4 program. An example of the Ethernet header, and a metadata are shown

at Listing 2.1, and Listing 2.2 respectively. Metadata are declared per packet and

remain valid until the packet goes out of the pipeline. It is necessary to create an

instance of the headers and metadata after their declaration to enable reference to

them while processing packets in the P4 program.

1 header_type ethernet_t {

2 f i e l d s {

3 dstAddr : 48 ; // Des t ina t i on MAC Address

4 srcAddr : 48 ; // Source MAC Address

5 etherType : 16 ; // Ethernet Type

6 }

7 }

8 header ethernet_t e the rne t ;

Listing 2.1 Ű Ethernet Header DeĄnition

1 header_type local_metadata_t {

2 f i e l d s {

3 cpu_code : 1 ; // Code f o r packet going to CPU

4 port_type : 0 ; // Inbound or Outbound Port

5 i n g r e s s _ e r r o r : 1 ; // An e r r o r in i n g r e s s port check

6 i s_tagged : 0 ; // I f pkt i s tagged

7 }

8 }

9 metadata local_metadata_t local_metadata ;

Listing 2.2 Ű Metadata DeĄnition

2. Parser Specification

Parser speciĄcation is usually the second part of any P4 program and always starts

with ŚstartŠ parser state. It can be represented as a parse graph shown in Figure 6.

Chapter 2. Literature Review 42

Parser SpeciĄcation allows to parse an incoming packet in accordance to the headers

declared in the P4 program (see Listing 2.3).

1 par s e r s t a r t {

2 re turn parse_ethernet ;

3 }

4

5 par s e r parse_ethernet {

6 ex t r a c t (e the rne t) ;

7 re turn s e l e c t (l a t e s t . etherType) {

8 0x0800 : parse_ipv4 ;

9 0x86DD : parse_ipv6 ;

10 d e f a u l t : i n g r e s s ;

11 }

12 }

13

14 par s e r parse_ipv4 {

15 ex t r a c t (ipv4) ;

16 re turn i n g r e s s ;

17 }

18

19 par s e r parse_ipv6 {

20 ex t r a c t (ipv6) ;

21 re turn i n g r e s s ;

22 }

Listing 2.3 Ű P4 parser example

We used select and extract statements in this parser example. Packet header details

are retrieved using the extract statement and then the select statement determines

the next protocol header to process based on the existing parsed data. The select

statement also contains a reference to the Control Flows (e.g., ingress) used as the

exit criteria for the Parser indicating the switch to commence processing the parsed

packet data. The example shows that the parsing process starts with the Ethernet

header and then reference the parsing function of the IPv4 or IPv6 protocol decided

by the value of EtherType.

3. Table and Action Definition

The actions deĄned and the table declarations come after the parser speciĄcation

in a P4 program. Table declaration is composed of read and actions components.

read dictates the exact header Ąelds to match upon and the table lookup algorithm

to be used by the table. Likewise, actions speciĄes a sequence of actions available

for the table. Each table entry is associated with an action to be enacted on the

receiving packet should there be a match (table hit), otherwise in case of a table

miss (no entry is matched) the default action for the table is referenced.

Chapter 2. Literature Review 43

Start

parse_start

EtherType

parse_ipv4 parse_ipv6

Accept

Reject

0x0800 0x86DD

Default Default

Default

parse_ethernet

Figure 6 Ű P4 Parser Graph Example

1 ac t i on no_op () {

2 }

3

4 ac t i on rewrite_src_mac (smac) { //Compound Action

5 modi fy_f i e ld (e the rne t . srcAddr , smac) ; // Pr imi t ive Action

6 }

7

8 t ab l e send_to {

9 reads {

10 standard_metadata . egress_port : exact ;

11 }

12 a c t i o n s {

13 no_op ;

14 rewrite_src_mac ;

15 }

16 }

Listing 2.4 Ű P4 Match-action table speciĄcation example

The actions can be considered as functions which are built using Primitive Actions

from the P414 speciĄcation and hence are also referred to as Compound Actions.

Primitive Actions are a minimal set of instructions which can be used to describe

Chapter 2. Literature Review 44

different simple packet processing actions such as modify_field, add_header etc. P416

has replaced the Primitive Actions with Extern functions which can be target speciĄc

primitive constructs for packet processing to bring more architectural support to the

language. For backward compatibility, P416 provides support for all the Primitive

Actions from P414 and also offers a tool to transform the P414 program into the

P416 syntax.

4. Control Flow

PISA dictates each network packet to be processed by a sequence of match+action

tables. In a P4 program, this execution sequence is described by the Control Flow

as shown in Listing 2.5. The tables are executed using the apply statement in the

Control Flow. Table dependencies are enforced using if-else statements where the

selection of the next table is decided as a result of the hit/miss outcome in the table

under process.

1 c o n t r o l i n g r e s s {

2 apply (send_to) ;

3 }

Listing 2.5 Ű P4 control Ćow speciĄcation example

Full details and more examples about various elements of P4 language and of P4

programs can be found in P4 SpeciĄcations (P414 SPEC, 2017; P416 SPEC, 2017).

2.1.4 Control Plane API Abstractions

With SDN proliferation we now have the control plane as a separate logical entity

from the data plane. It is trivial for the control plane to be able to control and manage

the corresponding data plane for the switches to function correctly. This is where the

control plane API Abstractions become essential for consideration. Projecting control

plane as a separate centralized logical entity leads to a single control plane controlling a

single or multiple data planes. Also, it is possible for the data planes to be of different

architecture bringing more compatibility challenges to the control plane. We will explore

some solutions which try to introduce abstractions to the control plane APIs making it

functional over different data planes.

2.1.4.1 OpenFlow (OF)

OpenFlow (OF) is the front runner SDN technology bringing programmability

to the data plane. It exposes new control knobs for programming the network, but the

knobsŠ functions are largely dictated by the Ąxed functionality of the forwarding devices.

The OF speciĄcation deĄnes a switch pipeline by using multi-table matching to bring

Chapter 2. Literature Review 45

Ćexibility to the data plane. Although it can add or remove Ćow entries in the table or

deĄne the sequence of tables to be part of the pipeline, it can not conĄgure the width,

depth or number of table of the underlying platform as the resources available are Ąxed in

nature in the underlying platform. Likewise, OF also works with predeĄned protocols and

header structures (e.g., Ethernet, IP, UDP) for parsing and matching. The protocol de-

pendent pipeline is limited by the table actions supported too (e.g., forwarding, dropping,

decrementing TTLs, pushing VLAN header) to process network packets. For new header

format support or new packet operation support it is necessary to bring changes in OF

speciĄcations and the underlying hardware too. Due to Ąxed-function device limitations,

In fact, it is not possible to conĄgure every OF1.x deĄned pipelines and abstractions from

the already available OF speciĄcations over current ASICs offerings due to Ąxed-function

nature of the device. In addition to that, OF tried to include support for more services

year on year as shown in Table 3. The slow hardware development process could not

keep up with the complexity of designing new OF features every year. Although it brings

more Ćexibility on paper, it is practically not feasible to develop target hardware with

the complete support of OF speciĄcation using current technologies while still remaining

Ąnancially viable. Nevertheless, the contributions from the OF community are undeniably

a signiĄcant driving factor bringing SDN to the mainstream.

Table 3 Ű Year-on-Year Evolution of OpenFlow

OF Version
Release

Date
Match
Fields

Depth Size (bits) Major Features

1.0 Dec 2009 12 12 264
Single Table.
Ethernet/IPv4

1.1 Feb 2011 15 15 320
Multi table and Group table.
VLAN and MPLS support.

1.2 Dec 2011 36 9-18 603
TLV matching. IPv6.
Multiple Controller.

1.3 Jun 2012 40 9-22 701
Meter Table. MAC-in-MAC.
Multiple Channel Between
Switch and Controller.

1.4 Oct 2013 41 9-23 709
Synchronized Table.
Bundle.
Flow Monitoring.

1.5 Dec 2014 44 10-26 773
Egress Table.
Schedule Bundle.
Packet Type Aware Pipeline.

2.1.4.2 Switch Abstraction Interface (SAI)

Switch Abstraction Interface (SAI) (2014) presents a hardware abstraction model

towards standard switch conĄgurations APIs for switching silicon (ASICs). It represents

the switch ASIC as a userspace software application. It is a set of standardized C language

based APIs which a user can use to program the network hardware tables or conĄgure

Chapter 2. Literature Review 46

any network feature of the supported switch ASIC. As solely implemented in software, it

allows developers to bring this solution over different Linux distributions and to port it to

different switch ASICs by just changing the underlying SAI driver. With SAI a customer

can conĄgure and control the supported switching ASICs as described by the SAI speciĄ-

cation. Having said that SAI is also limited by the Ąxed-function of the switches similar to

OF and does not provide support for protocol independent programmable hardware. The

SAI project has been adopted by the Open Compute Project (OCP) and seen acceptance

from various switch silicon vendors in the networking industry like Cavium, Broadcom,

etc.

2.1.4.3 Ethernet Switch Device Driver Model (switchdev)

In 2015, kernel networking developers adopted a new driver model called ethernet

switch device driver model (switchdev) (ETHERNET. . . , 2014) that is aimed at replac-

ing the proprietary blobs a.k.a SDK with standard kernel interfaces. As an in-kernel

abstraction model, it keeps the switch state inside the kernel and works with the existing

Linux applications instead of investing in the development of new tools. In time with more

vendors making their drivers upstream, it can be a promising solution to break through

the vendorŠs lock-in in network devices. switchdev already supports L2 data forwarding

(switching) and L3 Routing Offload, and more features are being added continuously.

Mellanox has already contributed to switchdev and have offered drivers for its Switch X-2

chip and also for its 100GB Spectrum chip. If more ASIC vendors will upstream their

drivers and the NOS developers will integrate these changes, then switchdev can become

a dominant solution towards open networking.

2.1.4.4 P4Runtime (PRT)

P4Runtime (PRT) is a vendor-independent and protocol-independent runtime

API platform for P4-described data planes. Figure 7 represents the reference architecture

of PRT. PRT is viewed in terms of PRT APIs, PRT Client, and PRT Server. PRT Server

and PRT Client lie in the P4 target and the Controller respectively, whereas PRT APIs

deĄnes the runtime interface semantics between the target and controller. The standard

messages and their format used are also described as part of the PRT APIs.

The P4Runtime API is speciĄed by the p4runtime.proto protobuf Ąle which is

compiled by Protobuf compiler (protoc) to generate both server and client implementa-

tion stubs. While the controller maintainers instrument the client stubs, the data plane or

target implementers instrument the server stubs. The primary workĆow of PRT dictate

the P4 program to be compiled to produce both P4 device speciĄc config Ąle and P4Info

metadata responsible for forming the message format conjointly known as Forwarding-

PipelineConfig in PRT terminology upon which the communication between controller

Chapter 2. Literature Review 47

P4 Pipeline

SwitchOS

SDN Controller

Drivers

P4Run✁me APIs

P4Run�me Server

P4Run�me Client

Figure 7 Ű P4Runtime Reference Architecture

and target will be based on. P4 Compiler also produces a P4Info Schema which is target

and architecture independent. The P4Info schema includes the entity (i.e., P4 construct)

instances from the P4 program (i.e., tables and extern instances). The entity instances

are associated with a numeric ID assigned by the P4 compiler. The controller utilizes the

P4Info schema and the target-speciĄc device config Ąle details to conĄgure the P4 tar-

get. P4Runtime (PRT) is an ongoing activity and still under development without any

reference implementation over a target. Although Google has demoed a working PRT

implementation over its in-house NOS known as Stratum, it is still under incubation and

has not been released for public. We believe once PRT comes out as a fully done solution,

it will change the face of the SDN network bringing programmability to every aspect of

a SDN network.

2.2 Related Work

We studied various works towards switch architectures and switch technologies.

While some research works help us to understand and solidify our domain knowledge,

others identiĄed themselves to be a lot more inĆuential to our research. We present here

some of the related works which we understand have begun the journey towards Ćexibility

of network in different ways and have contributed immensely intellectually to other con-

temporary and future research works. To begin with, Cuckooswitch (D. Zhou et al, 2013)

is constructed around memory-efficient and highly-concurrent hash table design to achieve

high throughput even with one billion Ćow entries. It is developed with a singular focus

on high-speed table lookup and is optimized heavily going farther from generic design.

On the contrary, the Click modular router is built over highly modular and conĄgurable

CLICK (KOHLER et al., 2000) software architecture. It is constructed using conĄgurable

Chapter 2. Literature Review 48

packet processing modules such as packet classiĄcation, queuing, etc., composed into a

directed graph to create a packet processing Ćexible router. Likewise, RouteBricks (M.

Dobrescu et al, 2009), a CLICK based router, brings high performance by parallelizing

router functionality across multiple cores and also across multiple servers. On the other

hand while Packetshader (HAN et al., 2010) achieves high performance by using GPU

to avoid CPU bottleneck in software routers, Snap (SUN; RICCI, 2013) brings Ćexibility

and conĄgurability using CLICK modules to GPU based software routers. Although these

switches provide programmability, conĄgurability to an order or excel in achieving high

performance, they lack the support of a high-level DSL i.e., P4.

On a similar note, OvS(2009) (PFAFF et al., 2015) is an open source virtual switch

with advance Ćow classiĄcation and caching techniques for improved performance and has

been the spearhead in NFV developments. It comes in both user space and kernel space

Ćavors. Being a Linux based switch, it runs on various environments including Virtual

Machines (VMs), containers, etc. Although OvS achieves a higher degree of portability,

the programmability under the hood is limited. Meanwhile, PISCES(2016) (M. Shah-

baz et al, 2016) tries to bring P4 DSL support to OvS, but it is restricted by the OvS

pipeline limitations to achieve protocol independence and only support a small set of P4

abstractions. Towards multi-platform support, Software for Open Networking in the Cloud

(SONiC) (SOFTWARE. . . , 2016) form Microsoft is developed as an open switch OS with

inherent SAI APIs feature support, but it lacks any DSL support. Whereas OpenSwitch

(OPX) (2017) (OPENSWITCH. . . , 2017) open source multi-platform project from Linux-

Foundation 1 brings limited P4 support towards protocol independence. Another project

by Netronome (NETRONOME, 2015) supports the majority of P4 abstractions and brings

protocol independence to its own proprietary Network Flow Processor (NFP) hardware.

Table 4 shows different switch projects and their feature support to understand how dif-

ferent project groups target differently to the current requirements. We observed that the

solutions available are either focused on performance, or programmability and Ćexibility

but never target for all the characteristics. The open source projects provide very limited,

or no DSL support with the only exception are in alignment with the proprietary solutions

providing a near complete P4 support.

Then we have Translator for P4 Switches (T4P4S) (LAKI et al., 2016; T4P4S. . . ,

2016) which deĄnes high performance data plane using P4 program as input. T4P4S

compiler system implements a networking hardware abstraction layer (NetHAL) to sup-

port multiple platforms. The NetHAL brings target-dependent optimization while T4P4S

compiler system also provides target-independent optimization as an integral feature of

the compiler system. It implements the target dependent abstractions over Data Plane

Development Kit (DPDK) APIs, e.g. Hash Table Lookup, IPv4 LPM Lookup, etc., as
1 https://www.linuxfoundation.org

Chapter 2. Literature Review 49

Table 4 Ű Scope, Approach, and Feature Comparison List of different Programmable
Switch Projects

Project
Protocol

Independent
Development

Effort
DSL

Support
Target Remarks

Click Yes Medium No General-Purpose Server Mostly used for research
OVS Limited High No Software Switch Runs as part of Linux kernel
Switchblade No High No FPGA Verilog frontend
P4-Fpga Limited High Yes FPGA Bluespec Compiler
P4-NetFpga Yes High Yes NetFPGA Xilinx P4-SDNet tools

Cuckoo switch Low High No General-Purpose Server
CuckooHash based
FIB Lookup

Packetshader No High No General-Purpose Server
GPU-assisted
packet processing

Routebricks No High No General-Purpose Server multi-core packet processing.
Pisces Yes Low Limited Software Switch OVS Based
RouteĆow No High No OpenĆow Device Provides only control plane
T4P4S Yes Low Yes Limited by DPDK* *Optimized for Intel
MACSAD Yes Low Yes Multi-Target X86 & ARM support available

part of the NetHAL to deĄne high-performance data plane. It showcases various use cases

like L2 switching, L3 routing, Load Balancing, etc., but no IPv6 support though.

With a different approach built from the ground up Stratum 2 is an open source

implementation for a thin switch targeting various white box switches. It is a silicon-

independent switch operating system and can be managed by local (in case of Traditional

switch design) or remote Network OS (NOS) using next-generation SDN interfaces such

as P4Runtime and OpenConĄg. It uses P4 to deĄne logical data plane pipeline and uses

P4Runtime to bring dynamic programmability to the pipeline in the switch. Although it

is an open source project as part of Open Networking Foundation (ONF), as of now it

is still in its incubation phase and has not released the source code to the public. Hence

details about Stratum are sparsely available through press releases only.

We explained T4P4S and Stratum projects in little more details because they

project a closer picture to our vision and what we want to achieve. Stratum can be a

disruptor in the SDN world with its bold vision and supported features, but it is still in

incubation phase and not available for testing and evaluation. Also, Stratum proposes an

entirely new operating system which is not on our roadmap. On the other hand, T4P4S

project shares a large part of our vision differing in terms of technology it uses for its

compiler system. While T4P4S achieves higher performance built upon heavily tuned

and customized DPDK, we choose ODP towards portability. We explored and evaluated

T4P4S while comparing it against our proposal taking advantage of its similarity to our

work. With our inclination towards Programmability, Portability, Performance, and Scal-

ability (3PS) of data plane applications and careful selection of underlying technologies

position our MACSAD proposal uniquely. We describe about MACSAD in detail in

chapter 3.
2 https://stratumproject.org

Chapter 2. Literature Review 50

2.3 Concluding Remarks

This chapter summarizes the projects, tools, and technologies closely related or

coinciding with this thesis. We present this chapter in two major sections describing

Related Technologies and Related Works. Related Technologies explored the concurrent

projects relevant to our thesis in different ways. Similarly, Related Works provides a

mental picture of the existing projects and their features, and how they differ from our

vision and our proposal.

Taking the cues from this chapter related to PISA, ODP and P4, we formulate our

discussion in chapter 3, and we analyze how the missing features identiĄed in the related

works in section 2.2 are addressed.

51

3 Multi-Architecture Compiler System for

Abstract Dataplanes

SDN brings a clear and programmatic separation between control and data plane

functions by putting the control plane in a logically centralized location. Despite having

received less attention compared to the control plane aspects of SDN, the data plane is

a critical piece of every network switch. The OF protocol recognized the importance of

data plane and provided a standard interface to the controllers to manage any OF com-

pliant underlying data plane. Inherent inĆexibility in OF deters data plane programmers

to achieve higher Ćexibility. P4 being a descriptive programming language recognizes pro-

gramming abstraction for network devices like header, parser, table, etc., which were made

popular by OF, and provides language constructs for these higher abstractions. Now with

P4 it is feasible to deĄne a packet processing pipeline for a switch with programmable

data plane.

On the other hand, ODP is another project attempting to bring platform-agnostic

SDKs for switch datapath chips. We bring the Top-Down approach of P4 towards pro-

grammability and Bottom-Up approach of ODP towards portability together to pro-

pose our research work Multi-Architecture Compiler System for Abstract Dataplanes

(MACSAD). Thus and so MACSAD (PATRA et al., 2016; PATRA et al., 2017; PA-

TRA et al., 2018) is created aiming to hide data plane programming complexity using

P4 while keeping the Ćexible data plane portable, and scalable through the performance

and hardware acceleration features of ODP. From an implementation aspect, it merges

protocol-independent P4 abstractions and primitives with ODP APIs towards data plane

applications.

3.1 Architecture

The high-level architecture of MACSAD (see in Figure 8) embodies three separate

modules in sought for ŚProtocol IndependenceŠ and ŚTarget IndependenceŠ. We explain the

different modules in detail followed by how they contribute towards different features of

MACSAD. The three modules are:

Auxiliary Frontend: Supports different frontend DSLs with P414 and P416 sup-

port in place.

Auxiliary Backend: Implements DSL abstractions over target-agnostic ODP

APIs to support different platforms.

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 52

Core Compiler: Composed of ŚTranspilerŠ and ŚCompilerŠ submodules to create

any data plane application.

CORE COMPILER

SoC (ARM)

Program

Auxiliary

Frontend

Auxiliary

Backend

COMPILERTRANSPILER

DATAPATH

LOGIC

.org.org
OpenDataPlane

Figure 8 Ű High-level Reference Architecture & Use Case WorkĆow.

3.1.1 Auxiliary Frontend

Auxiliary Frontend transforms a P4 program into an Intermediate Representation

(IR) suitable for the Core Compiler module by integrating projects from P4 consortium.

Incorporating the p4-hlir project, Auxiliary Frontend translates P414 programs into High

Level Intermediate Representation (HLIR) (P4. . . , 2018) format. HLIR is an in-memory

abstract syntax tree (AST) data structure which can represent the P4 program as a python

data structure to be consumed by a compatible P4 compiler. By creating an independent

module for Auxiliary Frontend, MACSAD eases the effort to add support for newer DSLs

in future simply by implementing new or extending the current code for the new DSL

without affecting other modules of MACSAD. As a result, we are able to add support

for P416 to Auxiliary Frontend with minimal changes to the existing code. A JavaScript

Object Notation (JSON) IR is created for P416 program by integrating p4c-bm1 project,

also from P4 consortium. The top left rectangle in Fig. 8 depicts the transformation of P4

program into an unambiguous IR before being passed on to the Transpiler submodule,

part of the Core module.

3.1.2 Auxiliary Backend

As the name suggests, Auxiliary Backend is responsible for backend or target

related components of MACSAD. Auxiliary Backend comprises of all internal and helper
1 https://github.com/p4lang/p4c-bm

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 53

APIs of MACSAD, and implements them over ODP APIs to support P4 abstractions

turning MACSAD into a unifying compiler system achieved via the common SDK a.k.a.

ODP APIs. From a classical compiler perspective, Auxiliary Backend can be considered

as an auxiliary library. P4 abstractions are much higher compared to the abstraction

understood by ODP, and they can not be mapped one-to-one. Auxiliary Backend bridges

this gap to implement necessary APIs needed to deĄne a data plane. These APIs span

resource handling, CPU core management, table management, port conĄguration, packet

manipulation, Packet I/O, controller support, etc. We coarsely categorize the APIs in

relation to the P4 abstractions appeared in the P4 program as Helper APIs whereas the

other APIs are considered to be MACSAD Internal APIs. The APIs related to CPU

core management, Packet Tx/Rx, Fast Packet Processing Abstraction (DPDK, Netmap

related), remote Controller support, etc., are part of the Internal APIs whereas header

manipulation, table management, etc., are considered to be Helper APIs section 3.4.

Auxiliary Backend also abstracts the hardware acceleration features (such as Crypto)

allowing a developer to write applications while being unaware of the nuances of the

target platform and their SDKs. All the components offered by Auxiliary Backend can

be broadly categorized into Target-Independent and Target-Dependent APIs as shown in

Table 5, and are explained in this chapter. Adding support of a new target platform for

MACSAD is equivalent to porting only the ODP, or to be speciĄc ODP APIs, onto the

new platform.

Table 5 Ű Packet Processing Functions

Target-Independent Target-Dependent

(add, remove, copy)_header,
generate_digest, modify_field,

Table Configuration, Header Parsing

push, pop, count, meter,
Pkt Rx/Tx, Checksum,

Table Creation, Table Lookup

3.1.3 Core Compiler

Core Compiler is the heart of MACSAD and encompasses the Transpiler and

Compiler submodules. It compiles the IR received from the Auxiliary Frontend along

with the APIs provided by the Auxiliary Backend into MacS (hereafter, the MACSAD

compiled binary code is referred to as MacS throughout the text) for the desired target

platform.

3.1.3.1 Transpiler

The MACSAD code base comprises of two categories of code (1) Static Code

written over Internal and Helper APIs and are an essential part of the Auxiliary Back-

end (see subsection 3.1.2). (2) Auto Generated code with internal references to the Helper

APIs to bring P4 abstractions into fruition. The Transpiler submodule is our template

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 54

based source-to-source compiler solution to output the auto-generated code written in ŚCŠ

from the P4 program. The Transpiler submodule itself is developed in Python program-

ming language. Transpiler takes in the Auxiliary Frontend subsection 3.1.1 IR output to

auto-generate a big chunk of MACSAD code.

Transpiler is responsible to map P4 components to the PISA architecture and

generates the corresponding code for it. The auto generated code consists of the Packet

Parsing Logic and the Control Logic for ŚProgrammable parserŚ and ŠMatch+ActionŠ of

PISA. The Packet Parsing Logic includes data structures for Šheader Ąelds, their offset &

bitmasksŠ and handles packet header parsing. Similarly, the Control Logic expresses the

packet Ćow across the tables deĄned in the P4 program. The Control Logic implements

the target-independent functions (see Table 5). Together these two form the ŠData Path

LogicŠ section 3.5 of MACSAD representing the P4 deĄned data plane in this compiler

system.

The Transpiler performs the following actions during the source-to-source compi-

lation:

1. DeĄnes table constructs (e.g., size, lookup algorithm).

2. Generates the ŠData path LogicŠ code based on the IR from 3.1.1.

3. Maps loosely-typed DSL (i.e., P42) to strongly-typed (i.e., ŚCŠ) declarations for auto

generated Data path Logic code by selecting appropriate data types depending on

the target platform.

4. Takes performance optimization decisions (e.g., RX burst size) based on predeĄned

platform speciĄcities.

3.1.3.2 Compiler

The Compiler submodule sits at the Ąnal stage of MACSAD and brings together

all the different modules of MACSAD and the P4 program. It is responsible for the

binary code generation of MacS using Auxiliary Backend (subsection 3.1.2) and output

of Transpiler (subsubsection 3.1.3.1) over ODP APIs with the underlying GNU Com-

piler Collection (GCC) / Low Level Virtual Machine (LLVM) compilers. It brings the

regular array of optimization tools supported by the underlying compiler beneĄting the

programmers.
2 Due to providing high-level abstractions and fundamentally one type of variable, we considered P4 as

a loosely-typed language

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 55

3.2 Compilation Process

MACSAD compiler system follows a three-step compilation process from P4 pro-

grams to MacS. Each of the MACSAD modules contributes to the steps of the compi-

lation process as and when necessary. Generally, almost every compiler design support a

frontend module which creates an internal IR for the input program as part of the initial

step of compilation. This IR allows the compiler to apply various optimization techniques

on it before compiling it to create the Ąnal target binary or platform image. MACSAD

compilation process begins with Auxiliary Frontend taking a P414 or P416 program as

input as the Ąrst step. Figure 9 summarizes the three steps of compilation visually. Step

1 creates outputs in HLIR or JSON IR format for P414 and P416 programs respectively,

and bring the process handle from P4 language to Python/JSON IR. The details of these

IRs are described in section 3.3. In Step 2, the just created IR output is passed to Tran-

spiler submodule for auto-generation of Data Path Logic code. This code auto-generation

is explored in detail in section 3.5. Transpiler is developed as a template based source

code generator which transforms the input IR for P4 program into a set of ŚcŚ and ŚhŚ Ąles

to be consumed by the following Compiler submodule. With this Step 2, MACSAD com-

piler moves from python territory to ŚcŚ language arena. Entering into Step 3, MACSAD

utilizes Auxiliary Backend module subsection 3.1.2 and Compiler submodule subsubsec-

tion 3.1.3.2 along with ODP APIs, and output of 3.1.3.1 a.k.a. Datapath Logic Code to

generate MacS.

Start

End

P414 / P416

Program

HLIR /
JSON

Auxilary
Frontend Transpiler

HLIR /
JSON

*.c

Compiler

MacS

Template ODP SDKs
Auxiliary
Backend

S
T

E
P

 1

*.c

S
T

E
P

 2

S
T

E
P

 3

Figure 9 Ű Three Step Compilation Process.

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 56

3.3 P4 to IR Code Generation

As the Ąrst step of compilation, MACSAD begins with Auxiliary Frontend taking

a P414 or P416 program as input and creates HLIR or JSON IR as output respectively

before feeding them to the Transpiler submodule (subsubsection 3.1.3.1).

P414. According to P4 guidelines, the P414 program should be converted into

HLIR IR (P4. . . , 2018) format by compiler frontend to represent the P4 program unam-

biguously. This HLIR is then used by the compiler backend to create the P4 data plane

application. HLIR IR is a non-Ąle based in-memory IR developed using python data

structures. It can only be created and accessed during the compilation process. HLIR

conĄrms to all semantic rules to represent P4 constructs established by the P4 speci-

Ącation, and can represent functionalities of any P4 program in its entirety. For every

compiler, HLIR is the common entry point, and MACSAD adheres to this requirement.

Auxiliary Frontend builds the HLIR from the P4 program by integrating p4-hlir

with the help of a small python code snippet as shown in Listing 3.1. It is necessary

for p4-hlir open-source project from Github repository of P4.org to be installed in the

system for completing this phase.

1 from p4_hl ir . main import HLIR

2

3 h = HLIR(< l i s t o f p4 sources >)

4 h . bu i ld ()

5

6 f o r table_name , t ab l e in h . p4_tables . i tems () :

7 pass

Listing 3.1 Ű p4-hlir Integration Code Snippet

Every P4 abstraction type (e.g. table) is deĄned as a python class (e.g. p4_table)

in HLIR . The P4 objects are represented as OrderedDict python data type and available

as attributes of HLIR object. Listing 3.1 shows an example to access the tables deĄned

in the P4 program by accessing the OrderedDict p4_tables. Table 6 shows a complete list

of names of P4 objects available under HLIR.

P416. With the new version, P4 has taken a new direction in the development

of the language. With its reference P4 switch bmv23, it moves towards a Ąle-based IR

developed in JSON format. MACSAD Frontend module adds support for P416 to be

able to transform a P416 program into its JSON representation. p4c-bm 4 is the pre-

requisite tool for converting P416 to JSON format. The basic way to generate JSON Ąle
3 https://github.com/p4lang/behavioral-model
4 https://github.com/p4lang/p4c-bm

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 57

is shown in Listing 3.2 and exists as an internal part of the source code of MACSAD

Frontend module.

1 p4c⊗bm ⊗⊗j s on <path to JSON f i l e > <path to P4 f i l e >

Listing 3.2 Ű JSON IR Generation

Listing 3.3 shows a code snippet of the ingress control Ćow of a P416 program de-

picting the sendout table and two different action functions on_miss and rewrite_src_mac.

The JSON format for this P4 snippet generated with the help of p4c-bm is presented

in Listing 3.4. The JSON representation clearly interprets the P4 constructs and present

them as different JSON objects where all the attributes of the P4 constructs are also

presented clearly labeled with separate key and their values. JSON representation also

includes a key ID to provide a unique identiĄcation for each P4 construct across the P4

program.

Keeping the current HLIR support active and useful, MACSAD Frontend takes

an extra step and transforms the JSON representation of P416 into the HLIR represen-

tation before passing it to the Step 2 of the compilation process. This allowed us to add

the new P4 version support with limited modiĄcation to the MACSAD code.

Table 6 Ű P4 Object List in HLIR

OrderedDict’s name P4 object type

p4_actions action
p4_tables table
p4_conditional_nodes None, this is used to represent conditions in the control Ćow
p4_action_proĄles action_proĄle
p4_action_selectors action_selector
p4_headers header_type
p4_header_instances header
p4_Ąelds None, this is used to refer to a Ąeld in a
p4_Ąeld_lists Ąeld_list
p4_parse_states parser
p4_parse_value_sets parser_value_set
p4_parser_exceptions parser_exception
p4_counters counter
p4_meters meter
p4_registers register
p4_Ąeld_list_calculations Ąeld_list_calculation

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 58

c o n t r o l i n g r e s s (inout headers hdr ,

inout metadata meta ,

inout standard_metadata_t

standard_metadata) {

@name(" . on_miss ")

ac t i on on_miss () {}

@name(" . rewrite_src_mac ")

ac t i on rewrite_src_mac (bit <48> smac)

{

hdr . e the rne t . srcAddr = smac ; }

@name(" . sendout ")

t ab l e sendout {

a c t i o n s = {

on_miss ;

rewrite_src_mac ; }

key = {standard_metadata .

egress_port : exact ; }

s i z e = 512 ; }

apply { sendout . apply () ; } }

Listing 3.3 Ű P416 Control Flow

" a c t i o n s " : [

{ "name " : " on_miss " ,

" id " : 0 ,

" runtime_data " : [] ,

" p r i m i t i v e s " : [] } ,

{ "name " : " rewrite_src_mac " ,

" id " : 1 ,

" runtime_data " : [

{ "name " : " smac " ,

" b i twidth " : 48 }] ,

" p r i m i t i v e s " : [

{ " op " : " modi fy_f i e ld " ,

" parameters " : [

{ " type " : " f i e l d " ,

" va lue " : [

" e the rne t " ,

" srcAddr "] } ,

{ " type " : " runtime_data

" ,

" va lue " : 0

}] }] }

] ,

" p i p e l i n e s " : [

{ "name " : " i n g r e s s " ,

" t a b l e s " : [

{ "name " : " sendout " ,

" id " : 1 ,

" key " : [{

" match_type " : " exact " ,

" t a r g e t " : [

" standard_metadata " ,

" egress_port "

] , }] ,

" a c t i o n s " : [

" on_miss " ,

" rewrite_src_mac "] ,

" next_tables " : {

" on_miss " : nu l l ,

" rewrite_src_mac " : n u l l } ,

" base_default_next " : n u l l

}] , }

]

Listing 3.4 Ű Control Flow in JSON

Format

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 59

3.4 Internal & Helper APIs

MACSAD features and functionalities are implemented using a number of APIs

designed as part of the Auxiliary Backend 3.1.2 module. These APIs bind together the

auto-generated code to the MACSAD APIs to bring high-level P4 program onto the

given low-level target platform. These APIs being an integral part of Auxiliary Backend

helps the Compiler submodule in the compilation process, and also in creating the Ąnal

MacS for the target. Helper APIs are self-explanatory and explore the Parser and Table

functionalities of a P4 program providing the APIs to implement these features over ODP

SDKs to support the bottom-up effort of ODP. We identify all the APIs which can be

referenced from the Transpiler auto-generated code as Helper APIs. Rest of the APIs from

Auxiliary Backend are refereed as Internal APIs. Internal APIs work towards connecting

the components of the switch software may it be plumbing internal modules or managing

session towards an external controller. Hence it can be considered to be more of system

level APIs necessary for MacS to work properly. This division is solely based on where

the APIs are consumed internally in the MACSAD system. For brevity, we refer both

types of APIs as Backend APIs in this text unless speciĄed explicitly. Backend APIs are

an amalgamation of different categories each consisting of multiple APIs. The categories

span over system related, parser related, table related, and control plane related APIs.

The selective list of APIs mapped to their categories are shown in the Table 7.

Table 7 Ű Backend APIs Categorical Examples

API Category API List

System
creatCtrlSession, destroyCtrlSession

createPktio, destroyPktio

createThread, startThread

Parser
addHeader, copyHedaer, removeHeader

updtPktField, getPktField

getByteOffset, getByteWidth

Table

addExactEntry, delExactEntry

addLpmEntry, delLpmEntry

addLpm6Entry, delLpm6Entry

getExactEntry, getLpmEntry, getLpm6Entry

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 60

3.5 Source to Source Code Transformation

Source to Source code transformation auto generates the packet processing code

for MACSAD which turn out to be a big part of the MACSAD code base. It begins

with generating the HLIR IR from P4 program followed by another code transformation

phase courtesy of Transpiler submodule. MACSAD brings the P4 abstractions to the

level of ODP abstractions only to be realized by transforming P4 into ŚCŠ language on

which ODP is based on. While HLIR IR is the intermediate language, it gets trans-

formed into a set of Ś.cŠ and Ś.hŠ Ąles based on the ŚCŠ language. Undoubtedly this auto-

generation of code entails a lot of attention and is explained in detail here. As mentioned

in subsubsection 3.1.3.1, the auto-generated code is referred to as Data path Logic code

which is comprised of two code sets targeting a different aspect of packet processing

pipeline, in our case speciĄcally PISA architecture. While Packet Parsing Logic targets

the Programmable Parser, Control Logic describes the packet Ćow across the tables and

corresponding actions necessary to be enforced.

Although the IR from Auxiliary Frontend is an unambiguous representation of the

P4 program, it is an in-memory and non-Ąle based representation using Python language

or in JSON format for P414 and P416 respectively. The P4 objects are represented as

Key+value pair which is a distinct characteristic of descriptive languages such as JSON,

YAML, etc. It is a loosely typed representation where data types are not explicitly deĄned.

This type system provides a lot of Ćexibility, but also difficult to debug in case of error as

the compiler cannot enforce stricter rules to check the data types. Meanwhile, ODP is a

ŚCŠ based project with its APIs, and abstract data types conform to ŚCŠ language. The only

way to bring P4 and ODP together is to transform the IR into ŚCŠ based code. The under

the hood compatible compilers of choice, which are GCC and LLVM, also requires the

P4 code to be presented in ŚCŠ language format. Transpiler submodule is developed inline

to this requirement bringing P4 to the strongly-typed low-level language. The remainder

of this section explores the requirements, faced challenges and the process for this code

transformation.

Every P4 program has two logical section where one describes the data types

and data structures, while the other focuses on the functionality part of the program.

While doing a code transformation, we also focus on both these sections separately. This

allows us to bring improvements to both the sections separately while maintaining the

synergistic collaboration between them. For the purpose of Transpiler, we identiĄed P4

core language constructs into 6 different P4 language abstractions. All the auto-generated

code are spread across six sets of Ś.cŠ Ąles and Ś.hŠ Ąles each corresponding to P4 abstractions

mentioned in the Table 8. We maintain a template Ąle for each Ąle set (*c, *h) generated

as a result of code transformation by the Transpiler. The Transpiler and the template

Ąles are implemented in Python to facilitate working with HLIR IR, also Python based.

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 61

The complete set of auto-generated Ąles are mentioned in Listing 3.5.

1 [* . h]⊗> parse r . h a c t i o n s . h p ipe l ine_data . h

2 [* . c]⊗> parse r . c a c t i o n s . c dataplane . c t a b l e s . c

c on t r o l p l ane . c

Listing 3.5 Ű Auto Generated File List

Table 8 Ű Transformation of P4 Constructs to ŚCŠ Language

P4 Abstraction Auto Generated Files Remarks

Headers
parser.h
actions.h

Describe the format (the set of Ąelds and their sizes)
of each header within a packet.

Parser parser.c
Describe the permitted header sequences within
received packet as a Ąnite-state machine.

Tables
tables.c
pipeline_data.h

Associate look-up keys to actions. P4 tables generalize
traditional forwarding tables; they can be used to
implement routing tables, Ćow lookup tables,
access-control lists, etc.

Actions action.(c,h)
Describe how packet header Ąelds and metadatas
are conĄgured.

Match-action dataplane.c

Stitch together tables and actions, and perform the
following sequence of operations: Construct lookup
keys from packet Ąelds or computed metadata; Use
the constructed lookup key to index into tables,
choosing an action to execute; Finally, execute
the selected action.

Control Flow controlplane.c

Expressed as an imperative program describing the
data-dependent packet processing within a pipeline,
including the data-dependent sequence of
match-action unit invocations.

This complex code transformation is carried out in two phases. First Transpiler

reads the details of different P4 constructs from HLIR and create a python (.py) Ąle for

the P4 constructs using the appropriate Template Ąle as reference. For each P4 construct,

we have one template Ąle to take part in the code transformation. Transpiler identiĄes

the speciĄc components for each P4 construct deĄned in the template Ąle and creates the

intermediate python Ąle in the process. This python Ąle is executed in Transpiler using

the underlying python compiler to generate the Ąnal ŚCŠ based source including the header

Ąles. Primary code Ćow for generating code for P4 table abstraction is shown in Figure 10.

start
Intermediate

Python File

E.g., tables.py

HLIR end

`C’ Source Code

E.g., tables.c

tables.h

Extract p4 abstrac✁on

Execute with

python compiler

E.g., p4-table

Figure 10 Ű Code-autogeneration Flow Diagram.

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 62

The followed discussion about code generation focuses on the initial transforma-

tion of P4 abstractions to low-level language explaining the transformation process in

detail in subsection 3.5.1 producing all the Ąnal data types and data structures generated

as the outcome of this phase. Then we explain the Ąnal code generated satisfying the

functionality of the P4 program in subsection 3.5.2. This explains the Parsing Logic and

Control Logic of the P4 program, and how it is represented in the ŚCŠ language after the

transformation. As part of the transformation, Transpiler saves the intermediate python

programs for back reference purposes useful for debugging when necessary.

3.5.1 Transforming Language Abstractions

P4 constructs and the HLIR objects (see Table 6) are very high-level abstractions

which do not have any direct corresponding data types in ŚCŠ language, not even in

ODP level data types which sits above the ŚCŠ based abstractions. For a source-to-source

transformation, we need to identify the high-level data types to be transformed of the

initial language, and also the low-level data types of the Ąnal language which are rich

enough to represent the high-level data types in some way.

For example, the value of a P4 Ąeld is a number; it can be represented as a data type

of different lengths like short, int, long, etc., in C language. Similarly, a Header type in P4

may be represented as a complex data structure such as "struct" or "enum", unlike other

basic ŚCŠ data types which are not rich enough to represent these complex abstractions.

Hence the Transpiler needs to make a number of intelligent decisions while transforming

loosely-typed P4 abstractions into strongly-typed low-level simple data types or complex

data structures. In a P4 program, the data types appear either as header Ąelds or as

parameters to action functions.

Packet Header is indeed a critical abstraction to consider in this transformation

process as the whole packet processing pipeline starts and ends with a network packet.

Unlike other projects viz. p4-ebpf 5, p4 headers are not transformed into a struct data type

in MACSAD. Instead, we try to direct our focus to the different features and properties

of the P4 abstraction and create multiple data structures to work collectively. This allows

better inlining of code snippets towards better performance.

A simple Ethernet header in P4 shown in Listing 2.1 is expressed using an enum

and two arrays when transformed into ŚCŠ language. Hence all the headers and meta-

data can be represented using these Ąxed number of enums & arrays irrespective of the

header counts. This allows name/index based reference while keeping the number of data

structures in check. Table 9 and Table 10 show the transformation of header instance

level features and header Ąeld level features respectively into corresponding enums and

arrays. The enums and arrays deĄned will keep adding more values to the data types as
5 https://github.com/p4lang/p4c/tree/master/backends/ebpf

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 63

per the header counts present in the P4 program. Table 9 shows that for identiĄcation

of header and metadata instances, an enum is created which assigns an integer value to

each instance. Due to the inherent features of enum, we can reference the instances with

the assigned integer value or using their name without worrying any string comparison

function. The header_instance_byte_width array is populated with the header lengths,

and the index relates to the values from header_instance_e enum deĄned for header in-

stances. Similarly, header_instance_is_metadata array shows if a header is a metadata

type or not. Table 10 also follows the same steps to represent the header Ąelds by starting

with an enum for the Ąeld instances, and then followed by different arrays focusing on the

Ąeld attributes like width, byte offset, etc.

Table 9 Ű Auto-generated Code for Header Instances

1 enum header_instance_e {

2 header_standard_metadata ,

3 header_ethernet

4 } ;

1 s t a t i c const i n t header_byte_width [HEADER_INSTANCE_COUNT] = {

2 20 /* header_standard_metadata */ ,

3 14 /* header_ethernet */

4 } ;

1 s t a t i c const i n t header_is_metadata [HEADER_INSTANCE_COUNT] = {

2 1 /* header_standard_metadata */ ,

3 0 /* header_ethernet */

4 } ;

Table 10 Ű Auto-generated Code for Header Field Instances

1 enum f i e ld_ins tance_e {

2 standard_metadata_ingress_port ,

3 standard_metadata_packet_length ,

4 standard_metadata_egress_spec ,

5 standard_metadata_egress_port ,

6 standard_metadata_egress_instance ,

7 standard_metadata_instance_type ,

8 standard_metadata_clone_spec ,

9 standard_metadata__padding ,

10 ethernet_dstAddr ,

11 ethernet_srcAddr ,

12 ethernet_etherType

13 } ;

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 64

Table 10 continued from previous page

1 s t a t i c const i n t f i e ld_instance_bit_width [FIELD_INSTANCE_COUNT] = {

2 9 /* standard_metadata_ingress_port */ ,

3 32 /* standard_metadata_packet_length */ ,

4 9 /* standard_metadata_egress_spec */ ,

5 9 /* standard_metadata_egress_port */ ,

6 32 /* standard_metadata_egress_instance */ ,

7 32 /* standard_metadata_instance_type */ ,

8 32 /* standard_metadata_clone_spec */ ,

9 5 /* standard_metadata__padding */ ,

10 48 /* ethernet_dstAddr */ ,

11 48 /* ethernet_srcAddr */ ,

12 16 /* ethernet_etherType */

13 } ;

1 s t a t i c const i n t f i e l d _ i n s t a n c e _ b i t _ o f f s e t [FIELD_INSTANCE_COUNT] = {

2 0 /* standard_metadata_ingress_port */ ,

3 1 /* standard_metadata_packet_length */ ,

4 1 /* standard_metadata_egress_spec */ ,

5 2 /* standard_metadata_egress_port */ ,

6 3 /* standard_metadata_egress_instance */ ,

7 3 /* standard_metadata_instance_type */ ,

8 3 /* standard_metadata_clone_spec */ ,

9 3 /* standard_metadata__padding */ ,

10 0 /* ethernet_dstAddr */ ,

11 0 /* ethernet_srcAddr */ ,

12 0 /* ethernet_etherType */

13 } ;

1 s t a t i c const i n t f i e ld_instance_byte_of f se t_hdr [FIELD_INSTANCE_COUNT] = {

2 0 /* standard_metadata_ingress_port */ ,

3 1 /* standard_metadata_packet_length */ ,

4 5 /* standard_metadata_egress_spec */ ,

5 6 /* standard_metadata_egress_port */ ,

6 7 /* standard_metadata_egress_instance */ ,

7 11 /* standard_metadata_instance_type */ ,

8 15 /* standard_metadata_clone_spec */ ,

9 19 /* standard_metadata__padding */ ,

10 0 /* ethernet_dstAddr */ ,

11 6 /* ethernet_srcAddr */ ,

12 12 /* ethernet_etherType */

13 } ;

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 65

Table 10 continued from previous page

1 s t a t i c const header_instance_t f i e ld_ins tance_header [FIELD_INSTANCE_COUNT]

= {

2 header_standard_metadata /* standard_metadata_ingress_port */ ,

3 header_standard_metadata /* standard_metadata_packet_length */ ,

4 header_standard_metadata /* standard_metadata_egress_spec */ ,

5 header_standard_metadata /* standard_metadata_egress_port */ ,

6 header_standard_metadata /* standard_metadata_egress_instance */ ,

7 header_standard_metadata /* standard_metadata_instance_type */ ,

8 header_standard_metadata /* standard_metadata_clone_spec */ ,

9 header_standard_metadata /* standard_metadata__padding */ ,

10 header_ethernet /* ethernet_dstAddr */ ,

11 header_ethernet /* ethernet_srcAddr */ ,

12 header_ethernet /* ethernet_etherType */

13 } ;

Similar to header abstractions, the parameters to action functions are also need

to be converted to low-level data types. In MACSAD, this is achieved using ŚCŠ based

structures, unlike the case of headers where enums and arrays were sufficient. Every

function parameter is converted to an array of byte-sized data type of length equal to the

byte width of the function parameter as shown here.

P4FIELD(name, length) is represented as uint8_t name[(length + 7) / 8]

For example, the Egress port is deĄned as 9 bit in P4 speciĄcation and will be

converted into an array of 2 Bytes; likewise, mac address of 48 bits will be converted to

an array of 8 Bytes. Although not apparent, at times Transpiler takes some compile-time

decisions concerning the underlying target resulting in a different way of conversion. For

example, the Transpiler decides to consider 1 Byte or 2 Bytes data types (such as uint8_t

or uint16_t) to represent a port as appropriate to the target instead of a generic array

type as done for mac address. Similarly, in various other cases, the Transpiler takes the

rein and Ągure out the best data types available at the target, and auto-generates the

code accordingly. We pack every parameter of an action function into a unique structure

referred to as Ś<action_name>_paramsŠ. Then we have different structures for each table

which incorporate all the structures of action parameters to form a Union data structure

adding an action ID variable to it. Each instance of this Ś<table_name>_actionŠ struc-

ture can specify a distinct action parameter structure using the actionID. Listing 3.14

and Listing 3.15 depicts the parameters of a P4 action function, and the corresponding

transformed low-level code achieved by the Transpiler respectively. This transformation

phase results in producing all the data types and data structures required to represent

the P4 constructs present in the P4 program.

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 66

1 ac t i on rewrite_src_mac (smac) { //Compound Action

2 modi fy_f i e ld (e the rne t . srcAddr , smac) ; // Pr imi t ive Action

3 }

Listing 3.14 Ű P4 Action Function Example

1 #d e f i n e P4FIELD(name , l ength) uint8_t name [(l ength + 7) / 8] ;

2

3 enum a c t i o n s { // Enum f o r a l l the a c t i o n s o f P4 program

4 on_miss ,

5 rewrite_src_mac ,

6 } ;

7

8 s t r u c t rewrite_src_mac_params { // Al l parameters o f an ac t i on

9 P4FIELD(smac , 48) ;

10 } ;

11

12 s t r u c t sendout_action { // " sendout " Table

13 i n t a c t i on Id ;

14 union {

15 s t r u c t rewrite_src_mac_params rewrite_src_mac_params ;

16 } ;

17 } ;

Listing 3.15 Ű Auto-generated Code for Action Function

3.5.2 Auto-generating Data Path Logic

Addressing the P4 constructs from lower to higher complexity, we move our focus

to more complex abstractions compared to P4 Field or Action function parameters. These

include Parsers, Match+Action or Tables, and Control Flow, otherwise considered as the

functional components of a data plane. This code transformation phase uses the auto-

generated variables and data structures explained in subsection 3.5.1. The Internal and

Helper APIs of Auxiliary Backend module are referenced heavily while transforming the

functional components of the P4 program.

Parser block in a P4 program begins with the start parser state and continues

parsing the headers in the sequence it appears in the packet. P4 uses select statement to

compare against header Ąeld values to choose the next header for parsing as depicted in

Listing 3.16. The Listing shows a snippet of a P4 program parsing an Ethernet header

to start with, and then proceeding to parse IPv4 header after verifying its presence by

checking the EtherType value in the already parsed Ethernet header. The transformed

code present the same sequence of events as seen in the Listing 3.17. Each Parse function

starts with extracting the header offsets and storing the pointers to the headers for future

use in the pipeline code. Then it creates the key, i.e. the header Ąeld used in select

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 67

statement to choose the next parser function. Finally, key is compared, and based on

it the next header to be parsed is decided. The code snippet shows how the Ethernet

and IPv4 headers are parsed in sequence and how the select statement is implemented in

auto-generated code.

1 par s e r s t a r t {

2 re turn parse_ethernet ;

3 }

4

5 par s e r parse_ethernet {

6 ex t r a c t (e the rne t) ;

7 re turn s e l e c t (l a t e s t . etherType) {

8 0x0800 : parse_ipv4 ;

9 d e f a u l t : i n g r e s s ;

10 }

11 }

12

13 par s e r parse_ipv4 {

14 ex t r a c t (ipv4) ;

15 re turn i n g r e s s ;

16 }

Listing 3.16 Ű P4 Parser Code Snippet

1 s t a t i c void parse_star t (packet_descr iptor * pkt) {

2 re turn parse_ethernet (pkt) ;

3 }

4

5 s t a t i c void parse_ethernet (packet_descr iptor * pkt) {

6 extract_header_ethernet (pkt) ;

7 create_se lect_key (pkt , key) ;

8 i f (compare_key (key , 0x0800))

9 re turn parse_ipv4 (pkt) ;

10 }

11

12 s t a t i c void parse_ipv4 (packet_descr iptor * pkt) {

13 extract_header_ipv4 (pkt) ;

14 re turn ipv4_table1 (pkt) ;

15 }

Listing 3.17 Ű Auto-generated Parser Code

Following on we take Table, or to be exact Match+Action P4 abstraction, into con-

sideration to explain its code transformation. Every Table construct has reads statement

which dictate the key Ąeld for table lookup and the lookup up algorithm to use, and action

functions listing all the actions applicable to the table. In addition to that the P4 program

also deĄnes the action functions which accept a list of parameters as function arguments

while its body is described with P4 primitive actions or expressions updating headers and

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 68

metadatas. A snippet of the P4 program showing the Table sendout and the associated

action functions is presented in Listing 3.18 where as the corresponding auto-generated

code from Transpiler is shown in Listing 3.19. Table abstraction is implemented as a

function which starts with constructing the lookup key followed by performing the actual

table lookup. Then the lookup result, the return value of table lookup, which contains

the action function parameters, a.k.a. action parameters, and the actionID are retrieved.

ActionID identiĄes the associated action function to reference for the current packet,

and the function arguments are passed to the action function. We implement the code

to choose the proper action function using a switch ŚCŠ construct. MACSAD Backend

provides the APIs implementing the functionalities of the P4 Primitive Actions. Inside

each action function code, the Helper APIs from Auxiliary Backend are referenced to act

upon the packet headers or metadata. Here in this example, the modify_Ąeld primitive

action is implemented as pkt_Ąeld_updt function in MACSAD while getByteOffset and

getByteWidth are the functions implemented to retrieve details related to the header or

metadata Ąelds. The P4 Control Flow logic is added to the transformed code for Table

abstraction. The code in Listing 3.19 shows how actionID is used in Śtable_sendoutŠ to

choose the next table to be referenced.

1 ac t i on no_op () {} //No Operation

2

3 ac t i on rewrite_src_mac (smac) { //Compound Action

4 modi fy_f i e ld (e the rne t . srcAddr , smac) ; // Pr imi t ive Action

5 }

6

7 t ab l e sendout {

8 reads {

9 standard_metadata . egress_port : exact ;

10 }

11 a c t i o n s {

12 no_op ; //On Miss

13 rewrite_src_mac ; //On Hit

14 }

15 }

Listing 3.18 Ű P4 Table Code Snippet

1 void no_op(packet_descr iptor * pkt) {}

2

3 void rewrite_src_mac (packet_descr iptor * pkt , lookup_table ** tab l e s ,

4 s t r u c t rewrite_src_mac_params parameters) {

5 updtPktField (pkt , ge tByteOf f s e t (ethernet_srcAddr) ,

6 getBytewidth (ethernet_srcAddr)) ;

7 }

8

9 void table_sendout (packet_descr iptor * pkt) {

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 69

10 table_sendout_key (pd , (uint8_t *) key) ;

11 uint8_t * value = getExactEntry (t a b l e s [TABLE_sendout] , (uint8_t *) key) ;

12 s t r u c t sendout_action * r e s = (s t r u c t sendout_action *) va lue ;

13 i f (r e s != NULL) {

14 index = *(i n t *) (va lue+s i z e o f (s t r u c t sendout_action)) ;

15 switch (res⊗>act i on Id) {

16 case rewrite_src_mac :

17 rewrite_src_mac (pkt , tab l e s , res ⊗>rewrite_src_mac_params) ;

18 break ;

19 case on_miss :

20 no_op(pkt) ;

21 break ;

22 }

23 }

24 i f (r e s != NULL) {

25 switch (res⊗>act i on Id) {

26 case rewrite_src_mac :

27 re turn table_forward (pkt) ;

28 break ;

29 }

30 } e l s e {

31 debug (" Packet Drop\n") ;

32 re turn ;

33 }

34 }

Listing 3.19 Ű Auto-generated Table Code

3.6 Features of Architecture

The modular architecture and clear logical separation among the modules have

given us a lot of advantages to incorporate well-sought aspects of Ćexibility like Pro-

grammability, and Portability into MACSAD as depicted in this section. Besides, the

support of a remote controller, a strong feature required for every SDN devices in the

current landscape, is explored here.

3.6.1 Programmability

Programmability of a switch can have various aspects including packet processing,

switch conĄguration and management, switch monitoring, or Ćexible interface towards

the remote Controller. Our discussion focuses on Protocol Independence features of a

switch to explore programmability nature of it. Protocol Independence is a forte that is

achieved by being able to (re-)conĄgure data plane using a high-level language to introduce

custom protocol by supporting non-standard protocol header format. MACSAD prefers

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 70

P4 language to program data plane applications as it inherently cultivates the protocol

independence nature. With P4 our focus remains on the application requirements instead

of exploring the protocols used or the target platform.

We understand that the Parser and the Datapath specifying all the pipelines a

packet can be a part of in the switch are where programmability can have a signiĄcant

inĆuence. For every network packet, MACSAD is required to extract headers, assemble

the lookup keys from extracted header Ąelds, perform table lookups using the keys, and

Ąnally execute the associated actions on the packet. The Parser block in conventional

switches require the knowledge of protocol header format to construct the lookup keys

by specifying the target header Ąelds (e.g., Ethernet 𝑀𝐴𝐶source Address). In contrary,

MACSAD posses no priori knowledge of the protocols and protocol header formats. The

header format is deĄned at compile time, and the programmable parser is able to identify

the custom protocol headers with the header length and header Ąeld width details from

P4 program itself. This protocol oblivious parsing is referred to as "Protocol Independent

Parser" and explored brieĆy in 3.6.1.1.

Following up, the Datapath block is required to assemble the lookup key and

perform Śmatch+actionŠ operation before sending out any network packet. Conventional

switch achieves this with the knowledge of the exact speciĄcities of the header Ąelds

of protocols constituting the lookup key. For MACSAD previous knowledge of protocol

details are not necessary. It deĄnes the key by one or more header Ąelds identiĄed internally

by offset, length tuples where offset denote where the Ąeld starts in the header, and length

denotes the number of bits to be included in the key starting from the offset position. With

the compile-time discovery of key formats and table lookup implementation MACSAD

brings protocol independence to the Datapath block and is explored in more details in

3.6.1.2 as ŚProtocol Independent DataplaneŠ.

Programmability feature is inculcated into MACSAD by the auto-generated code

explained in section 3.5. The Packet Parsing Logic and the Control Logic auto-generated

by the Transpiler are responsible to bring Protocol Independence (PI) to MACSAD by

means of a Protocol Independent Parser and a Protocol Independent Dataplane, respec-

tively.

3.6.1.1 Protocol Independent Parser

According to P4 abstract model (see Fig. 4), the Parser functionality can be inter-

preted as post-pipeline editing. P4 parses every packet into a ŚParsed RepresentationŠ of

it. Every packet header update operations are done over the Parsed Representation, and

later the deparser module (Fig. 4) puts the updated Parsed Representation back to the

packet serializing the headers in sequence before transmitting it out. However, MACSAD

implements inline editing of headers instead of post-pipeline editing as in P4. MACSAD

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 71

parses each packet and stores the pointers to the required headers and header Ąelds to

facilitate the in-place read-write of the header Ąelds. Unlike hardware switches with deter-

ministic delay from parser module, software switches suffers from higher memory latency

resulting in higher delay which increases with parser complexity too. Hence, inline editing

of parser is chosen to circumvent the additional deparser module and improve MACSAD

parser performance. In MACSAD, header structures are identiĄed from the P4 program

and the Transpiler module auto generates enums for header Ąelds, their offset and bit-

masks also known as ŚPacket Parsing LogicŠ part of the ŚDatapath Logic CodeŠ. MACSAD

Protocol Independence (PI) with Packet Parsing Logic to support custom protocol head-

ers deĄned with P4 syntax for complex header structures are demonstrated through the

Data-center Gateway, and Broadband Network Gateway use cases later in Sec. 4.2. To

increase performance and streamline the packet processing pipeline, we circumvent the

deparser module by opting for inline editing of packet headers.

3.6.1.2 Protocol Independent Dataplane

The foundation of the Protocol Independent Dataplane is a generic forwarding

architecture and a concise set of protocol independent primitive actions which can describe

any data plane application. P414 presents a set of primitive actions sufficient to describe

any data plane application. By being able to deĄne custom protocols over a target device,

P4 achieves protocol independent dataplane. In MACSAD, we implement these primitive

actions over ODP APIs as part of Backend APIs, while mapping the P4 program blocks to

the PISA forwarding architecture. Protocol Independent Dataplane is the result of these

two steps in place in MACSAD architecture. Transpiler presents auto-generated code for

P4 program over PISA exploring the parser logic and control logic composed of Parser,

match-action P4 abstractions to deĄne all the pipelines a network packet will eventually

take in the data plane. Backend APIs Table 7 maintain cohesion among parser logic

and control logic and help bind them together with its implementation of the primitive

functions. The auto-generated header data structures are extensively referenced in Control

Logic with no priori knowledge of the protocol itself by MACSAD. We showcase that it

is possible to have Protocol Independent Dataplane even with complex header structures,

and encapsulation & decapsulation of headers deĄning complicated pipeline in the Data-

center Gateway and Broadband Network Gateway use cases later in Sec. 4.2.

3.6.2 Portability

The absence of a standard programming language and multi-architecture compiler

system limits the portability of data plane application. A high-level language is meant

to be platform independent and normally offers support for more generic switch pipeline

architectures explained in subsection 2.1.2. P4 high-level language too is a platform-

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 72

agnostic language leaving the heavy lift of packet forwarding details to the target-speciĄc

backend compiler. Moreover, P4 relates to different targets with PISA support as P4

abstractions can be mapped well to the switch architecture. MACSAD blends P4 ab-

stractions and primitives with the Backend APIs in Table 7 towards portable data plane

applications. A datapath implementation in software typically consists of two functional

realms: (1) Packet handling consisting of the Parser, Table (Match+Action) lookup, and

Packet header updater; and (2) Switch resource management functions including CPU,

Queue, Memory, Thread, Table, among others. While the Ąrst set of functions are mostly

auto-generated by the Transpiler in a protocol-independent manner for MACSAD, the

second set is target dependent. By creating a set of target-independent implementations

of these target dependent switch system libraries/APIs on top of ODP APIs, MACSAD

delivers target-independent system APIs turning the code seamlessly portable with a

highly-reduced effort across network platforms. This solution can be realized by a simple

recompilation of the source code without necessarily sacriĄcing performance across tar-

get platforms. Furthermore, MACSAD brings support to hardware accelerated modules,

and other nuances in hardware resource provisioning behind this target-independent sys-

tem APIs as part of Backend APIs. In its current state MACSAD portability support

is limited to forwarding architectures based on PISA. However, by adding support for

P416, we are looking forward to bring support for Portable Switch Architecture (PSA). As

PSA promise to support different switch pipeline architectures including PISA, in time

MACSAD will also be able to bring support for these architectures too.

3.6.3 Contoller Support

Although P4 is only capable of specifying the data plane, it implicitly elaborates

the interface between the data plane and the control plane. The control plane manages

the P4 tables at runtime. Transpiler auto generates the necessary table management APIs

to allow the external controller to update the pipeline. MACSAD uses a very expressive

naming convention for the table APIs following the general consensus prevailing in various

other open source project (OPENDAYLIGHT, 2018). The name of an API contains the

table name and table action to explicitly express the function of the API. Considering

these details are available in the P4 program itself, the controller can identify the APIs

supported by the data plane from the P4 program without any additional input required.

This facilitates the developers to bring the support of different controllers over P4 target

device easily. The Table 11 shows the auto-generated APIs for the P4 table sendout

for our reference. Currently, MACSAD provides remote controller support over TCP

connection. We provide our own take on SDN controller and offer a simple controller

which can create a session with MacS and update the table Ćow entries of the MacS

pipeline at runtime.

Chapter 3. Multi-Architecture Compiler System for Abstract Dataplanes 73

Table 11 Ű Auto-generated Table APIs for Control Plane

Table Name Table APIs Remarks

sendout
sendout_set_default_action Set the default action.

sendout_add_table_entry Add or update an entry.

sendout_del_table_entry Remove an entry.

3.7 Concluding Remarks

Introduced in subsection 1.3.1, MACSAD is detailed in this chapter explaining

the design & implementation, and its various features. We started this chapter with how

MACSAD is composed of different modules to bring Ćexibility in design, and then fol-

lowed up with the description of the compilation process to showcase MACSAD compiler

system. This is then followed by more detailed dive in into the individual modules and sub-

modules. IR generation (section 3.3), and Backend APIs (section 3.4) descriptions focused

on the support of high-level DSL P4 and low-level multi-target SDKs from ODP respec-

tively. While exploring the impact of P4 and ODP, the process of code auto-generation

for the packet processing logic of MACSAD interpreted contending features like Protocol

Independence & Target Independence.

This chapter provided a comprehensive overview of the design and implementation

of MACSAD compiler system and the Ćexibility it brings to the switch in terms of

programmability and portability. We carry this discussion to include performance and

scalability evaluation of MACSAD in the next chapter bringing some related works into

the mix too.

74

4 Experimental Evaluation

With this chapter, we now turn our attention to the practical aspects of MAC-

SAD implementation, and evaluate them in line with Programmability, Portability, Per-

formance and Scalability (3PS) for varied use cases with different complexities establishing

our effort to achieve Ćexibility in forwarding devices. Common believe dictates that per-

formance comes at the cost of programmability and vice-versa. Hence it is essential to

have this evaluation to showcase that MACSAD achieves performance without sacriĄcing

programmability or portability contrary to common belief.

Programmability aspect is attained with the demonstration of support for different

use cases, namely, Layer-2 Forwarding (L2FWD), Layer-3 Forwarding with IPv4 (L3FWDv4)

and IPv6 (L3FWDv6), Network Address Translation (NAT), Data Center Gateway (DCG),

and Broadband Network Gateway (BNG) deĄned with P414 and P416. We identiĄed these

use cases to showcase different features of MACSAD and present varied pipeline com-

plexity to satisfy programmability. Complexity is understood in terms of increasing the

number of tables, table entries count (from 100 to 100K), and support of tunneling proto-

col; i.e., increasing per packet processing time. Evaluation of these diverse use cases can

demonstrate MACSAD capability to support for the majority of P4 abstractions, and

MACSAD ability to bring the data plane applications to the target platform.

Besides, portability necessitates the presence of a data plane application over multi-

ple switch targets. MACSAD brings the use cases written in P4 over to various platforms

by compiling the P4 program onto PISA architecture, and in turn supporting all the un-

derlying platforms. We showcase MACSAD use cases running over different platforms

spanning ARM, x86, ThunderX, and Octeon. This is achieved and demonstrated over de-

vices like Raspberry Pi2, General Purpose Servers, Virtual Machines, Docker Containers,

and Cavium bare metal switches. We also bring the different packet I/O drivers, namely,

DPDK, Netmap, Socket_mmap, and vĄo_pci into the mix increasing the breadth of our

approach to portability. Hence, we explore the evaluation of use cases in various conĄgu-

rations over a number of platforms in the following sections.

Moving forward with 3PS we express performance and scalability in detail too.

Performance and scalability evaluation become apparent due to the nature of testing &

evaluation of MACSAD done here for this thesis. We explore different combinations of use

cases, platforms and Packet I/Os to evaluate the performance of MACSAD, and withal

explore the scalability for different workloads (packet traces, table entries, packet sizes)

with different conĄguration options (e.g., CPU cores). This diversity is extended by the use

of different network interface types (Intel, Mellanox) with varied throughput (including

Chapter 4. Experimental Evaluation 75

10G, 40G, and 100G). We also explore the increasing number of table entries, and network

traffic Ćows (from 100 to 100K) to explore scalability aspect of MACSAD. Performance

evaluation is carried out mostly in Packet Rate/Throughput terms for different use cases

while Latency feature too is explored brieĆy in the process for the use cases. The Packet

Rate/Throughput evaluation for the switch data plane adheres to the methods deĄned

in RFC 2544 (BRADNER; MCQUAID, 1999). Performance evaluation is the primary

feature in our evaluation of MACSAD and is described in detail including the trade-off

present due to Programmability, Portability, and Scalability.

We begin with the description of different testbeds used during our evaluation

of MACSAD. We present and analyze the results, and discuss the observed trade-offs

and scalability patterns for different workloads and conĄguration options for the use

cases executed on our testbeds. Then, we demonstrate how MACSAD fares in terms of

packet rate and scalability against other related works such as T4P4S and OvS. In each

experiment, MACSAD is only required to recompile the corresponding P4 source code

for any change in the target platform. We execute MacS along with a simple in-house

Controller to populate the tables for each use case. The main aim of our measurements is

to identify how our proposed MACSAD performs under different conĄgurations, and over

different target platforms. We have also described our novel technique on dynamic CPU

core (de-)allocation towards a scalable data plane capable of adapting to the workload

and system needs in the follow-up chapter 4.5.

4.1 Testbed Details

MACSAD analysis is carried out on multiple testbeds each differing in terms of

target platforms, the number of CPU cores, throughput capability of network interface

cards, or speciĄc traffic generator used. Each testbed consists of a DUT running MacS

and Tester accommodating the traffic generator. The Tester and DUT are connected

back-to-back as per the RFC 2544. We use Network Function Performance Analyzer

(NFPA) (CSIKOR et al., 2015) and OSNT (ANTICHI et al., 2014) as traffic generators to

calculate throughput and latency numbers, and to explore the impact of traffic generator

on MacS. Similarly, the DUTs are of types like general purpose server and Cavium bare

metal switches. The different testbeds provide different combinations of the Tester and

DUT selecting one from each category. We also explore the impact of packet size, burst

size and packet I/Os over throughput and latency for different testbeds across use cases.

MacS pipeline tables are conĄgured in ways such that it ends up in receiving packets

from one port and forwarding them via the other port towards the tester, which in turn

analyzes the packet throughput in terms of packets per second (pps) and bits per second

(bps), and latency in microseconds (Ûs). In the following paragraphs, we brieĆy describe

the testbed conĄgurations.

Chapter 4. Experimental Evaluation 76

Testbed A

Under this testbed, both DUT and Tester runs on similar conĄguration, Lenovo

ThinkServer RD640 servers with Intel Xeon E5-2620 v2 processors (having 6 cores per

socket with 2 threads per core running at 2.40GHz, 1 Numa node) and 64GB of memory

running Ubuntu Linux 16.04 LTS with kernel 4.4; each server is equipped with a dual-

port Intel X540-AT2 NIC (10G). One of the servers is conĄgured to be the Tester run-

ning NFPA (CSIKOR et al., 2015) with a stable version of DPDK (v17.08) and PktGen

(v3.4.5) where NFPA test system internally uses PktGen tool with DPDK to continuously

replay the test traffic available as PCAP Ąles. Furthermore, the DUT supports multiple

Packet I/Os, namely DPDK (v17.08), Netmap (v11.2) and the basic Socket_mmap pro-

vided by the Linux kernel.

Testbed B

Similar to Testbed A this testbed also has both DUT and Tester running on similar

conĄguration with Intel Xeon CPU E5-2680 v4 (having 14 cores per socket with 2 threads

per core running at 2.40GHz, 2 Numa nodes) and 64GB of memory running Ubuntu Linux

16.04 LTS with kernel 4.4; each server is equipped with a dual-port Mellanox MT27700

Family [ConnectX-4] NIC (100G). The Tester and the DUT have NFPA, DPDK, PktGen,

ODP, etc., conĄgured in a similar fashion to Testbed A.

Testbed C

This testbed demonstrates MACSAD over Cavium switches using ODP SDKs.

Here, the DUT is a Cavium development board with Octeon TX 83XX chipset (24 CPUs,

64-bit, 1 thread per core running at 1.8GHz, 2 Numa nodes) and 16GB of memory running

the specially tuned version of Ubuntu 16.04.5 LTS with Kernel 4.9. It has a single socket for

CPUs and two levels of cache (L1d:32K, L1i:78K, L2:8192K). It provides DDR4 controllers

with ECC and PCI-Express Gen3 for better performance. The ODP SDKs from Cavium

for this board is based on v1.11.0.0 (Monarch), a much older ODP version compared to

the current version of v1.19.0 (Tigermoth). This required a number of changes to our

MACSAD in order to compile and execute MacS. On the other hand, the tester node

has Intel Xeon CPU E5-2680 v4 (having 14 cores per socket with 2 threads per core

running at 2.40GHz, 2 Numa nodes) and 64GB of memory running Ubuntu Linux 16.04

LTS with kernel 4.4. We have equipped the Tester with a dual-port Intel XL710 NIC

QSFP+ (40G) network connection for experimentation.

Testbed D

Testbed D is again based on Cavium chipset but of a different family. The Cavium

based DUT is the R150-T62 server with ThunderX 88XX chipset (48 CPUs per socket, 64-

bit CPU op-mode, 1 thread per core running at 2GHz, 2 Numa nodes, two levels of cache

with L1d:32K, L1i:78K, L2(shared):16MB) and 64GB of memory running Ubuntu Linux

Chapter 4. Experimental Evaluation 77

18.04.1 LTS with Kernel version 4.15. The tester node has Intel Xeon CPU E5-1660 v4

having 6 cores per socket with 2 threads per core running at 2.40GHz, 2 Numa nodes and

64GB of memory running Ubuntu Linux 16.04 LTS with kernel v4.4. We have equipped

the tester with a dual-port Intel X540-AT2 NIC (10G) SFP+ Network Connection for

experimentation.

Testbed E

We explore a hardware-based traffic generator with this testbed by using OSNT

traffic generator and analyzer with MacS. Here, the DUT is a general purpose server with

Intel Xeon CPU D-1518 (having 4 cores with 2 threads per core running at 2.40GHz, 1

Numa node) and 16GB of memory running Ubuntu Linux 16.04 LTS with kernel 4.4.

It has a single socket for CPU cores and three levels of cache (L1d, L1i:32K, L2:256K,

L3:6144K). We have equipped the tester with a dual-port Intel X540-AT2 NIC SFP+

(10G) network connection for experimentation. The tester has Intel Xeon CPU E-5506

(having 4 cores with 2 threads per core running at 2.13GHz, 1 Numa node) and 16GB of

memory. The OSNT is running over the NetFPGA SUME board attached to this server.

The SUME board is equipped with 4 SFP+ (10G) NICs for the experimentation.

With our testbed conĄguration, packet loss only occurs when the DUT becomes

a physical bottleneck, and therefore the packet rate received by NFPA is representative

of the raw performance. Traffic traces have different number (from 100 to 1M) of unique

Ćows randomly generated per use case, but consistent across different packet sizes, limiting

the impact of the lookup process and underlying caching system which would depend on

the traffic pattern. Our own tool BB-Gen (RODRIGUEZ et al., 2018) is used to generate

all the traffic traces used in our experiments explored in detail in section 7.1. In most

of the cases, we evaluated different packet I/O drivers for which, when it is not stated

otherwise, we used blue circle patterns for DPDK, solid green bars for Netmap and orange

dotted patterns for the kernel provided Socket_mmap. All measurements are conducted

for 60 sec (BRADNER; MCQUAID, 1999), and every data point in our performance

measurements is an average value. ConĄdence intervals are not used as the results are

stable and reproducible for all frameworks while evaluating packet rate of MacS. Latency

results are expressed using boxplot though to include average, mean and highest values

while showing the outliers too. As the calculated latency values are small, the variance

is noticeable and important to consider for analysis. We summarize all the testbeds used

for MacS evaluation and analysis in the Table 12.

Chapter 4. Experimental Evaluation 78

Table 12 Ű Testbed Summary

Testbed
Name

DUT Details Tester
Details

Manufacturer Chipset Architecture NIC Name
Maximum

Throughput

A Intel Xeon E5-2620 v2 x86_64 Intel X540-AT2 10G NFPA (s/w based)

B Intel Xeon E5-2680 v4 x86_64 Mellanox MT27700 [ConnectX-4] 100G NFPA (s/w based)

C Cavium Octeon TX 83XX AARCH64 Intel XL710 40G NFPA (s/w based)

D Cavium ThunderX 88XX AARCH64 Intel X540-AT2 10G NFPA (s/w based)

E Intel Xeon D-1518 x86_64 Intel X540-AT2 10G OSNT (h/w based)

4.2 Use Case Descriptions

4.2.1 Port Forwarding (PortFWD)

Port Forwarding (PortFWD) is a simple use case where MacS receives network

packets from one interface and sends out via the other interface without performing any

header update operations on the packet itself. With this, we demonstrate the raw perfor-

mance of the testbed and help to evaluate the other use cases against a reference value

henceforth.

4.2.2 Layer-2 Forwarding (L2FWD)

We demonstrate a Layer-2 switching and forwarding program with MAC address

learning feature implemented with MACSAD and a specialized external controller. We

implement L2FWD with two separate lookup tables, the Ąrst matching on source MAC

address and the second on destination MAC address. MacS, following the P4 guide-

lines, generates controller digests for unknown MACsource address and the arrival port

ID. In turn, the controller responds to the digest message by directing MacS to add the

MACsource address and arrival Port ID to the corresponding tables. P4 "Exact Lookup"

method is used for MAC address lookup in the table and is implemented using ODP based

Cuckoo Hash helper library in MacS.

Figure 11 Ű L2FWD Use Case Pipeline.

Figure 11 shows the basic MacS pipeline which consists of SMAC and DMAC

tables. The grey arrows above and below the tables show the action functions executed

over the packets in case a table lookup fails. The black arrow shows the sequence of tables

a packet traverse in the case of table lookup success. In the event of lookup fail at the Ąrst

Chapter 4. Experimental Evaluation 79

table SMAC, a packet digest is created at MacS and sent to the controller to perform

MAC learning, else no operation is done on the network packet, and the packet moves to

the next table in the pipeline. A lookup success at the second table DMAC results in a

successful forwarding of the network packet via appropriate output port, whereas lookup

fail results in a broadcast of the network packet. The action functions for the two tables

are shown at Listing 4.1 and Listing 4.2. Appendix A shows the P4 program for the use

case and the dependency graphs for parser and tables.

ac t i on mac_learn () {

generate_diges t (MAC_LEARN_RECEIVER,

mac_learn_digest) ;

}

Listing 4.1 Ű SMAC

ac t i on forward (port) {

modi fy_f i e ld (standard_metadata

. egress_port , port) ;

}

ac t i on bcast () {

modi fy_f i e ld (standard_metadata

. egress_port , 100) ;

}

Listing 4.2 Ű DMAC

Figure 12 shows the throughput results of MacS running L2FWD use case on

our Testbed A. The Ągure shows the throughput results for 3 different packet I/Os across

different packet sizes in increasing order while using a single CPU core. As per the pre-

vailing consensus, socket-mmap displays the worst performance whereas DPDK shows

better results than both socket-mmap and netmap. While DPDK easily reaches line rate

with 256 Bytes packet size, the socket-mmap packet I/O can not saturate the 10G NIC

even with 1518 Bytes packet size. Netmap results are somewhere between socket-mmap

and DPDK. We observed that Netmap saturates 10G NIC with 1024 Bytes packet size

and reaches more than 90% of line rate with 512 Bytes packet size. The line rate for 256

Bytes and 1024 Bytes packet sizes are shown as red dashed and solid line respectively in

the Figure 12 for reference.

64 128 256 512 1024 1280 1518
Packet sizes (Bytes)

0

1

2

3

4

5

6

7

Th
ro
ug

hp
ut
 (M

pp
s)

LineRate (256Bytes)
LineRate (1024Bytes)

Socket-mmap
Netmap
DPDK

Figure 12 Ű L2FWD Performance Evaluation (1 core, 100 Table entries) on Testbed A.

Chapter 4. Experimental Evaluation 80

4.2.3 Layer-3 Forwarding (L3FWDv4/v6)

With L3FWD use case, we demonstrate Layer 3 IP based forwarding of network

packets using either IPv4 or IPv6 network protocol. These L3FWD use cases are imple-

mented with ODPŠs built-in Helper library for Longest PreĄx Match (LPM) based lookup

mechanism. ODP provides LPM lookup with 32-bit keys supporting IPv4 forwarding suit-

able for the L3FWDv4 use case. However, ODPŠs built-in helper library lacks the support

for IPv6 based LPM lookup algorithm. We bring the missing IPv6 forwarding support

to ODP by extending the existing LPM library to support 128-bit keys. We implement

both Layer-3 Forwarding IPv4 (L3FWDv4) and Layer-3 Forwarding IPv6 (L3FWDv6)

use cases in MACSAD using the extended ODP helper library. We keep the structure of

tables similar for both use cases for a seamless comparison among them.

The P4 pipeline is implemented using two lookup tables in sequence as done in

L2FWD, presented in Figure 13. At Ąrst, IPdest Address based lookup is performed at

the Ąrst table ipv(4/6)_fib_lpm along with corresponding actions for standard L3 packet

processing (e.g., MACdest re-writing, TTL/Hop Limit decrement, Output Port selection).

This is followed by a matching on the output port in the second table sendout and the

MACsource re-writing action function. The default action for each table is deĄned as Drop

and shown as an additional gray arrow above the table blocks in Figure 13.

Figure 13 Ű L3FWDv(4/6) Use Case Pipeline.

Appendix B shows the P4 program for the use cases and the dependency graphs for

parser and tables. In the event of a table match with the Destination IP Address (IPdest) as

the lookup key at the Ąrst table ipv(4/6)_fib_lpm, the action function fib_hit_nexthop

is executed. As shown in 4.3, we update the headers and metadata Ąelds according to

the action function fib_hit_nexthop. Following up, a table match for the second table

sendout references the action function rewrite_src_mac Listing 4.4 which sets the proper

MACsource before the packet is being forwarded via the output port.

ac t i on fib_hit_nexthop (dmac , port) {

modi fy_f i e ld (e the rne t . dstAddr , dmac) ;

modi fy_f i e ld (standard_metadata .

egress_port , port) ;

add_to_fie ld (ipv4 . t t l , ⊗1) ;

}

Listing 4.3 Ű ipv(4/6)_fib_lpm

ac t i on rewrite_src_mac (smac) {

modi fy_f i e ld (e the rne t . srcAddr ,

smac) ;

}

Listing 4.4 Ű sendout

Chapter 4. Experimental Evaluation 81

L3FWDv4.

The IPv4 LPM implementation in MACSAD uses a binary tree based lookup algo-

rithm with three tree levels (16-8-8) to achieve the balance between memory consumption

and lookup speed bounded at 3 memory accesses per lookup. For this L3FWDv4 use case,

we have chosen to go with a 16-bit netmask for LPM lookup resulting in single memory

access for each lookup.

L3FWDv6.

The original ODP Helper library lacks IPv6 lookup support. Hence we devel-

oped the algorithm for ODP, and implemented table related structures and functions in

MACSAD. This LPM lookup algorithm and table implementation are similar to that of

DPDK1 with 15 levels of tables (16-bit 1st level followed by 14 levels of 8-bit each). This

is implemented as an extension to the LPM based IPv4 lookup algorithm of ODP where

the root node size and the number of table levels are of different values to support IPv6.

Figure 14 shows the throughput results of MacS running L3FWDv4 and L3FWDv6

use cases on our Testbed A. The Ągure shows the throughput results for different conĄg-

urations of Packet I/Os and packet sizes while using a single CPU core and a table size

of 100. The results are similar to L2FWD as MacS pipeline is similarly consists of two

tables. Figure 14a and Figure 14b shows the results for L3FWDv4 and L3FWDv6 re-

spectively. We observed that socket-mmap results are the lowest compared to DPDK and

NETMAP for both L3FWDv4 and L3FWDv6 use cases. While DPDK performs the best

and easily reaches line rate with 256 Bytes packet size, the socket-mmap packet I/O can

not saturate the 10G NIC even with 1518 Bytes packet size. Netmap is able to saturate

the 10G NIC for 1024 Bytes and more packet sizes.

64 128 256 512 1024 1280 1518

Packet size (Bytes)

0

1

2

3

4

5

6

Th
ro

ug
hp

ut
 (M

pp
s)

(a) L3FWDv4

64 128 256 512 1024 1280 1518

Packet size (Bytes)

0

1

2

3

4

5

6

Th
ro
ug
hp
ut
 (M

pp
s)

LineRate (256Bytes)
LineRate (1024Bytes)

DPDK
Netmap

Socket-mmap

(b) L3FWDv6

Figure 14 Ű L3FWD (IPv4 & IPv6) Performance Evaluation (1 core, 100 Table entries)
on Testbed A.

1 http://dpdk.org/doc/guides-16.04/prog_guide/lpm6_lib.html

Chapter 4. Experimental Evaluation 82

4.2.4 Network Address Translation (NAT)

Towards more complex pipeline, we implemented Network Address Translation

(NAT) (EGEVANG; FRANCIS, 1994) use case on MACSAD. NAT remaps an IP ad-

dress space into another by modifying the IP Headers of network traffic. It enables the

hosts inside a private network to mask their identity behind the NAT router. And in turn,

it allows the network administrators to implement security measures to protect the private

network. With this use case, we explore newer usages of P4 standard metadata and user-

deĄned metadata in the P4 pipeline while adding more number of tables to the pipeline.

This use case also explores dynamic table selection depending on the packets processed

instead of a Ąxed sequence of tables explored in the previous L2FWD and L3FWD use

cases: table depth of the pipeline differs with the input Ćow type.

Figure 15 Ű NAT Use Case Pipeline.

Appendix C shows the P4 program and the dependency graphs for parser and

tables for this use case. In our case, the same P4 program satisĄes both Uplink (UL) and

Downlink (DL) pipeline for NAT. The P4 program has 6 tables in total where each of the

Uplink (UL) and Downlink (DL) pipeline consists of 5 tables out of which 4 tables are

common among UL and DL as shown in Figure 15. NAT use case pipeline begins with

IF_INFO table which identiĄes whether the network traffic being processed belongs to UL

or DL pipeline and update the routing_metadata.is_int_if metadata accordingly. After

that MACsource address lookup followed by MAC learning when applicable is performed

at SMAC table. After SMAC, the routing_metadata.is_int_if value helps to decide the

next table and in turn the UL or DL pipeline. If the metadata is set, then NAT_UL, else

NAT_DL is referred. In case of NAT_UL table, LPM lookup is performed over IPsource

Address followed by table action function mapping internal IPsource address to external

IPsource address for every table match. For a table miss, IPsource to TCP port mapping

is learned instead. Similarly, when routing_metadata.is_int_if is not set, a P4 EXACT

lookup is performed over TCP destination port (TCPdstP ort) as part of NAT_DL table.

External to Internal IP address mapping is done for Destination IP Address (IPdest) in

the event of a table hit; otherwise, the packet is dropped. Following on, we have two more

tables as part of the pipeline: IPV4_LPM, and SENDOUT. IPV4_LPM is the next table

in place performing LPM lookup on the IPdest of the network packet. For every successful

lookup, it updates the packet with correct MACdest and sets the Egress port value in the

Chapter 4. Experimental Evaluation 83

metadata, and drops the packet in case of a lookup fail. The Ąnal table in the pipeline is

called SENDOUT which perform a lookup upon the Egress port updated in the previous

table to set the proper MACsource before the packet is being forwarded. In case of a lookup

failure, the packet gets dropped at the table instead of being forwarded. While the use

case scenario is explored in Figure 15, the details about the Tables, Actions, etc., are

available in the P4 program at Appendix C.

Figure 16 depicts the throughput results of MacS running NAT-UL and NAT-

DL use cases on the Testbed A. The Ągure shows the throughput results for different

conĄgurations of packet I/Os and packet sizes while using a single CPU core and a table

size of 100. Socket-mmap result is the lowest but with constant MPPS (Million packets per

second) across different packet sizes. For both UL and DL pipeline, DPDK can saturate

the 10G NIC with 512 Bytes or greater packet sizes whereas Netmap achieves that with

1024 Bytes or greater packet sizes only.

64
128

256
512

1024
1280

1518 64
128

256
512

1024
1280

1518

Packet size (Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Th
ro

ug
hp

ut
 (M

pp
s)

Download (DL) Upload (UL)

LineRate (1024Bytes)
LineRate (512Bytes)

Socket-mmap
Netmap

DPDK

Figure 16 Ű NAT (UL & DL) Performance Evaluation (1 core, 100 Table entries) on
Testbed A.

4.2.5 Data Center Gateway (DCG) with VXLAN

The Data Center Gateway (DCG) use case is the next use case under MACSAD

towards a more complex packet pipeline demonstrating new feature support such as tun-

neling. Tunneling allows transmission of private network data via a public network while

being transparent to the routing nodes in the public network. In effect, it allows us to

connect multiple logically separated private networks over a public network. DCG use case

is developed using Virtual eXtensible Local Area Network (VXLAN) (MAHALINGAM

et al., 2014) tunneling protocol as the underlying protocol. VXLAN protocol is an overlay

protocol which implements Layer 3 tunnels to connect multiple Layer 2 networks seam-

lessly. VXLAN requires Virtual Tunnel End Points (VTEPs) at both ends of the tunnel,

which can be switches or routers, that (de-)encapsulate the network traffic into a VXLAN

header. VXLAN allows creating segments in the network identiĄed by VXLAN Segment

Chapter 4. Experimental Evaluation 84

ID/VXLAN Network IdentiĄer (VNI) where communications can only take place within

individual segments, not across segments.

The DCG use case scenario using VXLAN is presented in Figure 17. In DCG

use case, VXLAN tunnels are used to connect users (Host) with different virtualized

web services hosted in redundant servers sharing a common IP address (8.8.8.1 in our

example). While the User (HOST) is placed in the public network, the web servers are

placed inside a private network as shown in the Ągure. The VXLAN tunnel exists as

between MacS A - MacS B or MacS A - MacS C MACSAD switches where MacS A is

the VTEP at one end of the tunnel, and MacS B & MacS C are the VTEPs at the other

end of the tunnel. MacsA is the acting data center gateway here in this use case. The

VXLAN protocol provides the encapsulation mechanism between VTEPs to transport

L2 frames inside UDP packets forwarding the network packets among the HOST and Web

Servers. We refer the packet direction towards Web Server as Download (DL), and packet

direction towards HOST as Upload (UL). Both DL and UL are considered as two different

pipelines of the DCG use case and explored in detail further in this section. Figure 17

shows the DL and UL direction as dotted and solid arrows at the bottom of the diagram

with the arrowhead pointing to the respective packet direction. Similarly, the network

packet Ćow across the tables for both DL and UL pipeline is shown in Figure 18.

Upload (UL)

Download (DL)

Figure 17 Ű Data Center Gateway (DCG) use case scenario.

4.2.5.1 Download (DL)

Download (DL) pipeline explains the traffic from the HOST towards Web Server.

The traffic is routed via a public network a.k.a internet before reaching the gateway and

then traverse through the private network to reach a web service. The User (HOST) &

web service bear IP addresses as 213.1.1.1 & 8.8.8.1 respectively. Traffic originated at

HOST and routed through the internet to reach the data center gateway MacS A macsad

switch which acts as a VTEP too. The network packet enters into a load balancing next

hop VTEP decision selecting either MacS B or MacS C, followed by VXLAN header

encapsulation. The encapsulation consists of Ethernet, IP, UDP and VXLAN headers. In

Chapter 4. Experimental Evaluation 85

the case when MacS B is selected as next hop VTEP, MacS A sets the outer Ethernet

header and outer IP header with MACdest & IPdest of MacS B as shown in Figure 17. In

turn, as the last leg of the VXLAN tunnel, MacS B decapsulates the packet and sends

it to Server 1.

4.2.5.2 Upload (UL)

The response from web service for the requests from end User (HOST) participates

in Upload (UL) pipeline where the network traffic originates at the web service inside a

private network behind a VTEP and ends at the HOST situated in a public domain

across the internet. To facilitate explanation, we explore the pipeline discussion for the

network traffic (response message for HOST) from Server 1. Server 1 response packet

reaches the MacS B VTEP at the beginning of the pipeline. As part of encapsulation,

MacS B sets the outer Ethernet (MACdest of A), IP headers, UDP and VXLAN headers

in reverse direction towards MacS A VTEP. After that MacS A removes the VXLAN

header, rewrites addresses and forwards the packet towards HOST.

Appendix D shows the P4 program and the dependency graphs for parser and

tables for this use case. The P4 program satisĄes both UL and DL pipelines for DCG.

The P4 program has 7 & 8 matching tables for UL and DL respectively resulting in

different table depth and pipeline complexity. Both UL and DL pipeline share 6 tables

among themselves while other tables are speciĄc to the pipeline itself. Figure 18 illustrates

implemented pipelines using different sets of tables as explained here.

Figure 18 Ű DCG pipeline featuring the UL and DL table details.

L2 Tables. This is a set of 2 tables allowing DCG to act as an L2 learning switch and

to processes ARP packets when necessary. In the case of mac learning, the corresponding

tables are updated with new MAC entries appropriately.

Gateway Tables. Since the public network hosts User while the Private network hosts

the Servers, this set of 2 tables helps to decide the course of the pipeline to be UL or DL.

It also updates the MACdest for the next hop.

VXLAN Tables. DL pipeline requires encapsulation of VXLAN headers whereas UL

performs removal of VXLAN headers. For each pipeline the responsible tables are differ-

Chapter 4. Experimental Evaluation 86

ent. Encapsulation and corresponding header Ąeld updates are performed using 2 tables

in DL pipeline. However, UL requires only a single table to perform decapsulation of

VXLAN headers. The encapsulation and decapsulation operations for VXLAN headers

are performed using add, remove and copy header functions from the MACSAD Auxiliary

Backend module.

IPV4 Routing Tables. This set of 2 tables performs the IP based forwarding and is

implemented similar to the L3FWD-IPv4 use case explained before. This acts for both

UL and DL pipeline in a similar fashion.

Evaluation of DCG use case is done according to the scenario explained in Figure

17. MacS evaluation is carried out at MacS A for both UL and DL pipeline with the

help of PCAP Ąles generated by BB-Gen fulĄlling all the table requirements. The PCAP

traffic Ąles are unique to UL and DL pipelines with different Ćow details. Separate Table

trace Ąles are also created for UL and DL satisfying their pipeline speciĄc set of tables.

The PCAP traffic trace includes packets with random host IPs to enable RSS for the

multi-core setup and a Ąxed server destination IP (set to 8.8.8.1). As per our practice,

we pre-populated all the tables using the Table Trace Ąle so that every table lookup

exits with a match for all the Ćows in the PCAP based traffic during testing. The load

balancing feature is implemented by a checksum function using IPsource Address. For DL,

MacS adds the right headers and port numbers as per the VXLAN encapsulation. UL

pipeline starts with the network packet with VXLAN encapsulation. Hence the smallest

packet size for our testing of UL use case is selected as 114 Bytes instead of 64 Bytes to

account for the additional 50B overhead of the VXLAN headers. Similarly, the maximum

packet size under evaluation is kept to 1280 Bytes instead of 1518 Bytes to accommodate

VXLAN headers.

64
128

256
512

1024
1280

114
128

256
512

1024
1280

Packet size (Bytes)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

Th
ro
ug
hp
ut
 (M
pp
s)

Download (DL) Upload (UL)

LineRate (1024Bytes)
Socket-mmap

Netmap
DPDK

Figure 19 Ű DCG (UL & DL) Performance Evaluation (1 core, 100 Table entries) on
Testbed A.

Figure 19 shows the throughput results of MacS running DCG-UL and DCG-

DL pipelines on the Testbed A. The Ągure shows the throughput results for different

Chapter 4. Experimental Evaluation 87

conĄgurations of packet I/Os and packet sizes while using a single CPU core and Ąb size

of 100. As expected, socket-mmap behaves poorly and never attain line rate for the 10G

NIC in the testbed. However, we observe that for packet sizes greater than 1024B, the

MACSAD throughput attains the line rate (10G) for UL pipeline with DPDK packet I/O.

This throughput drop from L2FWD and L3FWD use cases is the result of a more complex

pipeline with a higher number of tables. We observe a performance difference between UL

and DL: UL throughput is higher than DL throughput value. After exploring the P4 code

thoroughly and analyzing the packet processing across different tables, we observed that

DCG-UL performs VXLAN decapsulation at the end of the pipeline whereas DCG-DL

performs encapsulation in the middle of the pipeline. Encapsulation step in DL refreshes

cache which is leveraged by tables further down the pipeline. Contrary to it, DCG-UL

faces higher impact of cache miss by putting decapsulation step at the end of the pipeline.

Our analysis points out that the encapsulation step does not have a more signiĄcant

impact on throughput than decapsulation step. Hence this result seems counter-intuitive.

Further investigation revealed that DCG-DL pipeline has an additional table with EXACT

Lookup method compared to the DCG-UL pipeline. We have observed that the impact of

an additional table with "match+action" is signiĄcantly higher in MACSAD pipeline. As

a result, a higher throughput value is measured for DCG-UL compared to DCG-DL whose

throughput is penalized by an extra Table in the pipeline. This discloses an important

behavior of MACSAD pipeline, and allows us to plan the P4 programs accordingly for

more complex use cases.

4.2.6 Broadband Network Gateway (BNG)

BNG, also known as Broadband Remote Access Server (BRAS) (DIETZ et al.,

2015), is an integral part of todayŠs Internet and handles the majority of access network

traffic implementing network policies and services that an Internet Service Provider (ISP)

deĄnes per subscriber. It is also responsible for providing services such as triple play (In-

ternet, Voice, TV) to Customer Premise Equipment (CPE) which represents the triple

play communication devices (Telephone, PC, Set-top box) always connected to the net-

work using an access technology (e.g., Digital Subscriber Line). Functions of a BNG also

include: Authentication, Authorization and Accounting (AAA) and session management;

Packet encapsulation/decapsulation; ARP proxy; NAT; QoS enforcement etc. Similar to

our DCG use case, BNG use case also integrates a tunneling protocol using Generic

Routing Encapsulation (GRE) tunneling. GRE (FARINACCI et al., 2000a) tunneling

protocol allows encapsulation of different network layer protocols over an IP network.

The BNG use case scenario is presented in Figure 20. It handles traffic between a

private network and an external public network. Here the important data plane functions

are divided into an Upload (UL) and a Download (DL) pipeline. The UL is referred for

Chapter 4. Experimental Evaluation 88

network traffic from private network towards public network whereas the traffic in the

reverse direction is referred as DL pipeline. Both UL and DL pipelines are shown clearly

in the Figure 20 with dashed and solid arrows respectively. Under this use case, the tunnel

is implemented in the local private network where CPE resides; the Server exists across

the public network. The private network is represented as an Access Network while the

public network is represented as the Internet as in the Figure 20. The use case explains

the traffic between the CPE behind the Access Network and an external Server across

the Internet.

Private Network (Local)

192.168.0.10

GRE Tunnel

Public Network

10.1.1.10

UL

DL INTERNET
Access

Network

ExternalInternal
port port

Customer Premise
Equipment (CPE)

UL

DL

MacS

Figure 20 Ű BNG use case illustrating a subscriber and an external public service.

4.2.6.1 Upload (UL)

UL pipeline explains traffic from the user client a.k.a CPE towards the external

Server. A home gateway encapsulates the network traffic packets from the CPE with GRE

protocol before forwarding towards the MacS BNG via the Access Network. MacS per-

forms Layer 2 address learning to update the MacS tables and rewrites Layer 2 addresses

of the network packet as required. Afterward, MacS veriĄes the user ID and decapsulates

the GRE headers. Followed by, MacS performs NAT over the network packet where NAT

speciĄc tables of MacS rewrite the inner headers with the appropriate source IP address

and TCP ports. Finally, IPv4 forwarding takes place and the output port is identiĄed to

send the packet towards an external server (192.168.0.10).

4.2.6.2 Download (DL)

DL traffic path originates at Server and ends at the user client (CPE) as shown in

Figure 20. The server (192.168.0.10) sends TCP traffic over the Internet back to the user

client (10.1.1.10) via MacS through the external interface. The MacS performs NAT

and updates the packet with the correct destination IPv4 address and TCP port. NAT

operations are followed by addition of the point-to-point GRE tunnel header. MacS then

updates the IPv4 outer header and veriĄes the user ID2. Then MacS Ąnalizes with the IP
2 and applies QoS policies: feature not implemented in the current prototype.

Chapter 4. Experimental Evaluation 89

packet forwarding by selecting the next hop and output port towards the home gateway

which performs GRE decapsulation before sending the network packet to CPE.

This BNG use case is written in P416 to demonstrate MACSAD support for the

same. Appendix E shows the P4 program and the dependency graphs for parser and tables

for this use case. For both UL and DL, the same P4 program is used where the tables

selected and their sequence in the pipeline are decided at runtime. All MACSAD speciĄc

discussion and evaluation of BNG use case is done at MacS as shown in Figure 20. The

P4 program has in total 9 tables and both UL & DL pipeline has 6 tables each out of which

3 tables are common and 3 tables are speciĄc to the pipeline. For the sake of simplicity,

we explain both the pipeline as a sequence of four sets of tables as shown in Figure 21.

The table sets are as follows:

Figure 21 Ű Implemented BNG pipeline featuring the main UL and DL tables.

L2 Tables. This set of two tables allows MacS to act as an L2 learning switch similar

to L2FWD use case and processes ARP packets coming from the user client (CPE).

While performing L2 learning, MacS updates the corresponding tables appropriately.

L2 learning helps MacS to discover and save the connected devices in the network.

Additionally, L2 tables identify and separate the different UL and DL traffic, and conĄgure

the packet metadata either as External or Internal.

NAT UL/DL Tables. This set consists of 2 tables; One table each for UL and DL.

As the CPE is residing behind a private IP network, NAT is necessary to map inter-

nal IPv4 addresses and TCP ports with external address and Port, and vice-versa. For

example, MacS updates network packet header and translate IPv4 addresses and TCP

ports of network packet headers for UL traffic from CPE towards Server. Packets without

corresponding entries in the NAT table result in table miss and eventually dropped in

the MacS pipeline. These NAT tables are implemented similarly to the NAT use case

described before.

GRE Encap/Decap Tables. With two tables, this set of tables perform the tunneling

feature integral to the BNG use case where the GRE tunnel exists between the CPE

and the MacS in the private network. For DL traffic, the relevant table encapsulates

packets destined to the internal network with a GRE packet header (FARINACCI et al.,

Chapter 4. Experimental Evaluation 90

2000b) identifying the user to establish a user session. In the reverse direction (UL), for

the CPE-originating packets, we perform decapsulation by removing the GRE headers

with the help of the relevant table. The SetValid (header add) for encapsulation and

SetInvalid (header remove) for decapsulation are implemented in the Auxiliary Backend

module using ODP APIs explained in section subsection 3.1.2.

IPv4 UL/DL Tables. This set is made of 3 tables and is implemented similarly to the

L3FWDv4 use case. The forwarding tables have entries with next hop details such as IP

addresses and output port, and take forwarding decision based on table lookup with IPdest

address. For every successful table lookup, a number of actions are performed over network

packet headers whereas lookup fail results in packet drop: (i) MACdest and MACsrc address

update, (ii) Time-to-live (TTL) decrement, and (iii) Output port metadata update.

We test and evaluate MACSAD for the BNG use case at MacS as shown in

the Figure 20. Two different types of traffic traces were used: UL path coming from the

CPE (IP address 10.1.1.10) to an Internet server (IP: 192.168.0.10), and DL path from

the server back to the CPE. Our BB-Gen tool created the traffic in the form of PCAP

traffic trace Ąles where the PCAP Ąles can either act as the server or the CPE depending

on its Ćow contents. The traffic traces include distinct Ćows with randomly generated

unique header details suitable for a worst-case scenario. Furthermore, we also created the

Table Trace Ąles which have the details for all the tables of MacS. Before every run of

the experiment, we pre-populate the tables using the Table Trace Ąles with the help of a

remote controller to avoid any table miss condition. UL pipeline starts with the network

packet with GRE encapsulation. Hence the smallest packet size for our testing of UL use

case is selected as 82 Bytes instead of 64 Bytes to account for the additional 18 Bytes

overhead of the GRE headers. Similarly, the maximum packet size under evaluation is

kept to 1280 Bytes instead of 1518 Bytes to accommodate GRE headers.

64
128

256
512

1024
1280

82
128

256
512

1024
1280

Packet size (Bytes)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Th
ro

ug
hp

ut
 (M

pp
s)

Download (DL) Upload (UL)

LineRate (1024Bytes)
LineRate (1280Bytes)

Socket-mmap
Netmap

DPDK

Figure 22 Ű BNG (UL & DL) Performance Evaluation (1 core, 100 Table entries) on
Testbed A.

Chapter 4. Experimental Evaluation 91

Figure 22 shows the throughput results of MacS running BNG-UL and BNG-

DL use cases on the Testbed A. The Ągure shows the throughput results for different

conĄgurations of packet I/Os and packet sizes while using a single CPU core and Ąb size

of 100. We observe that throughput of DPDK Packet I/O is highest followed by Netmap

and Socket-mmap respectively. While DPDK saturates the 10G NIC of the testbed with

1024 Bytes packet size or more, Netmap reaches line rate only for 1280 Bytes packet size

or more.

We observe near equal performance for both UL and DL pipeline: DL performs

slightly better than UL. Analysis of the UL and DL table organization reveals that both

have the same number of tables. In the case of UL, decapsulation step is followed by

NAT whereas for DL use case NAT comes before encapsulation. After evaluating the

underlying MACSAD code for both the pipeline, we observed that UL results in slightly

more number of cache-miss than DL, and hence the throughput difference between them.

Moreover, due to the higher cache-miss Netmap performs somewhat better compare to

DPDK for UL pipeline as DPDK has a higher cache footprint (GALLENMüLLER et al.,

2015).

4.3 MacS Evaluation & Analysis

We presented our approach towards MACSAD and its evaluation in section 1.3.

We will evaluate MACSAD for programmability, performance, scalability & portability.

Packet Rate (in Mpps) or Throughput (in Gbps), and Latency are the network metrics

considered for this activity. In this section, we show how MacS with different use cases

shown in section 4.2 performs across different conĄgurations and workloads. Different

conĄgurations of MACSAD varies with the variant packet sizes, number of CPU cores,

different burst sizes, different Packet I/O drivers, and FIB sizes. More to this diverse set

of conĄgurations, we also expand our MACSAD evaluation to different platforms using

all the testbeds shown in section 4.1.

4.3.1 Packet Rate Analysis

In this section, we evaluate the MacS packet rate results for different parameters

such as number of cores and FIB sizes. We will also explore MacS results over different

target platforms too for these deĄned parameters.

Figure 23 presents the packet rate in Mpps for MacS running with different num-

ber of CPU cores, i.e., 1, 2, 4 & 6 cores and 100 Table entries. Results for all our use cases

are shown in 5 different sub-Ągures. Each sub-Ągure also shows the results of the three

supported Packet I/O drivers: Socket-mmap (yellow), Netmap (green), DPDK (blue).

Chapter 4. Experimental Evaluation 92

This evaluation is done with 128 Bytes of packet size for all the use cases because the

smallest packet size 64 Bytes does not apply to DCG & BNG use case.

1 2 4 6
No. of Cores

0

2

4

6

8

10
Th

ro
ug

hp
ut
 (M

pp
s)

LineRate (128Bytes)
Socket-mmap

Netmap
DPDK

(a) L2FWD

1 2 4 6 1 2 4 6

No. of Cores

0

2

4

6

8

10

Th
ro

ug
hp

ut
 (M

pp
s)

L3FWDv4 L3FWDv6

(b) L3FWD

1 2 4 6 1 2 4 6

No. of Cores

0

1

2

3

4

5

6

7

Th
ro
ug

hp
ut
 (M

pp
s)

Download (DL) Upload (UL)

(c) NAT

1 2 4 6 1 2 4 6

No. of Cores

0

1

2

3

4

5

Th
ro
ug
hp
ut
 (M
pp
s)

Download (DL) Upload (UL)

(d) BNG

1 2 4 6 1 2 4 6

No. of Cores

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Th
ro
ug
hp
ut
 (M
pp
s)

Download (DL) Upload (UL)

(e) DCG

Figure 23 Ű Packet Rate for all Use Cases with different CPU Cores (128 Bytes, 100 Table
entries) on Testbed A.

To begin with, we present the result of the L2FWD use case in Figure 23a. MacS

can reach line rate with 4 & 6 CPU cores for 128 Bytes packet size while with 2 Cores the

packet rate crosses 90% of the line rate. Next, Figure 23b presents the L3FWD use cases

where L3FWDv4 is on the left and L3FWDv6 is on the right side of the Ągure. Both use

cases achieved line rate for 4 & 6 CPU cores. In fact, L3FWDv6 achieves line rate with

two cores also unlike L2FWD and L3FWDv4 use cases which fell short by a small margin.

Figure [23c,23e,23d] demonstrate the packet rate results for the next three use cases i.e.,

NAT, DCG, and BNG. Figure 23c shows results similar to L2FWD and L3FWD use cases:

increasing packet rate with more CPU cores. The maximum packet rate achieved is 6.4

Mpps and 6.5 Mpps for NAT-DL and NAT-UL respectively with DPDK Packet I/O, while

Chapter 4. Experimental Evaluation 93

with NETMAP MacS only able to reach for 4.1 Mpps and 4.3 Mpps. Figure 23d shows

BNG results with DPDK Packet I/O reaching a maximum of 4.4 Mpps and 4.1 Mpps for

BNG-DL and BNG-UL respectively while Netmap & Socket-mmap lagging behind for all

CPU Core combinations. Finally, the DCG results shown in Figure 23e appear to be the

lowest among all other use cases as the maximum packet rate for DCG-DL and DCG-UL

are 2.2 Mpps and 1.4 Mpps respectively. Interestingly DCG-UL shows a lower packet rate

with 6 CPU cores compared to 2 & 4 CPU cores. In fact, it is apparent that the packet rate

decreases a little from 4 cores to 6 cores in multiple cases or at best remain constant. This

decrease in packet rate is mostly attributed to the hyper-threaded CPU core. In hyper-

threading, there are two logical cores sharing the same physical core working with the same

CPU resources. A CPU intensive application that needs high throughput utilizes more

CPU resources and get impacted severely when it associates its threads with the logical

cores of the same physical core. With a more complex pipeline, the packet processing

becomes more CPU intensive for MacS and in turn the impact of use case complexity

over the hyper-threaded logical core is prominent in the Ągure as packet rate decreases.

The other anomaly in the result observed is that DPDK packet rate is affected more

than Netmap. This is similar to the results of Figure 22 explained in subsection 4.2.6. In

the case of BNG and DCG, we have a higher number of table lookups, and also header

addition and removal operations are executed per network packet which are memory

intensive operations. These results in higher cache misses and larger impact on the packet

rate for DPDK packet I/O due to its higher cache footprint (GALLENMüLLER et al.,

2015).

1 2 4 6

No. of Cores

0

1

2

3

4

5

6

7

8

Pa
ck

et
 R

at
e

(M
pp

s)

LineRate (128Bytes)
L2FWD

L3FWDv4
L3FWDv6

NAT-DL
NAT-UL
BNG-DL
BNG-UL
DCG-DL
DCG-UL

Figure 24 Ű Packet Rate for Different Use Cases and CPU cores (128 Bytes) on Testbed
A.

With Figure 24 we compare the MacS packet rate results for all the use cases with

an increasing number of CPU cores using DPDK Packet I/O. Each use case is identiĄed

with a different color: L2FWD (teal), L3FWDv4 & L3FWDv6 (sky blue), NAT (yellow),

Chapter 4. Experimental Evaluation 94

BNG (cyan), DCG (green). In addition, we use dotted or circle pattern to identify ŚIPv4

& Download/DownlinkŠ or ŚIPv6 & Upload/UplinkŠ respectively. The red dotted line in

the Ągure shows the line rate for 128 Bytes packet size chosen for this experiment. It

consolidates our observations from section 4.2 and Figure 23 to show how packet rate for

different use cases compare against each other.

Next we present MacS performance results over Cavium bare metal switch with

ThunderX architecture as part of the Testbed D. The experiment is carried out with

NICVF packet I/O driver, 4 CPU Cores and 10G SFP NIC for different use cases. Fig-

ure 25 shows the packet rate for different use cases and different packet sizes. The red

dotted line shows the line rate for 512 Bytes packet size. Similarly, the different use cases

are represented in different colors: L2FWD (Gray), L3FWDv4 (Light Purple), L3FWDv6

(Purple), NAT-DL (Light Green), NAT-UL (Green). We observed that MacS saturate

the 10G NIC with 512 Bytes or larger packet sizes. L3FWD use cases performed better

than the L2FWD use case as we observed in Testbed A. Also, NAT use cases have a lower

packet rate compared to L2FWD and L3FWD as expected.

64 128 256 512 1024
Packet size (Bytes)

0

1

2

3

4

5

6

Th
ro
ug

hp
ut

 (M
pp

s)

L2FWD
L3FWDv4
L3FWDv6

NAT-DL
NAT-UL

LineRate (512 Bytes)

Figure 25 Ű Packet Rate of different Use Cases & packet sizes. (100 Entries, 4 CPU Cores)
on Testbed D

We further explored MacS results over Cavium ThunderX architecture by com-

paring the packet rate against different number of CPU Cores for all the use cases as

shown in Figure 26. The Ągure shows the PortFWD use case as a solid red line and

represents the maximum packet rate with the underlying ODP. This is used here as a

reference to the maximum packet rate possible on this testbed (Testbed D). The packet

rate for different use case compared against each other similar to our previous observa-

tion in Figure 25. Although the packet rate is lower compared to our Testbed A, MacS

shows a linear increment with increasing number of CPU cores. This is attributed to the

coherent cache system using Cavium Coherent Processor InterconnectTM (CCPI) as part

of Cavium ThunderX architecture. With a mere total 16 MB of coherent cache, MacS

performance is restricted to a lower packet rate. However, at the same time, fully shared

Chapter 4. Experimental Evaluation 95

coherent cache allows MacS to scale linearly across the different CPU cores as the cache

miss/hit impact is distributed across cores evenly.

1 2 4 6 8
No. of Cores

0

2

4

6

8

10

12

14

16
Th

ro
ug

hp
ut
 (M

pp
s)

PORTFWD
L2FWD

L3FWDv4
L3FWDv6
NAT-DL
NAT-UL

Figure 26 Ű Packet rate for different Use Cases & CPU Cores. (64 Bytes, 100 Entries) on
Testbed D

Following, we analyze various factors inĆuencing the packet rate of MACSAD use

cases. For MacS evaluation, we identiĄed a number of these factors: FIB Size, Burst Size,

and Traffic Generator.

4.3.1.1 Impact of FIB Sizes

In this section, we evaluate packet rate results for different use cases of the MacS

against increasing FIB sizes, i.e., the number of table entries. For this experiment, the

packet rate measurements are obtained with Testbed E. This experiment is performed

over MacS with different packet sizes (128 Bytes & 256 Bytes) and different FIB sizes

(100, 1K, 10K, 100K) as shown in Figure 27. MacS conĄguration consists of 2 CPU cores

and DPDK Packet I/O. The x-axis of the Figure 27 shows the results for different use

cases in two segments where the left segment is valid for 128 Bytes packet size and the

right segment is valid for 256 Bytes packet size. The segments are composed of multiple

groups each representing a distinct use case, whereas every group demonstrates multiple

bars each representing a unique FIB size. We observed that L2FWD & L3FWD achieve

line rate with 256 Bytes or more packet size whereas NAT & BNG achieve line rate with

512 Bytes or more packet size. Hence for the sake of brevity, we show packet rate results

for 128 Bytes and 256 Bytes only ignoring the results reaching line rate in the Ągure. It is

obvious that complex use cases are unable to achieve line rate due to system bottlenecks

as MacS needs to perform more actions on every network packet. This effect manifolds

for smaller packet sizes as the number of packets to be processed increases for the same

line rate.

In addition, the Table 13 shows how the packet rate is decreasing between 100 and

100K Fib sizes in percentage and numbers(Mpps). This experiment is able to uncover

Chapter 4. Experimental Evaluation 96

L2FW
D

L3FW
Dv4

NAT-DL

NAT-UL

BNG-DL

BNG-UL
L2FW

D

L3FW
Dv4

NAT-DL

NAT-UL

BNG-DL

BNG-UL
0

1

2

3

4

5

6

Pa
ck

et
 R

at
e

(M
pp

s)

 Use Cases
128 Bytes <-----Packet Sizes-----> 256 Bytes

100
1k

10k
100k

Figure 27 Ű Packet rate for different Use Cases, FIB sizes. (2 core, DPDK) on Testbed E

Table 13 Ű Packet Rate Behavior for Different FIB Sizes

Packet Sizes
Use Cases

L2FWD L3FWDv4 NAT-DL NAT-UL BNG-DL BNG-UL

Percentage Decrease in Packet Rate (100 and 100K FIB size)

128 Bytes 2.42 3.64 4.22 4.12 6.71 10.49

256 Bytes 10.68 7.05 11.96 12.71 10.24 16.08

Decrease in Packet Rate in Mpps (100 and 100K FIB size)

128 Bytes 0.10 0.16 0.13 0.12 0.20 0.24

256 Bytes 0.53 0.33 0.37 0.39 0.32 0.35

MacS behavior towards increasing FIB size across different use cases. Interesting to note

that the degree of impact of FIB size appears to be different for different use cases. As the

pipeline complexity grows, the percentage decrease in packet rate also goes upwards. To

understand the behavior better, we looked into L3FWDv4 and BNG-UL use cases which

have 2 and 6 lookup tables shown in Table 16. BNG-UL also differs from L3FWDv4

by implementing 4 header removal and a higher number of header Ąeld update actions.

With this, we can safely assume that BNG-UL is a more memory intensive pipeline

than L3FWDv4. Now with the increase in FIB size, the table lookup time will increase

putting pressure on the memory intensive operations in the BNG-UL use case. Although

the impact of the delay of per table lookup time is nearly similar for both L3FWDv4

and BNG-UL, BNG-UL degrades more in accordance to three times more number of

tables in place as observed for 128 Bytes packet size. For 256 Bytes packet the difference

between BNG-UL and L3FWDv4 decrease by small value as the number of packets per

second comes down due to the higher packet size, and hence MacS behavior remains as

expected.

4.3.1.2 Impact of Burst Sizes

This experiment is focused on understanding how MacS behaves with changing

burst size conĄgured for DPDK Packet I/O. In Figure 28, we demonstrate packet rate for

Chapter 4. Experimental Evaluation 97

L2FWD & BNG-DL use cases with different packet sizes calculated for a range of burst

sizes. This experiment is done with a conĄguration of 100 Fib Size and DPDK Packet

I/O on our Testbed E. The different burst sizes are represented in different colors and

pattern combination: 8 (teal, dot), 16 (teal, circle), 32 (blue, dot), 64 (blue, circle), 128

(yellow, dot), 256 (yellow, circle), 512 (cyan, dot). The left side of the Ągure shows results

for L2FWD use case while the right side is for BNG-DL use case. As both the use cases

reach line rate at 512 Bytes packet size, we only present here the results from 64 Bytes

to 512 Bytes packet sizes.

64 128 256 512 64 128 256 5120

1

2

3

4

5

6

Pa
ck
et
 R
at
e
(M
pp
s)

Packet Sizes
<----- Use Cases ----->L2FWD BNG-DL

8
16
32
64

128
256
512

Figure 28 Ű Packet Rate for different Use Cases, burst sizes. (100 Entries, 2 CPU cores,
DPDK) on Testbed E

We tried to identify the best-suited burst size for MACSAD. The current state

of the art focuses on the burst size for traffic generator, but there is a lack of material

evaluating how software switches behave when set with different burst sizes. Our focus here

is to analyze burst size impact on the network traffic receiving end instead for outgoing

traffic. Important to note that ODP, DPDK, and Netmap all have default burst size

conĄgured as 32 for most of the NIC drivers supported under their umbrella. We tried to

validate this unwritten consensus among the research community with MACSAD. The

result, Figure 28, shows that the packet rate displays a convex shape for increasing burst

size from 8 to 512 achieving maximum at 64 in majority of the conĄgurations. As a result,

we identiĄed Ś64Š as the best burst size for MACSAD contrary to the widely accepted

burst value of Ś32Š.

4.3.1.3 Impact of Traffic Generators

To analyze the impact of traffic generator on MACSAD, we identiĄed two traf-

Ąc generators: NFPA (software based using pktgen) and OSNT (hardware based over

Net-FPGA SUME). Figure 29 demonstrates packet rate results for MacS in Testbed E

executing L2FWD, L3FWDv4, NAT-UL, and BNG-UL use cases with 128 Bytes, 256

Bytes, and 512 Bytes packet sizes. The different use cases are represented by a range of

colors: L2FWD (cyan), L3FWDv4 (yellow), NAT-UL (blue), BNG-UL (green). Results

Chapter 4. Experimental Evaluation 98

of NFPA and OSNT are differentiated by the use of dotted and circular pattern in the

graph bars.

128 256 512
Packet size (Bytes)

0

1

2

3

4

5

6

7
Pa

ck
et
 R
at
e
(M

pp
s)

L2FWD NFPA
L2FWD OSNT
L3FWDv4 NFPA
L3FWDv4 OSNT

NAT-UL NFPA
NAT-UL OSNT
BNG-UL NFPA
BNG-UL OSNT

Figure 29 Ű Forwarding performance of different Use Cases, Pkt sizes, TG. (100 Entries,
2 Cores) on Testbed E

Figure 29 presents two interesting MacS behavior to analyze. It is clear from the

Ągure that the packet rates are different for NFPA and OSNT, but the impact of traffic

generator varies according to the MacS conĄgurations. The difference in packet rate

between NFPA and OSNT decreases with increasing packet sizes. The BNG-UL results

in the Ągure clearly show this behavior. With an increase in packet size, the number of

packets processed by MacS is reduced and so the impact of traffic generator.

Table 14 Ű Processing Time for a Single Network Packet

Use Cases
Single Packet

Processing Time
(ms)

Packet Size (128 Bytes)

L2FWD 0.164103911

L3FWDv4 0.155009921

L3FWDv6 0.175315568

NAT-DL 0.289804672

NAT-UL 0.290892166

BNG-DL 0.626409421

BNG-UL 0.674308833

DCG-DL 1.066552901

DCG-UL 0.725847427

The other interesting MacS behavior from this activity is how the complexity

of the use cases also has an effect on this experiment. We observe that L2FWD and

L3FWDv4 use cases have a higher packet rate with NFPA whereas NAT-UL and BNG-UL

Chapter 4. Experimental Evaluation 99

perform better with OSNT traffic generator. Table 14 shows the time taken to process

a packet by MacS for different use cases. By correlating this value with results from

Figure 29, we can say that the impact of OSNT traffic generator is more signiĄcant when

per packet processing time is higher. The main difference between NFPA and OSNT is

the way they send out traffic. NFPA pushes out traffic in a burst manner, i.e., it transmits

packets in a batch of multiple packets of different sizes such as 32, 64, etc. On the contrary,

OSNT is a hardware-based solution and transmits packets with a Ąxed inter packet gap

(IPG), i.e., it waits for a time equal to the IPG value between each packet. Due to this

difference, MacS either receives packets in a large batch or one packet at a time which

can be understood as a smaller burst size. Hence similar to Figure 28 results, here also we

see an increase in packet rate of NFPA. When the single packet processing time is higher,

MacS needs to wait for that time before processing the next packet from the batch of

the packets received. The NIC drivers will drop the receiving packets if the RX queues of

the incoming NIC is full and will start receiving new packets as the packets in RX queues

will be processed by MacS. Moreover, it is possible that no new packet arrives at the

NIC when MacS is ready to receive new packets in case of NFPA as NFPA transmits

packets in batches only. By implementing a lower burst size, or using IPG at the traffic

generator, we can reduce the number of instances when incoming packets are dropped

due to RX queue full at MacS. Because of this, OSNT performs better for complex use

cases as MacS spends less time waiting for the new packets and utilizes the CPU cycles

optimally.

4.3.2 Latency Analysis

Latency evaluation experiments are performed in Testbed E with OSNT as the

traffic generator. We use OSNT on a NetFPGA SUME board for high precision latency

calculation. The packets are time stamped in hardware just before transmitting (TX)

and just after receiving (RX) at the traffic generator (i.e., OSNT) side. By avoiding any

software latency and queuing delays at the SUME board, OSNT can achieve very high

resolution up to 6.6ns. The time stamp values are added in the packets at a predeĄned

position and often in the payload of the packets to avoid stressing the parser and packet

processing, and avoid any unnecessary increase in delay while calculating latency. By

adding a timestamp in the payload, the latency evaluation remains immune to the tun-

neling protocols too as addition and deletion of headers do not impact the payload of the

packet.

OSNT uses conĄguration scripts internally to direct NetFPGA SUME board on

how to time stamp TX and RX packets during the experiment. The scripts specify the

position in the packet where to add the timestamp, how many packets per second to time

stamp and other necessary conĄguration parameters for SUME board. The timestamp

Chapter 4. Experimental Evaluation 100

header has two Ąelds: ts_rx & ts_tx of 8 Bytes each. The latency measurement methods

follow the approaches mentioned in (KAWASHIMA et al., 2017). OSNT transmits packets

at 99% of the line rate and sample a small percentage of packets to timestamp and measure

latency. Although this increases the error in measurement, it is necessary for SUME due

to its hardware limitation of the number of packets to apply timestamp. The boxplot

in the following graphs depicting latency measurements present details such as outlier,

average, mean, median, highest/99% and lowest/1% values as mentioned in Figure 30.

Median (50th Percentile)

1st Quartile (25th Percentile)

3rd Quartile (75th Percentile)

Highest (99%)

Lowest (1%)

Mean

Outlier

Outlier

+
+

+

+
+
+

Figure 30 Ű Understanding Boxplot for Latency Measurements

We start this discussion with the latency results measured for the stock L2FWD

example of DPDK code base for conĄgurations with 2 CPU cores, and different burst sizes

and packet sizes. The latency results are presented in microseconds (Ûs). The L2FWD

DPDK example is carried out at 99% of the line rate and the result, in Figure 31, shows a

linear increase of latency value with the increase in packet size. Similarly, we can observe

that by increasing the burst size the latency of the L2FWD example also moves upward.

We can observe that the latency values vary from as low as 10Ûs to as high as 120Ûs

for different running conĄgurations. Latency increases with an increase in batch size be-

cause network packets spend a longer time in the queue for packet processing in large

batches. When the switch is overloaded and can not empty the queues, packets begin

to be dropped, and the system ends up with a higher latency value. When we increase

the packet sizes, the latency increment is nominal but linear which can be attributed

to the behavior of Packet I/O that is DPDK in this scenario. DPDK might introduce

latency while creating and mapping packet descriptors to represent network packets in

hugepages for the packets received. Increasing the batch size boosts throughput but raises

latency because the packets spend a longer time queued if processed in larger batches.

This experiment is performed to understand the behavior of the testbed and how latency

values change with different burst sizes and packet sizes. L2FWD is a suitable candidate

for this evaluation to establish a reference because this example is the simplest example

from DPDK with little to no additional delay incurred during packet processing. We will

analyze and understand the results for MacS concerning this reference behavior further

Chapter 4. Experimental Evaluation 101

in this section.

8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24 8 16 32 64 12

8
25

6
51

2
10

24 8 16 32 64 12
8

25
6

51
2

10
24

20

40

60

80

100

120

La
te

nc
y

(μ
s)

Burst Size
 64 128 256 512 1024 1280 1518

Packet Size (Bytes)

Figure 31 Ű Latency of L2FWD DPDK Example for different packet sizes & burst sizes.
(2 CPU, 99% line rate) on Testbed E

Figure 32 presents the latency measurements for the MacS L2FWD use case

over DPDK Packet I/O running with 100 FIB table size and 2 CPU cores. The different

conĄgurations consist of combination of packet sizes and burst sizes as done in Figure 31.

The test traffic is maintained at 99% of the line rate for this experiment. We observe that

latency increases with an increase in burst size, a behavior similar to what we observed

as reference behavior in case of L2FWD DPDK example. The increase in latency value

is subtle, never the less present. Further, we see that latency of 1518 Bytes packet size is

smaller than 64 Bytes packet size. Also, the lowest and highest latency value are around

10Ûs and 24Ûs respectively. In fact, the highest mean latency value for MacS L2FWD is

around 18Ûs which is way lesser than 115Ûs, the value of L2FWD DPDK example. After

investigating the source code of both use cases thoroughly, we identiĄed the probable

cause for this difference in behavior.

L2FWD DPDK example performs the packet RX in a similar fashion to MacS,

but it differs in the way it transmits out the packet after processing. L2FWD DPDK

example employs two conditions when the already processed packets are transmitted out

via outgoing interfaces. It forwards the packets when the TX Drain timer set to 100Ûs

expires or if the output queue of the network interface maintained by DPDK becomes

full. Hence in our scenario, as 2 CPU cores are used, two output queues are created and

mapped to the CPU cores. During packet forwarding, if a queue becomes full, then DPDK

will transmit out the packets from that output queue only while the other output queue

will wait till it became full. Hence if the packets are distributed evenly across the cores,

then we need at least two burst of packets before both the cores can transmit out packets

from both the output queues resulting in additional delay. If the arrival packet rate is

slower which is the case of larger packet size (1518 Bytes), then L2FWD DPDK example

Chapter 4. Experimental Evaluation 102

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

10.0

12.5

15.0

17.5

20.0

22.5

25.0
La

te
nc

y
(μ

s)

 Burst Size64 128 256 1518
 Packet Size (Bytes)

Figure 32 Ű Latency of L2FWD Use Case for different packet sizes & burst size. (100
Entries, DPDK, 2 CPU, 99% line rate) on Testbed E

will wait for 100Ûs before forwarding the packets out. Because of the delays introduced

by the timer, and the Ćushing of the packets in 2xBatch size increases the mean latency

for L2FWD DPDK example.

On the other hand, MacS employs a different approach for transmitting packets

out. MacS threads mapped to a speciĄc CPU core will receive a burst of packets each

time, process the packets and then put them in the output queue buffers maintained by

MACSAD. Once the processing of a batch of packets is complete, MacS will Ćush out

all the buffers sending the whole batch of packets. In addition to that, each output queue

buffer Ćushing also Ćushes all the other buffers maintained mapped to other CPU cores

as well. This brings down the mean latency for MACSAD to a minimum.

To verify our understanding and validate our analysis we implemented the L2FWD

MacS use case similar to L2FWD DPDK example by modifying the MACSAD source

code. The results are presented in Figure 33. It can be observed that the L2FWD use case

presents latency values varying between a bigger range similar to the DPDK example.

Looking at this result, we can safely assume that our analysis was correct about the

pattern the latency value takes for different switch conĄgurations in DPDK L2FWD

example and L2FWD MacS use case.

Another observation from Figure 33 is that the latency values are way larger than

what we have seen in Figure 31. We have already seen in previous sections that L2FWD

use case does not saturate the 10G NIC whereas L2FWD DPDK example is capable of

functioning at line rate with minimum number of CPU core. Hence, for MacS the switch

remains overloaded as the number of packets processed is less than the line rate. Due to

Chapter 4. Experimental Evaluation 103

8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2 8 16 32 64 12
8

25
6

51
2

0

50

100

150

200

250

300

350
La

te
nc

y
(μ

s)

 Burst Size
 64 128 256 512 1024 1280 1518

 Packet Size (Bytes)

Figure 33 Ű Latency of L2FWD Use Case (TX part re-implemented similar to DPDK
example) for different packet sizes & burst size. (100 Entries, DPDK, 2 CPU,
99% line rate) on Testbed E

the insufficient processing resources, the output queues will Ąll up fast, and MacS will

start dropping packets due to unavailability of output queue buffers. This results in the

worst case behavior for MacS and the latency value climbs up fast.

For next we moved our focus from worst case to best case scenario for latency

measurements and calculated the latency values for a number of different use cases. We

also bring in the Forwarding Information Base (FIB) into the mix by showcasing latency

for FIB sizes ranging from 1 to 100K. The results of this activity are presented in Figure 34.

The best case scenario signiĄes that we receive network packets at 10% of the line rate to

avoid overloading the switch. Due to the lower volume of packets, packet drop due to queue

buffer full scenarios is near to none. This being said, we can safely state that the results in

Figure 34 represent the best results for different MACSAD use cases. The results shown

in the Ągures are presented as multiple groups each signifying different FIB size. And

each group depicts latency results in Boxplot format (Figure 30) for different use cases in

decreasing order of use case complexity, i.e., BNG, NAT, L2FWDv4, L2FWD. The Ągure

is divided into two parts where left part shows the latency for minimum packet size while

the right side shows the results for maximum packet size. We identiĄed three different

expected patterns in the latency results according to the analysis presented before.

To begin with, we observe that the latency increases with an increase in packet

size. This behavior is inherent to the Packet I/O and unavoidable. It also conĄrms the

reference behavior we observed before.

Then looking into the results for different FIB sizes, it is clear that mean latency

value increases in a smaller percentage with an increase in FIB size. Impact of FIB size is

not as signiĄcant as the impact of packet size as seen in the Ągure. The low latency value

is attributed to the fact that the system remains underused with traffic constituting only

Chapter 4. Experimental Evaluation 104

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

BN
G-
UL

BN
G-
DL

NA
T-
UL

NA
T-
DL

L3
FW

Dv
4

L2
FW

D

4

6

8

10

12

14

16

18

La
te
nc
y

(μ
sμ

 Use Cases
 1 100 1K 10K 100K 1 100 1K 10K 100K

 Number of Random Flow Table Entries
 98/64 <------------------ Packet Size (Bytes) ------------------> 1518

Figure 34 Ű Latency of different Use Cases, packet sizes, Fib Sizes. (64 Bytes and 1580
Bytes, 100 Entries, DPDK, 10% line rate) on Testbed E

10% of the line rate. Hence the increase in packet processing time taken by MacS due to

the delay incurred by table lookup adds to the latency value seen in the Ągure.

Then we discuss the impact of use case complexity on latency. According to the

Table 14 the packet processing time taken by MACSAD increases with increase in use

case complexity. In the current underutilized system with 10% traffic load, the latency

results will vary according to the time taken to process a packet by the use cases. Hence

we see the pattern of decreasing latency value with decreasing use case complexity in the

Figure 34.

Table 15 Ű Latency of BNG-UL use case for different FIB sizes & packet sizes in Testbed
E

Packet Sizes
(Bytes)

Number of FIB Entries % Increase
(1 to 100K FIB)1 100 1k 10k 100k

98 5,62 5,93 6,32 6,86 7,34 30,70%

256 5,85 6,33 6,39 7,46 7,52 28,56%

1024 6,92 7,03 6,89 8,31 8,56 23,63%

1518 8,15 7,90 7,69 8,72 9,07 11,37%

% Increase
(98 to 1518)

44,96% 33,10% 21,81% 27,04% 23,53%

Chapter 4. Experimental Evaluation 105

To conĄrm our analysis and Ąndings we looked at the percentage difference in

latency values between L2FWD and BNG-DL use cases for minimum and maximum

packet sizes shown in Figure 34. For minimum packet size, the difference comes to a

decrease of 31% whereas for maximum packet size (1518 Bytes) this percentage decrease

in latency comes down to 13%. In addition, we also explore the latency of BNG-UL

use case in detail in Table 15. This table shows that the percentage increase of latency

from 1 to 100K FIB entries for smallest and highest packet sizes are 30.70% and 11.37%

respectively.

4.3.3 Performance Comparison Against Related Works

Achieving high performance from commodity-off-the-shelf (COTS) servers is chal-

lenging despite advances in I/O acceleration (e.g., DPDK) technologies as the presence of

multiple abstraction layers (e.g., hypervisor, libraries) prevent to access all hardware capa-

bilities (e.g., CPU, NIC). As MACSAD is developed over ODP which brings another layer

of abstraction, we set out to evaluate MACSAD against other related software switches.

In addition to that to assess portability, we expand the evaluation of the selected switches

to multiple platforms, in particular to the AARCH64-based Cavium Octeon (48 cores at

2.0 GHz, shared L2, no L3 cache, and 40G interfaces). We identiĄed T4P4S, a DPDK-

enabled P4 based software switch, and OvS, a DPDK-capable open source production

quality switch to carry out performance comparison with MACSAD. Both T4P4S and

OvS are highly optimized to work with DPDK packet I/O. We performed this experiment

on Testbed A, B, and C to bring a diverse set of target platforms and environment into

the discussion. We also evaluated MacS with ODP-DPDK variant of ODP (Table 2)

which is highly optimized for DPDK Packet I/O reducing the impact of ODP abstraction

layer over DPDK Packet I/O observed with reference ODP implementation (Table 2).

MacS-L3
(ODP)

MacS-L2
(ODP)

OVS-L2
(DPDK)

T4P4S-L2
(DPDK)

T4P4S-L3
(DPDK)

OVS-L3
(DPDK)

4

8

12

16

Mpps

CORE 1
CORE 2
CORE 4

(a) x86_64 (Testbed A)

MacS-L2
(ODP)

MacS-L3
(ODP)

OVS-L2
(DPDK)

T4P4S-L2
(DPDK)

T4P4S-L3
(DPDK)

Port-fwd
(ODP)

10

20

30

40

Mpps

CORE 1
CORE 2
CORE 4
CORE 8

(b) AARCH64 (Testbed C)

Figure 35 Ű Packet Rate comparison of different platforms and switches for selected use
cases (100 FIB size) and varying CPU cores.

Chapter 4. Experimental Evaluation 106

We compare MacS with OVS and T4P4S in Testbed A with 100 FIB table size

as shown in Figure 35a. We observe that, for 1 core, T4P4S performs better than MacS

and OvS reaching around 8 Mpps for L2FWD and L3FWDv4 use cases. With 2 cores,

T4P4S reaches line rate for the L2FWD whereas OVS L2FWD managed little less than 8

Mpps. MacS behaves better for L3FWDv4 use case reaching 12 Mpps as packet rate with

2 cores. All the platforms saturate the link when using 4 cores. We note that MacS lags

behind T4P4S in some scenarios and this behavior can be attributed to the extra layer

of abstraction brought by ODP compared to T4P4S and OvS which uses DPDK directly.

We have used the ODP reference implementation applicable across different Linux kernels

and not optimized for any speciĄc target platform or Packet I/O.

Moving on to another target platform Cavium Octeon (AARCH64 architecture)

in Testbed C, we evaluated packet rate for the three switches as presented in Figure 35b.

The Ągure shows the measured packet rate attained on the Cavium Octeon platform

for the L2FWD and the L3FWDv4 use cases implemented via MacS (top), OVS and

the baseline ODP PortFWD application (middle), and T4P4S (bottom) when using 1

(blue), 2 (green), 4 (red) and 8 cores (cyan), respectively. In our results for the AARCH64

architecture, DPDK-based switches perform better than their ODP-based counterparts

because the Cavium switch only supports an old and already outdated version of ODP

(v1.11.0.0) instead of the current ODP version (v1.20.0.0) missing many improvements.

However, the support of DPDK version for the Cavium is up to date giving an advantage

to the T4P4S and OvS switches.

To assess the raw performance capabilities, we measure the baseline ODP perfor-

mance with the PortFWD application, which does nothing but forward packets from one

port to the other without any table lookup (right-hand side of Figure 35b). The max-

imum throughput with one core is about 8.6 Mpps, around 20% less than the DPDK

reference throughput (11.2 Mpps, not shown in the Ągure). In fact, ODP is only nearly

equal to OVS-L2, which does one table lookup too. Due to the raw performance differ-

ences between ODP and DPDK in Cavium, the comparison cannot be considered fair

and straight forward, nevertheless serves to illustrate how the performance scales with

increasing number of cores, and portability of MacS. Both T4P4S and MacS show a

performance drop of about 33% against their baseline results of ODP and DPDK. We

believe that with optimized new ODP support, MacS performance shall be on par with

T4P4S. Current numbers show that for the L2FWD and L3FWDv4 use cases, T4P4S

outperforms MACSAD in each case around 40% on average. But during the core scala-

bility evaluation, T4P4S failed to run even with 8 cores. On the other hand, MacS easily

exploited the available CPU resources, e.g., MacS L2FWD packet rate increased from 2.4

Mpps (1 core) to 16.3 Mpps (8 cores).

Finally, we will compare the three switches on our Testbed B running a general

Chapter 4. Experimental Evaluation 107

purpose server (x86_64 architecture) with Mellanox 100G NIC using MLX5 drivers. We

have chosen to use ODP-DPDK variant of ODP which is an optimized software imple-

mentation using DPDK which reuses a lot of DPDK packet data structures and huge page

implementation for better performance and better support & transition for applications

based on DPDK polling mode driver (PMD). Figure 36, 37 demonstrates MacS packet

rate results conducted for L2FWD and L3FWDv4 use case with 64 Bytes packet size and

100 unique table entries for different number of CPU Cores. The switches, MacS, T4P4S

and OvS are represented with blue, green and yellow color bars in the Ągure.

1 2 4 8 16
No. of Cores

0

5

10

15

20

25

30

35

40

Pa
ck

et
 R

at
e

(M
pp

s)

OvS
T4P4S
MacS

Figure 36 Ű Packet Rate for L2FWD (100 entries, 64 Bytes) on Testbed B.

The results for L2FWD in Figure 36 show that MacS outperforms the other two

switches in case of each core conĄguration, and what is more, MacS scales better than

T4P4S and OvS in terms of throughput while increasing the number of cores from 4 to

8. Similarly, Figure 37 shows the packet rate for L3FWDv4 use cases for 1 to 16 CPU

cores. MacS achieves better packet rate compared to both T4P4S and OvS for all the

core conĄgurations as seen for the L2FWD use case.

1 2 4 8 16
No. of Cores

0

5

10

15

20

25

30

35

40

Pa
ck

et
 R

at
e

(M
pp

s)

OvS
T4P4S
MacS

Figure 37 Ű Packet Rate for L3FWDv4 (100 entries, 64 Bytes) on Testbed B.

In another point, we observed that the packet rate of MacS actually decreases

when moving from 8 to 16 cores. After some investigation, we attributed this loss of packet

Chapter 4. Experimental Evaluation 108

rate to MacS mapping the packet processing threads to the new CPU cores on a different

NUMA node. In the case of ODP (i.e., MacS), special attention is needed for the CPU

core affinity setting when exploiting the NUMA architecture as in MACSAD we perform

automatic CPU core pinning. In the Testbed B, while using more cores than 12, MacS

does automatic CPU core pinning and ends up assigning cores from the other NUMA

node. Memory access for a NUMA socket is always slower compared to local memory.

Core allocation to remote NUMA node causes memory access delay and consequently

a reduction in system performance. Despite this, the results show that even with the

performance hit, MacS achieves higher packet rate compared to T4P4S and OvS while

using the DPDK optimized ODP variant, i.e., odp-dpdk.

4.4 Performance Evaluation of MacS as Network Function

In our effort towards bringing MACSAD to virtualization, we tried to implement

MacS with a single input and single output switch suitable as an individual network

function or as part of a Service Function Chain (SFC). This is an effort to evaluate

impact of packet arbitration on MACSAD.

The basic functionality of a packet switch is to transfer packets from input ports

to output ports. Switch decides the appropriate output ports as a result of table lookup

based on different packet header Ąelds and puts the packets in the queue of the output

port. When an output port queue has packets from different input ports, then switch has

to decide how to schedule or prioritize the packets to send out based on the arbitration or

scheduling algorithm used. Switch arbitration technique should be able to send out packets

from all the input ports with minimum average latency and maximum throughput. Impact

of packet arbitration can impact throughput signiĄcantly when not implemented properly.

The more the number of ports in a switch, the higher the complexity of the arbitrator

to maintain the switch throughput. Similarly, reducing the arbitration time can improve

throughput and reduce latency across the switch. We tried to bring down the arbitration

time to a minimum for our MacS as a VNF. We observed that VNF implementation

follows the general practice of using one port each for both input and output. With under

50 lines of code changes to MACSAD we are able to update our MacS to operate only

with one input and one output port. Due to the absence of a switch fabric, it is more

relevant for a software switch similar to MACSAD to address arbitration in the software

intelligently.

Figure 38 shows the observed packet rate of MacS for different number of cores

with the smallest packet size, i.e., 64 Bytes. The Ągure presents results for L2FWD,

L3FWDv4 and L3FWDv6 use cases with 1, 2, 4, and 6 cores for both MACSAD regular

code MacS and the VNF optimized code MacS (VNF). It is clear from the Ągure that

Chapter 4. Experimental Evaluation 109

1 2 4 6 1 2 4 6 1 2 4 6

No. of CPU Cores

4

6

8

10

12

14

16

Th
ro
ug

hp
ut
 (M

pp
s)

L2FWD L3FWDv4 L3FWDv6

LineRate (64 Bytes)
MacS (VNF)

MacS

Figure 38 Ű Forwarding performance for different MacS (VNF) Use Cases with different
CPU Cores (64B, Testbed A).

VNF optimized code performs better than the regular code base. We observed that the

improvement in packet rate becomes more prominent with multiple cores in use. As per

our experiment, only L3FWDv6 use case showed a smaller improvement when compared

to other use cases. The red dotted line shows that MacS is able to reach line rate with

4 and 6 cores when optimized for VNF which was not the case before.

In Figure 39 we present the observed performance for different FIB sizes and

packet I/O drivers. The Ągures show the packet rate in Mpps (left) for both L3FWD4 and

L3FWDv6 VNF optimized use cases with 4 CPU cores. For L3FWDv4 use case (left), it

can be observed that MacS with DPDK saturates the 10G interface even with the smallest

packets (64 Bytes) irrespective of the FIB table size. Lower yield for Netmap with 64 Bytes

and 128 Bytes packets conĄrms to previous literature [14]. Notable, the measured results

for 1K FIB entries are better than for 100. This is caused by the suboptimal use of the

CPU queues with small packet sizes (64 Bytes) and by the number of packets as observed

in Figure 39. As expected, the Linux Socket_mmap driver stands last and never saturates

the 10G interfaces.

100 1k 10k 100k 100 1k 10k 100k 100 1k 10k 100k 100 1k 10k 100k 100 1k 10k 100k 100 1k 10k 100k

No of Table Entries

0

2

4

6

8

10

12

14

16

Pa
ck

et
 R

at
e

(M
pp

s)

64B 128B 256B 64B 128B 256B
L3FWDv4 L3FWDv6

Socket-mmap
Netmap
DPDK

Figure 39 Ű IPv4 and IPv6 forwarding performance of different I/O drivers, FIB size,
VNFs (4 CPU cores).

Chapter 4. Experimental Evaluation 110

Similarly in Figure 39 (right), performance results for L3FWDv6 are on par with

the Ąndings of L3FWDv4. While DPDK reaches line rate with 64B packets for any FIB

size, Netmap performance drops with increasing FIB size, and in turn, larger table size due

to higher TLB misses. However, DPDK keeps TLB misses in control by using Hugepages.

Also noteworthy, the anomaly for 100 and 1K FIB entries observed for L3FWDv4 does

not apply for L3FWDv6.

4.5 Adaptive Scalability by Dynamic CPU Core Allocation

The importance of optimal resource utilization is more pivotal than ever due to

the ubiquitous presence of virtualization in SDN environments. With MACSAD, we dig

deeper into this challenge to explore CPU core allocation and utilization pattern and

behavior. As seen multiple times with different use cases, MacS achieves higher per-

formance using multiple cores where each core is responsible for packet processing of a

mapped RX queue. While more cores improve performance, in case of over-dimensioning,

CPU core pinning and Ąxed allocation to packet processing can be considered as a waste

of resources. We now investigate the feasibility of a proof of concept technique to pro-

vide dynamic CPU scaling through run-time (de)allocation of CPU cores to the packet

processing tasks, i.e., ODP worker threads in case of MACSAD. The decision of scaling

up/down remains unexplored for now which could be adaptive based on system load, or

performance measurements depending on traffic workload, or other factors (e.g., energy

consumption). Such an adaptive behavior would make the system more efficient, espe-

cially in a multi-tenant environment, where de-allocated CPU cores could be used for

other tasks, be them packet-processing oriented or not.

The adaptive CPU scaling technique under evaluation consists of dynamically

setting the number of RX queues and accordingly scaling up or down the number of

cores. To scale down, MacS removes core-queue associations, releasing the core for kernel

usage and leaving the RX queue without a descriptor. A descriptor can still exist even if

the corresponding queue does not. Similarly, in need of more resources for faster packet

processing, our adaptive CPU technique can scale up seamlessly acquiring more cores and

assigning them to the RX queues.

4.5.1 Results Analysis

We implemented and evaluated the proof of concept over two different testbeds:

the First experiment runs over Testbed A with 4 CPU cores and INTEL x540 NIC of

10G throughput capacity, the Second experiment runs over Testbed B with 7 CPU cores

and Mellanox MLX5 NIC of 100G throughput capacity. The two experiments explore

the impact of the number of CPU cores and also the type of NICs in use. We discuss

Chapter 4. Experimental Evaluation 111

CPU Core Set

0

2

4

6

8

10

12

14

16

Pa
ck
et
 R
at
e
(M
pp
s)

A
AB
C

BC
D DAB

AB
CD CD A

AB
C

BC
D DAB

AB
CD CD

<---------- No. of Flows ---------->100 100K

Figure 40 Ű Performance (Mpps) when dynamically (30s intervals) changing the sets of
CPU cores allocated to packet processing for different FIB sizes on Testbed
A.

the logic behind the core (de)allocation and present the packet rate details for all the

conĄgurations.

For the Ąrst experiment, we use 4 cores (A, B, C, D) and 4 RX queues, and run with

L3FWDv4 use case and different FIB sizes (100, 100K) on the Testbed A. We set MacS

to start with 1 core (A) and every time the 30 sec timer expires a new core is allocated (B,

C, and D, respectively). After reaching the maximum core conĄguration (i.e., 4), MacS

starts releasing cores, again in 30 secs interval. We use NFPA traffic generator to send

test traffic (100 Ćows of 64 Bytes packet size with unique 5-tuple headers) at line rate

(10G) to overload the DUT.

Figure 40 shows how the obtained throughput increases and decreases in line with

the number of active cores. Although the results presented are an average of 10 different

runs for traffic with 100 and 100K unique number of Ćows, the observations were consistent

over different run. Figure 40 shows that the CPU core set (AB) achieves lower throughput

compared to (CD) when the number of Ćows is 100. Since the sending rate was Ąxed

throughout the experiment, the only explanation is the RX queue receiving less traffic

over (AB) compared to (CD) core set and not a limitation of MacS TX queues. Under

an ideal traffic distribution with both of the two-queue/two-core sets, we should observe

the same throughput as in case of the (ABC) compared to (BCD) allocation, or when only

cores A and D are used. The unequal Ćow distribution observed for the traffic trace with

less number of unique Ćows could be explained by speciĄcities of the Receive Side Scaling

(RSS) hashing function implementation and the statistical nature of such load-balancing

mechanism and hence the challenge of always deciding on the optimal number of CPU

cores for a certain throughput requirement for the target platform. Hence, the obtained

Chapter 4. Experimental Evaluation 112

CPU Core Set

0

5

10

15

20

25

30
Pa
ck
et
 R
at
e
(M
pp
s)

0x01 0x07 0x1f 0x7f 0x7c 0x70 0x40
0x03 0x0f 0x3f 0x7e 0x78 0x60

0x01 0x07 0x1f 0x7f 0x7c 0x70 0x40
0x03 0x0f 0x3f 0x7e 0x78 0x60

<---------- No. of Flows ---------->100 100K

Figure 41 Ű Performance (Mpps) when dynamically (30s intervals) changing the sets of
CPU cores allocated to packet processing for different FIB sizes on Testbed
B.

results found evidence regarding unequal traffic distribution behavior of RSS when only

100 Ćows are balanced through the cores. By increasing the FIB size to core ratio, with

100K FIB size, we can avoid this behavior on our Testbed with INTEL x540 NIC.

As part of the Second Experiment, we verify the RSS behavior on a production-

grade NIC and a higher number of CPU cores for this use case over the Testbed B with

100G Mellanox smart NIC and 7 CPU cores respectively. This provides us with a base to

see if our solution is able to scale or not in terms of raw throughput and also with more

CPU cores. We can use more CPU cores, 7 CPU cores to be speciĄc, instead of only 4

CPU cores as the available NIC with 100G line rate does not get saturated as would have

been with a NIC of 10G line rate as in the case of the previous experiment of Testbed A.

Figure 41 shows how the obtained packet rate increases and decreases in line with the

number of active cores available. We also took an average of 10 different runs for each

FIB size for this experiment. The CPU core (de)allocation is done similar to Figure 40

with every 30sec. The active CPU cores are presented in CPU Mask format on the x-axis.

We found that the RSS performs in a near ideal manner and able to distribute the traffic

across RX queues evenly giving a symmetrical convex shape to the graph in Figure 41. As

a result, we are able to show how MacS throughput/packet rate increases and decreases

in a deterministic way with allocation and de-allocation of CPU cores.

4.5.2 Discussion

Dynamic CPU Core Allocation activity focuses on the idea of Resource Scaling

introduced in subsection 1.3.2. Exploring the outcome of two experiments running on dif-

Chapter 4. Experimental Evaluation 113

ferent testbeds with a different number of CPU cores, and different type of NICs broad-

ening the evaluation breadth, we show how MACSAD behaves robustly in each case.

As an unexpected outcome to this activity, we detected an issue with some NICs (e.g.,

Intel 82599, X540) which stopped receiving packets during the experiment. In particular,

when an RX queue is not fully Ćushed before removing its RX descriptors by de-allocating

the associated CPU core, the NIC stops processing packets altogether from all RX queues

whereas other NICs (e.g., Intel XL710 Fortville) did not have this limitation allowing us to

execute this experiment successfully. We have reported this issue to the ODP community3

and helped to resolve it towards our effort to contribute to the open source community.

4.6 Concluding Remarks

Following the discussion around the design and implementation of MACSAD, this

chapter took a direction towards the evaluation of Ćexibility in MACSAD. We extend the

discussion about evaluation of MACSAD into the different aspects of Ćexibility across

categories introduced in subsection 1.3.2, i.e., Programmability, Portability, Performance

& Scalability (3PS).

We started this chapter by explaining the testbeds used in section 4.1 and the

different use cases supported in MACSAD in section 4.2 exploring the Portability and

Programmability aspects respectively. We then evolved the discussion addressing Perfor-

mance in terms of Packet Rate and analyzed the impact of FIB sizes, Burst sizes and

also different Traffic Generators in section 4.3. We bring latency into the discussion as

another aspect of Performance and explored in subsection 4.3.2. Discussion around re-

lated works in subsection 4.3.3 compared MACSAD against other related projects like

OvS and T4P4S. In section 4.4, as a step towards virtualization support we showed how

MACSAD could act as a VNF with preallocated resources leveraging Programmability

and Scalability aspects. We identiĄed resource scalability as another aspects of Ćexibil-

ity beyond 3PS, and explored the same in section 4.5 by evaluating on-demand resource

scaling in terms of CPU cores in MACSAD. Meanwhile, Ćexibility in terms of design

introducing compiler optimization with minimal effort (chapter 6) is discussed in a later

chapter.

With the knowledge about the use cases and their performance details, we pro-

ceed to the next chapter 5 which explains a methodology to represent the complexity of

different use cases and also demonstrates the application of machine learning to produce

a complexity model of MACSAD predicting the performance of the use cases.

3 <https://bugs.linaro.org/show_bug.cgi?id=3618>

114

5 Complexity Analysis

We dissertate the complexity of all the use cases in this chapter and present a

methodology to represent use case complexity in a more quantiĄable manner. We follow up

the discussion by bringing machine learning algorithms to create a performance prediction

model using complexity features.

5.1 Use Case Complexity

We have explored different use cases in detail in chapter 4. We mentioned that

the use cases vary in terms of complexities of their pipelines. The traditional view of

switch pipeline complexity is not sufficient enough to describe a P4 deĄned pipeline due

to its difference in abstraction level. Hence a new methodology is necessary which can

explore different P4 constructs identifying the abstractions to calculate the complexity.

We took inspiration from (DANG et al., 2017) while identifying the constructs from

the P4 program to deĄne the complexity of the P4 based pipeline. Table 16 presents

the constructs labeled as Complexity Factors from P4 programs classiĄed into different

categories. We have identiĄed seven categories of Complexity Factors and explored six

of them in our use cases. According to the P4 abstraction model shown in Figure 4,

the P4 based switch consists of 3 stages, i.e., Parser, Table & Lookup, and Actions. Our

categories of Complexity Factors broadly fall into those stages with an additional category

for Stateful parameters. We have excluded the Stateful P4 constructs due to their lack

of support in MACSAD and absence in our use cases in current shape. The different

categories of Complexity Factors are as follows:

Parsing.

Upon arrival of a packet in a switch, the parser extracts the headers and header

Ąelds, and update the relevant metadata. Parser stage is expressed by the P4 abstraction

named Parser and represented as a Ąnite state machine in MACSAD. Network packet

parsing overhead increases with increasing number of headers and/or header Ąelds to be

parsed, and presence of branches in a parse graph. Branches appear in a parse graph

when the parser needs to check one or more header Ąeld values to transition into another

parse state to initiate parsing the next header speciĄed in the P4 program. Hence Parsing

category has three complexity factors where Packet headers and header Ąelds express the

total number of headers and header Ąelds respectively, while the branches emphasizes

the conditional parsing of up next header based on the current header Ąeld values. The

parser branch details can be easily understood by the parser graph shown in the Annexes

(e.g., L2FWD [Appendix A], L3FWD [Appendix B], etc.). For L2FWD use case, only the

Chapter 5. Complexity Analysis 115

Ethernet header is parsed and hence the Packet Headers has value as one in the table.

Similarly, L3fwd has a value of 2 for Ethernet and IP headers involved. To continue, DCG-

UL and DCG-DL use cases have values 6 and 3 respectively. For the DCG-UL use case,

MacS receives network traffic with VXLAN encapsulation resulting in higher number

of headers to be parsed compared to the DCG-DL use case.

Processing.

MacS uses tables to process the network packets on the completion of the parsing

stage. P4 abstractions Table from the P4 control Ćow is responsible for this category. We

identify the total number of tables and the pipeline depth (i.e., the maximum number of

tables with dependencies) as Complexity Factors. MACSAD pipeline processing dictates

how the network packets interact with the tables. Although P4 does not mandate to have

tables, it is necessary to have at least one table to do any kind of packet processing in a

P4 program. Here the dependencies among tables can be explained as the scenario when

processing of a network packet is transferred to a new table depending on the outcome

of match+action at the current table. This allows a packet to skip one or more tables in

the P4 program pipeline when necessary. Hence the depth of a pipeline can be calculated

as the number of tables a network packet is handled by for a speciĄc protocol or use

case pipeline. The depth of a pipeline is equal or less than the total number of tables

in a P4 program. Looking at other complexity factors, size of tables and if a checksum

is necessary in the tables are also identiĄed as important Complexity Factors under this

category. DCG and BNG use cases have a higher depth of pipeline being more complex

use cases. On the contrary, PORTFWD in subsection 4.2.1 is a use case designed to have

zero complexity and hence have no tables deĄned in the pipeline.

Lookup.

This Complexity Factors category extracts the lookup details from Table P4 ab-

straction. We only show the Hash and the LPM based lookup in the Complexity Table 16

as currently MACSAD only supports EXACT (hash-based) and LPM lookup types from

the P4 speciĄcation. Lookup event being one of the costliest events in the switch pipeline,

we chose to assign a separate category for it. The Complexity Table is populated with the

number of lookup operations, and length of the lookup keys for each use case. For exam-

ple, 2[48] value as the entry for L2FWD use case signiĄes the presence of two hash-based

lookup operations with lookup keys of size 48 bits each.

Header Update, Field Update, Metadata Update.

MACSAD acts on the packet headers and metadatas according to the Actions

deĄned in the Tables while processing network packets. These Actions are also identiĄed

as P4 constructs or abstractions present in the P4 program. We divide this P4 abstraction

into three separate categories: One showing all the add/remove/copy header operations;

Chapter 5. Complexity Analysis 116

Another highlighting the metadata update operations; Finally the last one focusing on all

the header Ąeld updates. Separating the P4 Action construct into three separate categories

is essential due to the different nature and impact on the performance of these three

operations. Metadata is unique as it is stored separately from packet structure while

has a life span equal to the packet. MacS implements P4 deĄned standard metadata

and also supports user-deĄned metadata deĄned in the P4 program. INGRESS_PORT

and EGRESS_PORT metadata are the standard metadata common for all the use cases

in MACSAD and use extensively in the MACSAD source code. Going forth, header

add/remove requires multiple memory accesses and multiple header Ąeld updates pushing

the use case pipeline towards memory bound. Hence Header Update deserves a separate

category. Similarly by creating a separate Field Update category, we can enforce a clean

separation between Header related updates and Header Field modiĄcation operations, and

also acknowledge the impact of Ąeld modiĄcation operations over MacS performance.

State Accesses.

State Accesses is the Ąnal category shown in Complexity Table 16 with 4 differ-

ent complexity factors. These complexity factors are based on the stateful operations

supported by P4 speciĄcations. Most of the P4 constructs we have explored under MAC-

SAD are stateles as these parameters produce results solely based on inputs given to it.

Similarly, P416 deĄnes two types of stateful constructs which are capable of retaining val-

ues across packets. Table construct is the Ąrst stateful P4 construct which is read-only and

can only be modiĄed by the control plane. The other stateful construct EXTERN Object

is the construct we focus on in our discussion. This EXTERN Object can be read and

modiĄed by data plane. In P414, this construct is represented as three different construct

types such as counters, meters, and registers. P4 allows read and write to registers, which

is the most commonly used stateful construct, to perform stateful operations. Hence we

have identiĄed four different types of complexity factors under State Accesses depending

on the differences in underlying operations: Write to Different Registers, Write to Same

Register, Read from different Registers, & Read from Same Register. As use cases under

the umbrella of MACSAD do not implement any stateful operations, we have ignored

more detailed exploration of this category in our analysis of use case complexity, and the

Complexity Table 16 has values ŚzeroŠ for all the Stateful Complexity Factors.

Complexity Table 16 shows details of all the complexity factors for every use cases

explored in section 4.2. From the table, it is possible to grasp the difference in pipeline

complexity between different use cases looking at different complexity factors. We want

to use this data to further understand the behavior of MacS in-depth under different

conĄgurations of MacS. Our motivations are to develop a mathematical model using the

complexity factors which can predict the performance of MacS on demand. These ideas

are explored in the following section of this chapter.

Chapter 5. Complexity Analysis 117

Table 16 Ű P4 Use Case Complexity Details

L2FWD L3FWDv4 L3FWDv6 NAT-UL NAT-DL DCG-UL DCG-DL BNG-UL BNG-DL
P414 P414 P414 P414 P414 P414 P414 P416 P416

Parsing

Packet
headers

1 2 2 3 3 6 3 5 3

Packet
Ąelds

3 13 19 16 16 36 13 46 25

Branches 1 2 2 3 3 6 2 4 2

Processing

Total no
of tables

2 2 2 6 6 10 10 9 9

Depth
of pipeline

2 2 2 5 5 7 8 6 6

Checksum
on/off

off off off off off off on off off

Lookup

[Hash Based]
key width
(in bits)

2 [48] 1 [9] 1 [9]
1 [9]
1[48], 1[16]

2 [9]
1[48], 1[16]

2[48], 3[32],
1[9]

3[48], 2[32],
1[2], 1[9]

2 [9]
1[32], 2[48]

1[1], 2 [9]
1[32], 1[48]

[LPM Based]
key Width
(in bits)

0 1 [32] 1 [128] 2 [32] 1 [32] 1 [32] 1 [32] 1 [32] 1 [32]

Header
Update

Header
adds

0 0 0 0 0 0 4 0 3

Header
removes

0 0 0 0 0 4 0 4 1

Metadata
Update

Metadatas 1 1 1 1 1 2 3 12 24

Field
Update

Field
writes

2 4 4 5 5 11 24 14 26

Arithmetic
expressions

0 1 1 0 0 0 0 0 0

Boolean
expressions

0 0 0 0 0 0 0 0 0

State
Accesses

Write to
different
register

0 0 0 0 0 0 0 0 0

Write to
same
register

0 0 0 0 0 0 0 0 0

Read to
different
register

0 0 0 0 0 0 0 0 0

Read to
same
register

0 0 0 0 0 0 0 0 0

5.2 Machine Learning (Regression) Analysis

Machine Learning (ML) with numerous algorithms under its umbrella is useful to

solve problems like classiĄcation, prediction, etc., where it takes a dataset as input and

learns from the data. As a standard practice, the dataset is divided into two part: Training

& Test Data. Training Data is used to train the ML system; then the Test Data is used

to verify and validate the trained ML system. When the dataset fed to the ML algorithm

contain the desired solutions i.e., labels/measured values, then the ML system is known as

Supervised Learning. Similarly, in Unsupervised Learning, the data set is unlabeled, and

the ML system tries to learn automatically during the training of the system. As part of

the analysis of the performance results of the MacS, we already have the labels in our

data set dubbed as Packet Rate expressed in Millions Packet Per Second (Mpps). With

labeled dataset, we use a model-based supervised learning ML system as our choice of

ML system. We expect to learn from the dataset by generalizing the input to build and

train a model also know as to Ąt a model. Then, use the trained model to predict the

performance in terms of packet rate for test data and also for new inputs.

Chapter 5. Complexity Analysis 118

The two integral part of any ML system are Dataset & ML Model. For this activity,

the dataset is collected by running MacS on our Testbed D. We gathered the packet

rate of MacS for different use cases with different conĄgurations. We selected packet rate

of L2FWD, L3FWD and NAT use cases as the base pipeline, and then we modiĄed these

pipeline by changing the number of parsers or parser branches, changing the number of

tables, modifying lookup types and varying the number of header Ąelds and metadata

update operations in the respective P4 programs. Only these complexity factors from the

Complexity Table (Table 16) are considered for this activity. The different complexity fac-

tors in the dataset used for learning by the ML system are known as features or predictors

as they are used to build, train and Ąt the prediction model. The packet rate calculated for

each run of MacS is the label or predicted value for the dataset. The values of features are

extracted from the P4 program as speciĄed in the Complexity Table (Table 16). Apart

from these, there are other target speciĄc factors affecting performance which are also

considered. However, for brevity, we have considered only one target speciĄc factor, i.e.,

Number of CPUs, while ignoring others (e.g., CPU frequency, RAM available, Hardware

Acceleration available, etc.). By restricting our experiment to a single Cavium target we

can conĄrm that the missing target speciĄc factors do not bring any bias to the dataset.

We used our Cavium bare-metal switch with ThunderX SoC for data gathering due to

the consistent performance of MacS over this target across runs and use cases. We mean

our ML model to Ąt with features identiĄed by the complexity factors extracted directly

from the P4 program which out any compilation needed. This provides us with an oppor-

tunity to predict the performance rate for a new MACSAD use case represented by a

new P4 program without even compiling and running MacS on the target device. It will

undoubtedly help to automate or at least facilitate in decision-making whether to deploy

a speciĄc use case over a speciĄc target device when the scenario is sensitive to packet

rate.

A sample of our dataset collected from MacS executions with different pipelines is

shown in Table 17. There are six features shown as the Ąrst six columns in the table. The

last two column shows the Packet Rate in million packets per second (Mpps) and mega

bit per second (Mbps) respectively. Features are the independent variable and packet rate

is the dependent variable as packet rate depends on the input features. We choose to work

with Regression based ML models which are suitable for prediction problems and small

dataset with a fewer number of features. We analyze MACSAD dataset by applying a

simpler multivariate Linear Regression model and also different complex regularized linear

models like Ridge and Lasso Regression models. Different variants of Regression models

are capable of handling different characteristics of the input data allowing us to decide

upon the algorithm which suits our experiment and data well. For every ML model, we

will have our dataset divided into Training Data and Test Data at 3:1 ratio with test data

having 25% of the total data entries. We have divided our discussion into Data Processing

Chapter 5. Complexity Analysis 119

and Regression Models for better clarity and understanding. We bring machine learning

concepts into MacS evaluation, and its use case complexity analysis to fulĄll the following

goals:

∙ To represent MacS performance in terms of a mathematical model using complexity

factors.

∙ IdentiĄcation of the degree of inĆuence on performance by different complexity

factors.

∙ Ability to predict MacS performance on demand by extracting features from the

P4 program itself.

Table 17 Ű MacS Dataset Sample

CPU
Count

Parser No. of Field
Updates

EXACT
Count

LPM
Count

Packet Rate

Header
Count

Branch
Count

MPPS MBPS

1 0 0 0 0 0 4.50 3027

2 0 0 0 0 0 9.04 6072

3 0 0 0 0 0 13.40 9006

4 0 0 0 0 0 14.88 9999

2 2 1 4 1 1 2.45 1648

4 1 0 1 2 0 4.03 2706

1 1 0 0 0 0 4.29 2880

1 4 0 0 0 0 3.99 2680

1 6 0 0 0 0 3.82 2568

1 1 0 0 1 0 1.38 930

5.2.1 Data Processing

Collecting and processing the input dataset is an important part of every ML

system. Once the dataset is available, we need to understand and curate it to be useful to

our chosen ML models. There are different challenges when handling a dataset concerning

quality, quantity or effectiveness of the data towards the ML models. We present some of

the common challenges encountered while preprocessing MACSAD dataset; (1)Dataset

Size, (2) Nonrepresentative & Poor Quality Data, (3) Feature Selection.

Dataset Size

In the world of ML, it is hard to make rigid rules or deĄne Ąxed practices as every

ML system is unique and different in a way to suit the problems in hand. This stays

Chapter 5. Complexity Analysis 120

valid while estimating the optimum size of a dataset too. However, there are some thumb

rules to start with to categorize and explore different kinds of ML problems. We explored

different thumb rules (VANVOORHIS; MORGAN, 2007) to understand the process of

Ąnding the perfect size of a dataset. One of the thumb rule mentioned in (GREEN, 1991)

says that the sample size (N) should be:

𝑁 > 50 + 8𝑇 (𝑡𝑜 𝑡𝑒𝑠𝑡 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑐𝑜𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)

𝑁 > 104 + 𝑇 (𝑡𝑜 𝑡𝑒𝑠𝑡 𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙 𝐹𝑒𝑎𝑡𝑢𝑟𝑒)

(𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

(5.1)

Similarly, another school of thought exploring speciĄcally multivariate scenarios (HAR-

RIS, 2001) advises the calculation of sample size (N) as shown in Equation 5.2. According

to Harris (HARRIS, 2001), for regression analysis, the dataset size should be at least 50

more than the number of features, or it should be at least ten times the number of features

for the scenarios where the number of features is less than six or greater than equal to six

respectively.
𝑁 > 50 + 𝑇 (𝐹𝑜𝑟 𝑇 < 6)

𝑁 > 10𝑇 (𝐹𝑜𝑟 𝑇 > 6)

(𝑤ℎ𝑒𝑟𝑒 𝑇 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠)

(5.2)

The last two columns of Dataset sample at Table 17 are the dependent variables depicting

the Packet Rate. The Ąrst six columns are the six features or also known as dependent

variables available in our dataset. With six predictors available, the minimum sample size

according to Equation 5.2 should be 60. Our dataset of 70 entries adheres to the thumb

rule to go ahead with the regression analysis.

Nonrepresentative & Poor Quality Data

Moving onward, we will have qualitative analysis rather than quantitative analysis

of the dataset. ML models generalize on the basis of the training data which is the

representative of the relevant use case involved. This helps the generalized ML model to

predict the packet rate values for new use cases in turn. Hence we looked into our dataset

to access and identify the data entries which do not represent the use cases we want to

generalize the model to. The initial 4 entries in the Table 17 are based on the PortFWD use

case deĄned at section 4.2. We observe that apart from the CPU Count predictor, every

other predictor have values as zero. This PortFWD use case is designed to evaluate the

raw performance of the testbed and not an effective real-world use case similar to L2FWD

or NAT. Hence the data entries for PortFWD are considered as nonrepresentative in our

case and are removed from the dataset before training the ML models. Similarly, we also

avoided the data entries to be part of our dataset where the Packet Rate, the dependent

variable, has a value of 14.88 Mpps, i.e., the line rate of the 10 NIC of in testbed. As

the dependent variable is capped at 14.88 Mpps, we can not obtain the theoretical packet

Chapter 5. Complexity Analysis 121

rate possible for the corresponding set of features as the hardware limits the measured

value. This is considered as a type of Poor Quality data, and are not considered to be

part of our dataset. Another important example of poor quality data is outliers. However,

Cavium servers being consistent with performance, our dataset is relatively immune to

outliers. With the removal of the nonrepresentative data, our dataset size is reduced from

70 to 66 while still an acceptable size according to Equation 5.2.

Feature Selection

Another dimension to the data quality of the dataset lies in the features selected for

the ML models. It is possible to have a number of features available in the dataset, to begin

with, but it is essential to identify the relevant features which have sufficient impact on the

dependent variable and represent the problem statement in hand. This process of screening

of features is known as Feature Selection or Feature Engineering. Feature Selection can

be performed by applying different algorithm under Machine Learning or by an expert

on the dataset being used. Complexity Table (Table 16) shows all the features relevant

for our experiment, whereas all the features may not have the same level of relevance to

our models. With our domain expertise and knowledge of MACSAD internals, we have

identiĄed the most relevant features as shown in the Table 17. We have also selected CPU

count as an additional feature which was possible due to our domain knowledge. Similarly,

irrelevant features should be discarded to avoid bias during the training of the ML model.

The Mbps feature shown in the last column of Table 17 is one of the features we have

avoided using in the ML model as it is a derivable feature which can be calculated from

the Mpps column and does not bring any additional value to the ML model.

5.2.2 Regression Models

Regression methods estimate the relationship among features or predictors and the

dependent variable. With a generalized regression model, it is possible to predict the value

of the dependent variable (Y) with a change in the corresponding independent variables

(X). Due to this nature, we have chosen to use regression models with the MACSAD

packet rate dataset. We can represent every regression model as:

𝑌 ≡ 𝑓(𝑋, Ñ).

There are three important parameters involved here: Y, the dependent variable; X, the

independent variable; Ñ, coefficient. Although every regression model represents the de-

pendent variable as a function of independent variables X and Ñ, with different regression

algorithms, this function changes accordingly.

We will begin with the Multivariate Linear Regression as the simplest model and its

support for multiple features to generalize the model. Collinearity is a common issue with

dataset when we have multiple features. Collinearity appears when a feature is correlated

Chapter 5. Complexity Analysis 122

with one or more other features. Collinearity may lead to an increase in the variance of

the regression coefficients making them unstable. Collinearity can be a problem when the

features are measured with error. But with our Cavium Testbed, we are conĄdent about

the quality of the measured values of the features, and hence collinearity should be less

of a concern in our case. Nevertheless, in anticipation of collinearity, we have chosen two

regularized regression models too (i.e., Ridge Regression, and Lasso Regression) which are

immune to collinearity to some extent by implementing regularization to the dataset. Like

collinearity, scale imbalance among the features is also another dataset characteristic we

need to evaluate while applying regression models. In the presence of multiple features, the

feature with a smaller scale may result in a lower impact towards the Ąnal cost function

of prediction. Although feature scaling does not affect the linear regression model and

only affect Ridge and Lasso regression, we apply feature scaling to the dataset in all

our regression models. By doing this, we can directly compare the results of the three

regression models. Once a regression model is chosen, we need to Ąt the model using

training data before using it to perform predictions. We have identiĄed Mean Square Error

(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Coefficient

of Determination (𝑅2) as our preferred performance measures to evaluate and compare

the different regression models. The performance measures can be understood as values

calculated over the distance between vectors: prediction vector (̂︀𝑦i), and measured vector

(𝑦i).

To begin with, MAE depicts the value of the absolute error loss or 𝑙1-norm loss. It

calculates the average of the absolute errors in prediction where the error is the difference

between predicted (̂︀𝑦), and measured (𝑦) values, and hence every error contributes to MAE

in proportion to the absolute value of the error. Equation 5.3 demonstrate the equation

to calculate the MAE value for a model. Next, MSE and RMSE both corresponds to

𝑙2, and are represented in Equation 5.4,5.5. MSE metric represents the average of the

squared error or loss where the error is the difference between predicted (̂︀𝑦) and measured

(𝑦) values. MSE is a non-negative quality estimate of a model, and a near-zero value is

considered to be better. RMSE is calculated as the square root of MSE and corresponds

to 𝑙2 norm similar to MSE. RMSE is easily interpretable than MSE as it has the same

measurement units used to Ąt the model. Inherently RMSE is susceptible to scale of the

features used. Both MAE and RMSE are used widely for regression tasks. These metrics

are negatively-oriented scores as approaching to zero means better Ąt model. RMSE put

more weight to larger errors as it squares error before calculating the average. As a result,

RMSE is more sensitive to outliers than MAE, but it performs well when outliers are rare.

Another difference between them is that RMSE result will always be larger or equal to

MAE depending on the magnitude of errors. Interesting to consider that, RMSE is likely to

have a higher value than MAE when the size of test data increase. Hence while comparing

RMSE values, it is important to maintain the test data size equal. We will use MAE and

Chapter 5. Complexity Analysis 123

RMSE to compare different regression models. To conduct the comparison efficiently, we

have chosen to apply feature scaling and keep data split ratio between the train and test

data across regression models consistent considering the nuances of MAE and RMSE.

Finally, the Coefficient of Determination (𝑅2), the most important performance measure

of regression analysis, is shown in the Equation 5.6 and is considered to be the regression

score function. This represents the proportion of the variance in the measured value that

can be predicted by the Ąt model. Otherwise, we can say that 𝑅2 value tells us how well

our model can predict for future samples. 𝑅2 ranges from 0 to 1 where 1 means the model

can predict without any error. For example, a 𝑅2 of 0.50 means that our model can predict

50 percent of times with certainty. 𝑅2 is mostly used to evaluate how a speciĄc model is

measured for its efficiency and accuracy.

𝑀𝐴𝐸 =
1
𝑛

Σn
i=1

♣ ̂︀𝑦i ⊗ 𝑦i ♣ (5.3)

𝑀𝑆𝐸 =
1
𝑛

Σn
i=1

⎤
̂︀𝑦i ⊗ 𝑦i

⎣2

(5.4)

𝑅𝑀𝑆𝐸 =

√︃
1
𝑛

Σn
i=1

⎤
̂︀𝑦i ⊗ 𝑦i

⎣2

(5.5)

𝑅2(𝑦, ̂︀𝑦) = 1 ⊗
Σn

i=1
(𝑦i ⊗ ̂︀𝑦i)2

Σn
i=1(𝑦i ⊗ 𝑦i)2

(5.6)

where:

𝑛 = number of samples

𝑦i = measured value of 𝑖th sample
̂︀𝑦i = predicted value of 𝑖th sample

𝑦i = mean of the measured values

= 1

n
Σn

i=1
𝑦i

Multivariate Linear Regression

Linear Regression is the simplest model from the three models we have selected

for this task. Linear Regression performs prediction by computing a weighted sum of the

features plus a constant intercept term as shown in Equation 5.7. Due to the presence of

multiple features, it is also known as multivariate linear regression.

̂︀𝑦 = Θ0 + Θ1𝑋1 + Θ2𝑋2 + ... + Θn𝑋n (5.7)

where:

̂︀𝑦 = predicted value

𝑛 = number of features

Chapter 5. Complexity Analysis 124

𝑋i = 𝑖th feature value

Θj = 𝑗th model coefficient (including the bias term Θ0

and the feature weights Θ1, Θ2, ..., Θn)

To train the linear model we have to Ąnd the coefficients in Equation 5.7 so that the

model Ąts the training data. A model properly Ąts the dataset when the RMSE value

tends to minimum. Hence we need to identify 𝜃 vector which minimizes the RMSE. Then,

we calculate the predictions over test data and the 𝑅2 score of the model.

Regularized Linear Regression

Regularization of the linear model is necessary to averse overĄtting of data. Over-

Ątting means the model performs better on the training data but does not generalize well.

As a result, it may predict erratically against test data or future data. OverĄtting can

be a result of a complex model with a large number of features compared to the dataset

size. While reducing the number of features or gathering more data are a couple of so-

lutions for overĄtting, it is not practical in our case. We have carefully selected all the

crucial features, and we want to build a model using all the selected features. We opt to

go with constraining the model by regularization controlled by a hyperparameter to over-

come overĄtting. In regularization, we reduce the coefficients while keeping the number of

features constant. With regularization, our model stays robust against multicollinearity

among features too. We continue to explore Ridge and Lasso regression methods and their

ways to constrain the coefficients as part of Regularized Linear Regression.

Ridge Regression

Ridge Regression is a regularized linear regression where the cost function is modi-

Ąed by adding a regularization term equal to the square of the magnitude of the coefficients

(ÐΣn
i=1

Θ2

i). This regularization term is in 𝑙2 norm. Ridge regression puts constraints on

coefficients with the help of a hyperparameter (Ð) which controls how much we can regu-

larize the model. The cost function of Ridge regression is shown in Equation 5.8. From the

cost function, we can observe that at Ð equals to zero Ridge Regression becomes similar

to Linear Regression. Hence we can say that higher the alpha value, more restriction on

the coefficients; lower the alpha value, more generalization and the coefficients are barely

restricted. When Ð is large, then all the coefficients approach to zero but never equals to

zero, and the result becomes a Ćat line going through the mean of data. Simply said, Ridge

Regression brings regularization to reduce the model complexity by coefficient shrinkage.

𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) + Ð
1
2

Σn
i=1

Θ2

i (5.8)

Here it is important to note that value of Ð, the hyperparameter, is not learned

automatically by the model; instead, it is set manually and added to the cost function

only during training. However, to evaluate the model performance, we use unregularized

Chapter 5. Complexity Analysis 125

performance measures resulting in a different cost function for testing. We Ąt our model

with different values of Ð over training data to identify the best Ąt of the model.

Lasso Regression

Least Absolute Shrinkage and Selection Operator (Lasso) Regression is also a

regularized Linear Regression. Similar to Ridge, it also adds a regularization term to the

cost function. But the regularization term in Lasso is in 𝑙1 norm of the weight vector

instead of 𝑙2 norm as in the case of Ridge in Equation 5.8. The Lasso Regression cost

function is shown in Equation 5.9.

𝐽(𝜃) = 𝑀𝑆𝐸(𝜃) + ÐΣn
i=1

♣ Θi ♣ (5.9)

Just like Ridge, with Ð equals to zero, Lasso cost function reduces to the cost

function of linear regression. Due to the use of 𝑙1 regularization, the coefficients of least

important features can lead to zero, i.e. some features are neglected while making predic-

tions. Unlike Ridge, the coefficients can become zero even with a small Ð value. Due to

this, Lasso can provide inherent features selection ability to help reduce the complexity

of the model. We Ąt our model with different values of our hyperparameter and explore

the best Ąt of the model using all the six features as mentioned in the Table 17.

5.2.3 Regression Analysis

We explored the preprocessing of the dataset in subsection 5.2.1. The Ąnal dataset

after the preprocessing contains 66 entries to be used by the ML models. We apply feature

scaling to the dataset and divide it in 3:1 ratio among train and test data respectively.

We evaluate Multivariate Linear Regression, Ridge Regression and Lasso Regression over

this train and test data exploring different conĄgurations like cross validation, and varied

hyperparameter values when appropriate.

We start with the Multivariate Linear Regression model and Ąt the model on train

data with and without applying feature scaling over all the features. Without feature

scaling, the Table 18 shows the derived intercept and coefficient values of the features

for the model. The sign of coefficients of the features appears as expected considering

their positive or negative impact on the Ąnal measured packet rate. The Parser feature

coefficient came out with an unexpected value as per common belief. However, during

our experiments, and also from the dataset, we have discovered that MacS packet rate

does not get inĆuenced a lot when we have greater than 3 headers to be parsed. Hence

the small positive coefficient against the Parser feature. Considering the coefficient values

and the intercept value, we can write our linear model as below:

̂︀𝑦 = 1.697 + 0.973𝑋1 + 0.120𝑋2 ⊗ 0.574𝑋3 + 0.043𝑋4 ⊗ 0.665𝑋5 ⊗ 0.091𝑋6

Chapter 5. Complexity Analysis 126

The model performance measures MSE, RMSE, and MAE have values such as 0.576,

0.759, and 0.642 respectively. The R-squared value, the model score, for train and test

data are 0.916 and 0.885 respectively which signiĄes that the model can predict 88.5% of

the variability in ŠYŠ (ŠMppsŠ column).

Table 18 Ű Coefficient Vector of Linear Regression Model

Without
Feature Scaling

With
Feature Scaling

Coefficient Estimates

Intercept 1.697 2.897
cpus 0.973 2.303

parser 0.120 0.119
parserbranch -0.574 -0.463

Ąeldmod 0.043 0.091
exact -0.665 -0.931
lpm -0.091 -0.135

Performance Measures

MAE 0.642 0.642
MSE 0.576 0.576

RMSE 0.759 0.759
R2 0.885 0.885

Next, we repeat the same task after applying feature scaling over the dataset. The

Table 18 shows the derived intercept and coefficient values of the features for the linear

regression model. With feature scaling, the model performance measures MSE, RMSE &

MAE are evaluated to have values such as 0.576, 0.759 & 0.642 respectively. The R-squared

value, the model score, for train and test data are 0.916 and 0.885 respectively. These

values conĄrm that feature scaling does not affect the Ąnal score and error measurement

in the linear regression model, though the coefficients see some variations in their values.

Before going forward, we need to identify if the regression model is well suited for

our task or not. Residual analysis is one of the methods to assess if linear regression model

is appropriate for the dataset available. We carry out the residual analysis by deĄning

residuals and drawing a residual plot. Residual (e) is nothing but the difference between

the measured value of the dependent variable (y) and the predicted value (̂︀𝑦), or in other

terms, it is the error in prediction. Each data point will have one residual value. In a

dataset, the sum and the mean of the residuals are always equal to zero.

𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙(𝑒) = 𝑀𝑒𝑎𝑠𝑢𝑟𝑒𝑑 𝑉 𝑎𝑙𝑢𝑒 (𝑦) ⊗ 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑉 𝑎𝑙𝑢𝑒 (̂︀𝑦)

Residual Plot at Figure 42 is a scatter plot with Residuals in the vertical axis. The

horizontal axis representing independent variables intercepts the vertical axis at zero. The

objective is to Ąnd a pattern in the residual plot. The Ągure shows a random pattern where

Chapter 5. Complexity Analysis 127

the residuals fall randomly around the horizontal axis. This random pattern indicates

linear relations between independent and dependent variables (i.e., features and packet

rate) allowing a linear model to Ąt to the dataset with a good score. With the conĄdence

from the residual plot analysis, we continue exploring linear regression and its regularized

variations over our dataset.

0 2 4 6 8 10
Predicted Value

−1.5

−1.0

−0.5

0.0

0.5

1.0

Re
sid

ua
ls

Train Data
Test Data

Figure 42 Ű Residual Plot for Linear Regression

The dataset with feature scaling applied is used to Ąt the Regularized Regression

models, in our case (1) Ridge Regression, (2) Lasso Regression. We have selected an array

of values for our hyperparameter Ð as [0.0001, 0.001, 0.01, 0.1, 1, 10]. We Ąt and test the

prediction of the models for every Ð value to Ągure out the best Ąt model. Table 19 shows

the 𝑅2 score for the models for all Ð values over train and test data. We observe that for

Ð value 0.01 or less, our models depict higher accuracy. From the score of Lasso model, we

observe that with Ð value 0.01 or lower, the model does not drop any features to reduce

the complexity of the model and utilizes all six features. For Ð value 0.001, and 0.0001

Lasso model has similar 𝑅2 score, whereas Ð value at 0.01 it has a lower 𝑅2 score. From

this observation, we choose to select Ð value 0.001 as the best Ð value for the regularized

models. This best Ð value allows our regression model to keep all the features and to have

the best 𝑅2 score too to combat collinearity and overĄtting of the models. Note that, for

Ð value as 0.1 and 1 the number of features is reduced to 4 & 1 respectively for Lasso.

Moreover, with a higher Ð Š10Š, our model drops all the features and make the prediction

only with the regularization term which is not ideal. In Table 20, we depict the coefficient

estimates and different performance measures for the regularized models for our selected

best Ð value Ś0.001Š. We can observe that both Ridge and Lasso regression models have

a similar 𝑅2 score performing with similar accuracy. In fact the 𝑅2 score for multivariate

linear regression and the regularized models are almost equal as seen in Table 18 & 20.

Chapter 5. Complexity Analysis 128

Table 19 Ű Ridge Regression Model 𝑅2 Scores

Ridge Regression* Lasso Regression*

Train Test Aplha (α) Train Test Coeff-Used

0.917 0.885 0.0001 0.917 0.885 6
0.917 0.885 0.001 0.917 0.883 6
0.917 0.885 0.01 0.916 0.858 6
0.917 0.884 0.1 0.905 0.821 4
0.916 0.876 1 0.502 0.273 1
0.864 0.787 10 0 -0.185 0

*R
2 Score

Table 20 Ű Regularized Model with Ð value as 0.001

Ridge
Regression

Lasso
Regression

Coefficient Estimates

Intercept 2.897 2.894
cpus 2.303 2.303

parser 0.119 0.108
parserbranch -0.462 -0.451

Ąeldmod 0.091 0.098
exact -0.930 -0.926
lpm -0.135 -0.130

Performance Measures

MAE 0.642 0.649
MSE 0.576 0.587

RMSE 0.759 0.766
R2 0.885 0.883

Finally, we apply Cross Validation (CV) to explore how our model behaves with

a bigger dataset. We apply 10 K-fold cross-validation taking the dataset size to 660 in

total for our model. Figure 43 presents two scatter plots depicting the measured packet

rate and predicted packet rate before and after applying cross-validation. This provides

a visual representation of how good the prediction of our linear regression model is. The

Figure 43b shows far more data points than Figure 43a as a result of the 10 fold cross

validation with increased dataset size.

The Table 21 shows the cross prediction values of the performance measures (i.e.,

MAE, MSE, RMSE, and 𝑅2) for all three of our models. We observed that the 𝑅2 score de-

creases after applying cross-validation for all our models. Cross-validation helps to reduce

the overĄtting, but the result may get biased as it reuses the same data while learning in

Chapter 5. Complexity Analysis 129

1 2 3 4 5 6 7 8
Measured Value

0

2

4

6

8
Pr

ed
ict

ed
 V

al
ue

(a) Without Cross Validation

2 4 6 8 10
Measured Value

0

2

4

6

8

10

Pr
ed

ict
ed

 V
al

ue

(b) With Cross Validation

Figure 43 Ű Packet Rate (Predicted Value vs Measured Value).

different folds. Hence the reduction in 𝑅2 score is a possible outcome. Moreover, consider-

ing the fact that the 𝑅2 reduction is around 10% at max, and the 𝑅2 values are reasonably

high, we deduce that the three linear models performed well on our dataset. And we also

believe that the 𝑅2 score over cross-validation can be considered for prediction due to its

accuracy. We note that the regularized model performed well in current dataset, and it

can continue performing well in future when we will have more data and new features in

our dataset as regularization can bring down the complexity of the model and limit the

overĄtting for the future dataset.

Table 21 Ű Performance Measures of Different Regression Models

Regression
Model

Cross
Validation

Performance Measures

MAE MSE RMSE R
2

Linear
No 0.642 0.576 0.759 0.885
Yes 0.839 0.7967 0.892 0.764

Ridge
No 0.642 0.576 0.759 0.885
Yes 0.764 0.797 0.892 0.839

Lasso
No 0.649 0.587 0.766 0.883
Yes 0.763 0.797 0.893 0.839

*Aplha 0.001 for Ridge and Lasso

5.3 Concluding Remarks

This chapter provided a comprehensive overview of the methodology to describe

complexity, and presented the complexity of the individual MACSAD use cases in sec-

tion 5.1 and Table 16 respectively. The chapter proceeded with bringing machine learning

Chapter 5. Complexity Analysis 130

algorithms to create complexity model for MACSAD in section 5.2. We bring the de-

tails of data preprocessing and also actually train machine learning models to predict

performance value for new inputs while evaluating and comparing three different types of

regression models: Multivariate Linear Regression, Ridge Regression & Lasso Regression.

Our machine learning models use features extracted from P4 programs while ig-

noring other factors such as the target platform parameters or input traffic types etc. We

wish to include more features into our dataset and also try to gather more data inputs to

keep improving our model. More to it, by introducing an automated complexity feature

extractor from P4 program, we are also thinking of using the trained model as a service

to predict the performance of any P4 program automatically without any manual effort.

To extend our effort to explore the design of MACSAD, calculate the performance,

& evaluate the complexity of its use cases while working as an observer, we now turn our

focus on improving the performance by bringing optimization to MACSAD as presented

in chapter 6.

131

6 Optimization

Compiler systems are known for incorporating numerous optimization techniques

under the hood: may it language speciĄc or independent; platform speciĄc or independent.

Being a multi-target compiler system, it is imperative for MACSAD to focus on similar

optimization techniques; and as such memory-level parallelism between CPU and main

memory, is integrated into the code auto-generation stage of MACSAD, is detailed here.

6.1 MACSAD Packet Processing Optimization

MACSAD implements various optimization techniques in its different architecture

modules. However, our work towards exploiting the memory-level parallelism between

CPU and main memory (BHARDWAJ et al., 2017) deserves attention for its impact on

performance by targeting the memory-bound steps of packet processing, i.e., the table

lookup which consists of table key creation and the actual lookup step. We observed that

different lookups share commonality in terms of the basic steps involved in the process.

This allows us to implement table key creation and table lookup in batches to exploit the

memory level parallelism while hiding the CPU-memory latency. Apart from table lookup,

Parser is also considered as parsing is performed for every received network packets and

similar to tables it is also predeĄned in a P4 pipeline. By bringing batching to the parser,

we can bring parallelism and in turn bring performance improvement via packet rate of

MacS. In a switch pipeline, two types of parallelism are found. Data parallelism is the Ąrst

kind focusing on the ability to simultaneously process different parts of the same packet.

Second, the ability to perform different operations on different packets known as pipeline

parallelism. We have shown how to exploit pipeline parallelism with multi CPU support

over different target platforms and different set of CPU cores. In this section, we focus on

data parallelism exploit to improve packet rate of MacS. We explain how MACSAD code

is modiĄed to implement batch parsing and batch table lookup to bring data parallelism

and related improvements onto MacS. Although batching might introduce more latency

in MacS packet processing, the gain in packet rate make it appealing to the pipelines

where higher throughput is necessary. With this activity we also exhibit the Ćexibility

aspect of MACSAD which allows designing pipelines focusing on either higher packer rate

or lower latency. We bring a clear insight to this activity by observing the experimental

results, and analyzing the improvements achieved.

More abstractly, a software switch has ingress components shown in Figure 44

where it receives network packets from RX queues and map the packet structures to

the main memory. Followed by, packet processing consists of packet parsing and table

Chapter 6. Optimization 132

CPU Memory

Figure 44 Ű Abstract Packet Processing Pipeline

lookup, and Ąnally the Egress step where the packet is forwarded by writing back the

packet structures to the output TX queues. While the Ingress and Egress components

are limited by the underlying NIC capacity, the packet processing node is the component

to focus on as this takes the most time to complete and comes under our purview of

optimization as well. Modern NICs provide DMA interface to access the NIC Ring buffers

directly from userspace. As this NIC-MEMORY DMA interface is a high-bandwidth and

high-latency interface, MacS always receives/transmits network packets in batches of

burst size from/to the RX/TX NICs. By bringing parallelism in terms of batch of packets

receive/transmit, we can amortize the cost of NIC-Memory latency. Being said that, it is

possible to assume that MACSAD also process the batch of packets in parallel during the

parsing and table lookup activities. However, currently, MACSAD doesnŠt take advantage

of this parallelism to the full extent and internally process one packet at a time per thread.

We will focus on this serialized packet processing of MACSAD and impact of parallelism

over it.

s t a t i c void

parse_state_parse_ethernet (

packet_descr iptor_t * pd ,

uint8_t * buf , lookup_table_t **

t a b l e s)

{

extract_header_ethernet (buf , pd)

buf += pd⊗>headers [

header_instance_ethernet] .

l ength

return apply_table_smac (pd)

}

Listing 6.1 Ű Parser (no optimization)

s t a t i c void parse_state_parse_ethernet (

packet_descr iptor_t * pdt , i n t

pkt_cnt , lookup_table_t ** t a b l e s)

{

packet_descr iptor_t *pd = NULL

f o r (i n t i =0; i < pkt_cnt ; i++){

pd = &pdt [i]

uint8_t * buf = (uint8_t *) pd⊗>po in t e r

extract_header_ethernet (buf , pd)

buf += pd⊗>headers [

header_instance_ethernet] . l ength

apply_table_smac (pd)

}

}

Listing 6.2 Ű Parser (with optimization)

Parsing, table lookup, and table match actions are memory intensive operations

with multiple memory access, and cache misses. Towards reducing the footprint of these

memory intensive operations, we plan to take advantage of the available CPU-Memory

parallelism. Being memory bound our use cases can be beneĄcial with this CPU-Memory

parallelism. The interface between CPU & memory is of high-bandwidth and high-latency

as with NIC-MEMORY interface. Modern CPUs can perform multiple memory requests in

Chapter 6. Optimization 133

parallel. We can take advantage of this memory level parallelism by performing parsing,

table lookup, etc., for a burst of packets instead of a single packet at a time. This is

implemented as batching, to achieve data locality, in the underlying MACSAD source

code so that multiple packets can be processed simultaneously taking advantage of the

memory parallelism. This approach of batching is also known as Loop-Fission in the

terminology of compiler optimization.

Listing 6.1, 6.2 shows how we bring batching to the MACSAD parser code. We

present the code of L2FWD use case where MacS parse only the Ethernet header of a

network packet. Listing 6.1 shows that the parser function is called once for each network

packet. But Listing 6.2 shows that the parser function takes an additional argument as

the number of packets while the packet_descriptor argument is modiĄed to point to an

array of packets instead of a single packet. This allows to do the parsing for multiple

packets using a loop which improve the data locality and improve memory parallelism

while reducing the cache misses too.

void apply_table_smac (

packet_descr iptor_t * pd ,

lookup_table_t ** t a b l e s)

{

uint8_t * key [6] ;

uint8_t * value ;

table_smac_key (pd , (uint8_t *)

key) ;

EXTRACT_BYTEBUF(pd ,

f i e ld_instance_ethernet_srcAddr

, key)

value = exact_lookup (t a b l e s [

TABLE_smac] , (uint8_t *) key) ;

}

Listing 6.3 Ű Lookup (no optimization)

void apply_table_smac (packet_descr iptor_t

* pdt , i n t pkt_cnt , lookup_table_t **

t a b l e s)

{

uint8_t * key [MAX_PKT_BURST] [6] ;

uint8_t * value [MAX_PKT_BURST] ;

packet_descr iptor_t * pd = NULL;

f o r (i n t i =0; i < pkt_cnt ; i++) {

pd = &pdt [i] ;

EXTRACT_BYTEBUF(pd ,

f i e ld_instance_ethernet_srcAddr , key [i

])

va lue [i] = exact_lookup (t a b l e s [

TABLE_smac] , pkt_cnt , (uint8_t *) key [i

]) ;

}

}

Listing 6.4 Ű Lookup (with optimization)

Listing 6.3, 6.4 presents the MACSAD source code implementing batch concept

for table lookup operations for L2FWD use case. L2FWD use case performs P4 Exact

lookup based on cuckoo hash over MAC𝑠𝑜𝑢𝑟𝑐𝑒 and MAC𝑑𝑒𝑠𝑡 addresses for every network

packet. Listing 6.3 shows the function for SMAC table of L2FWD use case as appear

in the MACSAD source code. This function gets the packet descriptor of the network

packet as a function argument for which it creates the Lookup key and performs table

lookup. But these operations are done for a single packet each time. Listing 6.4 shows

batch approach implemented for the same table related function where it receives packet

count as an extra argument while the packet descriptor argument is modiĄed as done

Chapter 6. Optimization 134

before for parser function in Listing 6.2. Having explained this, we want to point out that

our implementation of batching on Table Lookup has its limitation too. We bring batch

technique only to the Ąrst table in the pipeline while the other tables behave the same

as in our current implementation. Nevertheless, the results in Table 22 shows that even

with this limited implementation, we achieve improvement in packet rate.

6.2 Evaluation and Analysis

Figure 45 presents the effect of batching on packet rate for different use cases

executed with different number of CPU cores. The results for with and without batching

optimization are presented in different colors: green & yellow respectively. With the code

to exploit memory level optimization MacS performs better with higher packet rate. The

increase in packet rate remains effective when we move from single core to multiple CPU

core conĄgurations too. Figure 45a shows the improvement in packet rate across all core

combinations as expected. We can safely say that the introduction of simple loop Ąssion

transformation technique can result in increase of packet rate for MacS across different

use cases.

1 2 3 4
No. of Cores (L2FWD)

0.0

2.5

5.0

7.5

10.0

12.5

Pa
ck

et
 R

at
e

(M
pp

s)

No Batch
Batch

(a) L2FWD

1 2 3 4
No. of Cores (L3FWDv4)

0

2

4

6

8

10

12

14

Pa
ck

et
 R

at
e

(M
pp

s)

(b) L3FWDv4

1 2 3 4
No. of Cores (NAT-UL)

0

1

2

3

4

5

6

7

8

Pa
ck

et
 R

at
e

(M
pp

s)

(c) NAT-UL

1 2 3 4
No. of Cores (NAT-DL)

0

1

2

3

4

5

6

7

8

Pa
ck

et
 R

at
e

(M
pp

s)

(d) NAT-DL

Figure 45 Ű Packet Rate comparison for all Use Cases with batch optimization for different
CPU Cores (64 Bytes, 100 Table entries) on Testbed A.

Table 22 depicts a detailed report in terms of percentage gain or loss in packet rate

for all the use cases with 1, 2, 3 & 4 CPU core conĄgurations. We perform this experiment

in two phases of optimization. The Ąrst optimization implements batching for Parser

only and refereed as OPT1. The second level of optimization considers batching both for

Parsing and Table Lookup, and refereed as OPT2. The table shows the percentage change

Chapter 6. Optimization 135

in packet rate for both the optimization levels separately for better analysis. We can see

that for L2FWD use case the packet rate increases for all the different conĄgurations. But

L3FWDv4 use case shows a decrease in packet rate in case of OPT1, whereas for OPT2 the

packet rate increases as expected. L3FWDv4 parser looks into 2 headers (Ethernet, IPv4)

of the network packet. It also implements a branch instruction while parsing Ethernet

header to check if the next header is IPv4 or not. For every branch instruction, MacS

actually does a calculation of the header Ąeld offset and width, and then performs a

memcopy to retrieve the data from packet header necessary to execute the conditional

instruction. But there is no other statement or operations following up in the parser

code block to take advantage of this cache refresh and to amortize the cost, hence the

negative impact on the packet rate of L3FWDv4 use case with OPT1. After applying the

OPT2 (Table Lookup Optimization), the packet rate improvements are apparent again

in L3FWDv4 as shown in the table. Comparing to L2FWD, L3FWDv4 use case shows

a deĄnite improvement with OPT2 optimization. This leads us to believe that the LPM

lookup method for IPv4 get more advantage compared to CuckooHash method for MAC

address lookup under this activity.

Table 22 Ű Use Case Performance Results (64 Bytes, 100 Table Entries, DPDK, Testbed
A)

L2FWD L3FWDv4 NAT-UL NAT-DL
Optimization Type

OPT1
(Parser)

OPT2
(Parser + Lookup)

OPT1 OPT2 OPT1 OPT2 OPT1 OPT2 OPT1 OPT2
No of
CPUs

% Increase in Packet Rate

1 8.09 8.72 -13.52 3.50 -3.65 -4.08 -2.88 -6.03
2 19.02 19.58 -6.20 35.34 5.37 1.58 7.22 23.31
3 12.23 14.08 -3.51 27.41 5.67 15.01 -0.17 6.99
4 7.16 8.70 -3.33 7.57 4.63 12.48 3.79 11.13

L2FWD L3FWDv4 NAT-UL NAT-DL

Looking at the results for NAT use case we note that both NAT-UL and NAT-

DL show a deĄnite improvement in packet rate for multi-core conĄgurations while a

reduction in packet rate for single core conĄguration. Parser optimization (OPT1) brings

improvements to NAT use case, unlike the L3FWDv4 use case. NAT-DL parser code in

Listing 6.5 shows that NAT-DL performs parsing for 3 packet header namely Ethernet,

IPv4 and TCP headers. Both Ethernet and IPv4 header parsing code has a branch con-

dition similar to L3FWDv4 use case to identify the next available header in the network

packet. But NAT-DL shows an increment in packet rate with OPT1, unlike L3FWDv4

which shows a decrease in packet rate. For NAT-DL the Ethernet parsing does a cache

refresh and prefetch additional nearby data which corresponds to the next header details.

Hence the following header parsing takes advantage of this warm cache and brings down

the average cost for parsing. Due to this, NAT-DL performs better with OPT1 compared

to L3FWDv4 although both have similar code in their parser modules.

Chapter 6. Optimization 136

s t a t i c void parse_state_parse_ethernet (packet_descr iptor_t * pd ,

lookup_table_t ** t a b l e s)

{

uint8_t * buf = (uint8_t *) pd⊗>po in t e r ;

extract_header_ethernet (buf , pd) ;

bui ld_key_parse_ethernet (pd , buf , key) ;

uint8_t case_value_0 [2] = {8 , 0 , } ;

i f (memcmp(key , case_value_0 , 2) == 0)

parse_state_parse_ipv4 (pd , buf , t a b l e s) ;

}

s t a t i c void parse_state_parse_ipv4 (packet_descr iptor_t * pd , uint8_t * buf ,

lookup_table_t ** t a b l e s)

{

extract_header_ipv4 (buf , pd) ;

EXTRACT_INT32_AUTO(pd , f ie ld_instance_ipv4_srcAddr , value32)

pd⊗>f i e l d s . f i e ld_instance_ipv4_srcAddr = value32 ;

pd⊗>f i e l d s . attr_f ie ld_instance_ipv4_srcAddr = 0 ;

EXTRACT_INT32_AUTO(pd , f ie ld_instance_ipv4_dstAddr , value32)

pd⊗>f i e l d s . f ie ld_instance_ipv4_dstAddr = value32 ;

pd⊗>f i e l d s . attr_f ie ld_instance_ipv4_dstAddr = 0 ;

build_key_parse_ipv4 (pd , buf , key) ;

uint8_t case_value_0 [1] = {6 , } ;

i f (memcmp(key , case_value_0 , 1) == 0)

parse_state_parse_tcp (pd , buf , t a b l e s) ;

}

s t a t i c void parse_state_parse_tcp (packet_descr iptor_t * pd , uint8_t * buf ,

lookup_table_t ** t a b l e s)

{

extract_header_tcp (buf , pd) ;

}

Listing 6.5 Ű NAT-DL Parser with out Optimization

For both Parser & Table Lookup Optimization (OPT2), NAT use cases show an

additional increase in packet rate for both NAT-DL and NAT-UL for multi-cpu conĄgura-

tions. In the case of a single core, there is a decrease in packet rate similar to OPT1. This

can be explained by the way batching is implemented in MACSAD for Table Lookup.

MACSAD autogenerates code for table match+action abstractions from P4 pro-

gram. In P4, we can deĄne tables with or without conditional statements to dictate the

sequence, and in turn setting the depth of the pipeline. This allows supporting multiple

pipelines with different sets of tables in the same P4 program. Although in P4 the condi-

tional statement to decide next table is optional and the tables are selected in a sequence

as present in the P4 code, in MacS we follow a different approach to facilitate the auto-

Chapter 6. Optimization 137

generation of code. MACSAD employs a mandatory conditional statement to specify the

jump to the next table. And in the absence of such a branch condition, it uses a default

condition to go to the next table. Hence in MACSAD, the tables are always dependent on

the previous table. We implement batching for Table lookup only for the Ąrst table in the

pipeline. By adding batch technique in table lookup for the Ąrst table, we get improved

packet rate because of the memory locality and cache hit as packet processing continues

over the packet header details already prefetched into the cache. This behavior is limited

to memory bound use cases only. In case of a CPU bound situation, the optimization

can even become harmful by exerting pressure on the cache system which is apparent

in the result for the single core conĄguration tests. When we run the same experiment

with multiple cores, the underlying compiler is able to identify the loop Ąssion and bring

instruction level parallelism into effect. As a result, the compiled code can utilize SIMD

and instruction level parallelism to increase the packet rate in multi-core conĄgurations

as seen in Table 22.

NAT use cases have 5 tables in the pipeline where the Ąrst table "if_info" identiĄes

the traffic as Uplink or Downlink. In our testbed with only two ports, we have one table

entry in this table for traffic type identiĄcation. With only one entry, the compute bound-

ness of table lookup is more towards CPU bound than memory bound. The performance

dips are due to increased pressure on the caching subsystem with increased memory foot-

print due to the batch size. It is important to note here that batching implementation are

ineffective or has a negative impact on compute bound operations as explained before.

While moving on to the multicore conĄguration, we Ąnd an increase in packet rate as

the batch features implemented as loop brings memory and data locality dictating the

compiler to take advantage of SIMD and instruction level parallelism as explained already.

6.3 Concluding Remarks

In this chapter, we elaborated the idea of bringing optimization into MACSAD

as introduced in subsection 1.3.4 with a goal to observe performance improvement. We

explained and implemented optimization techniques to leverage memory-CPU parallelism.

This activity brings changes to the Transpiler to auto-generate codes expressive enough

for the low-level compiler to create optimized compiled output. Loop-Fission optimization

technique is explored extensively for this activity bringing the optimization in two-fold

for packet parsing and table lookup part of the MACSAD data plane. The details of

optimization techniques and the supporting performance results are shown in section 6.1

and section 6.2 respectively.

With this chapter, we wrap the discussion encompassing different aspects of MAC-

SAD, and bring our attention from MACSAD itself to the multiple contributions done

Chapter 6. Optimization 138

as part of the MACSAD development and also as part of other open source project devel-

opment. All the artifacts comprising of the new open-source tool, and code contribution

as feature addition to existing open-source projects are presented in chapter 7.

139

7 Open Source Artifacts

MACSAD is an open source project built upon a number of different open source

and free softwares to achieve its goal. In the process of developing MACSAD, we encoun-

tered a number of challenges due to the shortcomings of the participating libraries and

softwares, and also due to the lack of any open source alternatives for our requirements.

We diligently kept record of every major bugs or defects encountered during our research

and prototyping of MACSAD. We dutifully notiĄed the issues to corresponding devel-

opment team via email or mailing list as appropriate. In the case of lack of an alternative

free/open source software, we took the initiative to create a tool to fulĄll our requirement.

Other instances when we found that contributing to an existing open source software as a

new feature was necessary, we delivered by submitting our code too. All these additional

efforts are our way of giving back to the community without whose help we could not

have completed our prototyping and release of MACSAD. The following sections provide

a complete view of these contributions.

7.1 BB-Gen Tool

While prototyping MACSAD, we faced challenges to Ąnd traffic traces to verify

our use cases. The readily available network traffic traces come in PCAP format. In a

traditional workĆow, we try to search for a PCAP Ąle as per our need, and then we read

the PCAP Ąle to verify the traffic Ćow type available in it. Then we read the network

packet headers to get the details like MAC𝑠𝑜𝑢𝑟𝑐𝑒, IP𝑠𝑜𝑢𝑟𝑐𝑒, TCP𝑝𝑜𝑟𝑡, etc. These details

then put in a CSV Ąle in a speciĄc format to match the tables in the use case pipeline.

These CSV Ąles are simple text Ąles and also known as Table Trace File as they are used

to update the use case pipeline tables. The current tools available to work on PCAP Ąles

are slow, clumsy and non-intuitive. We also need to put extra effort to learn those tools

and write our own scripts to use the output of those tools to create our Table Trace Ąle.

For a PCAP Ąle with a million Ćows, these process can take a day without accounting the

unforced error occurs due to the unavailability of details about the PCAP Ąle. Similarly,

for any small change in use case pipeline, the whole process needs to be redone which

frequently happens during prototyping of a project. Similarly, we need to undergo through

these processes every time a new use case is added. Hence we were in the lookout for a

tool to provide Table Trace Ąles in a small amount of time for all our use cases without

the huge additional effort for any future modiĄcations in the use cases.

When we choose to select PCAP Ąles from any open repositories, we are forced to

use the Ćow distribution available in those PCAP Ąles. In case we want to create our own

Chapter 7. Open Source Artifacts 140

variance in Ćow distribution, we again need to depend on the PCAP editing tools which

are cumbersome to work with. Hence we wanted a tool which can create PCAP and Table

Trace Ąles based on our required Ćow distribution.

MACSAD has support for a number of use cases varying the pipeline complexity

while working with different tunneling protocols. Hence we wanted a tool which can

provide PCAP and Table Trace Ąels for all the use cases using the exactly similar Ćow

distribution so that the comparison among the use cases can be adequately performed as

the effect of Ćow distribution of network traffic across the use cases remain similar.

While working with P4, we saw an opportunity in terms of a packet crafter tool

which can parse a P4 program and create a workload trace (PCAP) for the deĄned

pipeline. This P4 dependent workload trace can help to automate any effort towards

testing of P4 deĄned switches, MacS in our case. A P4 based packet crafter tool is

identiĄed as a need of the hour considering the proliferation of P4 language in the research

community.

To sum it up we identiĄed the following requirements for a packet crafter tool and

decided to go ahead with creating our own referred to as BB-Gen.

∙ Can create workload traffic as PCAP Ąle from the P4 pipeline.

∙ Ability to generate both PCAP and Table Trace Ąle to facilitate testing of network

switches.

∙ Can create PCAP and Table Trace Ąles simultaneously in a small amount of time

for different use cases to maintain the same Ćow distribution across the use cases.

∙ Ability to create PCAP Ąles for different packet sizes as per RFC 2544 (BRADNER;

MCQUAID, 1999).

∙ Easy to add support for new protocol headers & tunneling protocols.

∙ Command Line Interface (CLI) with intuitive and easy to use options.

∙ Written in a popular language, Python, so that it will be easy to maintain and

contribute.

∙ Support for randomized header Ąeld data generation for worst case testing scenario.

Our solution BB-Gen identiĄes itself as a simple CLI based packet crafter written

in Python language. It implements the Scapy library for all the PCAP related activities.

It is modular, and separates the logic to create the Ćow distribution details and actual

packet & PCAP creation process. This allows us to Ąrst create the header details for all

the protocols only once, and then use the same details to create traffic as PCAP Ąles for

Chapter 7. Open Source Artifacts 141

different packet sizes and for all the use cases supported, and the corresponding Table

Trace Ąelds. In addition, BB-Gen has also been expanded to work with other switches

like T4P4S for creating PCAP and Table Trace Ąles.

S
C

A
P
Y

Tanspiler P4 HLIR

Parser

Protocol Distribution

IP Port

Data Generator

MAC

C
o
re

BB-Gen

NFPA

DUT
P2

P1

2

1

P4 Table

Trace

PCAP

Trace

P4 APP Path User Input Path Trace Path Internal Path Packets Path Target Binary

l2fwd.p4

l3fwd.p4

nat.p4

vxlan.p4

Figure 46 Ű BB-Gen Architecture and Integration with NFPA and MACSAD & T4P4S

Figure 46 shows BB-Gen architecture and also its integration with different Switch

and Traffic generators in a traditional test topology. For MACSAD too we employed this

type of workĆow as explained in section 4.1. The left side of the Ągure shows the architec-

ture of BB-Gen. The Ćow and Ćow distribution details generation, and the actual PCAP

creation are implemented using two different modules as Core and Scapy respectively. The

Core module workĆow involves three submodules and in turn 3 steps: Parser handles P4

Ąle to extract header details and to create corresponding data structures in BB-Gen for

header data generation; Data Generator actually creates the header Ąelds and protocol

data based on the user input Ćow distribution logic; Packet Creator assembles all the

header Ąelds and create payload for different packet sizes (i.e., from 64 to 1500 Bytes),

and generate the Table Trace Ąles from these details. Then PCAP submodule assembles

the PCAP Ąles using SCAPY library.

As per the diagram, the PCAP Ąles are meant to be used by traffic generators like

NFPA (CSIKOR et al., 2015) while the Table Trace Ąles are inputs to the MACSAD

or other supported switches (e.g., T4P4S) to update the pipeline tables in the switch.

This completes the cycle of a basic unit testing for any switch pipeline, in our case

MACSAD. We used BB-Gen extensively to create the network traffic or PCAP Ąles and

the corresponding Table Trace Ąles during our testing and evaluation of MacS explored

in section 4.3, section 4.4, and section 4.5. The BB-Gen tool has been open-sourced and

available on GitHub 1 for the research community to take advantage of it.
1 https://github.com/intrig-unicamp/BB-Gen

Chapter 7. Open Source Artifacts 142

7.2 OpenDataPlane (ODP)

7.2.1 Issues and Fixes for ODP

OpenDataPlane (ODP) is an integral part of MACSAD architecture. While pro-

totyping MACSAD and doing testing & evaluation we encountered some obstacles. Fur-

ther analysis were done each time to identify the root cause of the issues related to ODP.

Due to diverse categories of our testing scenarios, we are able to unearth multiple issues

with ODP which went unnoticed before even by the vast variety of automated unit tests

already in place for ODP. The issues varied from LPM lookup method to DPDK driver

related implementation. All the issues are promptly reported to the ODP community via

mailing list, and we followed up with providing more details about the issue, to test the

Ąxes on our test bed before making it live and providing unit test scripts to recreate the

issue by other developers.

∙ While testing our L3FWDv4 use case, we Ągure out that the LPM implementation

in place didnŠt work well when both KEY & VALUE is stored in the table itself.

LPM table was capable of storing an index or an integer as the VALUE of the KEY

VALUE pair of a table lookup. We help to identify the issue followed by helping to

validate the patch provided by the ODP developers for the same.

<https://github.com/Linaro/odp/pull/701>

∙ In our effort to test MacS over different testbed can sometime bring surprises. Dur-

ing one of these experiments, we found that ODP throw error message "Segmented

buffers not supported" with DPDK packet I/O for larger packet sizes (1518 Bytes).

We identiĄed that some DPDK NICs need at least 2176 byte buffers (2048B + head-

room) not to segment standard Ethernet frames. We worked with ODP developers

to create a patch for the DPDK driver in ODP with increased minimum segment

length to avoid this issue.

<https://github.com/Linaro/odp/pull/731>

∙ During our MacS test at Testbed B, we encountered a problem with ODP not

working with DPDK Packet I/O with our Mellanox 100G NICs. We were able to

Ągure out the root cause for this to be unbalanced hugepage memory allocation for

NUMA nodes. After reporting this, we continuously provided more details about

the issue and also helped to validate the Ąx for this bug.

<https://bugs.linaro.org/show_bug.cgi?id=3657>

∙ For our adaptive dynamic CPU core allocation experiment, we worked on two dif-

ferent Testbed with 3 different types of NICs. Due to these unique conĄgurations,

we unearthed another issue with ODP. We found that some Intel NICs (e.g., 82599,

Chapter 7. Open Source Artifacts 143

X540) stop receiving packets from all RX queues of the NIC if any RX queue is

not emptied fast enough or if any conĄgured RX queues remain unused. Due to the

nobility of this use case, this was never tested for ODP before. We worked closely

with developers and provided our Testbed for testing and verifying the Ąx which

was essential for our MacS evaluation.

<https://bugs.linaro.org/show_bug.cgi?id=3618>

7.2.2 IPv6 support for LPM Lookup in ODP

ODP code base does not provide IPv6 support for LPM lookup table implementa-

tion, although ODP has limited support for IPv6 protocol support. To fulĄll L3FWDv6

use case implementation, we extend the current IPv4 based LPM lookup to bring IPv6

support. Our IPv6 implementation is based on the IPv4 based LPM lookup library. We

extend the IPv4 Binary preĄx tree to support 128 bits key or addresses towards IPv6

protocol support. We also create a complete library for IPv6 LPM which includes corre-

sponding table management APIs for table creating, table entry addition and table entry

deletion. The source code for IPv6 support for LPM lookup can be found here.

<https://github.com/ecwolf/odp/tree/ipv6/helper>

7.2.3 Contribution for odp-thunderx

Towards portability, we always try to bring MACSAD over different target plat-

forms. As mentioned in section 4.1 we have brought MACSAD to Cavium with ThunderX

& OCTEON chipsets by using the ODP version provided by Cavium. This ODP for Cav-

ium (odp-thunderx) is based on an older version of ODP missing CuckooHash and LPM

lookup implementations. We contributed CuckooHash and LPM lookup related code to

odp-thunderx code base. For completeness, we also implemented IPv6 support for LPM

lookup method. Further, we added crc32c hash for improvements to CuckooHash imple-

mentation. All the contribution towards CuckooHash, LPM with IPv4 & IPv6 support

and crc32c hash support are available in GitHub here.

<https://github.com/c3m3gyanesh/odp-thunderx>

7.3 Additional Open-source Contributions

In the course of MACSAD development, we have made multiple contributions

towards P4, NFPA and other projects in addition to the contributions explained before.

These contributions are shown here.

∙ We contributed to p4c-graphs code base which generates dependency graphs from

a P4 program Ąle. The p4c-graphs tool was only able to create the dependency

Chapter 7. Open Source Artifacts 144

graph for control blocks in case of P416 program whereas the ability to generate

graphs for parser was missing. We created a feature request, contributed code as a

pull request to the GitHub repository and followed up with another contribution

towards another issue raised for p4c-graphs tool too. With this contribution, p4c-

graphs can generate the dependency graph for top-level parser blocks and present

it as a dot Ąle. This contribution is also responsible for generating all the parser

dependency graphs used in this text.

<https://github.com/p4lang/p4c/pull/969>

<https://github.com/p4lang/p4c/issues/1038>

∙ Our contribution for NFPA is a simple feature enhancement bringing additional

conĄguration parameter to NFPA. With our contribution, it is possible to set the

maximum line rate for an interface under NFPA so that the packet transmit rate is

controlled to a speciĄc percentage of the theoretical maximum of the corresponding

NIC. Our code contribution is available here.

<https://github.com/cslev/nfpa/pull/2>

∙ We have a Github public repository for all our use cases. One can Ąnd a simple

description and pictorial representation of the use cases and their scenarios. The P4

program Ąles in both P414 & P416 format for all the use cases are also included. And

Ąnally, the Parser & Table dependency graphs are also provided in this repository.

This public repository is available here.

<https://github.com/intrig-unicamp/macsad-usecases>

∙ Support for P4 language syntax highlighting were missing in modern text editors.

To help us with our P4 programming, we created a syntax highlighter for P4 for

the Sublime Text editor. We also created a P4 syntax highlighter collection bringing

together the P4 syntax highlighter for Sublime Text, VIM and EMACS text editors

under one repository. Continuing our effort, we contributed to P4 syntax highlighter

project for Atom text editor with multiple commits. These efforts are helpful for the

programmers to write P4 programs efficiently. The public repositories created and

code contributions made are available here.

<https://github.com/c3m3gyanesh/p4-syntax-highlighter>

<https://github.com/c3m3gyanesh/p4-syntax-highlighter-collection>

<https://github.com/Yi-Tseng/atom-language-p4/pull/1>

<https://github.com/Yi-Tseng/atom-language-p4/pull/3>

<https://github.com/Yi-Tseng/atom-language-p4/pull/4>

Chapter 7. Open Source Artifacts 145

7.4 Concluding Remarks

This thesis proposal ŚMACSADŠ is built upon P4, ODP, and other open source

projects. During the MACSAD development, we have identiĄed and resolved limitations,

issues, and missing features of the contributing open source projects. This chapter explores

these contributions starting with our new open-source packet crafter tool BB-Gen in

section 7.1. We also explored and presented the IPv6 based LPM lookup and bug Ąxes

for ODP in section 7.2. Finally, we wrapped this chapter with details about new feature

addition to P4 and NFPA, and contributions to modern text editors to support P4 syntax

highlighting in section 7.3.

146

8 Future Works & Conclusions

We here discuss the limitations and respective solutions of different aspects of this

thesis presented under Future Works section. Followed by, we present a brief take on all the

aspects of MACSAD and its more signiĄcant impact on networking in its completeness

to conclude the thesis.

8.1 Future Works

MACSAD represents a promising approach towards portability of data plane ap-

plications by transparently compiling the high-level P4 language over to different target

platform using just enough low-level platform-independent ODP APIs. We have shown

multiple aspects of MACSAD development from design & development to performance

optimization, use case evaluation to resource scalability, and from developing new open

source tools to contributing code to existing open source projects. Each aspect accom-

plished some of our goals while bringing new challenges and thought points to become

the next new goals a.k.a., Future Works. We delve into the list of future works which

are current limitations of our work while also including those which appeared as new

requirements and challenges to be addressed. We present these ideas under three broad

categories.

MACSAD Design Related.

We begin our discussion with MACSAD design limitations and improvements important

to be part of our development roadmap. Looking in bottom-up manner, we start from the

target hardware and its architecture, and move upwards till north-bound interface towards

SDN controllers. We demonstrated P416 support with BNG use case in MACSAD, but

the support is restricted to PISA architecture only. We plan to bring support for the

newer PSA pipeline architecture which inherently brings support to PISA and also many

more. This allows us to expand the supported target platforms where the targets cannot

be mapped to the PISA model limiting MACSAD implementation over them. Following

on, we also try to expand the list of P416 feature support by implementing ŚStateful P416

ConstructsŠ in MACSAD. Then Ąnally looking at the interface towards the controller,

we are working towards P4 Runtime (PRT) support for MACSAD. With PRT we move

closer to achieve programmability in every level of an SDN network device, i.e., data

plane, control plane, and management plane.

Towards Virtualization.

With an intent to increase the footprint of MACSAD in virtualization, we intend to

broaden our MACSAD as VNF activity. This task is planned in two stages for MAC-

Chapter 8. Future Works & Conclusions 147

SAD. First, exploring MACSAD in a different virtualized environment such as docker

container and virtual machine is of great importance. We plan to bring all the currently

supported use cases and evaluate extensively with different conĄguration and resource

parameters in the virtual environment. Second, we extend the adaptive CPU scaling

approach, and also include more resource parameters such as memory, CPU frequency,

hugepage, etc., possible from the competence from the Ąrst step working with different

virtualized environment. Meanwhile, the current Adaptive CPU scaling approach is ex-

plored potentially in combination with SDN controller feedback loops and core utilization

measurements to develop new run-time core allocation algorithms and automated this by

adapting the MACSAD design. Finally, in a bigger note, we can bring the Ąndings of

these two stages together to present an SDN network where the SDN nodes are MAC-

SAD as VNFs with resources assigned to them are identiĄed and calculated by the SDN

controller itself.

Extending Machine Learning Analysis.

Continuing our analysis of MACSAD throughput using machine learning, we want to

solidify our approach by bringing improvement to our model. We want to increase the

number of features adding the excluded complexity factors from the Table 16. Then we

want to work with higher throughput NICs unlike the current 10G one to be able to add

more entries into our data set. This helps with our understanding of resource scalabil-

ity. Apart from these complexity factors based on the data plane application a.k.a. P4

program, we want to extend the feature set to include different conĄguration parameters

of the target device too. These features include CPU frequency, memory available, cache

structure, etc., bringing more robustness to our models contra different platforms. With

this, we can take our model from Cavium platform to other platforms easily. Currently,

the complexity factors are extracted from the P4 program manually. We plan to adopt

an automated way for this activity and include this as a part of the steps of our ma-

chine learning approach. With this, we plan to bring forth the already trained model as

a service where it can predict the performance seamlessly for any input P4 program by

Ąrst extracting the complexity factors and then applying the model over the extracted

features.

8.2 Conclusions

SDN networking is considered as a strong contender bringing Ćexibility to network

and network devices, and introduces programmability to control plane and data plane.

In relation to this thesis, as an amalgam of the protocol-independent P4 programming

language and the target-independent ODP SDK (OPENDATAPLANE, 2018), MACSAD

offers a compiler system towards Ćexible data plane attaining programmability, porta-

bility, performance & scalability (3PS). We explored the design of MACSAD followed

Chapter 8. Future Works & Conclusions 148

by evaluation of different use cases across platforms. We present MACSAD as VNF ex-

ploring how MACSAD can be used in virtualized environment too. We also evaluate

resource scalability with adaptive CPU allocation in MACSAD which is extremely use-

ful both in NFV and data centers. We also showed that different optimization methods

can be introduced with little changes in MACSAD internals which conĄrms the design

Ćexibility MACSAD presents. Apart from the different aspect of Ćexibility, we also intro-

duced predictive benchmarking analysis, less explored area of programmable data plane

landscape, to MACSAD. We present our approach to identify various complexity factors

and use them as features to create machine learning model for MACSAD. These models

are capable of predicting performance values for MACSAD without the need to compile

and run a use case. Besides, we have more contributions which include the development

of an open-source tool, feature addition and support to open-source projects and many

more. The work and results presented in this thesis would contribute as the differentiating

factor for the research community helping them to take informed and empirical decisions

in contrivance towards Ćexibility and in turn SDN networking.

149

Bibliography

ANTICHI, G.; SHAHBAZ, M.; GENG, Y.; ZILBERMAN, N.; COVINGTON, A.;
BRUYERE, M.; MCKEOWN, N.; FEAMSTER, N.; FELDERMAN, B.; BLOTT, M.;
MOORE, A. W.; OWEZARSKI, P. Osnt: open source network tester. IEEE Network,
v. 28, n. 5, p. 6Ű12, Sep. 2014. ISSN 0890-8044. Cited on page 75.

BHARDWAJ, A.; SHREE, A.; REDDY, V. B.; BANSAL, S. A preliminary
performance model for optimizing software packet processing pipelines. In: Proceedings
of the 8th Asia-Pacific Workshop on Systems. New York, NY, USA: ACM, 2017.
(APSys Š17), p. 26:1Ű26:7. ISBN 978-1-4503-5197-3. Available from Internet:
<http://doi.acm.org/10.1145/3124680.3124747>. Cited 2 times on pages 28 and 131.

BOSSHART, P.; GIBB, G.; KIM, H.-S.; VARGHESE, G.; MCKEOWN, N.;
IZZARD, M.; MUJICA, F.; HOROWITZ, M. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. In: Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM. New York, NY, USA: ACM,
2013. (SIGCOMM Š13), p. 99Ű110. ISBN 978-1-4503-2056-6. Available from Internet:
<http://doi.acm.org/10.1145/2486001.2486011>. Cited 3 times on pages 23, 32, and 37.

BRADNER, S.; MCQUAID, J. Benchmarking Methodology for Network Interconnect
Devices. 1999. RFC 2544. Cited 3 times on pages 75, 77, and 140.

BUDIU, M.; DODD, C. The p416 programming language. SIGOPS Oper. Syst. Rev.,
ACM, New York, NY, USA, v. 51, n. 1, p. 5Ű14, set. 2017. ISSN 0163-5980. Available
from Internet: <http://doi.acm.org/10.1145/3139645.3139648>. Cited 2 times on pages
39 and 41.

CESEN, F. R.; PATRA, P. G. K.; ROTHENBERG, C. E. Bb-gen: A packet crafter for
data plane evaluation. In: SBRC 2018 - Salão de Ferramentas. [s.n.], 2018. Available
from Internet: <http://www.sbrc2018.ufscar.br/wp-content/uploads/2018/04/180625_
1.pdf>. Cited on page 26.

CESEN, F. R.; PATRA, P. G. K.; ROTHENBERG, C. E.; PONGRACZ, G. Design,
implementation and evaluation of ipv4/ipv6 longest preĄx match support in p4
dataplanes. Workshop em Desempenho de Sistemas Computacionais e de Comunicação
(WPerformance_CSBC), v. 17, n. 1/2018, 2018. ISSN 2595-6167. Available from Internet:
<http://portaldeconteudo.sbc.org.br/index.php/wperformance/article/view/3319>.
Cited 2 times on pages 27 and 30.

CHOLE, S.; FINGERHUT, A.; MA, S.; SIVARAMAN, A.; VARGAFTIK, S.; BERGER,
A.; MENDELSON, G.; ALIZADEH, M.; CHUANG, S.-T.; KESLASSY, I.; ORDA,
A.; EDSALL, T. drmt: Disaggregated programmable switching. In: Proceedings of the
Conference of the ACM Special Interest Group on Data Communication. New York, NY,
USA: ACM, 2017. (SIGCOMM Š17), p. 1Ű14. ISBN 978-1-4503-4653-5. Available from
Internet: <http://doi.acm.org/10.1145/3098822.3098823>. Cited 3 times on pages 23,
32, and 37.

Bibliography 150

CLARK, D. The design philosophy of the DARPA internet protocols. ACM SIGCOMM
Comput. Commun. Rev., v. 18, n. 4, p. 106Ű114, aug 1988. ISSN 01464833. Available
from Internet: <http://portal.acm.org/citation.cfm?doid=52325.52336>. Cited on page
21.

CSIKOR, L.; SZALAY, M.; SONKOLY, B.; TOKA, L. NFPA: Network function
performance analyzer. In: IEEE NFV-SDN. [S.l.: s.n.], 2015. p. 17Ű19. Cited 3 times on
pages 75, 76, and 141.

D. Zhou et al. Scalable, high performance ethernet forwarding with cuckooswitch. In:
Proceedings of ACM CoNEXT ’13. [S.l.: s.n.], 2013. ISBN 978-1-4503-2101-3. Cited on
page 47.

DANG, H. T.; WANG, H.; JEPSEN, T.; BREBNER, G.; KIM, C.; REXFORD, J.;
SOULÉ, R.; WEATHERSPOON, H. Whippersnapper: A p4 language benchmark
suite. In: Proceedings of the Symposium on SDN Research. New York, NY, USA:
ACM, 2017. (SOSR Š17), p. 95Ű101. ISBN 978-1-4503-4947-5. Available from Internet:
<http://doi.acm.org/10.1145/3050220.3050231>. Cited 2 times on pages 28 and 114.

DIETZ, T.; BIFULCO, R.; MANCO, F.; MARTINS, J.; KOLBE, H. J.; HUICI, F.
Enhancing the bras through virtualization. In: Proceedings of the 2015 1st IEEE NetSoft.
[S.l.: s.n.], 2015. p. 1Ű5. Cited on page 87.

DPDK: Data Plane Development Kit. 2010. Accessed: 2018-09-24. Available from
Internet: <http://dpdk.org>. Cited on page 34.

EGEVANG, K. B.; FRANCIS, P. The IP Network Address Translator (NAT).
[S.l.], 1994. <http://www.rfc-editor.org/rfc/rfc1631.txt>. Available from Internet:
<http://www.rfc-editor.org/rfc/rfc1631.txt>. Cited on page 82.

ETHERNET switch device driver model. 2014. Accessed: 2018-09-24. Available from
Internet: <https://www.kernel.org/doc/Documentation/networking/switchdev.txt>.
Cited on page 46.

FARINACCI, D.; LI, T.; HANKS, S.; MEYER, D.; TRAINA, P. Generic Routing
Encapsulation (GRE). [S.l.], 2000. <http://www.rfc-editor.org/rfc/rfc2784.txt>.
Available from Internet: <http://www.rfc-editor.org/rfc/rfc2784.txt>. Cited on page
87.

FARINACCI, D.; LI, T.; HANKS, S.; MEYER, D.; TRAINA, P. Generic Routing
Encapsulation (GRE). [S.l.], 2000. Cited on page 90.

FOSTER, N.; HARRISON, R.; FREEDMAN, M. J.; MONSANTO, C.; REXFORD, J.;
STORY, A.; WALKER, D. Frenetic: A network programming language. In: ACM. ACM
Sigplan Notices. [S.l.], 2011. v. 46, n. 9, p. 279Ű291. Cited on page 32.

GALLENMüLLER, S.; EMMERICH, P.; WOHLFART, F.; RAUMER, D.; CARLE,
G. Comparison of frameworks for high-performance packet io. In: 2015 ACM/IEEE
Symposium on Architectures for Networking and Communications Systems (ANCS).
[S.l.: s.n.], 2015. p. 29Ű38. Cited 2 times on pages 91 and 93.

GREEN, S. B. How many subjects does it take to do a regression analysis. Multivariate
behavioral research, Taylor & Francis, v. 26, n. 3, p. 499Ű510, 1991. Cited on page 120.

Bibliography 151

HAN, S.; JANG, K.; PARK, K.; MOON, S. Packetshader: A gpu-accelerated software
router. In: Proceedings of the ACM SIGCOMM 2010 Conference. New York, NY, USA:
ACM, 2010. (SIGCOMM Š10), p. 195Ű206. ISBN 978-1-4503-0201-2. Available from
Internet: <http://doi.acm.org/10.1145/1851182.1851207>. Cited on page 48.

HARRIS, R. J. A primer of multivariate statistics. [S.l.]: Psychology Press, 2001. Cited
on page 120.

KAWASHIMA, R.; NAKAYAMA, H.; HAYASHI, T.; MATSUO, H. Evaluation of
forwarding efficiency in nfv-nodes toward predictable service chain performance. IEEE
Transactions on Network and Service Management, v. 14, n. 4, p. 920Ű933, Dec 2017.
ISSN 1932-4537. Cited on page 100.

KOHLER, E.; MORRIS, R.; CHEN, B.; JANNOTTI, J.; KAASHOEK, M. F.
The click modular router. ACM Trans. Comput. Syst., ACM, New York, NY,
USA, v. 18, n. 3, p. 263Ű297, ago. 2000. ISSN 0734-2071. Available from Internet:
<http://doi.acm.org/10.1145/354871.354874>. Cited on page 47.

KREUTZ, D.; RAMOS, F. M. V.; VERíSSIMO, P. E.; ROTHENBERG, C. E.;
AZODOLMOLKY, S.; UHLIG, S. Software-deĄned networking: A comprehensive survey.
Proceedings of the IEEE, v. 103, n. 1, p. 14Ű76, Jan 2015. ISSN 0018-9219. Cited 2
times on pages 22 and 32.

LAKI, S.; HORPáCSI, D.; VöRöS, P.; KITLEI, R.; LESKó, D.; TEJFEL, M. High
speed packet forwarding compiled from protocol independent data plane speciĄcations.
In: Proceedings of the 2016 ACM SIGCOMM Conference. New York, NY, USA: ACM,
2016. (SIGCOMM Š16), p. 629Ű630. ISBN 978-1-4503-4193-6. Available from Internet:
<http://doi.acm.org/10.1145/2934872.2959080>. Cited 2 times on pages 27 and 48.

M. Dobrescu et al. Routebricks: exploiting parallelism to scale software routers. In: ACM
SIGOPS. [S.l.: s.n.], 2009. Cited on page 48.

M. Shahbaz et al. The case for an intermediate representation for programmable data
planes. In: Proceedings of the 1st ACM SIGCOMM Symposium on Software Defined
Networking Research. New York, NY, USA: ACM, 2015. (SOSR Š15), p. 3:1Ű3:6. ISBN 978-
1-4503-3451-8. Available from Internet: <http://doi.acm.org/10.1145/2774993.2775000>.
Cited on page 39.

M. Shahbaz et al. PISCES: A Programmable, Protocol-Independent Software Switch. In:
ACM SIGCOMM. [S.l.: s.n.], 2016. ISBN 978-1-4503-4193-6. Cited on page 48.

MAHALINGAM, M.; DUTT, D.; DUDA, K.; AGARWAL, P.; KREEGER, L.;
SRIDHAR, T.; BURSELL, M.; WRIGHT, C. Virtual eXtensible Local Area Network
(VXLAN): A Framework for Overlaying Virtualized Layer 2 Networks over Layer 3
Networks. [S.l.], 2014. <http://www.rfc-editor.org/rfc/rfc7348.txt>. Available from
Internet: <http://www.rfc-editor.org/rfc/rfc7348.txt>. Cited on page 83.

MCKEOWN, N. Protocol-independent switch architecture. 2015. Accessed: 2018-
09-24. Available from Internet: <http://schd.ws/hosted_Ąles/p4workshop2015/c9/
NickM-P4-Workshop-June-04-2015.pdf>. Cited 5 times on pages 9, 23, 33, 37, and 38.

Bibliography 152

MCKEOWN, N.; ANDERSON, T.; BALAKRISHNAN, H.; PARULKAR, G.;
PETERSON, L.; REXFORD, J.; SHENKER, S.; TURNER, J. OpenĆow: Enabling
innovation in campus networks. SIGCOMM Comput. Commun. Rev., ACM, New York,
NY, USA, v. 38, n. 2, p. 69Ű74, mar. 2008. ISSN 0146-4833. Available from Internet:
<http://doi.acm.org/10.1145/1355734.1355746>. Cited 2 times on pages 22 and 32.

MEJIA, J. S.; FEFERMAN, D. L.; ROTHENBERG, C. E. Network address translation
using a programmable dataplane processor. Workshop em Desempenho de Sistemas
Computacionais e de Comunicação (WPerformance_CSBC), v. 17, n. 1/2018, 2018.
ISSN 2595-6167. Available from Internet: <http://portaldeconteudo.sbc.org.br/index.
php/wperformance/article/view/3333>. Cited on page 27.

MONSANTO, C.; REICH, J.; FOSTER, N.; REXFORD, J.; WALKER, D. Composing
software deĄned networks. In: 10th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 13). Lombard, IL: USENIX Association, 2013.
(nsdiŠ13), p. 1Ű13. ISBN 978-1-931971-00-3. Available from Internet: <https:
//www.usenix.org/conference/nsdi13/technical-sessions/presentation/monsanto>.
Cited on page 38.

NETRONOME. [S.l.], 2015. Accessed: 2018-09-24. Available from Internet: <https:
//www.netronome.com/technology/p4/>. Cited on page 48.

OPENDATAPLANE. 2018. Accessed: 2018-09-24. Available from Internet: <http:
//www.opendataplane.org>. Cited 4 times on pages 23, 33, 35, and 147.

OPENDAYLIGHT. 2018. Accessed: 2018-09-24. Available from Internet: <https:
//www.opendaylight.org/>. Cited on page 72.

OPENSWITCH (OPX) Network Operating System. 2017. Accessed: 2018-09-24.
Available from Internet: <http://www.openswitch.net>. Cited on page 48.

P. Bosshart et al. P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., ACM, New York, NY, USA, jul. 2014. ISSN 0146-4833. Cited
3 times on pages 23, 32, and 39.

P4 High Level Intermediate Representation. 2018. Accessed: 2018-09-24. Available from
Internet: <https://github.com/p4lang/p4-hlir>. Cited 2 times on pages 52 and 56.

P414 SPEC. 2017. Accessed: 2018-09-24. Available from Internet: <https://p4lang.
github.io/p4-spec/p4-14/v1.0.4/tex/p4.pdf>. Cited on page 44.

P416 SPEC. 2017. Accessed: 2018-09-24. Available from Internet: <https://p4lang.
github.io/p4-spec/docs/P4-16-v1.0.0-spec.pdf>. Cited on page 44.

P4API, W. G. P4 Runtime. 2018. Accessed: 2018-09-24. Available from Internet:
<https://s3-us-west-2.amazonaws.com/p4runtime/docs/master/P4Runtime-Spec.pdf>.
Cited 2 times on pages 23 and 33.

PATRA, P. G.; ROTHENBERG, C. E.; PONGRáCZ, G. Macsad: Multi-architecture
compiler system for abstract dataplanes (aka partnering p4 with odp). In: Proceedings
of the 2016 ACM SIGCOMM Conference. New York, NY, USA: ACM, 2016.
(SIGCOMM Š16), p. 623Ű624. ISBN 978-1-4503-4193-6. Available from Internet:
<http://doi.acm.org/10.1145/2934872.2959077>. Cited 3 times on pages 25, 31, and 51.

Bibliography 153

PATRA, P. G.; ROTHENBERG, C. E.; PONGRACZ, G. Macsad: High performance
dataplane applications on the move. In: 2017 IEEE 18th International Conference
on High Performance Switching and Routing (HPSR). [S.l.: s.n.], 2017. p. 1Ű6. ISSN
2325-5609. Cited 3 times on pages 25, 31, and 51.

PATRA, P. G. K.; CESEN, F. E. R.; MEJIA, J. S.; FEFERMAN, D. L.; CSIKOR,
L.; ROTHENBERG, C. E.; PONGRACZ, G. Towards a sweet spot of dataplane
programmability, portability and performance: On the scalability of multi-architecture
p4 pipelines. IEEE Journal on Selected Areas in Communications, p. 1Ű1, 2018. ISSN
0733-8716. Cited 5 times on pages 25, 27, 30, 31, and 51.

PFAFF, B.; PETTIT, J.; KOPONEN, T.; JACKSON, E. J.; ZHOU, A.; RAJAHALME,
J.; GROSS, J.; WANG, A.; STRINGER, J.; SHELAR, P.; AMIDON, K.; CASADO, M.
The design and implementation of open vswitch. In: Proceedings of the 12th USENIX
Conference on Networked Systems Design and Implementation. Berkeley, CA, USA:
USENIX Association, 2015. (NSDIŠ15), p. 117Ű130. ISBN 978-1-931971-218. Available
from Internet: <http://dl.acm.org/citation.cfm?id=2789770.2789779>. Cited 2 times
on pages 27 and 48.

RIZZO, L. netmap: A novel framework for fast packet i/o. In: 2012 USENIX Annual
Technical Conference (USENIX ATC 12). Boston, MA: USENIX Association, 2012. p.
101Ű112. ISBN 978-931971-93-5. Available from Internet: <https://www.usenix.org/
conference/atc12/technical-sessions/presentation/rizzo>. Cited on page 34.

RODRIGUEZ, F.; PATRA, P. G. K.; CSIKOR, L.; ROTHENBERG, C.; LAKI, P. V. S.;
PONGRáCZ, G. Bb-gen: A packet crafter for p4 target evaluation. In: Proceedings of the
ACM SIGCOMM 2018 Conference on Posters and Demos. New York, NY, USA: ACM,
2018. (SIGCOMM Š18), p. 111Ű113. ISBN 978-1-4503-5915-3. Available from Internet:
<http://doi.acm.org/10.1145/3234200.3234229>. Cited 4 times on pages 26, 29, 30,
and 77.

SAPIO, A.; BALDI, M.; PONGRáCZ, G. Cross-platform estimation of network function
performance. In: 2015 Fourth European Workshop on Software Defined Networks. [S.l.:
s.n.], 2015. p. 73Ű78. ISSN 2379-0350. Cited on page 28.

SOFTWARE for Open Networking in the Cloud (SONiC). 2016. Accessed: 2018-09-24.
Available from Internet: <https://azure.github.io/SONiC/>. Cited on page 48.

SONG, H. Protocol-oblivious forwarding: Unleash the power of sdn through a
future-proof forwarding plane. In: Proceedings of the Second ACM SIGCOMM
Workshop on Hot Topics in Software Defined Networking. New York, NY, USA: ACM,
2013. (HotSDN Š13), p. 127Ű132. ISBN 978-1-4503-2178-5. Available from Internet:
<http://doi.acm.org/10.1145/2491185.2491190>. Cited 3 times on pages 23, 32, and 38.

SUN, W.; RICCI, R. Fast and Ćexible: Parallel packet processing with gpus and
click. In: Proceedings of the Ninth ACM/IEEE Symposium on Architectures for
Networking and Communications Systems. Piscataway, NJ, USA: IEEE Press,
2013. (ANCS Š13), p. 25Ű36. ISBN 978-1-4799-1640-5. Available from Internet:
<http://dl.acm.org/citation.cfm?id=2537857.2537861>. Cited on page 48.

T4P4S Git. 2016. Accessed: 2018-09-24. Available from Internet: <https://github.com/
p4elte/t4p4s>. Cited on page 48.

Bibliography 154

VANVOORHIS, C. W.; MORGAN, B. L. Understanding power and rules of thumb for
determining sample sizes. Tutorials in Quantitative Methods for Psychology, v. 3, n. 2, p.
43Ű50, 2007. Cited on page 120.

WANG, Y.; GOBRIEL, S.; WANG, R.; TAI, T.-Y. C.; DUMITRESCU, C. Hash
table design and optimization for software virtual switches. In: Proceedings of the
2018 Afternoon Workshop on Kernel Bypassing Networks. New York, NY, USA:
ACM, 2018. (KBNetsŠ18), p. 22Ű28. ISBN 978-1-4503-5909-2. Available from Internet:
<http://doi.acm.org/10.1145/3229538.3229542>. Cited on page 28.

155

ANNEX A – Layer 2 Forwarding (L2FWD)

A.1 L2FWD 𝑃414 Program

1 header_type ethernet_t {

2 f i e l d s {

3 dstAddr : 48 ;

4 srcAddr : 48 ;

5 etherType : 16 ;

6 }

7 }

8

9 header ethernet_t e the rne t ;

10

11 par s e r s t a r t {

12 re turn parse_ethernet ;

13 }

14

15 par s e r parse_ethernet {

16 ex t r a c t (e the rne t) ;

17 re turn i n g r e s s ;

18 }

19

20 ac t i on _drop () {

21 drop () ;

22 }

23

24 ac t i on _nop () {

25 }

26

27 #d e f i n e MAC_LEARN_RECEIVER 1024

28

29 f i e l d _ l i s t mac_learn_digest {

30 e the rne t . srcAddr ;

31 standard_metadata . ingre s s_port ;

32 }

33

34 ac t i on mac_learn () {

35 generate_diges t (MAC_LEARN_RECEIVER, mac_learn_digest) ;

36 }

37

38 t ab l e smac {

39 reads {

40 e the rne t . srcAddr : exact ;

ANNEX A. Layer 2 Forwarding (L2FWD) 156

41 }

42 a c t i o n s {mac_learn ; _nop ; }

43 s i z e : 512 ;

44 }

45

46 ac t i on forward (port) {

47 modi fy_f i e ld (standard_metadata . egress_port , port) ;

48 }

49

50 ac t i on bcast () {

51 modi fy_f i e ld (standard_metadata . egress_port , 100) ;

52 }

53

54 t ab l e dmac {

55 reads {

56 e the rne t . dstAddr : exact ;

57 }

58 a c t i o n s { forward ; bcast ; }

59 s i z e : 512 ;

60 }

61

62 c o n t r o l i n g r e s s {

63 apply (smac) ;

64 apply (dmac) ;

65 }

66

67 c o n t r o l e g r e s s {

68 }

Listing A.1 Ű L2FWD 𝑃414 code

A.2 L2FWD 𝑃416 Program

1 #inc lude <core . p4>

2 #inc lude <v1model . p4>

3

4 header ethernet_t {

5 bit <48> dstAddr ;

6 bit <48> srcAddr ;

7 bit <16> etherType ;

8 }

9

10 s t r u c t metadata { }

11

12 s t r u c t headers {

13 @name(" . e the rne t ")

14 ethernet_t e the rne t ;

15 }

ANNEX A. Layer 2 Forwarding (L2FWD) 157

16

17 par s e r ParserImpl (packet_in packet , out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

18 @name(" . parse_ethernet ") s t a t e parse_ethernet {

19 packet . ex t r a c t (hdr . e the rne t) ;

20 t r a n s i t i o n accept ;

21 }

22

23 @name(" . s t a r t ") s t a t e s t a r t {

24 t r a n s i t i o n parse_ethernet ;

25 }

26 }

27

28 c o n t r o l e g r e s s (inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata) {

29 apply {

30 }

31 }

32

33 @name(" mac_learn_digest ") s t r u c t mac_learn_digest {

34 bit <48> srcAddr ;

35 bit <9> ingre s s_por t ;

36 }

37

38 c o n t r o l i n g r e s s (inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata) {

39 @name(" . forward ") ac t i on forward (bit <9> port) {

40 standard_metadata . egress_port = port ;

41 }

42

43 @name(" . bcast ") ac t i on bcast () {

44 standard_metadata . egress_port = 9w100 ;

45 }

46

47 @name(" . mac_learn ") ac t i on mac_learn () {

48 d ige s t <mac_learn_digest >((bit <32>)1024 , { hdr . e the rne t . srcAddr ,

standard_metadata . ingre s s_port }) ;

49 }

50

51 @name(" . _nop") ac t i on _nop () {

52 }

53

54 @name(" . dmac") t ab l e dmac {

55 a c t i o n s = {

56 forward ;

57 bcast ;

58 }

ANNEX A. Layer 2 Forwarding (L2FWD) 158

59

60 key = {

61 hdr . e the rne t . dstAddr : exact ;

62 }

63 s i z e = 512 ;

64 }

65

66 @name(" . smac ") t ab l e smac {

67 a c t i o n s = {

68 mac_learn ;

69 _nop ;

70 }

71

72 key = {

73 hdr . e the rne t . srcAddr : exact ;

74 }

75 s i z e = 512 ;

76 }

77

78 apply {

79 smac . apply () ;

80 dmac . apply () ;

81 }

82 }

83

84 c o n t r o l DeparserImpl (packet_out packet , in headers hdr) {

85 apply {

86 packet . emit (hdr . e the rne t) ;

87 }

88 }

89

90 c o n t r o l verifyChecksum (inout headers hdr , inout metadata meta) {

91 apply {

92 }

93 }

94

95 c o n t r o l computeChecksum (inout headers hdr , inout metadata meta) {

96 apply {

97 }

98 }

99

100 V1Switch (ParserImpl () , verifyChecksum () , i n g r e s s () , e g r e s s () ,

computeChecksum () , DeparserImpl ()) main ;

Listing A.2 Ű L2FWD 𝑃416 code

160

ANNEX B – Layer 3 Forwarding (L3FWD)

B.1 L3FWDv4 𝑃414 Program

1 header_type ethernet_t {

2 f i e l d s {

3 dstAddr : 48 ;

4 srcAddr : 48 ;

5 etherType : 16 ;

6 }

7 }

8

9 header_type ipv4_t {

10 f i e l d s {

11 v e r s i o n I h l : 8 ;

12 d i f f s e r v : 8 ;

13 tota lLen : 16 ;

14 i d e n t i f i c a t i o n : 16 ;

15 f r a g O f f s e t : 16 ;

16 t t l : 8 ;

17 pro to co l : 8 ;

18 hdrChecksum : 16 ;

19 srcAddr : 32 ;

20 dstAddr : 32 ;

21 }

22 }

23

24 par s e r s t a r t {

25 re turn parse_ethernet ;

26 }

27

28 #d e f i n e ETHERTYPE_IPV4 0x0800

29

30 header ethernet_t e the rne t ;

31

32 par s e r parse_ethernet {

33 ex t r a c t (e the rne t) ;

34 re turn s e l e c t (l a t e s t . etherType) {

35 ETHERTYPE_IPV4 : parse_ipv4 ;

36 d e f a u l t : i n g r e s s ;

37 }

38 }

39

40 header ipv4_t ipv4 ;

ANNEX B. Layer 3 Forwarding (L3FWD) 161

41

42 par s e r parse_ipv4 {

43 ex t r a c t (ipv4) ;

44 re turn i n g r e s s ;

45 }

46

47 ac t i on on_miss () {

48 drop () ;

49 }

50

51 ac t i on fib_hit_nexthop (dmac , port) {

52 modi fy_f i e ld (e the rne t . dstAddr , dmac) ;

53 modi fy_f i e ld (standard_metadata . egress_port , port) ;

54 add_to_fie ld (ipv4 . t t l , ⊗1) ;

55 }

56

57 t ab l e ipv4_fib_lpm {

58 reads {

59 ipv4 . dstAddr : lpm ;

60 }

61

62 a c t i o n s {

63 f ib_hit_nexthop ;

64 on_miss ;

65 }

66 s i z e : 512 ;

67 }

68

69 ac t i on rewrite_src_mac (smac) {

70 modi fy_f i e ld (e the rne t . srcAddr , smac) ;

71 }

72

73 t ab l e sendout {

74 reads {

75 standard_metadata . egress_port : exact ;

76 }

77

78 a c t i o n s {

79 on_miss ;

80 rewrite_src_mac ;

81 }

82 s i z e : 512 ;

83 }

84

85 c o n t r o l i n g r e s s {

86 apply (ipv4_fib_lpm) ;

87 apply (sendout) ;

ANNEX B. Layer 3 Forwarding (L3FWD) 162

88 }

89

90 c o n t r o l e g r e s s {

91 }

Listing B.1 Ű L3FWDv4 𝑃414 code

B.2 L3FWDv6 𝑃414 Program

1 header_type ethernet_t {

2 f i e l d s {

3 dstAddr : 48 ;

4 srcAddr : 48 ;

5 etherType : 16 ;

6 }

7 }

8

9 header_type ipv6_t {

10 f i e l d s {

11 ve r s i on : 4 ;

12 t r a f f i c C l a s s : 8 ;

13 f l owLabe l : 20 ;

14 payloadLen : 16 ;

15 nextHdr : 8 ;

16 hopLimit : 8 ;

17 srcAddr : 128 ;

18 dstAddr : 128 ;

19 }

20 }

21

22 par s e r s t a r t {

23 re turn parse_ethernet ;

24 }

25

26 header ethernet_t e the rne t ;

27

28 par s e r parse_ethernet {

29 ex t r a c t (e the rne t) ;

30 re turn s e l e c t (l a t e s t . etherType) {

31 0x86DD : parse_ipv6 ;

32 d e f a u l t : i n g r e s s ;

33 }

34 }

35

36 header ipv6_t ipv6 ;

37

38 par s e r parse_ipv6 {

39 ex t r a c t (ipv6) ;

ANNEX B. Layer 3 Forwarding (L3FWD) 163

40 re turn i n g r e s s ;

41 }

42

43 ac t i on on_miss () {

44 drop () ;

45 }

46

47 ac t i on fib_hit_nexthop (dmac , port) {

48 modi fy_f i e ld (e the rne t . dstAddr , dmac) ;

49 modi fy_f i e ld (standard_metadata . egress_port , port) ;

50 add_to_fie ld (ipv6 . hopLimit , ⊗1) ;

51 }

52

53 t ab l e ipv6_fib_lpm {

54 reads {

55 ipv6 . dstAddr : lpm ;

56 }

57 a c t i o n s {

58 f ib_hit_nexthop ;

59 on_miss ;

60 }

61 s i z e : 512 ;

62 }

63

64 ac t i on rewrite_src_mac (smac) {

65 modi fy_f i e ld (e the rne t . srcAddr , smac) ;

66 }

67

68 t ab l e sendout {

69 reads {

70 standard_metadata . egress_port : exact ;

71 }

72 a c t i o n s {

73 on_miss ;

74 rewrite_src_mac ;

75 }

76 s i z e : 512 ;

77 }

78

79 c o n t r o l i n g r e s s {

80 apply (ipv6_fib_lpm) ;

81 apply (sendout) ;

82 }

83

84 c o n t r o l e g r e s s {

85 }

Listing B.2 Ű L3FWDv6 𝑃414 code

ANNEX B. Layer 3 Forwarding (L3FWD) 164

B.3 L3FWDv4 𝑃416 Program

1 #inc lude <core . p4>

2 #inc lude <v1model . p4>

3

4 header ethernet_t {

5 bit <48> dstAddr ;

6 bit <48> srcAddr ;

7 bit <16> etherType ;

8 }

9

10 header ipv4_t {

11 bit <8> v e r s i o n I h l ;

12 bit <8> d i f f s e r v ;

13 bit <16> tota lLen ;

14 bit <16> i d e n t i f i c a t i o n ;

15 bit <16> f r a g O f f s e t ;

16 bit <8> t t l ;

17 bit <8> pro to co l ;

18 bit <16> hdrChecksum ;

19 bit <32> srcAddr ;

20 bit <32> dstAddr ;

21 }

22

23 s t r u c t metadata {

24 }

25

26 s t r u c t headers {

27 @name(" . e the rne t ")

28 ethernet_t e the rne t ;

29 @name(" . ipv4 ")

30 ipv4_t ipv4 ;

31 }

32

33 par s e r ParserImpl (packet_in packet , out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

34 @name(" . parse_ethernet ") s t a t e parse_ethernet {

35 packet . ex t r a c t (hdr . e the rne t) ;

36 t r a n s i t i o n s e l e c t (hdr . e the rne t . etherType) {

37 16w0x800 : parse_ipv4 ;

38 d e f a u l t : accept ;

39 }

40 }

41

42 @name(" . parse_ipv4 ") s t a t e parse_ipv4 {

43 packet . ex t r a c t (hdr . ipv4) ;

44 t r a n s i t i o n accept ;

45 }

ANNEX B. Layer 3 Forwarding (L3FWD) 165

46

47 @name(" . s t a r t ") s t a t e s t a r t {

48 t r a n s i t i o n parse_ethernet ;

49 }

50 }

51

52 c o n t r o l e g r e s s (inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata) {

53 apply {

54 }

55 }

56

57 c o n t r o l i n g r e s s (inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata) {

58 @name(" . f ib_hit_nexthop ") ac t i on fib_hit_nexthop (bit <48> dmac , b i t <9>

port) {

59 hdr . e the rne t . dstAddr = dmac ;

60 standard_metadata . egress_port = port ;

61 hdr . ipv4 . t t l = hdr . ipv4 . t t l + 8w255 ;

62 }

63

64 @name(" . on_miss ") ac t i on on_miss () {

65 drop () ;

66 }

67

68 @name(" . rewrite_src_mac ") ac t i on rewrite_src_mac (bit <48> smac) {

69 hdr . e the rne t . srcAddr = smac ;

70 }

71

72 @name(" . ipv4_fib_lpm ") t ab l e ipv4_fib_lpm {

73 a c t i o n s = {

74 f ib_hit_nexthop ;

75 on_miss ;

76 }

77

78 key = {

79 hdr . ipv4 . dstAddr : lpm ;

80 }

81 s i z e = 512 ;

82 }

83

84 @name(" . sendout ") t ab l e sendout {

85 a c t i o n s = {

86 on_miss ;

87 rewrite_src_mac ;

88 }

89

ANNEX B. Layer 3 Forwarding (L3FWD) 166

90 key = {

91 standard_metadata . egress_port : exact ;

92 }

93 s i z e = 512 ;

94 }

95

96 apply {

97 ipv4_fib_lpm . apply () ;

98 sendout . apply () ;

99 }

100 }

101

102 c o n t r o l DeparserImpl (packet_out packet , in headers hdr) {

103 apply {

104 packet . emit (hdr . e the rne t) ;

105 packet . emit (hdr . ipv4) ;

106 }

107 }

108

109 c o n t r o l verifyChecksum (inout headers hdr , inout metadata meta) {

110 apply {

111 }

112 }

113

114 c o n t r o l computeChecksum (inout headers hdr , inout metadata meta) {

115 apply {

116 }

117 }

118

119 V1Switch (ParserImpl () , verifyChecksum () , i n g r e s s () , e g r e s s () ,

computeChecksum () , DeparserImpl ()) main ;

Listing B.3 Ű L3FWDv4 𝑃416 Code

169

ANNEX C – Network Address Translation

(NAT)

C.1 NAT 𝑃414 Program

1 #d e f i n e ETHERTYPE_ARP 0x0806

2 #d e f i n e ETHERTYPE_IPV4 0x0800

3 #d e f i n e MAC_LEARN_RECEIVER 1024

4 #d e f i n e IP_PROT_TCP 0x06

5 #d e f i n e IP_PROT_UDP 0x11

6

7 header_type ethernet_t {

8 f i e l d s {

9 dstAddr : 48 ;

10 srcAddr : 48 ;

11 etherType : 16 ;

12 }

13 }

14

15 header_type ipv4_t {

16 f i e l d s {

17 ve r s i on : 4 ;

18 i h l : 4 ;

19 d i f f s e r v : 8 ;

20 tota lLen : 16 ;

21 i d e n t i f i c a t i o n : 16 ;

22 f l a g s : 3 ;

23 f r a g O f f s e t : 13 ;

24 t t l : 8 ;

25 pro to co l : 8 ;

26 hdrChecksum : 16 ;

27 srcAddr : 32 ;

28 dstAddr : 32 ;

29 }

30 }

31

32 header_type tcp_t {

33 f i e l d s {

34 s r cPort : 16 ;

35 dstPort : 16 ;

36 seqNo : 32 ;

37 ackNo : 32 ;

38 dataOf f s e t : 4 ;

ANNEX C. Network Address Translation (NAT) 170

39 r e s : 4 ;

40 f l a g s : 8 ;

41 window : 16 ;

42 checksum : 16 ;

43 urgentPtr : 16 ;

44 }

45 }

46

47 header ethernet_t e the rne t ;

48 header ipv4_t ipv4 ;

49 header tcp_t tcp ;

50

51 /* *********** Metadata ************ */

52 header_type routing_metadata_t {

53 f i e l d s {

54 i s _ i n t _ i f : 8 ;

55 }

56 }

57 metadata routing_metadata_t routing_metadata ;

58

59 /* *********** Parser ************ */

60 par s e r s t a r t {

61 re turn parse_ethernet ;

62 }

63

64 par s e r parse_ethernet {

65 ex t r a c t (e the rne t) ;

66 re turn s e l e c t (l a t e s t . etherType) {

67 ETHERTYPE_IPV4 : parse_ipv4 ;

68 d e f a u l t : i n g r e s s ;

69 }

70 }

71

72 par s e r parse_ipv4 {

73 ex t r a c t (ipv4) ;

74 re turn s e l e c t (ipv4 . p ro to co l) {

75 IP_PROT_TCP : parse_tcp ;

76 d e f a u l t : i n g r e s s ;

77 }

78 }

79

80 par s e r parse_tcp {

81 ex t r a c t (tcp) ;

82 re turn i n g r e s s ;

83 }

84

85 f i e l d _ l i s t mac_learn_digest {

ANNEX C. Network Address Translation (NAT) 171

86 e the rne t . srcAddr ;

87 standard_metadata . ingre s s_port ;

88 }

89

90 f i e l d _ l i s t natTcp_learn_digest {

91 ipv4 . srcAddr ;

92 tcp . s r cPort ;

93 }

94

95 /* *********** I n g r e s s Proce s s ing ************ */

96 ac t i on _drop () {

97 drop () ;

98 }

99

100 ac t i on _nop () {

101 }

102

103 /* ************ s e t IF i n f o and othe r s ************ */

104 ac t i on s e t_ i f_ in f o (i s_ in t) {

105 modi fy_f i e ld (routing_metadata . i s_ int_i f , i s_ in t) ;

106 }

107

108 t ab l e i f _ i n f o {

109 reads {

110 standard_metadata . ingre s s_port : exact ;

111 }

112 a c t i o n s { s e t_ i f_ in f o ; _drop ; }

113 s i z e : 512 ;

114 }

115

116 /* ************ proce s s mac l e a rn ************ */

117 ac t i on mac_learn () {

118 generate_diges t (MAC_LEARN_RECEIVER, mac_learn_digest) ;

119 }

120

121 t ab l e smac {

122 reads {

123 e the rne t . srcAddr : exact ;

124 }

125 a c t i o n s {mac_learn ; _nop ; }

126 s i z e : 512 ;

127 }

128

129 /* ************ Nat c o n t r o l ************ */

130 ac t i on natTcp_learn () {

131 generate_diges t (MAC_LEARN_RECEIVER, natTcp_learn_digest) ;

132 }

ANNEX C. Network Address Translation (NAT) 172

133

134 ac t i on nat_hit_int_to_ext (srcAddr) {

135 modi fy_f i e ld (ipv4 . srcAddr , srcAddr) ;

136 }

137

138 t ab l e nat_up {

139 reads {

140 ipv4 . srcAddr : lpm ;

141 }

142 a c t i o n s {

143 nat_hit_int_to_ext ;

144 natTcp_learn ;

145 }

146 s i z e : 512 ;

147 }

148

149 ac t i on nat_hit_ext_to_int (dstAddr) {

150 modi fy_f i e ld (ipv4 . dstAddr , dstAddr) ;

151 }

152

153 t ab l e nat_dw {

154 reads {

155 tcp . dstPort : exact ;

156 }

157 a c t i o n s {

158 nat_hit_ext_to_int ;

159 _drop ;

160 }

161 s i z e : 512 ;

162 }

163

164 /* ************ Forwarding ipv4 ************ */

165 ac t i on set_nhop (port , dstAddr) {

166 modi fy_f i e ld (standard_metadata . egress_port , port) ;

167 modi fy_f i e ld (e the rne t . dstAddr , dstAddr) ;

168 }

169

170 t ab l e ipv4_lpm {

171 reads {

172 ipv4 . dstAddr : lpm ;

173 }

174 a c t i o n s {

175 set_nhop ;

176 _drop ;

177 }

178 s i z e : 512 ;

179 }

ANNEX C. Network Address Translation (NAT) 173

180

181 ac t i on rewrite_src_mac (srcAddr) {

182 modi fy_f i e ld (e the rne t . srcAddr , srcAddr) ;

183 }

184

185 t ab l e sendout {

186 reads {

187 standard_metadata . egress_port : exact ;

188 }

189 a c t i o n s {

190 rewrite_src_mac ;

191 _drop ;

192 }

193 s i z e : 512 ;

194 }

195

196 /* ************ Apply ************ */

197 c o n t r o l i n g r e s s {

198 apply (i f _ i n f o) ;

199 apply (smac) ;

200 i f (routing_metadata . i s _ i n t _ i f == 1) {

201 apply (nat_up) ;

202 } e l s e {

203 apply (nat_dw) ;

204 }

205 apply (ipv4_lpm) ;

206 apply (sendout) ;

207 }

208

209 c o n t r o l e g r e s s {

210 }

Listing C.1 Ű NAT 𝑃414 code

175

ANNEX D – Data Center Gateway (DCG)

D.1 DCG 𝑃414 Program

1 header_type ethernet_t {

2 f i e l d s {

3 dstAddr : 48 ;

4 srcAddr : 48 ;

5 etherType : 16 ;

6 }

7 }

8

9 header ethernet_t e the rne t ;

10

11 header_type ipv4_t {

12 f i e l d s {

13 ve r s i on : 4 ;

14 i h l : 4 ;

15 d i f f s e r v : 8 ;

16 tota lLen : 16 ;

17 i d e n t i f i c a t i o n : 16 ;

18 f l a g s : 3 ;

19 f r a g O f f s e t : 13 ;

20 t t l : 8 ;

21 pro to co l : 8 ;

22 hdrChecksum : 16 ;

23 srcAddr : 32 ;

24 dstAddr : 32 ;

25 }

26 }

27

28 header ipv4_t ipv4 ;

29

30 header_type udp_t {

31 f i e l d s {

32 s r cPort : 16 ;

33 dstPort : 16 ;

34 length_ : 16 ;

35 checksum : 16 ;

36 }

37 }

38

39 header udp_t udp ;

40

ANNEX D. Data Center Gateway (DCG) 176

41 header_type vxlan_t {

42 f i e l d s {

43 f l a g s : 8 ;

44 r e s e rved : 24 ;

45 vni : 24 ;

46 r e s e rved2 : 8 ;

47 }

48 }

49

50 header vxlan_t vxlan ;

51

52 header_type arp_t {

53 f i e l d s {

54 htype : 16 ;

55 ptype : 16 ;

56 hlength : 8 ;

57 plength : 8 ;

58 opcode : 16 ;

59 }

60 }

61

62 header arp_t arp ;

63 header ethernet_t inner_ethernet ;

64 header ipv4_t inner_ipv4 ;

65

66 /* *********** Parser ************ */

67 #d e f i n e MAC_LEARN_RECEIVER 1024

68 #d e f i n e ETHERTYPE_IPV4 0x0800

69 #d e f i n e ETHERTYPE_ARP 0x0806

70

71 #d e f i n e IP_PROTOCOLS_IPHL_UDP 0x511

72 #d e f i n e UDP_PORT_VXLAN 4789

73

74 #d e f i n e BONE 1

75 #d e f i n e BTWO 2

76 #d e f i n e BTHREE 3

77 #d e f i n e BIT_WIDTH 16

78

79 par s e r s t a r t {

80 re turn parse_ethernet ;

81 }

82

83 par s e r parse_ethernet {

84 ex t r a c t (e the rne t) ;

85 re turn s e l e c t (l a t e s t . etherType) {

86 ETHERTYPE_IPV4 : parse_ipv4 ;

87 ETHERTYPE_ARP : parse_arp ;

ANNEX D. Data Center Gateway (DCG) 177

88 d e f a u l t : i n g r e s s ;

89 }

90 }

91

92 par s e r parse_arp {

93 ex t r a c t (arp) ;

94 re turn i n g r e s s ;

95 }

96

97 par s e r parse_ipv4 {

98 ex t r a c t (ipv4) ;

99 re turn s e l e c t (l a t e s t . f r a g O f f s e t , l a t e s t . i h l , l a t e s t . p ro to co l) {

100 IP_PROTOCOLS_IPHL_UDP : parse_udp ;

101 d e f a u l t : i n g r e s s ;

102 }

103 }

104

105 par s e r parse_udp {

106 ex t r a c t (udp) ;

107 re turn s e l e c t (l a t e s t . dstPort) {

108 UDP_PORT_VXLAN : parse_vxlan ;

109 d e f a u l t : i n g r e s s ;

110 }

111 }

112

113 par s e r parse_vxlan {

114 ex t r a c t (vxlan) ;

115 re turn parse_inner_ethernet ;

116 }

117

118 par s e r parse_inner_ethernet {

119 ex t r a c t (inner_ethernet) ;

120 re turn s e l e c t (l a t e s t . etherType) {

121 ETHERTYPE_IPV4 : parse_inner_ipv4 ;

122 d e f a u l t : i n g r e s s ;

123 }

124 }

125

126 par s e r parse_inner_ipv4 {

127 ex t r a c t (inner_ipv4) ;

128 re turn i n g r e s s ;

129 }

130

131 /* *********** Actions ************ */

132 ac t i on _drop () {

133 drop () ;

134 }

ANNEX D. Data Center Gateway (DCG) 178

135

136 ac t i on _nop () {

137 }

138

139 f i e l d _ l i s t ipv4_checksum_list {

140 ipv4 . v e r s i on ;

141 ipv4 . i h l ;

142 ipv4 . d i f f s e r v ;

143 ipv4 . tota lLen ;

144 ipv4 . i d e n t i f i c a t i o n ;

145 ipv4 . f l a g s ;

146 ipv4 . f r a g O f f s e t ;

147 ipv4 . t t l ;

148 ipv4 . p ro to co l ;

149 ipv4 . srcAddr ;

150 ipv4 . dstAddr ;

151 }

152

153 f i e l d _ l i s t mac_learn_digest {

154 e the rne t . srcAddr ;

155 routing_metadata . ingre s s_port ;

156 }

157

158 f i e l d _ l i s t inner_ipv4_checksum_list {

159 inner_ipv4 . v e r s i on ;

160 inner_ipv4 . i h l ;

161 inner_ipv4 . d i f f s e r v ;

162 inner_ipv4 . tota lLen ;

163 inner_ipv4 . i d e n t i f i c a t i o n ;

164 inner_ipv4 . f l a g s ;

165 inner_ipv4 . f r a g O f f s e t ;

166 inner_ipv4 . t t l ;

167 inner_ipv4 . p ro to co l ;

168 inner_ipv4 . srcAddr ;

169 inner_ipv4 . dstAddr ;

170 }

171

172 f i e l d _ l i s t _ c a l c u l a t i o n inner_ipv4_checksum {

173 input {

174 inner_ipv4_checksum_list ;

175 }

176

177 a lgor i thm : csum16 ;

178 output_width : 16 ;

179 }

180

181 ac t i on mac_learn () {

ANNEX D. Data Center Gateway (DCG) 179

182 generate_diges t (MAC_LEARN_RECEIVER, mac_learn_digest) ;

183 }

184

185 t ab l e MAClearn {

186 reads {

187 e the rne t . srcAddr : exact ;

188 }

189

190 a c t i o n s {

191 mac_learn ;

192 _nop ;

193 }

194

195 s i z e : 512 ;

196 }

197

198 header_type routing_metadata_t {

199 f i e l d s {

200 outport : 2 ;

201 r e s : 2 ;

202 aux : 2 ;

203 egress_port : 2 ;

204 i ngre s s_por t : 8 ;

205 lb_hash : 16 ;

206 }

207 }

208

209 metadata routing_metadata_t routing_metadata ;

210

211 ac t i on forward (port , nhop , mac) {

212 modi fy_f i e ld (standard_metadata . egress_port , port) ;

213 modi fy_f i e ld (e the rne t . dstAddr , mac) ;

214 modi fy_f i e ld (routing_metadata . res , BTHREE) ;

215 }

216

217 ac t i on Tcast () {

218 modi fy_f i e ld (routing_metadata . res , BONE) ;

219 }

220

221 ac t i on Tmac() {

222 modi fy_f i e ld (routing_metadata . res , BTWO) ;

223 }

224

225 t ab l e MACfwd {

226 reads {

227 e the rne t . dstAddr : exact ;

228 }

ANNEX D. Data Center Gateway (DCG) 180

229

230 a c t i o n s {

231 forward ;

232 _drop ;

233 Tcast ;

234 Tmac ;

235 }

236

237 s i z e : 512 ;

238 }

239

240 t ab l e ownMAC{

241 reads {

242 e the rne t . srcAddr : exact ;

243 }

244

245 a c t i o n s {

246 _nop ;

247 forward ;

248 }

249 }

250

251 ac t i on arp () {

252 generate_diges t (ETHERTYPE_ARP, mac_learn_digest) ;

253 modi fy_f i e ld (routing_metadata . res , BTWO) ;

254 }

255

256 t ab l e ARPselect {

257 reads {

258 e the rne t . etherType : exact ;

259 }

260

261 a c t i o n s {

262 arp ;

263 _nop ;

264 }

265

266 s i z e : 2 ;

267 }

268

269 ac t i on ba lancer () {

270 modi fy_f i e ld (routing_metadata . aux , BONE) ;

271 modi fy_f i e ld (routing_metadata . lb_hash , 1) ;

272 }

273

274 ac t i on _pop () {

275 modi fy_f i e ld (routing_metadata . aux , BTWO) ;

ANNEX D. Data Center Gateway (DCG) 181

276 }

277

278 ac t i on jump () {

279 modi fy_f i e ld (routing_metadata . aux , BTHREE) ;

280 }

281

282 t ab l e LBse l ec tor {

283 reads {

284 ipv4 . dstAddr : exact ;

285 }

286

287 a c t i o n s {

288 jump ;

289 _pop ;

290 ba lancer ;

291 }

292

293 s i z e : 128 ;

294 }

295

296 ac t i on _pop_vxlan () {

297 remove_header (e the rne t) ;

298 remove_header (ipv4) ;

299 remove_header (vxlan) ;

300 modi fy_f i e ld (udp . dstPort , 700) ;

301 }

302

303 t ab l e vpop{

304 reads {

305 ipv4 . srcAddr : exact ;

306 }

307

308 a c t i o n s {

309 _pop_vxlan ;

310 _nop ;

311 }

312 }

313

314 ac t i on pr e s s (vnid , nhop , srcAddr) {

315 add_header (vxlan) ;

316 add_header (udp) ;

317 add_header (inner_ipv4) ;

318 copy_header (inner_ipv4 , ipv4) ;

319 add_header (inner_ethernet) ;

320 copy_header (inner_ethernet , e the rne t) ;

321

322 modi fy_f i e ld (ipv4 . dstAddr , nhop) ;

ANNEX D. Data Center Gateway (DCG) 182

323 modi fy_f i e ld (ipv4 . srcAddr , srcAddr) ;

324 modi fy_f i e ld (ipv4 . protoco l , 0x11) ;

325 modi fy_f i e ld (ipv4 . t t l , 64) ;

326 modi fy_f i e ld (ipv4 . ver s ion , 0x4) ;

327 modi fy_f i e ld (ipv4 . i h l , 0x5) ;

328 modi fy_f i e ld (ipv4 . i d e n t i f i c a t i o n , 0) ;

329 modi fy_f i e ld (inner_ipv4 . tota lLen , ipv4 . tota lLen) ;

330 modi fy_f i e ld (e the rne t . etherType , ETHERTYPE_IPV4) ;

331 modi fy_f i e ld (udp . dstPort , UDP_PORT_VXLAN) ;

332 modi fy_f i e ld (udp . checksum , 0) ;

333 modi fy_f i e ld (udp . length_ , ipv4 . tota lLen + 30) ;

334 modi fy_f i e ld (vxlan . f l a g s , 0x8) ;

335 modi fy_f i e ld (vxlan . reserved , 0) ;

336 modi fy_f i e ld (vxlan . vni , vnid) ;

337 modi fy_f i e ld (vxlan . reserved2 , 0) ;

338 }

339

340 t ab l e LB{

341 reads {

342 ipv4 . srcAddr : exact ;

343 }

344

345 a c t i o n s {

346 pre s s ;

347 _nop ;

348 }

349

350 s i z e : 1 0 2 4 ;

351 }

352

353 ac t i on nhop_ipv4 (nhop_ipv4) {

354 modi fy_f i e ld (ipv4 . dstAddr , nhop_ipv4) ;

355 }

356

357 t ab l e LBipv4 {

358 reads {

359 routing_metadata . lb_hash : exact ;

360 }

361

362 a c t i o n s {

363 nhop_ipv4 ;

364 _nop ;

365 }

366

367 s i z e : 1 0 2 4 ;

368 }

369

ANNEX D. Data Center Gateway (DCG) 183

370 ac t i on nhop (port , dmac) {

371 modi fy_f i e ld (standard_metadata . egress_port , port) ;

372 modi fy_f i e ld (e the rne t . dstAddr , dmac) ;

373 modi fy_f i e ld (ipv4 . t t l , ipv4 . t t l ⊗ 1) ;

374 }

375

376 t ab l e L3{

377 reads {

378 inner_ipv4 . dstAddr : lpm ;

379 }

380

381 a c t i o n s {

382 nhop ;

383 _nop ;

384 }

385 }

386

387 ac t i on rewrite_src_mac (smac) {

388 modi fy_f i e ld (e the rne t . srcAddr , smac) ;

389 }

390

391 t ab l e sendout {

392 reads {

393 standard_metadata . egress_port : exact ;

394 }

395

396 a c t i o n s {

397 _nop ;

398 rewrite_src_mac ;

399 }

400

401 s i z e : 512 ;

402 }

403

404 /* *********** Control ************ */

405 c o n t r o l i n g r e s s {

406 apply (MAClearn) ;

407 apply (MACfwd) ;

408 i f (routing_metadata . r e s == BONE) {

409 apply (ARPselect) ;

410 }

411 e l s e i f (routing_metadata . r e s == BTWO) {

412 apply (ownMAC) ;

413 apply (LBse l ec tor) ;

414

415 i f (routing_metadata . aux == BONE) {

416 apply (LB) ;

ANNEX D. Data Center Gateway (DCG) 184

417 apply (LBipv4) ;

418 }

419

420 apply (L3) ;

421 apply (sendout) ;

422 i f (routing_metadata . aux == BTWO) {

423 apply (vpop) ;

424 }

425 }

426 }

427

428 c o n t r o l e g r e s s {

429 }

Listing D.1 Ű DCG 𝑃414 Code

186

ANNEX E – Broadband Network Gateway

(BNG)

E.1 BNG 𝑃416 Program

1 header cpu_header_t {

2 bit <64> preamble ;

3 bit <8> dev i ce ;

4 bit <8> reason ;

5 bit <8> i f_index ;

6 }

7

8 header arp_t {

9 bit <16> htype ;

10 bit <16> ptype ;

11 bit <8> hlen ;

12 bit <8> plen ;

13 bit <16> oper ;

14 }

15

16 header ethernet_t {

17 bit <48> dstAddr ;

18 bit <48> srcAddr ;

19 bit <16> etherType ;

20 }

21

22 header ipv4_t {

23 bit <4> ve r s i on ;

24 bit <4> i h l ;

25 bit <8> d i f f s e r v ;

26 bit <16> tota lLen ;

27 bit <16> i d e n t i f i c a t i o n ;

28 bit <3> f l a g s ;

29 bit <13> f r a g O f f s e t ;

30 bit <8> t t l ;

31 bit <8> pro to co l ;

32 bit <16> hdrChecksum ;

33 bit <32> srcAddr ;

34 bit <32> dstAddr ;

35 }

36

37 header icmp_t {

38 bit <8> type ;

ANNEX E. Broadband Network Gateway (BNG) 187

39 bit <8> code ;

40 bit <16> checksum ;

41 }

42

43 header tcp_t {

44 bit <16> srcPort ;

45 bit <16> dstPort ;

46 bit <32> seqNo ;

47 bit <32> ackNo ;

48 bit <4> dataOf f s e t ;

49 bit <4> r e s ;

50 bit <8> f l a g s ;

51 bit <16> window ;

52 bit <16> checksum ;

53 bit <16> urgentPtr ;

54 }

55

56 header gre_t {

57 bit <1> C;

58 bit <1> R;

59 bit <1> K;

60 bit <1> S ;

61 bit <1> s ;

62 bit <3> r e c u r s e ;

63 bit <5> f l a g s ;

64 bit <3> ver ;

65 bit <16> proto ;

66 }

67

68 header udp_h {

69 bit <16> srcPort ;

70 bit <16> dstPort ;

71 bit <16> length_ ;

72 bit <16> checksum ;

73 }

74

75 header sctp_h {

76 bit <16> srcPort ;

77 bit <16> dstPort ;

78 bit <32> ver i fTag ;

79 bit <32> checksum ;

80 }

81

82 header arp_ipv4_t {

83 bit <48> sha ;

84 bit <32> spa ;

85 bit <48> tha ;

ANNEX E. Broadband Network Gateway (BNG) 188

86 bit <32> tpa ;

87 }

Listing E.1 Ű BNG Header Details

1 #inc lude <core . p4>

2 #inc lude <v1model . p4>

3 #inc lude " in c lude / standard_headers . p4 "

4

5 /* *********** Constants ************ */

6 const bi t <16> ETHERTYPE_IPV4 = 0x0800 ;

7 const bi t <16> ETHERTYPE_ARP = 0x0806 ;

8 const bi t <8> IPPROTO_ICMP = 0x01 ;

9

10 /* *********** Headers ************ */

11 const bi t <16> ARP_HTYPE_ETHERNET = 0x0001 ;

12 const bi t <16> ARP_PTYPE_IPV4 = 0x0800 ;

13 const bi t <8> ARP_HLEN_ETHERNET = 6 ;

14 const bi t <8> ARP_PLEN_IPV4 = 4 ;

15

16 s t r u c t headers {

17 ethernet_t e the rne t ;

18 ethernet_t outer_ethernet ;

19 ethernet_t ethernet_decap ;

20 arp_t arp ;

21 ipv4_t ipv4 ;

22 ipv4_t outer_ipv4 ;

23 gre_t gre ;

24 tcp_t tcp ;

25 icmp_t icmp ;

26 @name(" inner_ipv4 ")

27 ipv4_t inner_ipv4 ;

28 @name(" inner_ethernet ")

29 ethernet_t inner_ethernet ;

30 @name(" inner_tcp ")

31 tcp_t inner_tcp ;

32 @name(" inner_icmp ")

33 icmp_t inner_icmp ;

34 }

35

36 s t r u c t meta_ipv4_t {

37 bit <4> ve r s i on ;

38 bit <4> i h l ;

39 bit <8> d i f f s e r v ;

40 bit <16> tota lLen ;

41 bit <16> i d e n t i f i c a t i o n ;

42 bit <3> f l a g s ;

43 bit <13> f r a g O f f s e t ;

ANNEX E. Broadband Network Gateway (BNG) 189

44 bit <8> t t l ;

45 bit <8> pro to co l ;

46 bit <16> hdrChecksum ;

47 bit <32> srcAddr ;

48 bit <32> dstAddr ;

49 }

50

51 /* *********** Metadata ************ */

52 s t r u c t routing_metadata_t {

53 bit <32> nhgroup ;

54 bit <32> dst_ipv4 ;

55 bit <32> src_ipv4 ;

56 bit <48> mac_da ;

57 bit <48> mac_sa ;

58 bit <9> egress_port ;

59 bit <48> my_mac;

60

61 bit <32> nhop_ipv4 ;

62 bit <1> do_forward ;

63 bit <1> rewr i te_outer ;

64 bit <16> tcp_sp ;

65 bit <16> tcp_dp ;

66

67 bit <8> i f_index ;

68 bit <32> if_ipv4_addr ;

69 bit <48> if_mac_addr ;

70 bit <1> is_ext_i f ;

71

72 bit <32> tunnel_id ;

73 bit <5> ingress_tunnel_type ;

74 bit <1> tcp_inner_en ;

75 bit <16> lkp_inner_l4_sport ;

76 bit <16> lkp_inner_l4_dport ;

77

78 bit <32> dst_inner_ipv4 ;

79 bit <32> src_inner_ipv4 ;

80

81 bit <32> meter_tag ;

82 }

83

84 s t r u c t metadata {

85 @name(" . routing_metadata ")

86 routing_metadata_t routing_metadata ;

87 @name(" . meta_ipv4 ")

88 meta_ipv4_t meta_ipv4 ;

89 }

90

ANNEX E. Broadband Network Gateway (BNG) 190

91 /* *********** Parser ************ */

92 par s e r ParserImpl (packet_in packet , out headers hdr , inout metadata meta ,

inout standard_metadata_t standard_metadata) {

93 @name(" . s t a r t ") s t a t e s t a r t {

94 t r a n s i t i o n parse_ethernet ;

95 }

96

97 @name (" parse_ethernet ") s t a t e parse_ethernet {

98 packet . ex t r a c t (hdr . e the rne t) ;

99 t r a n s i t i o n s e l e c t (hdr . e the rne t . etherType) {

100 ETHERTYPE_IPV4 : parse_ipv4 ;

101 ETHERTYPE_ARP : parse_arp ;

102 d e f a u l t : accept ;

103 }

104 }

105

106 @name (" parse_arp ") s t a t e parse_arp {

107 packet . ex t r a c t (hdr . arp) ;

108 t r a n s i t i o n accept ;

109 }

110

111 @name(" parse_ipv4 ") s t a t e parse_ipv4 {

112 packet . ex t r a c t (hdr . ipv4) ;

113 t r a n s i t i o n s e l e c t (hdr . ipv4 . p ro to co l) {

114 IPPROTO_ICMP : parse_icmp ;

115 8w0x6 : parse_tcp ;

116 8w47 : parse_gre ;

117 d e f a u l t : accept ;

118 }

119 }

120

121 @name(" parse_icmp ") s t a t e parse_icmp {

122 packet . ex t r a c t (hdr . icmp) ;

123 t r a n s i t i o n accept ;

124 }

125

126 @name(" parse_tcp ") s t a t e parse_tcp {

127 packet . ext ract <tcp_t >(hdr . tcp) ;

128 t r a n s i t i o n accept ;

129 }

130

131 @name(" parse_gre ") s t a t e parse_gre {

132 packet . ext ract <gre_t >(hdr . gre) ;

133 t r a n s i t i o n s e l e c t (hdr . gre .C, hdr . gre .R, hdr . gre .K, hdr . gre . S , hdr .

gre . s , hdr . gre . r ecur se , hdr . gre . f l a g s , hdr . gre . ver , hdr . gre . proto) {

134 (1w0x0 , 1w0x0 , 1w0x0 , 1w0x0 , 1w0x0 , 3w0x0 , 5w0x0 , 3w0x0 , 16

w0x800) : parse_gre_ipv4 ;

ANNEX E. Broadband Network Gateway (BNG) 191

135 d e f a u l t : accept ;

136 }

137 }

138

139 @name(" . parse_gre_ipv4 ") s t a t e parse_gre_ipv4 {

140 t r a n s i t i o n parse_inner_ipv4 ;

141 }

142

143 @name(" . parse_inner_ipv4 ") s t a t e parse_inner_ipv4 {

144 packet . ex t r a c t (hdr . inner_ipv4) ;

145 t r a n s i t i o n s e l e c t (hdr . inner_ipv4 . f r a g O f f s e t , hdr . inner_ipv4 . i h l ,

hdr . inner_ipv4 . p ro to co l) {

146 (13w0x0 , 4w0x5 , 8w0x1) : parse_inner_icmp ;

147 (13w0x0 , 4w0x5 , 8w0x6) : parse_inner_tcp ;

148 d e f a u l t : accept ;

149 }

150 }

151

152 @name(" . parse_inner_icmp ") s t a t e parse_inner_icmp {

153 packet . ex t r a c t (hdr . inner_icmp) ;

154 t r a n s i t i o n accept ;

155 }

156

157 @name(" . parse_inner_tcp ") s t a t e parse_inner_tcp {

158 packet . ex t r a c t (hdr . inner_tcp) ;

159 t r a n s i t i o n accept ;

160 }

161

162 @name(" . parse_inner_ethernet ") s t a t e parse_inner_ethernet {

163 packet . ex t r a c t (hdr . inner_ethernet) ;

164 t r a n s i t i o n s e l e c t (hdr . inner_ethernet . etherType) {

165 16w0x800 : parse_inner_ipv4 ;

166 d e f a u l t : accept ;

167 }

168 }

169 }

170

171 @name(" mac_learn_digest ") s t r u c t mac_learn_digest {

172 bit <8> in_port ;

173 bit <48> mac_sa ;

174 }

175

176 /* *********** I n g r e s s Proce s s ing ************ */

177 c o n t r o l i n g r e s s (inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata) {

178

179 @name(" . drop ") ac t i on drop () {

ANNEX E. Broadband Network Gateway (BNG) 192

180 /*mark_to_drop () ; */

181 }

182

183 /* *********** Set IF i n f o and othe r s *********** */

184 @name(" . s e t_ i f_ in f o ") ac t i on s e t_ i f_ in f o (b i t <1> is_ext) {

185 meta . routing_metadata . mac_da = hdr . e the rne t . dstAddr ;

186 meta . routing_metadata . mac_sa = hdr . e the rne t . srcAddr ;

187 meta . routing_metadata . i f_ipv4_addr = 0 x7 f e f 4800 ;

188 meta . routing_metadata . if_mac_addr = 0 x010101010100 ;

189 meta . routing_metadata . i s_ext_i f = is_ext ;

190 }

191

192 @name(" . i f _ i n f o ") t ab l e i f _ i n f o {

193 key = { meta . routing_metadata . i f_ index : exact ; }

194 a c t i o n s = { drop ; s e t_ i f_ in f o ; }

195 de fau l t_act i on = drop () ;

196 }

197

198 /* *********** Process mac l e a rn *********** */

199 @name(" . generate_learn_not i fy ") ac t i on generate_learn_not i fy () {

200 d ige s t <mac_learn_digest >(32w1024 , {meta . routing_metadata . i f_index ,

hdr . e the rne t . srcAddr }) ;

201 }

202

203 @name(" . smac ") t ab l e smac {

204 key = { hdr . e the rne t . srcAddr : exact ; }

205 a c t i o n s = { generate_learn_not i fy ; }

206 s i z e = 512 ;

207 }

208

209 /* *********** Tunnel c o n t r o l decap *********** */

210 @name(" . decap_gre_inner_ipv4 ") ac t i on decap_gre_inner_ipv4 (b i t <32>

tunnel_id) {

211 hdr . ipv4 . s e t I n v a l i d () ;

212 hdr . gre . s e t I n v a l i d () ;

213 meta . routing_metadata . tunnel_id = tunnel_id ;

214 meta . routing_metadata . dst_ipv4 = hdr . inner_ipv4 . dstAddr ;

215 standard_metadata . egress_port = 1 ;

216 meta . routing_metadata . i s_ext_i f = 0 ;

217 }

218

219 @name(" decap_process_outer ") t ab l e decap_process_outer {

220 a c t i o n s = {decap_gre_inner_ipv4 ; drop ; }

221 key ={ hdr . e the rne t . srcAddr : exact ; }

222 s i z e = 1024 ;

223 de fau l t_act i on = drop () ;

224 }

ANNEX E. Broadband Network Gateway (BNG) 193

225

226 /* *********** Nat c o n t r o l *********** */

227 @name(" . nat_hit_int_to_ext ") ac t i on nat_hit_int_to_ext (bi t <32> srcAddr ,

b i t <16> srcPort) {

228 meta . routing_metadata . rewr i te_outer = 1w1 ;

229 hdr . inner_ipv4 . srcAddr= srcAddr ;

230 hdr . inner_tcp . s r cPort = srcPort ;

231 }

232

233 @name(" . nat_up ") t ab l e nat_up {

234 a c t i o n s = { drop ; nat_hit_int_to_ext ; }

235 key = { hdr . inner_ipv4 . srcAddr : exact ; }

236 s i z e = 1024 ;

237 de fau l t_act i on = drop () ;

238 }

239

240 @name(" . nat_hit_ext_to_int ") ac t i on nat_hit_ext_to_int (b i t <32> dstAddr ,

b i t <16> dstPort) {

241 meta . routing_metadata . rewr i te_outer = 1w0 ;

242 meta . routing_metadata . dst_ipv4 = dstAddr ;

243 hdr . ipv4 . dstAddr = dstAddr ;

244 hdr . tcp . dstPort = dstPort ;

245 }

246

247 @name(" . nat_dw") t ab l e nat_dw {

248 a c t i o n s = { drop ; nat_hit_ext_to_int ; }

249 key = {meta . routing_metadata . i s_ext_i f : exact ; }

250 s i z e = 1024 ;

251 de fau l t_act i on = drop () ;

252 }

253

254 /* *********** Tunnel c o n t r o l encap *********** */

255 @name(" . ipv4_gre_rewrite ") ac t i on ipv4_gre_rewrite (b i t <32> gre_srcAddr)

{

256 hdr . e the rne t . s e t I n v a l i d () ;

257 hdr . gre . s e tVa l id () ;

258 hdr . gre . proto = 16w0x800 ;

259

260 meta . meta_ipv4 . v e r s i on = hdr . ipv4 . v e r s i on ;

261 meta . meta_ipv4 . i h l = hdr . ipv4 . i h l ;

262 meta . meta_ipv4 . d i f f s e r v = hdr . ipv4 . d i f f s e r v ;

263 meta . meta_ipv4 . tota lLen = hdr . ipv4 . tota lLen ;

264 meta . meta_ipv4 . i d e n t i f i c a t i o n = hdr . ipv4 . i d e n t i f i c a t i o n ;

265 meta . meta_ipv4 . f l a g s = hdr . ipv4 . f l a g s ;

266 meta . meta_ipv4 . f r a g O f f s e t = hdr . ipv4 . f r a g O f f s e t ;

267 meta . meta_ipv4 . t t l = hdr . ipv4 . t t l ;

268 meta . meta_ipv4 . p ro to co l = hdr . ipv4 . p ro to co l ;

ANNEX E. Broadband Network Gateway (BNG) 194

269 meta . meta_ipv4 . hdrChecksum = hdr . ipv4 . hdrChecksum ;

270 meta . meta_ipv4 . srcAddr = hdr . ipv4 . srcAddr ;

271 meta . meta_ipv4 . dstAddr = hdr . ipv4 . dstAddr ;

272

273 hdr . outer_ipv4 . s e tVa l i d () ;

274 hdr . outer_ipv4 . srcAddr = 0x04000001 ;

275 hdr . outer_ipv4 . dstAddr = gre_srcAddr ;

276 hdr . outer_ipv4 . p ro to co l = 47 ;

277 hdr . outer_ipv4 . v e r s i on = meta . meta_ipv4 . v e r s i on ;

278 hdr . outer_ipv4 . i h l = meta . meta_ipv4 . i h l ;

279 hdr . outer_ipv4 . d i f f s e r v = meta . meta_ipv4 . d i f f s e r v ;

280 hdr . outer_ipv4 . tota lLen = meta . meta_ipv4 . tota lLen ;

281 hdr . outer_ipv4 . i d e n t i f i c a t i o n = meta . meta_ipv4 . i d e n t i f i c a t i o n ;

282 hdr . outer_ipv4 . f l a g s = meta . meta_ipv4 . f l a g s ;

283 hdr . outer_ipv4 . f r a g O f f s e t = meta . meta_ipv4 . f r a g O f f s e t ;

284 hdr . outer_ipv4 . t t l = meta . meta_ipv4 . t t l ;

285

286 hdr . outer_ethernet . s e tVa l i d () ;

287 hdr . outer_ethernet . dstAddr = 0 x000000000001 ;

288 hdr . outer_ethernet . srcAddr = 0 x000000000002 ;

289 hdr . outer_ethernet . etherType = 16w0x800 ;

290 standard_metadata . egress_port = 1 ;

291 meta . routing_metadata . dst_ipv4= hdr . outer_ipv4 . dstAddr ;

292 meta . routing_metadata . rewr i te_outer = 0 ;

293 }

294

295 @name(" . tunnel_encap_process_outer ") t ab l e tunnel_encap_process_outer {

296 a c t i o n s = { ipv4_gre_rewrite ; drop ; }

297 key = { hdr . ipv4 . dstAddr : exact ; }

298 s i z e = 128 ;

299 }

300

301 /* *********** Forwarding IPv4 ************ */

302 @name(" . set_nhop ") ac t i on set_nhop (bit <9> port) {

303 standard_metadata . egress_port = port ;

304 }

305

306 @name(" . ipv4_up ") t ab l e ipv4_up {

307 key = {meta . routing_metadata . dst_ipv4 : lpm ; }

308 a c t i o n s = { set_nhop ; drop ; }

309 }

310

311 @name(" . rewrite_src_mac ") ac t i on rewrite_src_mac (bit <48> src_mac) {

312 hdr . e the rne t . s e t I n v a l i d () ;

313 hdr . ethernet_decap . s e tVa l id () ;

314 hdr . ethernet_decap . dstAddr = meta . routing_metadata . mac_da ;

315 hdr . ethernet_decap . srcAddr = src_mac ;

ANNEX E. Broadband Network Gateway (BNG) 195

316 hdr . ethernet_decap . etherType = 16w0x800 ;

317 }

318

319 @name(" . sendout ") t ab l e sendout {

320 a c t i o n s = {drop ; rewrite_src_mac ; }

321 key = { standard_metadata . egress_port : exact ; }

322 s i z e = 512 ;

323 }

324

325 @name(" . rewrite_src_mac_dw ") ac t i on rewrite_src_mac_dw (bit <48> src_mac)

{

326 hdr . outer_ethernet . dstAddr = meta . routing_metadata . mac_da ;

327 hdr . outer_ethernet . srcAddr = src_mac ;

328 hdr . outer_ethernet . etherType = 16w0x800 ;

329 }

330

331 @name(" . sendout_dw ") t ab l e sendout_dw {

332 a c t i o n s = {drop ; rewrite_src_mac_dw ; }

333 key = { standard_metadata . egress_port : exact ; }

334 s i z e = 512 ;

335 }

336

337 /* *********** APPLY ************ */

338 apply {

339 i f _ i n f o . apply () ;

340 smac . apply () ;

341 /* ⊗⊗⊗⊗⊗⊗ decap⊗⊗⊗⊗⊗⊗⊗ */

342 i f (hdr . ipv4 . p ro to co l== 8w47) {

343 decap_process_outer . apply () ;

344 nat_up . apply () ;

345 }

346

347 i f (meta . routing_metadata . i s_ext_i f == 1) {

348 nat_dw . apply () ;

349 tunnel_encap_process_outer . apply () ;

350 }

351 ipv4_up . apply () ;

352

353 i f (meta . routing_metadata . rewr i te_outer == 1w1) {

354 sendout . apply () ;

355 }

356 i f (meta . routing_metadata . rewr i te_outer == 1w0) {

357 sendout_dw . apply () ;

358 }

359 }

360 }

361

ANNEX E. Broadband Network Gateway (BNG) 196

362 c o n t r o l e g r e s s (inout headers hdr , inout metadata meta , inout

standard_metadata_t standard_metadata) {

363 apply {

364 }

365 }

366

367 c o n t r o l DeparserImpl (packet_out packet , in headers hdr) {

368 apply {

369 }

370 }

371 /* *********** Checksum V e r i f i c a t i o n ************ */

372 c o n t r o l verifyChecksum (inout headers hdr , inout metadata meta) {

373 apply {

374 }

375 }

376

377 c o n t r o l computeChecksum (inout headers hdr , inout metadata meta) {

378 apply {

379 }

380 }

381

382 V1Switch (ParserImpl () , verifyChecksum () , i n g r e s s () , e g r e s s () ,

computeChecksum () , DeparserImpl ()) main ;

Listing E.2 Ű BNG 𝑃416 code

ANNEX E. Broadband Network Gateway (BNG) 198

Figure 53 Ű BNG Table Dependency Graph

	Title page
	Dedication
	Acknowledgements
	Epigraph
	Abstract
	List of Figures
	List of Tables
	Contents
	Introduction
	Background and Motivation
	Research Hypothesis
	Thesis Approach & Contributions
	Multi-Architecture Compiler System for Abstract Dataplanes
	Multidimensional Evaluation
	Use Case Complexity Analysis
	Compiler Optimization
	Additional Open-source Artifacts
	Noted Contributions

	Outline

	Literature Review
	Related Technologies
	Packet IOs
	FD.io (Fast data – Input/Output)
	Netmap
	Data Plane Development Kit (DPDK)
	OpenDataPlane (ODP)

	Packet Switch Pipeline Architectures
	Reconfigurable Match-Action Table (RMT)
	disaggregated Reconfigurable Match-Action Table (dRMT)
	Protocol Independent Switch Architecture (PISA)

	High Level Domain Specific Languages
	Pyretic
	Protocol-Oblivious Forwarding (POF)
	Network Assembly Language (NetASM)
	Programming Protocol-Independent Packet Processors (P4)

	Control Plane API Abstractions
	OpenFlow (OF)
	Switch Abstraction Interface (SAI)
	Ethernet Switch Device Driver Model (switchdev)
	P4Runtime (PRT)

	Related Work
	Concluding Remarks

	Multi-Architecture Compiler System for Abstract Dataplanes
	Architecture
	Auxiliary Frontend
	Auxiliary Backend
	Core Compiler
	Transpiler
	Compiler

	Compilation Process
	P4 to IR Code Generation
	Internal & Helper APIs
	Source to Source Code Transformation
	Transforming Language Abstractions
	Auto-generating Data Path Logic

	Features of Architecture
	Programmability
	Protocol Independent Parser
	Protocol Independent Dataplane

	Portability
	Contoller Support

	Concluding Remarks

	Experimental Evaluation
	Testbed Details
	Use Case Descriptions
	Port Forwarding (PortFWD)
	Layer-2 Forwarding (L2FWD)
	Layer-3 Forwarding (L3FWDv4/v6)
	Network Address Translation (NAT)
	Data Center Gateway (DCG) with VXLAN
	Download (DL)
	Upload (UL)

	Broadband Network Gateway (BNG)
	Upload (UL)
	Download (DL)

	MacS Evaluation & Analysis
	Packet Rate Analysis
	Impact of FIB Sizes
	Impact of Burst Sizes
	Impact of Traffic Generators

	Latency Analysis
	Performance Comparison Against Related Works

	Performance Evaluation of MacS as Network Function
	Adaptive Scalability by Dynamic CPU Core Allocation
	Results Analysis
	Discussion

	Concluding Remarks

	Complexity Analysis
	Use Case Complexity
	Machine Learning (Regression) Analysis
	Data Processing
	Regression Models
	Regression Analysis

	Concluding Remarks

	Optimization
	MACSAD Packet Processing Optimization
	Evaluation and Analysis
	Concluding Remarks

	Open Source Artifacts
	BB-Gen Tool
	OpenDataPlane (ODP)
	Issues and Fixes for ODP
	IPv6 support for LPM Lookup in ODP
	Contribution for odp-thunderx

	Additional Open-source Contributions
	Concluding Remarks

	Future Works & Conclusions
	Future Works
	Conclusions

	Bibliography
	Layer 2 Forwarding (L2FWD)
	L2FWD Program
	L2FWD Program
	Dependency Graphs for L2FWD Use Case

	Layer 3 Forwarding (L3FWD)
	L3FWDv4 Program
	L3FWDv6 Program
	L3FWDv4 Program
	Dependency Graphs for L3FWDv4 Use Case
	Dependency Graphs for L3FWDv6 Use Case

	Network Address Translation (NAT)
	NAT Program
	Dependency Graphs for NAT Use Case

	Data Center Gateway (DCG)
	DCG Program
	Dependency Graphs for DCG Use Case

	Broadband Network Gateway (BNG)
	BNG Program
	Dependency Graphs for BNG Use Case

