
UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Daniel Garcia Urdaneta

Fast Fourier Transform Implementation and
Integer Carrier Frequency Offset Estimation for

the IEEE802.15.4g Standard

Implementação da transformada rápida de
Fourier e estimador de erro de frequência para

a norma IEEE802.15.4g

Campinas

2019

UNIVERSIDADE ESTADUAL DE CAMPINAS
Faculdade de Engenharia Elétrica e de Computação

Daniel Garcia Urdaneta

Fast Fourier Transform Implementation and Integer
Carrier Frequency Offset Estimation for the

IEEE802.15.4g Standard

Implementação da transformada rápida de Fourier e
estimador de erro de frequência para a norma

IEEE802.15.4g

Dissertation presented to the Faculty of Elec-
tric and Computer Engineering of the Uni-
versity of Campinas in partial fulĄllment of
the requirements for the degree of Master in
Electric Engineering in the area of Telecom-
munications and Telematics

Dissertação apresentada à Faculdade de En-
genharia Elétrica e de Computação da Uni-
versidade Estadual de Campinas como parte
dos requisitos exigidos para a obtenção do
título de Mestre em Engenharia Elétrica, na
Área de Telecomunicações e Telemática.

Supervisor: Prof. Dr. Luis Geraldo Pedroso Meloni

Co-orientador Dr. Eduardo Rodrigues de Lima

Este exemplar corresponde à versão
Ąnal da dissertaçã defendida pelo
aluno Daniel Garcia Urdaneta,
e orientada pelo Prof. Dr. Luis
Geraldo Pedroso Meloni

Campinas

2019

Dedico esta Dissertação à minha familia.

Agradecimentos

Agradeço principalmente à minha família, meus irmãos e os meus pais, pelo

apoio e a força, ainda nos tempos difíceis que estamos vivendo no nosso pais.

Ao Instituto de pesquisas Eldorado, o líder de projetos Eduardo Rodrigues de

Lima, ao Centro de Pesquisa e Desenvolvimento em Telecomunicações CPqD, os organi-

zadores do programa CI-Brasil e o Professor Luís Geraldo P. Meloni.

Aos meus amigos.

Abstract

Fast Fourier Transforms (FFT) and Inverse Fast Fourier Transforms (IFFT)

algorithms play an important role in the modulation and demodulation of orthogonal

frequency-division multiplexing (OFDM) signals. However, the implementation of these

algorithms in hardware consumes a considerable amount of resources, which makes opti-

mizations necessary for optimum hardware implementation. This work presents the imple-

mentation of a radix-2 fast FFT/IFFT transform based on COordinate Rotation DIgital

Computer (CORDIC) for the MR-OFDM (MR stands for Multi-Rate Multi-regional)

mode and compliant to the IEEE802.15.4g standard. This standard addresses service net-

works (SUN) in the context of low-rate wireless personal area networks (LR-WPAN). In

addition, the work presents an architecture for estimation of integer carrier frequency er-

ror (ICFO), which takes advantage of the structure of the Orthogonal frequency-division

multiplexing (OFDM) demodulator and the cross-correlation technique, involving the cal-

culation of the Discrete Fourier Transform (DFT). This architecture has low hardware

consumption and low complexity to perform the correlation calculation when compared

to usual estimation methods. It correlates the received preamble and the training se-

quence found in the synchronization Ąeld of the IEEE802.15.4g packet. The work shows

results for a implementation in a Field-Programmable Gate Array (FPGA) and Applica-

tion SpeciĄc Integrated Circuit (ASIC), as well as comparisons with other architectures.

This work is part of the development and implementation of a transceiver compatible

with the IEEE802.15.4g standard at the Eldorado Research Institute.1.

Keywords: IEEE802154g, Field Programmable Gate Array FPGA, Fast Fourier

Transform, Discrete Fourier Transform, Integer Carrier Frequency Offset, Frequency Syn-

chronization, Smart Metering Utility Networks, Orthogonal Frequency Division Multi-

plexing.

1 This work was Hosted and Funded by Eldorado Research Institute and “Conselho Nacional de De-

senvolvimento Científico e Tecnológico CNPq” Under the CI-Brasil Program

Resumo

Os algoritmos da transformada rápida de Fourier (em inglês Fast Fourier Trans-

form FFT, e Inverse Fast Fourier Transform IFFT) desempenham um papel muito impor-

tante na modulação e demodulação de sinais de multiplexação por divisão de frequências

ortogonais OFDM (Orthogonal Frequency-Division Multiplexing) . Porém, a implemen-

tação destes algoritmos em hardware consume uma quantidade considerável de recursos,

o que faz necessárias implementações otimizadas da mesma. Este trabalho apresenta a

implementação de uma transformada rápida FFT/IFFT radix-2 baseada no computador

digital para rotação de coordenadas CORDIC (COordinate Rotation DIgital Computer)

para o modo MR-OFDM (MR signiĄca multi-região multi-taxa, do inglês Multi-rate Multi

Regional) de um modem compatível com a norma IEEE802.15.4g. Esta norma está voltada

para redes de serviços SUN (Smart Utility Networks) no contexto das redes de área pes-

soal sem Ąo com baixa taxa de transmissão (Low-Rate Wireles Personal Area Networks

LR-WPAN). Em adição é apresentada uma arquitetura para um estimador de erro de

frequência inteiro (Integer Carrier Frequency Offset ICFO) que aproveita a estrutura do

demodulador OFDM e da técnica de correlação cruzada, o que envolve o cálculo da trans-

formada discreta de Fourier DFT (Discrete Fourier Transform). Esta arquitetura possui

um baixo consumo de hardware e baixa complexidade para realizar o cálculo da corre-

lação quando comparado com métodos usuais de estimação. Ela correlaciona o preâmbulo

recebido e a sequência de treinamento encontrado no campo de sincronização do pacote

IEEE802.15.4g. Os resultados da implementação em FPGA (Field Programmable Gate

Array, em português Arranjo de Portas Programáveis em Campo) e ASIC (Application

SpeciĄc Integrated Circuit, em português circuitos integrados de aplicação especíĄca),

assim como as comparações com outras arquiteturas, são mostrados para ambas imple-

mentações. Este trabalho faz parte do desenvolvimento e implementação de um transceiver

compatível com a norma IEEE802.15.4g no Instituto de Pesquisas Eldorado2

Keywords: IEEE802154g, Field Programmable Gate Array FPGA, trans-

formada de Fourier, transformada discreta de Foutier, error inteiro de frequencia, sin-

cronização de frequência, Redes de utilidades, Orthogonal Frequency Division Multiplex-

ing (OFDM).

2 Patrocinado e Hospedado pelo Instituto de Pesquisas Eldorado e o Conselho Nacional de Desenvolvi-

mento Científico e Tecnológico CNPq como parte do Programa CI-Brasil.

List of Figures

Figure 2.1 Ű Spectrum of an OFDM communication scheme. 21

Figure 2.2 Ű OFDM basic structure. 22

Figure 2.3 Ű OFDM basic structure usign the IDFT and DFT Fourier transforms . . 24

Figure 2.4 Ű OFDM symbol with 64 sub-carriers in frequency domain. 25

Figure 2.5 Ű ISI effect over adjacent symbols. 26

Figure 2.6 Ű ISI effect over adjacent symbols with CP. 26

Figure 2.7 Ű ICFO of ko subcarriers - without error(top), with error (bottom). . . . 28

Figure 2.8 Ű STO early and late estimation. 29

Figure 3.1 Ű Format of the MR-OFDM PPDU and LTF. 34

Figure 3.2 Ű MR-OFDM Modulator according to the IEEE802.15.4g Standard. . . . 34

Figure 3.3 Ű Implemented MR-OFDM receiver. 36

Figure 4.1 Ű First stage in the DIF computation process. 41

Figure 4.2 Ű Decimation in frequency butterĆy. 42

Figure 4.3 Ű Decimation in frequency diagram. 42

Figure 4.4 Ű Simple In-place architecture. 43

Figure 4.5 Ű Address Generator. 44

Figure 4.6 Ű 8 point FFT DIF diagram. 45

Figure 4.7 Ű DIF ButterĆy Architecture. 46

Figure 4.8 Ű Rotation of a vector. 47

Figure 4.9 Ű CORDIC Cell. 50

Figure 4.10ŰFFT/IFFT internal architecture. 52

Figure 4.11ŰIFFT VeriĄcation Diagram . 53

Figure 4.12ŰFFT VeriĄcation Diagram . 54

Figure 5.1 Ű ICFO Test High-Level Model Diagram 59

Figure 5.2 Ű LTF Cross-Correlation output. 59

Figure 5.3 Ű Probability of success of the FFT Based Correlation. 59

Figure 5.4 Ű Integer carrier frequency offset estimator/corrector. 60

Figure 5.5 Ű Architecture of the complex multiplier. 61

Figure 5.6 Ű Architecture of the peak searcher. 62

Figure 5.7 Ű ICFO Test High-Level Model Diagram 63

Figure 5.8 Ű ICFO VeriĄcation Results VHDL Simulation and MAtlab Model 63

Figure 5.9 Ű Integer carrier frequency offset estimator/corrector with correlator. . . 65

Figure 5.10ŰAlteraŠs PPT Correlator Architecture. 66

Figure 5.11ŰAlteraŠs PPT Correlator Adder Tree. 66

Figure 5.12ŰAlteraŠs PPT Correlator LEs. 67

Figure 5.13ŰPower Delay ProĄle of the Multipath Channel. 68

Figure 5.14ŰLTF Cross-Correlation output with SFO. 69

Figure 5.15ŰExample of the computation of Ąne STO by Canet Method. 70

Figure 5.16ŰProbability of Success in Canet STO Estimation Algorithm (STO of

32 samples). 70

Figure 5.17ŰProbability of Success in Canet STO Estimation Algorithm (STO of

16 samples). 70

Figure 5.18ŰExample of the results of the square difference algorithm. 71

Figure 5.19ŰExample of the results of the auto correlation function algorithm. . . . 72

Figure 5.20ŰProbability of success of the CP based methods in a noisy channel for

all OFDM Options. 73

Figure 5.21ŰProbability of success in estimating the STO for the Data-Aided fre-

quency domain algorithm for all MR-OFDM Options. 74

Figure 5.22ŰProbability of success in estimating the STO for all MR-OFDM Options. 74

Figure 5.23ŰProbability of success in estimating the STO for CP based square dif-

ference under a multipath Channel. 75

Figure 5.24ŰProbability of success in estimating the STO for CP based ACF under

a multipath channel. 75

Figure 5.25ŰProbability of success in estimating the STO for the phase difference

in frequency domain algorithm under a multipath channel for all MR-

OFDM Options. 76

Figure 5.26ŰExample in estimating a ICFO of 35 carriers for the BoAi Proposed

Method. 77

Figure 5.27ŰExample of the maximum of correlations method for estimating the

ICFO. 78

Figure 5.28ŰProbability of success in estimating the ICFO for the BoAi and maxi-

mum of correlations Proposed Methods for all OFDM Options. 79

Figure 5.29ŰProbability of success in estimating the ICFO for the BoAi and max-

imum of correlations Proposed Methods for all OFDM Options under

a multipath channel. 79

Figure 5.30ŰSerial Architecture for the CP Based ACF algorithm 80

Figure 5.31ŰSerial Architecture for the CP Square Difference algorithm 81

Figure 5.32ŰParallel multipliers in STO ACF architecture 81

Figure 5.33ŰArchitecture for the Fine STO estimator in frequency domain 82

Figure 5.34ŰBoAi algorithm implementation . 82

Figure 5.35ŰBoAi algorithm implementation in parallel 83

Figure 5.36ŰPeak searcher for the FFT based maximum of correlations algorithm . 84

Figure A.1ŰASIC design Ćow . 97

List of Tables

Table 3.1 Ű Main Parameters of the MR-OFDM Mode 33

Table 4.1 Ű Angle values for a 16 size FFT . 46

Table 4.2 Ű Bit representation of Counter B shifted for a 16 point FFT 46

Table 4.3 Ű CORDIC Modes of operation . 50

Table 4.4 Ű Results of CORDIC Generalized equations 50

Table 4.5 Ű Some Functions Computed by the CORDIC 50

Table 4.6 Ű High-level IFFT Model/Matlab-IFFT Function Error 53

Table 4.7 Ű RTL-VHDL Model/High-Level IFFT Model error 53

Table 4.8 Ű FPGA IFFT/RTL-VHDL Model error 53

Table 4.9 Ű High-level FFT Model/Matlab-FFT Function Error 53

Table 4.10ŰRTL-VHDL Model/High-Level FFT Model error 54

Table 4.11ŰFPGA FFT/RTL-VHDL Model error 54

Table 4.12ŰIFFT RTL-VHDL Model/Matlab Model error 55

Table 4.13ŰIFFT FPGA Implementation/Matlab Model error 55

Table 4.14ŰFFT RTL-VHDL Model/Matlab Model error 55

Table 4.15ŰFFT FPGA Implementation/Matlab Model error 55

Table 4.16Ű128-point FFT Implementation Results for AlteraŠs 5CGXFC5C6F27C7N

. 56

Table 4.17ŰResource Utilization by Entity in the FFT/IFFT 56

Table 4.18ŰResource Utilization by Entity in the OFDM Modulator 57

Table 5.1 Ű CFO Implementation Results for AlteraŠs 5CGXFC5C6F27C7N 63

Table 5.2 Ű Resource Utilization by Entity in the FFT Based ICFO 64

Table 5.3 Ű CFO Implementation Resource utilization by entity in the MR-OFDM

Demodulator . 64

Table 5.4 Ű Resource Utilization by he ICFO without the FFT 64

Table 5.5 Ű Resource comparison between complex multiplier and correlator 67

Table 5.6 Ű Resource Utilization by Entity in the ICFO architectures 85

Table 5.7 Ű Resource Utilization by Entity in the STO architectures 86

Table 5.8 Ű Resource Utilization of the ICFO architectures 86

Table B.1 Ű Logical synthesis results for 65nm CMOS for the FFT Architecture . . . 100

Table B.2 Ű Logical synthesis results for 65nm CMOS for the ICFO Architecture . . 101

Table C.1 Ű LTF for MR-OFDM Option 1 . 102

Table C.2 Ű LTF for MR-OFDM Option 2 . 103

Table C.3 Ű LTF for MR-OFDM Option 3 . 103

Table C.4 Ű LTF for MR-OFDM Option 4 . 103

Table C.5 Ű Modulation Schemes for every MCS and OFDM Option 103

Acronyms

ACI Adjacent channel interference

ALM Adaptive Logic Module

ASIC Application SpeciĄc Integrated Circuit

BPSK Binary Phase Shift Keying

CFO Carrier Frequency Offset

CORDIC COordinate Rotation DIgital Computer

CP Cyclic PreĄx

DC Direct Current

DFT Discrete Fourier Transform

DSSS direct sequence spread spectrum

FAN Field Area Network

FFO Fractional Frequency Offset

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

MR-FSK Multi-Rate and Multi-Regional Frequency Shift Keying

HAN Home Area Network

HDL Hardware Description Language

ICFO Integer Carrier Frequency Offset

ICI Inter Carrier Interference

IDFT Inverse Discrete Fourier Transform

IEEE Institute of Electrical and Electronics Engineers

IFFT Inverse Fast Fourier Transform

IFO Integer Frequency Offset

IoT Internet of Things

ISI Intersymbol Interference

LE Logic Element

LR-WPANs Low-Rate Wireless Personal Area Networks

LTF Long Training Field

MAC Media Access Control

MCS Modulation and Coding Scheme scheme

MDSSS multiplexed direct sequence spread spectrum

MR-OFDM Multi-rate and Multi-regional Orthogonal Frequency Division Multiplexing

OFDM Orthogonal Frequency Division Multiplexing

PFA Prime Factor Algorithm

PHR PHY Header

PHY Physical Layer

PPDU Physical Packcage Data Unit

PSDU Packet Service Data Unit scheme

QAM Quadrature Amplitude Modulation

MR-O-QPSK Multi-Rate and Multi-Regional Offset Quadrature Phase-Shift Keying

QPSK Quadrature Phase-Shift Keying

RTL Register Transfer Level

SCO Sampling Clock Offset

SHR Synchronization Header

STF Short Training Field

STO Symbol Time Offset

SUN Smart Ubiquitous Network

WFTA WinogradŠs Fourier Transform Algorithm

Wi-SUN Wireless Smart Ubiquitous Network

Contents

1 INTRODUCTION . 18

2 ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 21

2.1 Synchronizations Errors in OFDM . 27

2.1.1 Carrier Frequency Offset . 27

2.1.2 Symbol Time Offset . 29

3 IEEE802.15.4G STANDARD . 31

3.1 IEEE802.15.4g Standard . 32

3.1.1 IEEE802.15.4g MR-OFDM . 33

4 THE DISCRETE FOURIER TRANSFORM AND FAST FOURIER

TRANSFORM . 38

4.1 FFT Cooley-Tukey Algorithm . 39

4.2 Architecture of the Fast Fourier Transform 42

4.2.1 Proposed Architecture . 42

4.2.1.1 FFT Implementation . 43

4.2.1.1.1 Hardware Considerations . 43

4.2.1.2 CORDIC . 47

4.2.2 IFFT Shifter . 51

4.2.3 Variable Length FFT/IFFT . 51

4.3 Implementation Results . 51

4.3.1 FPGA Prototyping . 56

5 INTEGER CARRIER FREQUENCY OFFSET ARCHITECTURE . . 58

5.1 ICFO FFT-based Architecture . 60

5.1.1 Complex Multiplier . 61

5.1.2 FFT . 61

5.1.3 Peak Searcher . 61

5.1.4 Symbol Shifter . 61

5.2 Implementation Results . 62

5.2.1 FPGA Prototyping . 62

5.2.2 Synthesis Analysis . 63

5.3 ICFO and STO . 67

5.3.0.1 Canet Fine STO estimation . 69

5.3.0.2 Non-Data-Aided STO Estimation . 71

5.3.0.3 Fine STO estimation in frequency domain 72

5.3.0.4 ICFO Estimation in the frequency domain with immunity to STO 76

5.3.0.5 FFT Based ICFO Estimation with immunity to STO 77

5.4 STO and ICFO hardware implementations 78

5.4.1 CP Based Architectures . 78

5.4.2 Fine STO estimation in frequency domain Architecture 81

5.4.3 BoAi Algorithm Architecture . 82

5.4.4 Maximum of correlations Algorithm . 83

6 CONCLUSIONS . 88

6.1 Future Work . 89

BIBLIOGRAPHY . 90

ANNEX 95

ANNEX A Ű ASIC DESIGN FLOW 96

A.1 Front-end . 97

A.2 Back-end . 98

ANNEX B Ű ASIC RESULTS . 100

B.1 Synthesys Results . 100

ANNEX C Ű IEEE802.15.4G PARAMETERS 102

C.1 Long training Field . 102

18

1 Introduction

The network of interconnected objects also known as the Internet of Things

(IoT) has been a subject of many studies in recent years. This new kind of networks is

composed of sensors and actuators that gathers information and interact with the physical

world. The needs of IoT impose several challenges and carry with them new and specialized

communication protocols. Wi-SUN Alliance is among the many communication groups

working to develop protocols and standards to overcome the challenges presented by the

IoT. It promotes the adoption of open industry standards for Wireless Smart Ubiquitous

Network (Wi-SUN).

The Institute of Electrical and Electronics Engineers (IEEE) released in 2012

the IEEE802.15.4g standard [1], IEEE802.15.4g standard was adopted by the Wi-SUN

alliance as the physical layer of Field Area Network FAN) and Home Area Network (HAN)

Profiles of Wi-SUN. The standard was initially intended to Smart Utility Networks, but

recently, due to its characteristics, its use was extended to IoT applications. Thus, the

acronym now stands for Smart Ubiquitous Networks (SUN). The IEEE802.15.4g standard

is an amendment to IEEE802.15.4, it was designed to cope with current and future specific

communications needs for SUN and has three operation modes, including the Multi-Rate

Multi-Regional Orthogonal Frequency Division Multiplexing (MR-OFDM) mode. SUN

devices are intended for wireless low power applications; therefore, implementations that

maximizes performance while attaining low power consumption are of main concern. This

is the main objective of this work, to find simple, low-cost hardware implementations

that achieve low area and low power consumption and implement those solutions for

an Application Specific Integrated Circuit (ASIC) in compliance to the IEEE802.15.4g

standard.

Specifically, to find an optimal implementation of the Discrete Fourier Trans-

form (DFT) and Inverse Discrete Fourier Transform (IDFT) that achieves the require-

ments of the MR-OFDM mode of the IEEE802.15.4g standard. The Fast Fourier Trans-

form (FFT) is a well known algorithm that reduces the computing complexity of the

DFT algorithm. Several methods have been proposed to implement the FFT efficiently

in hardware, high-throughput high performance parallel pipelined FFTs are extensively

used: [2][3] implement the FFT by means of radix-2 butterflies, higher radixes [4][5],

mixed-radixes [6] and split-radix [7] implementations reduces the arithmetic complexity

and improve performance at the cost of more hardware consumption.

On the other hand, architectures based on a single butterfly unit [8][9][10][11],

CHAPTER 1. INTRODUCTION 19

require less hardware at the expenses of more computation time. These architectures

try to optimize memory accesses while at the same time reduce the amount of memory

used. Another approaches try to minimize hardware resources and power consumption

by replacing the complex multiplier with the COordinate Rotation DIgital Computer

(CORDIC) [12][13][14]. The presented architecture will gather the advantages of the pre-

vious implementations methods, while achieving the hardware and technical requirements

of the IEEE802.15.4g MR-OFDM mode.

Another important issue concerning the implementation of OFDM modems

is that of the optimal and robust implementation methods for the synchronization and

frequency error correction at the receiver side. For this reason, the second part of this

work is to implement an Integer Carrier Frequency Offset(ICFO) estimator and corrector

for the IEEE802.15.4g MR-OFDM mode. Many methods have been proposed to estimate

the ICFO, in [15][16][17] correlations using known sequences at the receiver are employed

to estimate the ICFO,[18][19] uses pilot assisted method and correlation of consecutive

symbols to achieve the estimation, [20] employs maximum likelihood estimation also based

on pilots to solve the problem. Generally, ICFO estimation is based on cross-correlation

or auto-correlation, an operation that consumes a considerable number of resources in

hardware. The methods found to estimate the ICFO show no hardware implementation;

the research on the subject has been limited to only simulations. Moreover, ICFO per-

formance evaluation is carried out under the assumption that previous estimations are

perfect.

This work will show a simple ICFO estimator method based on the DFT usage,

that is believed to reduce the hardware complexity. The simplification is accomplished

by smart reuse of the available hardware, involving the FFT, that makes possible to

implement the correlation operation with fewer resources than the typical implementation.

The proposed estimation/corrector method can be adopted in other OFDM-based systems

as well, since it exploits the OFDM structure to tackle the problem. Additionally, the study

of the estimation in a more rigorous environment, where Symbol Time Offset (STO) is

not always correctly estimated is also performed.

The methodology followed in the implementation of the architectures is as

follows: first, a high-level model is developed, it simulates numerically the algorithm or

method that is to be implemented. This high-level model serves as a reference for the Reg-

ister Transfer Level (RTL) behavioral description. The RTL behavioral model, written in

a Hardware Description Language (HDL), is a description of the architecture; it describes

the behavior and structure of a digital circuit. This RTL behavioral model is then com-

pared against the golden model for bugs in the description. Once the RTL behavioral

model is bug-free, the physical verification process starts. The RTL is synthesized in a

CHAPTER 1. INTRODUCTION 20

logic synthesis tool that checks if the behavioral description can be turned into a digital

hardware. Finally, once the RTL behavioral description is bug-free, a Field Programmable

Gate Array (FPGA) is programmed with the design; then it is excited with the same data

as the Golden and RTL behavioral model, and its outputs compared. After these steps,

the (FPGA) prototype goes through the debugging process.

This thesis is organized as follows:

∙ In Chapter 1, a theoretical background of OFDM is presented, deriving the necessity

of the IDFT/DFT and showing some of the OFDM synchronization issues.

∙ Chapter 2 is an overview of the IEEE802.15.4g standard, focusing on the technical

aspects of MR-OFDM mode, the modem architecture, as well as the frame structure,

are described.

∙ Chapter 3 looks into the FFT algorithm; the well known radix-2 Fast algorithm is

derived from the original DFT equation. Additionally, the proposed FFT architec-

ture is shown along with the methods implemented that simplify the hardware, as

well as the results of its FPGA implementation.

∙ Chapter 4 presents an FFT-based ICFO estimation architecture. FPGA implemen-

tation results are also shown. This chapter also explores the problem of the ICFO

estimation in conjunction with the STO.

∙ Chapter 5 Presents an overview of the ASIC design process. A brief description of

the stages in the process are reviewed. Finally, the ASIC synthesis results are shown.

Finally, conclusions and future work are presented.

21

2 Orthogonal Frequency-Division Multiplex-

ing

In order to overcome the limitations imposed by the complexity of the equal-

izer in the receiver, due to high data rate transmission in single carrier modulations, a

multi-carrier transmission scheme approach can be adopted. In a multi-carrier transmis-

sion scheme, as the Frequency Division Multiplexing (FDM), a high data rate stream or

wideband signal is divided into several low rate or narrowband parallel streams, each one

called of sub-carriers. The division of a wideband signal into parallel low rate signals allows

the approximation of a frequency selective wideband channel by multiple non-frequency

selective narrowband channels, thus, reducing the complexity of the equalizer to a single

tap-equalizer per sub-carrier [21].

Another type of multicarrier system that has some advantages over the multi-

carrier systems is called Orthogonal Frequency Division Multiplexing (OFDM). In OFDM,

carriers are orthogonal among each other, which saves bandwidth since its spectrum over-

lap, as shown in Figure 2.1. Another advantage of OFDM resides in its implementations.

OFDM modems can be realized through the Inverse Discrete Fourier Transform IDFT

and Discrete Fourier Transforms DFT, which in turn can be efficiently implemented by

the Fast Fourier Transform FFT, making OFDM systems implementation less-complex.

The use of DFT and IDFT to implement the modulation and demodulation in multicar-

rier systems avoids the use of banks of subcarrier oscillators and coherent demodulators,

which makes FDM systems excessively expensive and more complex as the number of

subcarriers increases [22] [21]. Figure 2.2 shows the structure of an OFDM modem.

Frequency (Hz)

-15 -10 -5 0 5 10 15

A
m

p
lit

u
d
e

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.1 – Spectrum of an OFDM communication scheme.

CHAPTER 2. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 22

I

Q

I

Q16 QAM

QPSK

I

QBPSK

MAPPING

Bits

AND OR

AND OR

S/P

X
l
(0)

. . .

X
l
(1)

X
l
(2)

X
l
(3)

X
l
(k)

X
l
(k) = a + bj

f
0

f
1

f
2

f
3

f
k

Ʃ

. . .

Channel

MODULATOR
f
0

f
1

f
2

f
3

. . .

f
k

P/S

DEMODULATOR

DEMAPPER
Bits

. . .

Y
l
(0)

Y
l
(1)

Y
l
(2)

Y
l
(3)

Y
l
(k)

x
l
(n) y

l
(n)

Figure 2.2 – OFDM basic structure.

An OFDM symbol can be described by:

𝑥𝑙(𝑡) =
𝑁⊗1∑︁

𝑘=0

𝑋𝑙(𝑘)𝑒𝑗2Þ𝑓k𝑡, 0 < 𝑡 < 𝑇𝑠 (2.1)

Where, 𝑋𝑙(𝑘) represents the l-th symbol at the k-th sub-carrier within an

OFDM symbol of duration 𝑇𝑠 for 𝑘 = 0, 1, . . . , 𝑁⊗1. As shown in Figure 2.2, in the OFDM

transmission, the information data bits are first mapped into a single carrier symbol, e.g.,

BPSK, M-QAM or QPSK symbols, and then converted into N parallel streams. This

parallel stream of symbols is then carried out by N orthogonal sub-carriers, each one

with a frequency 𝑓𝑘. The orthogonal sub-carriers spectra overlap in frequency domain,

achieving high bandwidth efficiency [21].

After sampling, the discrete time OFDM symbol can be described as in (2.2),

with 𝑡 = 𝑛𝑇𝑠/𝑁 and 𝑓𝑘 = 𝑘/𝑇𝑠

𝑥𝑙(𝑛) =
𝑁⊗1∑︁

𝑘=0

𝑋𝑙(𝑘)𝑒𝑗2Þ𝑘𝑛/𝑁 , 𝑘 = 0, 1, 2 . . . 𝑁 ⊗ 1 (2.2)

Since we assume that the OFDM carriers are orthogonal, two sub-carriers, ã𝑘

and ã𝑖 must meet the following condition in continuous time, the function Ó[𝑖 ⊗ 𝑘] is

defined as Kronecker delta:

CHAPTER 2. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 23

1
𝑇𝑠

∫︁ 𝑇s

0
ã𝑖(𝑡)ã*

𝑘(𝑡)𝑑𝑡 =
1
𝑇𝑠

∫︁ 𝑇s

0
𝑒𝑗2Þ𝑓i𝑡𝑒⊗𝑗2Þ𝑓k𝑡𝑑𝑡

=
1
𝑇𝑠

∫︁ 𝑇s

0
𝑒𝑗2Þ(𝑓i⊗𝑓k)𝑡𝑑𝑡

=
1
𝑇𝑠

∫︁ 𝑇s

0
𝑒𝑗2Þ

(i⊗k)
Ts 𝑑𝑡

= Ó[𝑖 ⊗ 𝑘]. (2.3)

The discrete form of the orthogonality property with sampling intervals of 𝑡 = 𝑛𝑇𝑠/𝑁

and 𝑓𝑘 = 𝐾/𝑇𝑠 can be written as:

1
𝑁

𝑁⊗1∑︁

𝑘=0

𝑒𝑗2Þ i
T s

nT s
N 𝑒⊗𝑗2Þ k

T s
nT s

N =
1
𝑁

𝑁⊗1∑︁

𝑘=0

𝑒𝑗2Þ
n(i⊗k)

N

= Ó[𝑖 ⊗ 𝑘] (2.4)

At the receiver the signal can be recovered using this orthogonality property

of (2.3). Without taking into account the channel effects, the received signal 𝑦𝑙(𝑡) can be

written as in (2.5)

𝑦𝑙(𝑡) =
𝑁⊗1∑︁

𝑘=0

𝑋𝑙(𝑘)𝑒𝑗2Þ𝑓k𝑡, 0 < 𝑡 < 𝑇𝑠 (2.5)

By applying the orthogonality property on the received OFDM symbol, this yields:

𝑌𝑙(𝑘) =
1
𝑇𝑠

∫︁ 𝑇s

0
𝑦𝑙(𝑡)𝑒⊗𝑗2Þ𝑓k𝑡𝑑𝑡 (2.6)

=
1
𝑇𝑠

∫︁ 𝑇s

0

𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)𝑒𝑗2Þ𝑓i𝑡𝑒⊗𝑗2Þ𝑓k𝑡𝑑𝑡

=
𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)
1
𝑇𝑠

∫︁ 𝑇s

0
𝑒𝑗2Þ(𝑓i⊗𝑓k)𝑡𝑑𝑡

=
𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)Ó[𝑖 ⊗ 𝑘]

= 𝑋𝑙(𝑘).

(2.7)

The orthogonality property in its discrete form yields:

CHAPTER 2. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 24

𝑌𝑙(𝑘) =
𝑁⊗1∑︁

𝑛=0

𝑦𝑙(𝑛)𝑒⊗𝑗2Þ kn
N (2.8)

=
1
𝑁

𝑁⊗1∑︁

𝑛=0

𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)𝑒𝑗2Þ in
N 𝑒⊗𝑗2Þ kn

N

=
𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)
1
𝑁

𝑁⊗1∑︁

𝑛=0

𝑒𝑗2Þ in
N 𝑒⊗𝑗2Þ kn

N

=
𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)
1
𝑁

𝑁⊗1∑︁

𝑛=0

𝑒𝑗2Þ
(i⊗k)n

N

=
𝑁⊗1∑︁

𝑖=0

𝑋𝑙(𝑖)Ó[𝑖 ⊗ 𝑘]

= 𝑋𝑙(𝑘)

(2.9)

Equations (2.2) and (2.8) are known as the IDFT of 𝑋𝑙(𝑘) and DFT of

𝑦𝑙(𝑛), which means that the OFDM modulation/demodulation can be implemented as

a IDFT/DFT pair as shown in Figure 2.3. As mentioned before the IDFT/DFT pair can

be efficiently computed by the FFT algorithm.

I

Q

I

Q16 QAM

QPSK

I

Q

BPSK

MAPPING

I

Q

QPSK

I

Q16 QAM

Bits

AND OR

AND OR

S/P Channel

MODULATOR

x
l
(t)

P/S

y
l
(t)

DEMODULATOR

DEMAPPER
Bits

Y
l
(0)

Y
l
(1)

Y
l
(2)

Y
l
(3)

Y
l
(k)

X
l
(0)

. . .

X
l
(1)

X
l
(2)

X
l
(3)

X
l
(k)

. . .

D/A A/DIDFT DFT

Figure 2.3 – OFDM basic structure usign the IDFT and DFT Fourier transforms

OFDM signals often show bandwidth spillage or leakage, which causes adjacent

channel interference (ACI), since sub-carriers are time-limited and no band limited. Null

carriers are added at the adjacencies of the OFDM symbol to avoid ACI, these null also

protect the OFDM signal from leakage from other adjacent systems. In general, another

null sub-carrier is the Direct Current (DC) sub-carrier, this null sub-carrier corresponds

to the zero frequency sub-carrier. Figure 2.4 shows an OFDM symbol with 64 sub-carriers

in frequency domain, DC, guard band and data carriers are also shown in the figure.

CHAPTER 2. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 25

frequency
-40 -30 -20 -10 0 10 20 30 40

A
m

p
lit

u
d
e

0

0.5

1

DC Null tone

Data tones Data tones

Guard Null tonesGuard Null tones

Figure 2.4 – OFDM symbol with 64 sub-carriers in frequency domain.

Another modification that is performed over the OFDM symbol in time do-

main, is that a copy of the last 𝐺 samples of the OFDM symbol is prepended to itself,

to prevent Inter Symbol Interference (ISI). The prepended part is known as the Cyclic

Prefix (CP). ISI is originated by the multi-path fading channel, that causes that a de-

layed, attenuated and phase shifted copy of the previously sent signal to interfere with

the arriving signal. The receiver signal can be modeled in time domain as:

𝑦(𝑛) = 𝑥(𝑛) * ℎ(𝑛) + 𝑧(𝑛) =
∞∑︁

𝑚=0

𝑥(𝑚)ℎ(𝑛 ⊗ 𝑚) + 𝑧(𝑛). (2.10)

where, 𝑦(𝑛) is the received signal, 𝑥(𝑛) the sent signal, and ℎ(𝑛) the impulse response

of the multi-path fading channel 𝑧(𝑛). The effect of multi-path channel is illustrated in

Figure 2.5, which shows that the delayed received signal overlaps with the current received

symbol and interferes with the next symbol. The received signal in frequency domain is

represented by:

𝑌 (𝑘) =
𝑁⊗1∑︁

𝑛=0

[𝑥(𝑛) * ℎ(𝑛) + 𝑧(𝑛)]𝑒
⊗j2πkn

N (2.11)

=
𝑁⊗1∑︁

𝑛=0

[
𝑁⊗1∑︁

𝑚=0

𝑥(𝑛)ℎ(𝑛 ⊗ 𝑚) + 𝑧(𝑛)]𝑒
⊗j2πkn

N

=
𝑁⊗1∑︁

𝑚=0

𝑁⊗1∑︁

𝑛=0

𝑥(𝑚)ℎ(𝑛 ⊗ 𝑚)𝑒
⊗j2πkn

N + 𝑍(𝑘)

=
𝑁⊗1∑︁

𝑚=0

𝑥(𝑚)
𝑁⊗1∑︁

𝑛=0

ℎ(𝑛 ⊗ 𝑚)𝑒
⊗j2πkn

N

⏟ ⏞

DFT circular shift property

+𝑍(𝑘) (2.12)

=
𝑁⊗1∑︁

𝑚=0

𝑥(𝑚)𝐻(𝑘)𝑒
⊗j2πkm

N + 𝑍(𝑘)

= 𝐻(𝑘)
𝑁⊗1∑︁

𝑚=0

𝑥(𝑚)𝑒
⊗j2πkm

N + 𝑍(𝑘)

= 𝑋(𝑘)𝐻(𝑘) + 𝑍(𝑘) (2.13)

CHAPTER 2. ORTHOGONAL FREQUENCY-DIVISION MULTIPLEXING 26

According to (2.13), the channel compensation can be accomplished by sim-

ply dividing the received symbol in frequency domain by the channel response 𝑋(𝑘) =

𝑌 (𝑘)/𝐻(𝑘), which represents a one tap equalizer for a particular index 𝑘. The channel

response can be estimated using a data-aided method, in which known training sequences

are transmitted in advance, the estimation process at the receiver then correlates the

received and known sequences in the receiver, which yields the channel response. On the

other hand, blind estimation or non-data aided estimation is also employed, in blind ap-

proaches the channel response is accomplished by statistics of the received signals [23].

Also 𝑌 (𝑘) = 𝑋(𝑘)𝐻(𝑘) is true only when 𝑦(𝑛) = 𝑥(𝑛) ⊛ 𝑦(𝑛), where ⊛ denotes circular

convolution. This makes possible to apply the DFT circular shift property in (2.12), the

circular convolution holds true only when the CP is prepended to the OFDM symbol [21].

Symbol1

Tsym

Symbol2 Symbol3

ISI Of symbol 1

over symbol 2

t

Figure 2.5 – ISI effect over adjacent symbols.

The CP appended to the beginning of the OFDM symbol in time domain

safeguards the OFDM symbol from being affected by the multi-path fading channel effect

over the previously transmitted symbol, as long as the channel delay is shorter than that

of the CP duration. Figure 2.6 illustrates the effect of ISI over the OFDM symbol when

the CP is added.

t

Figure 2.6 – ISI effect over adjacent symbols with CP.

2.1. SYNCHRONIZATIONS ERRORS IN OFDM 27

2.1 Synchronizations Errors in OFDM

Although OFDM is widely used due to its robustness against multipath fad-

ing channel as well as the reduced complexity single-tap equalizer per subcarrier [23],

it has large Peak to Average Ratio (PAPR) [24] and it is very sensitive to the receiver

synchronization errors [25]. Errors such as Symbol Time Offset (STO), i.e., finding the

start of the OFDM symbol unknown at the receiver, and Carrier Frequency Offset (CFO)

caused mainly by the frequency mismatch between local oscillators at the receiver and

transmitter. Synchronization errors as STO and ICFO can cause Inter-Symbol Interfer-

ence (ISI) and Inter-Carrier Interference (ICI) that diffcults the proper recovery of the

OFDM symbols and degrades system performance. Thus, the receiver must estimate and

compensate those errors to properly recover the symbols. The effects of those errors over

the OFDM symbols are analyzed as follows.

2.1.1 Carrier Frequency Offset

The tolerance of local and remote oscillators causes a difference between the

transmitter and receiver carrier frequency. This difference in frequencies, known as carrier

frequency offset (CFO), has some detrimental effect on sub-carriers, hindering the symbols

recovery. It can be divided into two parts regarding the sub-carrier space, a fractional

frequency offset, which is a fraction of the sub-carrier spacing, and an ICFO which occurs

in multiples of the sub-carriers distance.

The fractional part causes Inter-Carrier Interference (ICI) due to spectral leak-

age sub-carriers. It is typically corrected in two steps, first, a coarse estimation/correction

is performed followed by a fine frequency estimation/correction. On the other hand, the

integer part causes a circular shift of the sub-carrier indexes in the frequency domain. It

is usually estimated in frequency domain, and its correction can be performed either in

time or frequency domain.

Assuming perfect symbol synchronization, i.e., zero STO (the frame start is

perfectly estimated), and without considering the impairments introduced by the channel,

the transmitted symbol in frequency domain is described by (2.14), while received symbol

in time domain can be described by (2.15).

𝑋𝑙(𝑘) =
𝑁⊗1∑︁

𝑛=0

𝑥𝑙(𝑛)𝑒
⊗j2πkn

N , 𝑘 = 0, 1, ..., 𝑁 ⊗ 1 (2.14)

𝑦𝑙(𝑛) =
1
𝑁

𝑁⊗1∑︁

𝑘=0

𝑋𝑙(𝑘 + Ñ)𝑒
j2πkn

N , 𝑛 = 0, 1, ..., 𝑁 ⊗ 1 (2.15)

2.1. SYNCHRONIZATIONS ERRORS IN OFDM 28

where Ñ = 𝜖+𝑘𝑜 is the frequency offset, divided in 𝜖, the fractional frequency offset (FFO)

and 𝑘𝑜 the integer frequency offset (IFO). 𝑋𝑝(𝑘) the transmitted symbol in frequency

domain with 𝑘 sub-carriers, 𝑥𝑝(𝑛) in time domain and 𝑦𝑝(𝑛) the received signal in time

domain. Assuming a fractional frequency offset of zero (Ñ = 𝑘𝑜), the term 𝑥𝑙(𝑘 + Ñ) can

be written as in (2.16)

𝑥𝑙(𝑘 + 𝑘𝑜) =
𝑁⊗1∑︁

𝑏=0

𝑥𝑙(𝑏)𝑒
⊗j2π(k+ko)b

N , 𝑘 + 𝑘𝑜 = 0, 1, ..., 𝑁 ⊗ 1. (2.16)

Therefore, (2.15) can be written as:

𝑦𝑙(𝑛) =
1
𝑁

𝑁⊗1∑︁

𝑘=0

{︁ 𝑁⊗1∑︁

𝑏=0

𝑥𝑙(𝑏)𝑒
⊗j2π(k+ko)b

N

}︁

𝑒
j2πkn

N , 𝑛 = 0, 1, ..., 𝑁 ⊗ 1. (2.17)

𝑦𝑙(𝑛) =
1
𝑁

𝑁⊗1∑︁

𝑏=0

𝑥𝑙(𝑏)𝑒
⊗j2πkob

N

𝑁⊗1∑︁

𝑘=0

𝑒
j2πk(n⊗b)

N , 𝑛 = 0, 1, ..., 𝑁 ⊗ 1. (2.18)

If the index 𝑏 = 𝑛, then the 𝑙 ⊗ 𝑡ℎ symbol in time domain can be expressed as

(2.19)

𝑦𝑙(𝑛) = 𝑥𝑙(𝑛)𝑒
⊗j2πkon

N , 𝑛 = 0, 1, ..., 𝑁 ⊗ 1. (2.19)

From (2.19) can be concluded that, the received symbol has the same value

than that of the transmitted symbol with its phase rotated by ⊗𝑗2Þ𝑘𝑜𝑛/𝑁 . As the frac-

tional part is equal to zero, the IFO effect over the sub-carriers in the frequency domain

is a shift of carriers, as shown in the illustrative example of Figure 2.7.

frequency
-40 -30 -20 -10 0 10 20 30 40

A
m

p
lit

u
d
e

0

0.5

1
Symbol without ICFO

frequency

-40 -30 -20 -10 0 10 20 30 40

A
m

p
lit

u
d
e

0

0.5

1
Symbol with ICFO

ko

Figure 2.7 – ICFO of 𝑘𝑜 subcarriers - without error(top), with error (bottom).

2.1. SYNCHRONIZATIONS ERRORS IN OFDM 29

2.1.2 Symbol Time Offset

Another impairment regarding synchronization is the symbol time synchro-

nization error. Timing synchronization algorithms attempt to find the start of the OFDM

symbol and to correct what is called the STO, defined as the difference between the ideal

symbol start and the estimated one. The STO must be zero so that the result of the FFT

computation matches that of the transmitted symbol in the frequency domain.

Figure 2.8 – STO early and late estimation.

A deviation from the ideal STO can be found after the estimation process as

shown in Figure 2.8. STO can be estimated to early or too late, regarding the ideal case

in which the exact point is expected to be. A late estimation (type I, as shown in Figure

2.8), which takes the starting point after the ideal case, generates a time window that

is shifted onto the next symbol, that is, samples from the current symbol are lost, and

samples from the next symbol are taken. In this case, ICI is found, and the orthogonality

between sub-carriers is lost [21].

The second type of offset found is the one in which the starting point is es-

timated to early (type II, in Figure 2.8), that is before the ideal starting point. In this

case, the first sample of the symbol falls inside the symbol CP, and the last samples are

lost, no samples from the next symbols are taken. In this case, the orthogonality between

sub-carriers is preserved, and only a phase offset proportional to the STO, and the carrier

index is shown in the post-FFT signal [21].

If the STO falls inside the CP of the current symbol, and without considering

the impairments introduced by the channel, the received signal can be expressed as:

𝑆𝑙(𝑘) =
𝑁⊗1∑︁

𝑛=0

𝑥𝑙(𝑛 + Ð)𝑒
⊗j2πnk

N , 𝑘 = 0, 1, ..., 𝑁 ⊗ 1 (2.20)

where the shifted symbol then can be rewritten as:

𝑥𝑙(𝑛 + Ð) =
𝑁⊗1∑︁

𝑏=0

𝑥𝑙(𝑏)𝑒
j2π(n+α)b

N , 𝑏 = 0, 1, ..., 𝑁 ⊗ 1 (2.21)

2.1. SYNCHRONIZATIONS ERRORS IN OFDM 30

Substituting (2.21) in 2.20 we obtain:

𝑆𝑙(𝑘) =
𝑁⊗1∑︁

𝑛=0

{︁ 𝑁⊗1∑︁

𝑏=0

𝑋𝑙(𝑏)𝑒
j2π(n+α)b

N

}︁

𝑒
⊗j2πnk

N (2.22)

Rearranging (2.22),

𝑆𝑙(𝑘) =
𝑁⊗1∑︁

𝑏=0

𝑋𝑙(𝑏)𝑒
j2παb

N

𝑁⊗1∑︁

𝑛=0

𝑒
j2πn(b⊗k)

N (2.23)

If 𝑏 = 𝑘 then, (2.23) becomes

𝑆𝑙(𝑘) = 𝑋𝑙(𝑏)𝑒
j2παb

N (2.24)

That is, at the receiver, the same carrier in the frequency domain of the trans-

mitter is modified in phase by a factor equal to 𝑗2ÞÐ𝑏
𝑁

, i.e. , STO only introduces a phase

shift in frequency domain if the STO is smaller than the CP size and of type II.

STO of type I cannot be reversed because the start frame decision is already

made and samples before the symbol start are discarded. On the contrary, type II STO

errors can be reversed, as this kind of error only shows changes in signal phase. However,

time offset greater than certain values degrade the signal significantly, if samples of the

CP are affected by previous symbols due to the multipath fading channel [26], even if it

falls inside the CP.

There are several methods for estimating and correcting timing errors and fre-

quency errors based on repetitive structures inherent in the OFDM symbol (as the CP

case). These are known as non-data-aided methods or blind methods, these algorithms

save bandwidth, since no structure must be sent to estimate the errors. Frame-oriented

systems benefit from this type of algorithms since the estimation is performed contin-

uously. A second kind of estimation based on a known sequence sent in the Physical

Package Data Unit (PPDU) can be employed. This kind of algorithms, known as data-

aided, consumes more bandwidth but prove to be more robust than the non-data aided

methods. Packet-based system benefit from this kind of estimation. These algorithms will

be reviewed in the next chapters.

31

3 IEEE802.15.4g standard

IoT is a new paradigm in which everyday objects are connected to the Internet.

In this evolution of the Internet, everyday objects are granted smart capabilities, allowing

them to sense environmental changes, send and receive data and perform tasks. This new

network of smart objects opens up a myriad of applications: smart cities, that employ

adaptive lighting to optimize energy consumption; smart parking that notifies of available

parking spaces; warnings of climate changes. Also in healthcare, for remote monitoring

of patients and monitor and tracking of vital signs; in smart utility networks and smart

metering for monitoring of water, oil and gas levels in storage tanks; smart grids for

monitoring and management of the electrical system.

Since the range of applications is extensive, and smart devices are composed of

several complex components, major vendors of specific areas are developing their solutions

isolated. Thus, the success of this new technology relies to a large extent on standardiza-

tion, that will guarantee interoperability, portability, and manageability between devices

from different vendors.

An essential feature of the IoT device is its ability to communicate with other

devices. The data exchange allows us to make decisions based on status or environmental

changes, for example. Several communications protocols are employed for the IoT; its

main features are low-data rates with low power and low fabrication costs. Some of the

communications protocols being used in IoT devices are:

∙ ZigBee: It is based on the IEEE802.15.4 standard, a standard that defines the oper-

ation of Low-Rate Wireless Personal Area Networks (LR-WPANs). It specifies the

requirements for a low-cost low-power mesh network; it is designed to carry small

amounts of data over a short distance while consuming very little power. ZigBee

operates on the 2.4 GHz band as well as in the 800-900 sub-GHz bands.

∙ LoRaWan (Long Range Wide Area Network): Developed for long distance networks

for national, regional or global areas. Composed mainly of wireless devices pow-

ered by batteries. It features bidirectional communications as well as low power

consumption, some of the IoT requirements.

∙ Sigfox : The basic idea of this technology is to have base stations distributed across

some small area and simple devices that can exchange messages with them. A Sigfox

message has up to 12-bytes payload, and its frame will use 26 bytes in total. It relies

3.1. IEEE802.15.4G STANDARD 32

on the Ultra Narrow Band modulation technology to exchange messages over the

air. Devices requirements are low-power and low-cost.

∙ WI-SUN : Supported by the Wi-SUN Alliance, this technology features low data

rates, low power, short-range communication with very low implementation com-

plexity. The Wi-SUN alliance defines the Wi-SUN as a technology based on the

IEEE 802.15.4g standard, an amendment of the IEEE802.15.4 standard. Two pro-

files are defined by the Wi-SUN Alliance, FAN and HAN networks that support

both star and mesh topologies. The communication range is usually from 10 to 75m

with a low data rate of tens of kbps up to 250 kbps [27].

The IEEE 802.15 Working Group for Wireless Specialty Networks developed

the 15.4g standard, featuring low-rate wireless connectivity with low power consumption

and short-range communication. The IEEE 802.15.4g standard defines Physical (PHY)

and Media Access Control (MAC) layers requirements for Low-Rate Wireless Personal

Area Networks (LR-WPANs). The next section describes the IEEE802.15.4g standard

and some of its features.

3.1 IEEE802.15.4g Standard

The IEEE802.15.4g standard is an amendment to the IEEE802.15.4. It defines

alternate PHYs in addition to those in the IEEE802.15.4 as well as modulations, data

rates, frequency bands, and other technical properties.

Three PHYs are defined in the IEEE802.15.4g standard: 1) the Multi-rate and

Multi-Regional Frequency Shift Keying (MR-FSK) PHY, with data rates ranging from

50 kbps to 400 kbps provides good transmit power efficiency due to the constant envelope

of the transmit signal [1], it shows low implementation complexity and supports various

frequency bands including Europe, Canada, U.S, Korea and Worldwide; 2) The Multi-Rate

and Multi-Regional Offset Quadrature Phase-Shift Keying (MR-O-QPSK) PHY shows

similar features to those of the IEEE 802.15.4-2011 MR-O-QPSK PHY, thus, it guarantees

interoperability between previously developed devices, it supports Direct Sequence Spread

Spectrum (DSSS) and Multiplexed Direct Sequence Spread Spectrum (MDSSS). The

Multi-Rate and Multi-Regional Orthogonal Frequency Division Multiplexing (OFDM)

PHY, which provides the highest data rates of the three PHYs at the cost of a more

complex structure and implementation, it supports data rates ranging from 50 kbps to

800 kbps [1]. Since the current focus of this work is the development of block concerning

the MR-OFDM PHY, a more detailed description will be presented in the next section.

3.1. IEEE802.15.4G STANDARD 33

3.1.1 IEEE802.15.4g MR-OFDM

An OFDM modulator can be implemented as an 𝑁 -point IDFT, which con-

verts OFDM symbols from the frequency domain to time domain, while the demodulator

can be performed by a DFT, where each block of 𝑁 received samples are converted back

to the frequency domain. It is well known that the implementation of IDFT/DFT con-

sumes many resources, making mandatory the use of the Fast Fourier Transform (FFT)

algorithms, which is one of the addressed topics in this work.

The MR-OFDM mode as specified in [1] supports BPSK, QPSK and 16-QAM

modulations, depending on the Modulation and Coding Scheme (MCS) chosen. Channel

encoding is mandatory with a convolutional encoder of coding rate 𝑅 = 1/2, with octal

generator polynomials 𝑔0 = 1338 and 𝑔1 = 1718. A rate of 𝑅 = 3/4 can be achieved by

puncturing. With DFT sizes of 128, 64, 32 and 16, the data rates for MR-OFDM ranges

from 50 kbps to 800 kbps. Table 3.1 shows a summary of the main parameters for the

OFDM mode.

Table 3.1 – Main Parameters of the MR-OFDM Mode

Parameter Option 1 Option 2 Option 3 Option 4 Unit
Sampling Rate 1.3333 0.6666 0.3333 0.1666 MSamples/sec

DFT Size 128 64 32 16 –
Tone Spacing 10.4166 10.4166 10.4166 10.4166 kHz
FFT Duration 96 96 96 96 Û𝑠

GI Length 24 24 24 24 Û𝑠
Symbol Duration 120 120 120 120 Û𝑠

Symbol rate 8.333 8.333 8.333 8.333 kSymbols/sec
Active Tones 104 52 26 14 –

Pilot/Data/DC Tones 8/96/1 4/48/1 2/24/1 2/12/1 –
Bandwidth 1094 552 281 156 kHz

The MR-OFDM modulator has to encode the data and build the PPDU ac-

cording to the structure defined in [1]. The PPDU is shown in Figure 3.1, it contains:

Synchronization Header (SHR) used to estimate channel behavior and correct frequency

and timing errors. The SHR is composed by the Short Training Field (STF) and Long

Training Field (LTF); PHY Header (PHR), which carries frame length, scrambling seed,

modulation and coding scheme (MCS); Packet Service Data Unit (PSDU), the actual

payload; PPDU Tail Bits field (TAIL) and Pad Bits (PAD) field used to reset and fill

buffers.

The modulator structure is depicted in Figure 3.2. This MR-OFDM PHY was

designed at Eldorado Research Institute for the ASIC implementation of the IEEE802.15.4g

standard, from the reference structure and specification found in [1]. The modulator struc-

ture in figure 3.2 shows the modulator divided into data and signal processing. Within

the data processing part, conditioning of data bits is performed, it allows error correction

3.1. IEEE802.15.4G STANDARD 34

Figure 3.1 – Format of the MR-OFDM PPDU and LTF.

and protects the data from channel impairments. From the Mapper (point 9 in Figure 3.2)

onward, digital signal processing is applied, where signal conditioning is applied to com-

plex decimal data. Every numbered point referenced in Figure 3.2 represents conditioning

or modification of the data. The complete data processing, and signal processing is as

follows:

Figure 3.2 – MR-OFDM Modulator according to the IEEE802.15.4g Standard.

∙ Modulator Data Processing

1. PSDU Data: The payload is received from the upper MAC layer, that is the

information that is going to be modulated, i.e., a string of bits that represent

some message.

1
′

. Configuration: Generation of Frame length, MCS Level, Data rate, scrambler

seed are configurations that come from the MAC layer.

2. Padder : PAD bits and TAILS bits are added through the padder block to the

PSDU.

3. Scrambler : It randomizes the data bits, avoiding long sequences of zeros or ones.

4. PHR Generator : It generates the PHR according to the configuration chosen in

the MAC layer.

3.1. IEEE802.15.4G STANDARD 35

5. Encoder Handler : Since not all the data is encoded in the same way, this block

exchanges between scrambled data and PHR data, in other words, it controls

which data to be encoded.

6. Encoder : It adds redundancy to the incoming data to add error correction ca-

pabilities to the system.

7 . Puncturer : It changes the data rate according to the MCS.

8 . Interleaver : Changes the bits order in the data stream. It avoids burst errors.

9 . Mapper : Converts bits to symbols, it maps data bits to a BPSK, QPSK or 16

QAM symbol according to the MCS adopted.

∙ Modulator Signal Processing

10 . Frequency Spreader : Spread the signal in a frequency band greater than the

original signal, replicas of the signal are combined to obtain a single symbol.

10′ . STF : Short training field, it adds a known sequence to the beginning of the

frame, information that is used at the receiver to estimate and correct timing

and frequency errors.

10′ . LTF : Long training field. Known sequence different from the STF. Although

with the same function, used for synchronization, frequency error correction

and channel equalization at the receiver.

10′ . Pilot, DC and Guard: Pilots tones for channel detection and channel gain

estimation, DC tone, and guard interval to avoid channel interference.

11 . Framer : The framer rearranges the complex symbols and prepares the OFDM

symbol.

12 . Inverse Fourier Transform: It converts the symbol from the frequency domain

to the time domain.

13 . CP Insertion: Adds a Cyclic Prefix, to eliminate ISI.

Figure 3.3 depicts the demodulator structure, its main goal is to recover the

transmitted data. Basically the receiver undoes the process done by the transmitter,

however, before this can be accomplished, it has to deal with synchronization issues.

Timing synchronization must be attained as well as frequency errors corrected to revert

the process done in the transmitter. This is why almost all the signal processing part

of the receiver is dedicated to synchronization and frequency error correction. Frequency

synchronization and its implementation are one of the topics of this work, specific on the

ICFO which is estimated and corrected by the block highlighted in Figure 3.3. A detailed

3.1. IEEE802.15.4G STANDARD 36

Figure 3.3 – Implemented MR-OFDM receiver.

description of the ICFO was described in section 2.1.1. The processing involved at the

demodulator is as follows:

∙ Demodulator Signal Processing

0. Resamples: Resamples the incoming signal to compensate for the Sampling

Clock Offset (SCO) introduced by the frequency offset in the sampling clocks.

1. Frame Synchronizer : The first step in the OFDM demodulation is the time

synchronization. It determines the starting point of the OFDM frame.

2. Fractional CFO: The frequency error is divided into two parts, a fractional part

and an integer part regarding the subcarrier space. In the approach chosen in

this work, the fractional correction is performed first.

3. CP Remover : The prepended copy of the symbol end, to combat ISI, is removed.

4. FFT/ICFO: ICFO estimation/correction is performed and time domain to fre-

quency domain transformation is performed.

5. Equalizer : The zero forcing equalizer [28] compensates for the channel distortion.

6. Phase Tracker : Phase correction for residual errors not corrected in previous

stages.

7. Deframer : The frame is decomposed into its parts, namely, DC and pilots tones,

Guard intervals, PSDU and PHR.

3.1. IEEE802.15.4G STANDARD 37

8 . Frequency Despreader : The frequency spreading is reverted, the replicas in the

frequency domain are removed.

9 . Soft demaper : From symbols to bits, from this point on, only data bits are

processed.

∙ Demodulator Data Processing

10 . Soft deinterleaver : Rearranges the data in order to revert the process done by

the interleaver at the transmitter.

11 . Soft Depuncturer : Reverts the process of the puncturing at the transmitter.

12 . Viterbi Decoder : The decoding of the data to perform Forward Error Correc-

tion, depending on the noise levels in the transmission the output at this stage

is free or with much fewer errors than before.

13 . Descrambler : Returns the original data sequence, the payload or PSDU data.

This chapter described briefly the MR-OFDM mode of the IEEE802.15.4g

standard. The technical aspects covered, and the requirements of this standard will define

the characteristics of the implementations of this work.

38

4 The Discrete Fourier Transform and Fast

Fourier Transform

Frequency domain analysis is widely used in many areas, control systems engi-

neering, electronics, signal and image processing are among the many fields which benefit

from analysis of signals in the frequency domain. It allows analyzing system from a dif-

ferent point of view, simplifying its mathematical representation and allowing a more

straightforward manipulation. One way of transforming a discrete signal from time do-

main to frequency domain is by means of the DFT. Since the direct implementation of

the DFT is time and resource consuming and due to the wide range of applications of

the DFT, several algorithms called Fast Fourier Transforms were conceived. Fast Fourier

algorithms decrease the DFT complexity (fewer operations and/or simpler computations

tasks) by means of a divide and conquer approach. Essentially it maps the problem into

several sub-problems and applies the division recursively to the sub-problems as well,

eventually leading to a reduction in computation complexity.

Fast algorithms can be classified into two major classes [29], those based on

the Good’s mapping, which basically factors the DFT or divides the DFT into smaller

DFTs with its sizes being co-prime, this approach has the advantage of no producing

any Twiddle Factor (𝑊𝑁 = e
⊗j2π

N), with this, a lower bound in complex multiplications

is achieved. The Winograd Fourier Transform (WFTA) [30] and Prime Factor algorithm

(PFA) [31] are two of the algorithms based on this method. The second class of algorithms

known as Cooley-Tukey Fast Fourier Transform () or radix-r algorithms, suitable for 𝑟𝑛

size sequences, where the use of twiddle factors is inevitable.

CT-FFT algorithms add regularity to the computation, considering that CT-

FFT algorithms show a more repetitive use of fewer modules. Algorithms based on a

CT-FFT approach are easier to implement in a parallel kind of way since the small

repetitive modules are applied on contiguous sets of data. The repetitive structure is

also advantageous since improvements in those small repetitive blocks allow for an overall

improvement in the computation. Moreover, CT-FFT algorithms are more suitable for in-

place computation (the computed result is written back to where it was read), a desired

feature since no additional memory is required. On the other hand, algorithms like the

WTFA require large memory and does not allow for in-place computation [29].

All the advantages of the CT-FFT algorithms over Good’s based ones, lead to

Cooley-Tukey algorithms begin more used in implementations. Complex multiplications

alone are not the main concern in implementation and computation time, as well as

4.1. FFT COOLEY-TUKEY ALGORITHM 39

relevants are the number of additions, memory access and design budget. It is worth

noticing that while a lot of research have been done in the subject due to the importance

of the DFT and FFT algorithms, new algorithms continue to emerge, as is the case of the

Sparse Fourier Transform presented in [32] and implemented in [33] for a million point

DFT. The Sparce Fourier Transform algorithms take advantage of the sparsity shown in

some signal where the DFT is applied, that is, only a few components of the signal are

of importance since all other signal components in the frequency domain are zero, the

algorithm then only computes the set of needed non-zero frequency components. This is

not the case of the current intended application, therefore, the classic approach to the

FFT implementation is adopted. A review of the Cooley-Tukey approach to the DFT

computation is presented in the folowwing.

4.1 FFT Cooley-Tukey Algorithm

The DFT is a mathematical tool widely used in signal processing. Basically,

the DFT of a N -point sequence converts discrete samples from time-domain to frequency-

domain and vice versa through equation (4.1):

𝑋[𝑘] =
𝑁⊗1∑︁

𝑛=0

𝑥[𝑛]𝑊 𝑛𝑘
𝑁 , (4.1)

where 𝑘 = 0, 1, 2, ≤ ≤ ≤ , N ⊗ 1 and 𝑊𝑁 (also known as twiddle factor) is given by:

𝑊𝑁 = e
⊗j2π

N . (4.2)

An N -point inverse DFT (IDFT) is computed as:

𝑥[𝑛] =
1
𝑁

𝑁⊗1∑︁

𝑘=0

𝑋[𝑘]𝑊 ⊗𝑛𝑘
𝑁 . (4.3)

The direct computation of the DFT is difficult to implement due to its high

computation complexity, for instance, a 𝑁 points computation of a sequence composed

of complex samples requires 𝑁2 complex multiplications (each complex multiplication is

equal to 4 real multiplications and 2 real additions) and 𝑁2 ⊗𝑁 complex additions (every

complex addition is equal to 2 real additions), a complexity of 𝑂(𝑁2) [34].

Based on a divide-and-conquer approach a new class of algorithms that opti-

mizes the computation of the DFT were developed, this new class of algorithms are known

as FFT. The Cooley and Turkey[35] algorithm is a well known FFT algorithm.

The divide and conquer approach divides the computation problem in smaller

problems and solves every smaller problem recursively using the same algorithm, the solu-

tion to the original problem is then the combination of the smaller solutions. A common

4.1. FFT COOLEY-TUKEY ALGORITHM 40

approach is to divide the problem by half; then each half is then divided by half, and

so on. The recursive division is known as radix-2 FFT; the partition goes until only size

two DFTs remain. Following this approach, two types of FFTs are derived according to

the domain where the partition is performed, the Decimation in Time (DIT), where the

partition occurs on the input sequence (time domain), and the Decimation in Frequency

(DIF) where the output sequence is partitioned (frequency domain).

The decimation in frequency algorithm is derived as follows, given a 𝑥(𝑛)

sequence of length 𝑁 = 2𝑝, where 𝑝 is an integer, the DFT of a time sequence 𝑥(𝑛)

computed as in (4.1) can be written as:

𝑋[𝑘] =
𝑁/2⊗1
∑︁

𝑛=0

𝑥[𝑛]𝑊 𝑛𝑘
𝑁 +

𝑁∑︁

𝑛=𝑁/2

𝑥[𝑛]𝑊 𝑛𝑘
𝑁

=
𝑁/2⊗1
∑︁

𝑛=0

𝑥[𝑛]𝑊 𝑛𝑘
𝑁 + 𝑊

𝑁𝑘/2
𝑁

𝑁/2⊗1
∑︁

𝑛=0

𝑥[𝑛 + 𝑁/2]𝑊 𝑛𝑘
𝑁 ,

(4.4)

Since 𝑊
𝑁𝑘/2
𝑁 = (⊗1)𝑘 (4.4) can be written as:

𝑋[𝑘] =
𝑁/2⊗1
∑︁

𝑛=0

[𝑥(𝑛) + (⊗1𝑘)𝑥(𝑛 + 𝑁/2)]𝑊 𝑛𝑘
𝑁 (4.5)

Decimating in frequency (i.e. splitting in odds and even frequency components)

and using the fact that 𝑊 2
𝑁 = 𝑊𝑁/2,

𝑋[2𝑘] =
𝑁/2⊗1
∑︁

𝑛=0

[𝑥(𝑛) + 𝑥(𝑛 + 𝑁/2)]𝑊 𝑛𝑘
𝑁/2 (4.6)

𝑋[2𝑘 + 1] =
𝑁/2⊗1
∑︁

𝑛=0

[[𝑥(𝑛) ⊗ 𝑥(𝑛 + 𝑁/2)]𝑊 𝑛
𝑁]𝑊 𝑛𝑘

𝑁/2 (4.7)

The entire coputation of the 𝑁/2 point sequences (4.5) and (4.7) can be rewrit-

ten as:

𝑋[2𝑘] =
𝑁/2⊗1
∑︁

𝑛=0

𝑔1(𝑛)𝑊 𝑛𝑘
𝑁/2 (4.8)

𝑋[2𝑘 + 1] =
𝑁/2⊗1
∑︁

𝑛=0

𝑔2(𝑛)𝑊 𝑛𝑘
𝑁/2 (4.9)

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 43

Figure 4.4 – Simple In-place architecture.

in parallel, typically one butterfly for every FFT stage. The parallel approach uses more

resources, but the throughput is higher than that of “in-place” architectures.

4.2.1.1 FFT Implementation

4.2.1.1.1 Hardware Considerations

The architecture presented is a collection of methods and algorithms that are

believed to simplify the complexity of the FFT hardware implementation. The architecture

chosen to achieve the standard requirements for the DFT implementation is based on

the “in-place” approach. As was mentioned before, this method has a low throughput,

however, it consumes less hardware when compared to parallel architectures, as needed

by the IEEE802.15.4g standard.

The “in-place” method also allows more hardware reuse if the architecture is

intended for variable size FFTs. The same hardware is used to perform the computation,

varying only the time spent to do so. This could not be accomplished by a pipeline

architecture, since one butterfly and a memory module is needed per FFT stage, leaving

resources unused for the lower size FFTs and wasting power. In the following sections, a

description of the various parts that compose the FFT/IFFT architecture is presented.

Memories The “in-place” FFT computation consists in taking two data samples

from memory, performing the computations and writing back the computed values to

memory as shown in Figure 4.4, the process is repeated 𝑁/2𝑙𝑜𝑔2(𝑁) times. To take ad-

vantage of parallelism two banks of double-port memory are used, namely M0 and M1,

allowing the butterfly unit to retrieve two data points simultaneously, as well as to write

data to memory in the same manner.

Address Generator (ADG) In the “in-place” approach scheme the computed data

is written back to the memory space from where it was read. In the ordinary flow of the

algorithm this only occurs in the first stage of the FFT (See FFT Diagram in Figure 4.6),

e.g taking samples 𝑋[0] from M0 and 𝑋[4] from M1, computing the butterfly (B1 in

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 45

Figure 4.6 – 8 point FFT DIF diagram.

bit at each stage; its inputs are the value of CountB and inverted CountB. Additionally,

exchange multiplexers are placed at the input/output of the butterfly. These exchange

multiplexers alternate the butterfly input/output to the memories being read/written.

The multiplexers control signals are generated according to the butterfly (CountB) and

state counter (CountS). For computing a FFT of size 𝑁 = 2𝑛, 𝑙𝑜𝑔2(𝑁) stages and 𝑁/2

butterflies per stage are needed. Thus, the address generator needs CountS and CountB

with (𝑛 ⊗ 1) bits and ⌈𝑙𝑜𝑔2(𝑛)⌉ (⌈.⌉ is defined as the ceil operator), bits, respectively. Fig-

ure 4.5 shows a simple FFT architecture with the blocks involved in the address generation

highlighted.

Butterfly Unit The basic computation performed at every FFT stage is known as

the butterfly computation. Figure 4.2 shows the butterfly diagram for a radix-2 decima-

tion in frequency FFT. The operation involves taking two data samples, performing the

addition and subtraction between each one, and multiplying the subtraction result by the

twiddle factor(4.2).

The complex multiplication without any optimization [38] requires four real

multiplications and two real additions/subtractions, an operation that is usually very

large and time-consuming. The Coordinate Rotation Digital Computer (CORDIC) algo-

rithm [39] is an alternative to perform the complex multiplication operation, it requires

only add and shift operations, Figure 4.7 shows the detailed architecture of the DIF

butterfly. The CORDIC algorithm is detailed in section 4.2.1.2.

Additionally, using the CORDIC to perform the complex multiplication, the

ROM memory usually implemented to store the twiddle factor can be eliminated [14][13].

The substitution of the complex multiplier is as follows; the twiddle factor multiplication

is equivalent to the rotation of the sequence 𝑥(𝑛) by an angle ⊗2Þ
𝑁

𝑛𝑘, an operation that

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 46

Figure 4.7 – DIF Butterfly Architecture.

can be performed by the CORDIC algorithm. Although the substitution of the multiplier

by the CORDIC algorithm in the butterfly unit avoids the need of a memory to store

twiddle factors values, a ROM memory would still be required to store the phase angles.

However, if the order in which the data is read follows a pattern in the phase angles, they

can be generated in a generic way, as is the case of the addressing scheme presented in

the previous section.

Table 4.1 shows the angles values for a 16 point FFT in each stages. Here the

angle values show a pattern, the non-zero values are always equal to Þ/(𝑁/2) multiplied

by an integer. It can be noticed from the bit representation of this integer (Table 4.2)

that the next stage value is equal to the previous one shifted in one bit, or the first value

shifted 𝑆 times, where 𝑆 is the number of the 𝑛𝑡ℎ stage. Therefore, this integer value can

be generated by taking the butterfly counter and shifting its value at every stage. Then,

the angle can be obtained by multiplying this value with the constant Þ/(𝑁/2) value.

Table 4.1 – Angle values for a 16 size
FFT

Stage 0 Stage 1 Stage 2 Stage 3
0 0 0 0

1Þ/8 2Þ/8 4Þ/8 0
2Þ/8 4Þ/8 0 0
3Þ/8 6Þ/8 4Þ/8 0
4Þ/8 0 0 0
5Þ/8 2Þ/8 4Þ/8 0
6Þ/8 4Þ/8 0 0
7Þ/8 6Þ/8 4Þ/8 0

Table 4.2 – Bit representation of
Counter B shifted for a 16
point FFT

Stage 0 Stage 1 Stage 2 Stage 3
000 000 000 000
001 010 100 000
010 100 000 000
011 110 100 000
100 000 000 000
101 010 100 000
110 100 000 000
111 110 100 000

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 47

4.2.1.2 CORDIC

The CORDIC [39] is an algorithm that allows the implementation of many

trigonometric functions using basic arithmetic, (subtraction, addition, and shifts), this is

ideal for hardware implementation since trigonometric functions are resource consuming.

CORDIC algorithms emerge from a simplification of the rotation of a vector, it is as

shown in Figure 4.8:

𝑌

𝑋

𝑧

𝑧′

𝜃

Ð
𝑦

𝑥

𝑦′

𝑥′

Figure 4.8 – Rotation of a vector.

The rotation of a vector of magnitude ♣♣𝑧♣♣ from position 𝑧 to position 𝑧′ is

given by (4.12) and (4.13):

𝑥
′

= ‖𝑧‖(cos(Ð) cos(𝜃) ⊗ sin(Ð) sin(𝜃))

𝑥
′

= 𝑥 cos(𝜃) ⊗ 𝑦 sin(𝜃)
(4.12)

𝑦
′

= ‖𝑧‖(sin(Ð) cos(𝜃) + cos(Ð) sin(𝜃))

𝑦
′

= 𝑦 cos(𝜃) + 𝑥 sin(𝜃)
(4.13)

That can be expressed as

𝑥
′

= cos(𝜃)(𝑥 ⊗ 𝑦 tan(𝜃)) (4.14)

𝑦
′

= cos(𝜃)(𝑦 + 𝑥 tan(𝜃)) (4.15)

Removing the cos(𝜃) term to simplify the operation, the rotation becomes a

pseudorotation

𝑥
′

= 𝑥 ⊗ 𝑦 tan(𝜃) (4.16)

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 48

𝑦
′

= 𝑦 + 𝑥 tan(𝜃) (4.17)

The pseudorotation by an angle 𝜃 can be achieved by successive smaller ro-

tations. Restricting the angles so that every smaller rotation becomes tan(𝜃)𝑖 = 2⊗𝑖, the

pseudo-rotation or the multiplication by tan(𝜃) becomes a multiplication by 2⊗𝑖, which

can be implemented in hardware by merely shifting a binary word. Thus, rotating an

input vector by an angle 𝜃 is now an iterative process made-up of successive shifts and

adds operations.

𝑥𝑖+1 = 𝑥(𝑖) ⊗ 𝑑𝑖(2⊗𝑖𝑦(𝑖)) (4.18)

𝑦𝑖+1 = 𝑦(𝑖) + 𝑑𝑖(2⊗𝑖𝑥(𝑖)) (4.19)

𝑧𝑖+1 = 𝑧𝑖 ⊗ 𝑑𝑖 arctan 2⊗𝑖 (4.20)

𝑑𝑖 =

⎧

⨄︁

⋃︁

⊗1 𝑖𝑓 𝑧𝑖 < 0

+1 𝑖𝑓 𝑧𝑖 > 0

⎫

⋀︁

⋂︁
(4.21)

Equations (4.18), (4.19) and (4.20) describe the CORDIC algorithm, the third

equation (4.20) is called the angle accumulator and in conjunction with 𝑑𝑖 (4.21) (known

as the decision operator) determines the direction of the rotation. The operation mode

shown is known as the Rotation mode [39], and it rotates the input vector by a speci-

fied angle, the angle accumulator is initialized with the desired rotation angle, and for

every iteration, the decision operator is chosen such that the magnitude of the residual

angle tends to zero. The decision operator is then determined by the sign of the angle

accumulated.

Since the cos(𝜃) term is removed to simplify the algorithm the outputs 𝑥 and

𝑦 are scaled by a factor 𝑘𝑛, the scaling factor is given by:

𝑘𝑛 =
𝑛∏︁

𝑖=1

1
cos(𝜃)𝑖

=
𝑛∏︁

𝑖=1

√︁

1 + tan2 𝜃𝑖 =
𝑛∏︁

𝑖=1

√
1 + 2⊗2𝑖

𝑘𝑛 ⊃ 1.6476 as n ⊃ ∞
(4.22)

After 𝑛 iterations the CORDIC output is given by:

𝑥𝑛 = 𝑘𝑛[𝑥0 cos(𝑧0) ⊗ 𝑦0 sin(𝑧0)] (4.23)

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 49

𝑦𝑛 = 𝑘𝑛[𝑦0 cos(𝑧0) + 𝑥0 sin(𝑧0)] (4.24)

𝑧𝑛 = 0 (4.25)

A second operation mode called Vectoring mode can be accomplished if instead

of 𝑑𝑖 = 𝑠𝑖𝑔𝑛(𝑧𝑖), is chosen such that 𝑑𝑖 = 𝑠𝑖𝑔𝑛(𝑦𝑖). In this mode the vector is rotated by

the necessary angle so that the 𝑥 component of the result vector is maximized and its 𝑦

component tends to zero. After 𝑛 iterations the CORDIC output in Vectoring mode is

given by:

𝑥𝑛 = 𝑘𝑛

√︁

𝑥2
0 + 𝑦2

0 (4.26)

𝑦𝑛 = 0 (4.27)

𝑧𝑛 = 𝑧0 + tan⊗1(𝑦0/𝑥0) (4.28)

Besides the circular coordinate system described by the CORDIC equations

(4.18), (4.19), (4.20) can be adapted to perform operations in other coordinate systems,

namely hyperbolic and linear [40]. A new variable 𝑚, defines the coordinate system used.

Equations (4.29), (4.30), (4.31) define the new generalized CORDIC equations, Table 4.3

shows the operation modes. In Table 4.4 the CORDIC outputs for the three modes of op-

eration are shown and finally Table 4.5 shows some of the functions that can be computed

with the CORDIC algorithm.

𝑥𝑖+1 = 𝑥(𝑖) ⊗ 𝑚𝑑𝑖[2⊗𝑖𝑦(𝑖)] (4.29)

𝑦𝑖+1 = 𝑦(𝑖) + 𝑑𝑖[2⊗𝑖𝑥(𝑖)] (4.30)

𝑧𝑖+1 = 𝑧𝑖 ⊗ 𝑑𝑖à𝑖 (4.31)

The implementation of the CORDIC is an iterative hardware, which is struc-

tured as a cell array integrated into one block. A CORDIC iteration cell is made of 3

add-subs, 1 mux, 3 registers, and 2 wired shift blocks, as detailed in Figure 4.9. The

number of cells, n, is defined by the iteration parameter, which is, usually, equal to or less

than the width of the input signals.

4.2. ARCHITECTURE OF THE FAST FOURIER TRANSFORM 50

Table 4.3 – CORDIC Modes of operation

Mode 𝑑𝑖 Coordinate System à𝑖 m
Vectoring 𝑠𝑖𝑔𝑛(𝑦𝑖) Circular tan(2⊗𝑖) 1
Rotation 𝑠𝑖𝑔𝑛(𝑧𝑖) Hiperbolic tanh(2⊗𝑖) -1

- Linear 2⊗𝑖 0

Table 4.4 – Results of CORDIC Generalized equations

m Rotation Mode Vectoring Mode

1
𝑥𝑛 = 𝑘𝑛[𝑥0 cos(𝑧0) ⊗ 𝑦0 sin(𝑧0)] 𝑥𝑛 = 𝑘𝑛

√︁

𝑥2
0 + 𝑦2

0

𝑦𝑛 = 𝑘𝑛[𝑦0 cos(𝑧0) + 𝑦0 sin(𝑧0)] 𝑦𝑛 = 0
𝑧𝑛 = 0 𝑧𝑛 = 𝑧0 + tan⊗1(𝑦0/𝑥0)

0
𝑥𝑛 = 𝑥0 𝑥𝑛 = 𝑥0

𝑦𝑛 = 𝑦0 + 𝑥0𝑧0 𝑦𝑛 = 0
𝑧0 = 0 𝑧𝑛 = 𝑧0 + (𝑦0/𝑥0)

-1
𝑥𝑛 = 𝑘ℎ[𝑥0 cosh(𝑧0) ⊗ 𝑦0 sinh(𝑧0)] 𝑥𝑛 = 𝑘ℎ

√︁

𝑥2
0 ⊗ 𝑦2

0

𝑦𝑛 = 𝑘ℎ[𝑦0 cosh(𝑧0) + 𝑦0 sinh(𝑧0)] 𝑦𝑛 = 0
𝑧𝑛 = 0

Table 4.5 – Some Functions Computed by the CORDIC

Mode m 𝑥0 𝑦0 𝑧0 𝑥𝑛 𝑦𝑛 or 𝑧𝑛

Rotation 1 𝑘𝑛 0 𝜃 cos(𝜃) 𝑦𝑛 = sin(𝜃)
Vectoring 1 1 𝑎 0 𝑘𝑛

√
𝑎2 + 1 𝑦𝑛 = tan⊗1(𝑎)

Rotation ⊗1 𝑘ℎ 0 𝜃 cosh 𝜃 𝑦𝑛 = sinh(𝜃)
Rotation ⊗1 𝑎 𝑎 𝜃 𝑘𝑛𝑎𝑒𝜃 𝑦𝑛 = 𝐾𝑎𝑒𝜃

Vectoring ⊗1 𝑎 1 0 𝑘𝑛

√
𝑎2 ⊗ 1 𝑧𝑛 = cot⊗1(𝑎)

Vectoring ⊗1 𝑎 + 1 𝑎 ⊗ 1 0 2𝑘ℎ

√
𝑎 𝑧𝑛 = 0.5 ln(𝑎)

Vectoring ⊗1 𝑎 + 𝑏 𝑎 ⊗ 𝑏 0 2𝑘ℎ

√
𝑎𝑏 𝑧𝑛 = 0.5 ln(𝑎/𝑏)

Vectoring 0 sin(𝜃) cos(𝜃) 0 sin 𝑎 𝑧𝑛 = tan(𝜃)
Vectoring 0 sinh(𝜃) cosh(𝜃) 0 sinh 𝑎 𝑧𝑛 = tanh(𝜃)
Vectoring 0 ln(𝜃) ln(𝑎) 0 ln 𝑏 𝑧𝑛 = log𝑏(𝑎)

Figure 4.9 – CORDIC Cell.

4.3. IMPLEMENTATION RESULTS 51

4.2.2 IFFT Shifter

In order to accomplish the scaling need by the inverse Fourier Transform the

IFFT process (4.3), a shift right is performed at the end of every stage of the computation

process. Having 𝑙𝑜𝑔2(𝑁) stages shifting one bit after every stage is equivalent to dividing

the output by 1/𝑁 (Shifting right the output 𝑙𝑜𝑔2(𝑁) times). As this scaling is necessary

only for the IFFT process, one-bit control signal from the Control Unit selects whether

to bypass or shift the data according to the selected operation (FFT or IFFT). This bit

also controls the sign generated for the angle in the angle generator unit.

This approach allows decreasing the bit width of the IFFT. If the shift is not

performed after every other stage, there is a growth in the samples magnitude per stage,

therefore more bits are need to allocate that bit growth. Still, a shift would be needed

after the complete computation given the expected results. With this approach, there is

no significant bit growth, which allows to maintain the same bit width for the FFT and

IFFT.

The complete FFT/IFFT architecture is shown in Figure 4.10. Counters,

CORDIC based butterfly, IFFT shifter and angle generator are shown. A control unit

controls the behavior of the IFFT/FFT block for the different MR-OFDM modes and

inverse or forward transforms.

4.2.3 Variable Length FFT/IFFT

Since one of the requirements of the IEEE802.15.4g standard is the variable

length of the DFT/IDFT this architecture supports variable FFTs sizes. The architecture

was designed to support the maximum FFT size (128 points). Using comparators and

configuration signals resets area applied to counters, variables in the angle generator are

settled to accomplish the smaller FFT sizes. The hardware utilization is almost the same

for every FFT size; however, the time spent to compute every FFTs significantly changes.

4.3 Implementation Results

After the definition of the architecture detailed in Section 4.2.1, a high-level

model that of the FFT/IFFT was implemented in Matlab high-level scripting language.

Finally, the FFT/IFFT block was implemented using the VHDL hardware description

language and the results of its simulations compared to those of the high-level model.

Afterward, the design was prototyped on a Cyclone 5 FPGA development kit from Altera.

All the blocks described in the previous section were implemented, except the CORDIC

block which was an IP block taken from the project developed in our group at Eldorado

4.3. IMPLEMENTATION RESULTS 52

Figure 4.10 – FFT/IFFT internal architecture.

Institute.

Figure 4.11 depicts the IFFT verification process. First, a high-level model

of the entire MR-OFDM modulator was used to generate the test data for the IFFT

implementation. As can be seen in the verification diagram in Figure 4.11, random bits

go through the entire MR-OFDM data processing (refer to Figure 3.2 in Chapter3 for a

detailed description of the data processing process), then the processed bits are mapped

into symbols, and finally the framer rearranges the OFDM symbol according to the MCS

and OFDM option chosen. The SHR and PHR are also generated in this high-level model.

The OFDM symbols at the output of the framer are then fed into four IFFT models: a

high-level floating point model, generated using the Matlab IFFT function, a high-Level

fixed-point model also written in Matlab that emulates the behavior of the IFFT architec-

ture, an RTL behavioral model written in VHDL, and finally the FPGA implementation

on the FPGA development board. Every output is then compared against its upper-level

model, and the error is computed.

For the FFT case, the Matlab IFFT out is fed into the four FFT models,

the FFT verification diagram is shown in Figure 4.12. Tables 4.6 4.7 and 4.8 show the

IFFT verification results for the high-level model, RTL-VHDL model and the FPGA

implementation, respectively. Tables 4.9 4.10 4.11 for the FFT case. A sequence of 10000

bits were generated for different MR-OFDM MCSs levels and Options, (refer to annex B

for the different MCS levels specified in the standard). A quantization of 16 bits, with 11

fractional bits were used for the fixed point models. The error is measured as the ratio

between the signal power and the error power (the error is the difference between the

4.3. IMPLEMENTATION RESULTS 53

expected and measured value), as shown in equation (4.32):

𝑧𝑒𝑟𝑟(𝑑𝐵) = 10 log10

𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑒𝑟𝑟𝑜𝑟

(4.32)

IEEE Std 802.15.4g

MR-OFDM Data Processing
MR-OFDM Mapper

MR-OFDM Option

MR-OFDM MCS

MR-OFDM

Frammer

IFFT MATLAB

(Floating Point)

IFFT

High Level RTL Model

(Fixed Point)

IFFT RTL VHDL

Behavioral Model

(Fixed Point)

IFFT RTL VHDL

FPGA

Implementation

Error MATLAB

Error RTL VHDL

Error RTL FPGA
MATLAB MR-OFDM Model

Bits

Figure 4.11 – IFFT Verification Diagram

Table 4.6 – High-level IFFT Model/Matlab-IFFT Function Error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 33.6001 35.5834 32.5428 -
MCS3 (QPSK) 27.3959 35.5102 41.7698 49.1669

MCS5 (16-QAM) - 41.6800 34.8300 51.5497

Table 4.7 – RTL-VHDL Model/High-Level IFFT Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 26.0005 27.4329 24.6249 -
MCS3 (QPSK) 19.9895 27.3983 33.8124 41.5890

MCS5 (16-QAM) - 33.6300 27.0218 43.3534

Table 4.8 – FPGA IFFT/RTL-VHDL Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 53.4725 Inf Inf -
MCS3 (QPSK) 45.3678 52.2401 54.5039 53.7774

MCS5 (16-QAM) - 57.7434 50.2618 54.9637

Table 4.9 – High-level FFT Model/Matlab-FFT Function Error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 44.1185 45.2774 48.3403 -
MCS3 (QPSK) 45.6849 47.1415 49.9178 52.3192

MCS5 (16-QAM) - 47.3495 50.8720 52.5051

As can be seen from Table 4.74.10 small differences were found between the

VHDL RTL model and the high-level fixed-point model, for both, the IFFT and FFT

implementation. This is due to the CORDIC implementation, since this block was not

4.3. IMPLEMENTATION RESULTS 54

IEEE Std 802.15.4g

MR-OFDM Data Processing
MR-OFDM Mapper

MR-OFDM Option

MR-OFDM MCS

MR-OFDM

Frammer

IFFT MATLAB

(Floating Point)

MATLAB MR-OFDM TX Model

Bits

FFT MATLAB

(Floating Point)

FFT

High Level RTL Model

(Fixed Point)

FFT RTL VHDL

Behavioral Model

(Fixed Point)

FFT RTL VHDL

FPGA

Implementation

Error MATLAB

Error RTL VHDL

Error RTL FPGA

Figure 4.12 – FFT Verification Diagram

Table 4.10 – RTL-VHDL Model/High-Level FFT Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 37.0916 37.5182 41.3165 -
MCS3 (QPSK) 37.7206 38.3136 43.1312 47.7071

MCS5 (16-QAM) - 39.0021 43.9751 47.5054

Table 4.11 – FPGA FFT/RTL-VHDL Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 36.0128 37.5355 40.2791 -
MCS3 (QPSK) 37.4271 38.8322 41.9002 45.7814

MCS5 (16-QAM) - 39.1031 42.4393 46.0977

implemented, only instantiated in the architecture. Also, small differences between the

RTL-VHDL simulation and the data taken from the FPGA implementation were found.

Those differences mean that the FPGA synthesis tool generated netlist has some differ-

ences with the logic described in the RTL behavioral model. This may be due to: the

FPGA synthesis process, this is an interpretation of an abstract RTL description, it is

possible that the synthesis tool is performing some misinterpretation of this RTL Behav-

ioral description; a second possible cause can be the FPGA synthesis tools settings and

optimizations parameters, these parameters and settings try to optimize area, power or

timing and sometimes show undesired results. An FPGA implementation debugging , and

maybe changes to the RTL behavioral description must be performed to accomplish more

accurate results. These differences do not compromise the integrity of the computation.

To show the accuracy of the RTL-VHDL simulation and the FPGA implemen-

tation Tables 4.12 ,4.13 ,4.14, 4.15 show the error between the RTL behavioral simulation,

the FPGA implementation and the Matlab floating point model, for the both the IFFT

and FFT computations. As can be seen from these results there is not much difference be-

tween the VHDL and FPGA implementation for the FFT case for all options for BASPK

and QPSK symbols, for 16-QAM we see a loss in accuracy in the FPGA implementation.

For the IFFT case, we also see a loss in precision, for the Option 1 and Option 2, for

4.3. IMPLEMENTATION RESULTS 55

options 3 and 4 the SNR due to the error decreases in a great amount. As was mentioned

before, further debugging of the FPGA implementation and changes in the RTL desing

are needed to get the desired results.

Table 4.12 – IFFT RTL-VHDL Model/Matlab Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 30.8096 31.7769 29.2071 -
MCS3 (QPSK) 24.7766 31.7623 38.2470 46.4801

MCS5 (16-QAM) - 37.9841 31.3515 47.6666

Table 4.13 – IFFT FPGA Implementation/Matlab Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 30.8570 31.7769 29.2071 -
MCS3 (QPSK) 24.7766 31.7623 38.3970 46.0057

MCS5 (16-QAM) - 38.0532 31.4776 47.3911

Table 4.14 – FFT RTL-VHDL Model/Matlab Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 43.0932 42.4841 49.4530 -
MCS3 (QPSK) 43.1822 42.5255 51.7607 49.2994

MCS5 (16-QAM) - 43.9739 51.7811 48.9116

Table 4.15 – FFT FPGA Implementation/Matlab Model error

MCS Opt 1 (SNR dB) Opt 2(SNR dB) Opt 3(SNR dB) Opt 4(SNR dB)
MCS1 (BPSK) 42.7790 41.7801 46.5021 -
MCS3 (QPSK) 42.5880 42.2511 49.7080 49.2263

MCS5 (16-QAM) - 43.3831 49.2263 48.1357

4.3. IMPLEMENTATION RESULTS 56

4.3.1 FPGA Prototyping

The proposed FFT/IFFT implementation along with the one provided by Al-

tera was synthesized on a Cyclone 5 FPGA development kit from Altera. Input/output

of both FFTs have 32 bits (i.e., 16 bits In-phase, 16 bits Quadrature) and samples in nat-

ural order. The proposed design and Altera’s FFT was synthesized in Quartus II version

14.1 software, maximum frequency and resource usage of the two designs are detailed in

Table 4.16.

Table 4.16 – 128-point FFT Implementation Results for Altera’s 5CGXFC5C6F27C7N

FFT Fmax ALMs DSP Blocks Memory Registers Combinational
Altera 204.62 MHz 2190 (5%) 6 (4%) 8508 (< 1%) 4032 1888

Our Design 118.44 MHz 1259 (5%) 0 (0%) 4096 (< 1%) 1796 1789

The architecture implemented in Altera’s IP is a radix 22 single path delay

feedback architecture, this approach has the computation complexity of a radix-4 butterfly

but maintaining the structure of the radix-2 algorithm [7]. Unfortunately, Altera’s FFT

IP documentation does not show a detailed description of its architecture; therefore only

results of the overall area consumption of the FFT radix 22 is shown (Table 4.16).

It is worth to notice that even though Altera’s design can work with higher

frequencies than our design, as shown in Table 3.1, the maximum FFT/IFFT Sample Rate

for IEEE802.15.4g is 1.3333 MHz which is 98.87% lower than our maximum. Moreover, our

design does not use DSP blocks and requires fewer registers and memory than the design

provided by Altera (it is achieved a 51.85% reduction of memory, a 55.45% reduction of

registers).

Table 4.17 – Resource Utilization by Entity in the FFT/IFFT

Entity ALMs Combinational ALUT Registers Memory

FFT Top 1328.0 1872 1788 4096
Control 27.7 46 25 -
FFT Module 1293 1814 1763 4096

Butterfly 1020 1515 1494 -
CORDIC 598 1168 950 -
Adders 4x8 4x16 0 -
Other Logic 390 283 544 -

Address Generator 228 217 253 -
Angle Generator 44 82 16 -
RAM M0 - - - 2048
RAM M1 - - - 2048

Table 4.17 shows the consumption by sub-entity of the entire FFT/IFFT design

given by the Quartus 14.1 fitter (place and route). It can be seen that the butterfly

4.3. IMPLEMENTATION RESULTS 57

consumes the most resources of the FPGA, followed by the address generator. The control

unit and angle generator are simple circuits consuming the least of hardware resources.

Table 4.18 – Resource Utilization by Entity in the OFDM Modulator

Entity ALMs Combinational ALUTs Registers Memory Bits

OFDM Modulator 2643.3 1821 3208 111336
IFFT 1206.5 1767 1756 4096
Framer 929.6 860 1135 0
Interleaver 123.8 211 71 192
Padder 83.3 142 50 0
CPI 65.1 112 31 2048
FIFO 49 80 29 105000
PHR Generator 44.7 58 47 0
Handler 33.9 52 18 0
Mapper 26.2 43 30 0
Scrambler 20.5 37 17 0
Puncturer 19.1 30 12 0
Encoder 12.5 20 13 0

The Table 4.18 shows the resource usage by entity in the OFDM transmitter.

It can be seen how the FFT block compares with the whole design. Although the FFT is

the most resource-consuming overall (1206 Adaptive Logic Module ALMs 1), it falls after

the Framer by 276.9 ALMs.

1 The ALM is the basic building block of Altera’s FPGAs. Each ALM can support up to eight inputs
and eight outputs, contains two or four register logic cells and two combinational logic cells, two
dedicated full adders, a carry chain, a register chain, and a 64-bit LUT mask.[41]

58

5 Integer Carrier Frequency Offset Architec-

ture

In this Chapter, an architecture for the estimation and correction of the ICFO

is presented. The architecture takes advantage of the FFT computation and the MR-

OFDM demodulator structure to estimate the ICFO in a simple and low hardware com-

plexity cost manner. Performance and implementation results are shown for the proposed

method. Additionally, a more robust frequency error estimation that takes into account

other impairments that affect the OFDM synchronization, is proposed.

The functioning of the employed method is as follows. Using a Data-Aided

approach (a known sequence is employed to perform the estimation), a cross-correlation

is performed between the received corrupted signal and the reference found in the Syn-

chronization Header (SHR) of the PPDU of the MR-OFDM mode. The cross-correlation

operation measures the similarity between two signals, e.g. 𝑓(𝑛) and 𝑔(𝑛), (5.1) shows the

cross-correlation operation. The cross-correlation operation is a sum of products of signals

samples, with one signal dislocated one sample at a time. Since the cross-correlation is a

measure of the similarity of signals, and the ICFO is a shift of carriers in the OFDM sym-

bol, the ICFO can be found employing the cross-correlation (and computing its maximum

value).

𝑓 [𝑛] ⋆ 𝑔[𝑛] =
𝑁⊗1∑︁

𝑛=0

𝑓 *[𝑛] ≤ 𝑔[𝑛 + 𝑙] for 𝑙 = 0 to 𝑁 ⊗ 1 (5.1)

Figure 5.2 shows the result of the cross-correlation operation between a signal

of size 128 and its delayed version on 20 samples corrupted by additive white Gaussian

noise. Clearly, the correlation result shows a peak value at the correlation sample number

21. The performance of the cross-correlation in estimating the displacement of a signal

from its reference point for all MR-OFDM options, in this case between a clean LTF and

the dislocated one corrupted with additive white noise and a multipath channel, is shown

in Figure 5.3. Figure 5.1 shows the diagram of the high-level model used to estimate

the performance of the ICFO, an LTF generated accordingly to the MR-OFDM option

is corrupted with channel impairments, then the ICFO is estimated wit the FFT Based

ICFO, the result is then compared with the ICFO added to the signal.

The performance is measured as the probability of success in finding the exact

value of the displacement from the corrupted and reference signal. For that, 1000 iterations

were performed for every SNR point, raging the SNR between ⊗25𝑑𝐵 to 10𝑑𝐵. The

CHAPTER 5. INTEGER CARRIER FREQUENCY OFFSET ARCHITECTURE 59

LTF

OFDM Option

X

Frequency Error

FFT Based

ICFO Estimator
=

Error
Channel

Figure 5.1 – ICFO Test High-Level Model Diagram

algorithm attains a perfect estimation (a probability of success of 1) for a noise level close

to ⊗10𝑑𝐵 for OFDM Options 1, for the MR-OFDM option 4 the probability of success is

reached at approximately ⊗5𝑑𝐵, the performance of the estimation diminished with the

correlation size, that is the size of the symbol of the MR-OFDM option.

Correlation Sample

0 20 40 60 80 100 120 140

C
o
rr

e
la

ti
o
n
 V

a
lu

e

0

2

4

6

8

10

Figure 5.2 – LTF Cross-Correlation output.

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 4

Figure 5.3 – Probability of success of the FFT Based Correlation.

The cross-correlation computation, based on FFT/IFFT, is equivalent to the

operation in (5.2), where 𝑓(𝑛) and 𝑔(𝑛) are time discrete signals, ⋆ denotes circular corre-

5.1. ICFO FFT-BASED ARCHITECTURE 60

lation, ≤ pointwise product, 𝐹 and 𝐹 ⊗1 direct and inverse Fourier transforms. According

to (5.2) the cross-correlation in one domain (either frequency or time) can be computed

by taking the product, in a pointwise manner, of the two signals in the opposite domain

and then performing the conversion back to the desired domain in which the result is

required. This equivalence operation is known as the cross-correlation theorem [42]. For

the intended application, this can be advantageous, since it is possible to use the FFT not

only to convert the incoming signal from time domain to frequency domain in the MR-

OFDM demodulator but also, to calculate the cross-correlation between the two signals,

saving a considerable amount of resources needed to compute the cross-correlation.

𝑓 *[𝑛] ≤ 𝑔[𝑛] 𝐹⇐==⇒
𝐹 ⊗1

𝐹 ¶𝑓 [𝑛]♢ ⋆ 𝐹 ¶𝑔[𝑛]♢ (5.2)

𝑓 [𝑛] ⋆ 𝑔[𝑛] 𝐹⇐==⇒
𝐹 ⊗1

𝐹 * ¶𝑓 [𝑛]♢ ≤ 𝐹 ¶𝑔[𝑛]♢ (5.3)

5.1 ICFO FFT-based Architecture

Taking advantage of the reuse technique to implement the cross-correlation,

the architecture depicted in Figure 5.4 is proposed. It performs the estimation/correction

as follows: first, during the estimation, the received corrupted LTF is stored in the FIFO

and simultaneously sent to the complex multiplier, where it is multiplied by the conjugate

of the reference LTF in time domain. Next, the result is processed by the FFT, being

converted to the frequency domain.

Figure 5.4 – Integer carrier frequency offset estimator/corrector.

The resulting data, which is the cross-correlated LTF in the frequency domain,

is sent to the Peak Searcher, where the index of the maximum value of the correlation is

drawn. After the initial estimation, data at the FFT input and output are exchanged. At

the input, a multiplexor exchanges the result of the multiplier and the stored data in the

FIFO. At the output a demultiplexor exchange the symbols in the frequency domain to

be sent to the symbol shifter, which corrects the ICFO. This approach saves a significant

amount of hardware resources and reduces the block latency, since typical correlation

involves extra clock cycles (unless it is done in a parallel approach) and units, multipliers

and adds, in this work the process is performed by the FFT and a complex multiplier.

5.1. ICFO FFT-BASED ARCHITECTURE 61

5.1.1 Complex Multiplier

The Complex Multiplier is composed of two adders and four multipliers. For ev-

ery clock, one received sample is fed into this block and multiplied by the reference’s com-

plex conjugate. The conjugated is obtained by a simple two’s complement binary inversion

of the imaginary component of the data. The FIFO and the multiplexor/demultiplexor

ensure the correct flow of the input symbols according to the stage of the ICFO block,

the estimation or the correction. Figure 5.5 shows the architecture of the multiplier.

Figure 5.5 – Architecture of the complex multiplier.

5.1.2 FFT

The FFT engine is the IFFT/FFT core that uses Radix-2, based on CORDIC [39],

presented in section 4.2.1.

5.1.3 Peak Searcher

The Peak Searcher looks for the index of the max value in magnitude on the

FFT output, Figure 5.6 shows the architecture of the peak searcher. It is composed of

a CORDIC working in vectoring mode and a comparator. For every sample received

the magnitude of the complex data is computed and compared with its previous value,

registering the higher one and updating a register with the current sample count (reg

idx). So, when the last sample is received, the register result is equal to the index of the

maximum peak among the FFT samples.

5.1.4 Symbol Shifter

The Symbol Shifter corrects the ICFO by adjusting the sub-carriers within an

OFDM symbol according to the Peak Searcher output. As mentioned, the kind of error

compensated by this architecture is equivalent to a number of subcarrier shifts equal to

5.2. IMPLEMENTATION RESULTS 62

Figure 5.6 – Architecture of the peak searcher.

the ICFO estimated value. Null tones are appended before and after the actual significant

data.

As can be seen to estimate/correct the ICFO simple blocks are added to the

FFT, saving a considerable amount of hardware resources as a result, since the used

method exploits the MR-OFDM structure re-using the available hardware. In the follow-

ing, implementation results and quantitative results of the savings are shown.

5.2 Implementation Results

After the architecture detailed in Section 5.1 was defined, a golden model was

implemented using Matlab high-level language. Subsequently, the integer CFO estimator

block was implemented using the VHDL hardware description language and the results

of its simulations compared to those of the golden model. In figure5.7 a diagram of the

ICFO RTL VHDL verification is shown. The verification process is as follows, first an

LTF with fequency offset is generated, then white noise is added. Afterwards, the ICFO

is estimated using the VHDL RTL and the Matlab Golden Model. The computed ICFO

of the two models (The RTL and Maltab model) is compared against the added ICFO,

figure 5.8 shows the probability of success in estimating the ICFO for the Matlab Model

and the RTL-VHDL simulation for every MR-OFDM option. The results show a decrease

in performance with the sequence size, for Option 1 the performance of the ICFO archi-

tecture decreases in almost 30% for -10dB of channel noise, for Option 4 the performance

for both models is almost the same. The FPGA verification and validation process is

currently under development.

5.2.1 FPGA Prototyping

The proposed design was implemented on a Cyclone 5 FPGA development kit

from Altera. The data samples have 32 bits (i.e., 16 bits In-phase, 16 bits Quadrature).

5.2. IMPLEMENTATION RESULTS 63

LTF

OFDM Option

X

Frequency Error(β)

FFT Based

ICFO Estimator
=

Error High Level Model
AWGN

Channel

FFT Based

ICFO Estimator

Matlab Model

RTL Behavioral

=

Error RTL Behavioral Model

e
− j 2πβb

N

β’

β’

Figure 5.7 – ICFO Test High-Level Model Diagram

SNR(dB)
-30 -25 -20 -15 -10 -5 0

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-30 -25 -20 -15 -10 -5 0

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-30 -25 -20 -15 -10 -5 0

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-30 -25 -20 -15 -10 -5 0

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 4

RTL VHDL Model

Matlab Model

Figure 5.8 – ICFO Verification Results VHDL Simulation and MAtlab Model

Altera’s Quartus II version 14.1 was used to synthesize the architecture, maximum fre-

quency, and resource usage are detailed in Table 5.1. Fitter (place and route) detailed

resource consumption by entity is shown in Table 5.2, combinational logic, registers used

and ALMs occupied are presented.

Table 5.1 – CFO Implementation Results for Altera’s 5CGXFC5C6F27C7N

Fmax ALMs DSP Blocks Memory Registers

ICFO 59.32 MHz 2568 (8%) 0 (0%) 20244 (< 1%) 2737

5.2.2 Synthesis Analysis

As expected the FFT is the most resource consuming block in the entire ICFO

as shown in Table 5.2, followed by the peak searcher and this in turn by the multiplier

conjugate. The FIFO memory that stores the LTFs while the estimation is being per-

formed (the LTFs are needed by the equalizer for channel estimation) is the least resource

5.2. IMPLEMENTATION RESULTS 64

Table 5.2 – Resource Utilization by Entity in the FFT Based ICFO

Entity ALMs Combinational ALUT Registers Memory

ICFO Top 2568 4208 2737 20244
FFT 1261 1789 1781 4096
Peak Search 473 909 665 -
Multiplier/Conjugate 465 798 86 7680
FIFO Memories 36 62 21 8448

Table 5.3 – CFO Implementation Resource utilization by entity in the MR-OFDM De-
modulator

Enity ALMs Combinational ALUTs Registers Memory (Bits)

OFDM Demodulator 22077.1 31833 23615 1181025
Frame Synchronizer 7057.5 11018 8332 36169
Viterbi decoder 3852.4 3563 3942 0
Fractional CFO Corrector 2650.2 5151 2946 0
Integer CFO Corrector 2479.7 4011 2719 20224

Equalizer 2121.7 2451 2915 3160
Despreader 1106.5 790 935 0
Deinterleaver 125.2 217 63 960
Deframer 109.6 163 73 0
Demapper 91.9 174 59 0
CP Remover 51.3 71 41 0
Depuncturer 16.7 31 23 0
PHR Parser 14.3 9 33 0
Descrambler 10.3 18 14 0

consuming block of the entire architecture. On the other hand, the FIFO is the most mem-

ory consuming block, 8448 bits are needed to store the two OFDM LTF symbols. The

multiplier/conjugate block makes use of 7680 bits to store the LTFs for every MR-OFDM

option in time domain, and finally 4096 bits used for the computation of the IFFT/FFT

block. Although the ICFO is one of the most resource consuming blocks of the entire

MR-OFDM Demodulator (see Table 5.3 for a summary of the resource utilization by

entity of the MR-OFDM receiver) its real resource consumption does not include the re-

sources utilization of the FFT block, since this block is needed in the receiver to perform

the demodulation, in spite of the ICFO. The resources needed by the ICFO without the

FFT/IFFT block are shown in Table 5.4.

Table 5.4 – Resource Utilization by he ICFO without the FFT

Entity ALMs Combinational ALUT Registers Memory

ICFO 973.8 1769 772 16128
Peak Search 473 909 665 -
Multiplier/Conjugate 465 798 86 7680
FIFO Memories 35.8 62 21 8448

To exhibit the advantages of the presented approach, the presented architecture

5.2. IMPLEMENTATION RESULTS 65

is compared with an alternative approach. Figure 5.9 shows an alternative architecture

for the implementation of the integer CFO block.

Figure 5.9 – Integer carrier frequency offset estimator/corrector with correlator.

In this approach the LTFs (a stored reference LTF and the received LTF) are

correlated in the frequency domain. Therefore, the corrupted LTF is first passed through

the FFT, then the cross-correlation is performed between the two LTFs and subsequently

the peak value index is taken from the cross-correlation output. The correction is per-

formed in exactly the same manner than it was previously explained, data is shifted

according to the index given by the peak searcher. The FIFO memory stores the data

while the frequency error estimation is performed. The operations performed by the two

architectures are the same, correlate signals, find the peak value index and finally perform

the sub-carriers shift to correct the data. The only difference between the two approaches

is the correlation operation computing methods, one is performed by means of a correlator

circuit, the other takes advantage of the cross-correlation theorem that uses a complex

multiplier and reuses the FFT engine. From a hardware point of view the only difference

between the two architectures is the multiplier and conjugate block, used in the proposed

design, while the other architecture uses a correlator.

In [43], Altera proposes an high performance low-cost Parallel Samples, Par-

allel Coefficients and Time division multiplexing correlator (PPT Correlator) for wireless

applications. The reference sequence used in Altera’s correlator exhibits the same format

than that of the IEEE802.15.4g in the frequency domain (the LTFs is composed of 0,

1, -1 valued samples), thus, is possible to employ Altera’s approach to implement the

correlation for our purposes. Figure 5.10 shows the architecture for altera’s correlator.

This architecture calculates 𝑛 * 𝑑 correlation points together, where 𝑛 is the

number of samples processed together, and 𝑑 is the number of correlation points computed

in parallel. After 𝐿/𝑛 clock cycles, where 𝐿 is the length of the correlation sequence, the

correlation computation for 𝑑 correlation points is achieved. 𝑛 reference samples are stored

on 𝑛 flip-flops, 𝑅 in Figure 5.10. The reference is then multiplied by 𝑛 + 𝑑 ⊗ 1 samples.

Since the reference sequence is composed of only +1/⊗1 samples in the frequency domain,

the multipliers can be implemented as an exclusive or gate (XOR) of 𝑏 bits, being 𝑏 the

bitwidth of the samples. The XOR multipliers output is then fed to an adder tree, as

shown in Figure 5.11, the last adder of the adder tree sum all the intermediate results.

5.2. IMPLEMENTATION RESULTS 66

L

d

n

Figure 5.10 – Altera’s PPT Correlator Architecture.

Figure 5.11 – Altera’s PPT Correlator Adder Tree.

According to [43] the size of the correlator in logic elements (LE)1 is given

by (5.4):

𝑁𝐿𝐸𝑠 = 𝑛 + 𝑏 * (𝑛 + 𝑑 ⊗ 1) + 𝑑 * [2 * (𝑙𝑜𝑔2(𝐿) + 𝑏) +
𝑙𝑜𝑔2(𝑛)
∑︁

𝑖=1

𝑛

2𝑖
* (𝑏 + 𝑖)], where (5.4)

n = Number of samples processed together

d = Number of correlation points calculated together

b = Number of bits per sample

L = Length of each shifted correlator sequence

1 LEs are the smallest units of logic in an Altera FPGA device architecture. (1 ALM = 2.65 LEs)

5.3. ICFO AND STO 67

Altera’s PPT correlator size in LEs according to (5.4) is of 8613 for the

maximum symbol size of the MR-OFDM symbol and a single correlation point calculated

per clock cycle. For five correlation points per clock cycle, the number of logic elements

of the PPT correlator is of 26297. The ICFO’s multiplier conjugate block size in ALMs

is of 465 (Table 5.2). Each ALM is equal to 2.65 LEs [44]; thus the LE consumed by

the multiplier conjugate block of the proposed architecture is of 1232, that means the

correlator consumes 7.42 times more than the multiplier conjugate block in FPGA’s LE

with one correlation point per clock cycle. Changing the number of samples that the

correlator process together, 𝑛 to 16, with only a single correlation point calculated together

the number of logic elements that the PPT correlator consumes is of 1112 LEs, which is

close to the number of LEs consumed by the complex multiplier. The variation of LEs

with the number of samples computed together and the number of correlation points

calculated in parallel with a sequence length L = 128 and bitwidth of 16𝑏 per sample (a

complex number of 32𝑏) is shown in Figure 5.12.

Table 5.5 – Resource comparison between complex multiplier and correlator

Architectures Blocks ALMs

Proposed ICFO Multiplier Conjugate 465

Altera’s Correlator [3]
Min Parallelism (1 point) 3250

Parallelism of 5 Points 13310

0 2 4 6 8 10 12 14 16 18 20
0

10000

20000

30000

40000

50000

Number of correlation points calculated together (d)

L
o
g
ic

 E
le

m
e
n
ts

 (
L
E

s
)

n = 16

n = 32

n = 64

n = 128

Figure 5.12 – Altera’s PPT Correlator LEs.

5.3 ICFO and STO

Since the first step in the OFDM synchronization process is the timing syn-

chronization and at this stage channel impairments, noise and CFO is still present in the

signal, perfect timing estimation is always difficult to achieve. Algorithms that estimate

the timing offset are not robust and residual time offset is often not entirely corrected.

5.3. ICFO AND STO 68

A more realistic approach to the ICFO estimation is to take into account this

residual offset. Figure 5.14 shows an example of the computation of the ICFO estimation

for a 128 size cross-correlation with an ICFO of 20 carriers and in the presence of type

II STO of 10 samples and white Gaussian noise. As can be seen, the correlation result

maximum value is different from the actual ICFO in the signal; this is due to the shift-

ing of the sequence in time. Since the data is shifted regarding the LTF reference, the

pointwise multiplication performed in the time domain does not yield the same result as

without STO. In the following, a study of the ICFO estimation in the presence of STO

is presented, the performance of several methods as well as its hardware implementation

costs are presented. All simulations were repeated 1000 times for a fixed SNR point in

the performance curve. The power delay profile PDP (a measure of the signal power as

a function of the propagation delay, computed as the spatial average of the power com-

plex baseband channel impulse response) of the multipath channel used the simulations

is shown in Figure 5.13.

t(µs)

0 0.01 0.02 0.03 0.04 0.05 0.06

P
D

P
(d

b
m

)

-30

-25

-20

-15

-10

-5

0

Figure 5.13 – Power Delay Profile of the Multipath Channel.

5.3. ICFO AND STO 69

LTF Samples

0 20 40 60 80 100 120 140

C
o

rr
e

la
ti
o

n
 V

a
lu

e

0

0.5

1

1.5

2

2.5

Figure 5.14 – LTF Cross-Correlation output with SFO.

5.3.0.1 Canet Fine STO estimation

An algorithm that tries to estimate this residual time offset is presented

in [45]. Canet shows a Data-Aided fine time synchronization method based on the cross-

correlation for the IEEE802.11a/g standard, a standard that has a similar PPDU structure

than that of the IEEE802.15.4g. Here, fine time synchronization is performed using cross-

correlation between the first 32 samples of the LTF sequence in the time domain of the

IEEE802.11.ag standard, as in (5.5).

𝐶𝑛 = 𝑔𝐻
32𝑟𝑛 (5.5)

𝑟𝑛 =
[︁

𝑟𝑛 𝑟𝑛+1 ≤ ≤ ≤ 𝑟𝑛+31

]︁𝑇
(5.6)

𝑔32 =
[︁

𝐿𝑆0 𝐿𝑆1 ≤ ≤ ≤ 𝐿𝑆31

]︁𝑇
(5.7)

Where 𝑟𝑛 is the received signal, and 𝑔32 are the first 32 samples of the LTF

sequence. The result of the correlation for a fine STO of 10 samples, a signal without

ICFO and 20dB of noise is shown in Figure 5.15. Clearly, the correlation output shows a

peak value at sample correlation size - STO, sample 22 in this case. Probability of success

for a noisy channel and type II STO (section 2.1.2) for a 128 size symbol and CP 1/4,

with no ICFO is shown in Figure 5.16 and 5.17. For this simulation, a random STO value

was generated for every iteration; the ICFO value is maintained in 0. Two scenarios were

tested, in the first (Figure 5.16), the range of the random generated STO is constrained

to the CP size (32 samples), that is, the STO varies between 1 sample and 32 samples, on

the second(Figure 5.17) the size of the STO is constrained to only 16 samples. It is worth

5.3. ICFO AND STO 70

noticing that this algorithm does not works well for STOs greater than half the CP size,

as can be seen from the results, a perfect estimation is only achievable when the STO

is between 1 and 16 samples. Although good performance under a noisy and multipath

channel is achieved with this algorithm, it does not work with ICFO as mentioned in [26],

so it must be compensated before the fine STO estimation.

Sample

0 10 20 30 40 50 60 70

A
m

p
lit

u
d

e

0

5

10

15

Figure 5.15 – Example of the computation of fine STO by Canet Method.

SNR(dB)

-40 -30 -20 -10 0 10 20 30

P
ro

b
a

b
ili

ty
 o

f
s
u

c
e

s
s

0

0.1

0.2

0.3

0.4

0.5

0.6

Signal+AWGN Noise

Signal+AWGN Noise + Channel

Figure 5.16 – Probability of Success in Canet STO Estimation Algorithm (STO of 32
samples).

SNR(dB)

-40 -30 -20 -10 0 10 20 30

P
ro

b
a

b
ili

ty
 o

f
s
u

c
e

s
s

0

0.2

0.4

0.6

0.8

1

Signal+AWGN Noise

Signal+AWGN Noise + Channel

Figure 5.17 – Probability of Success in Canet STO Estimation Algorithm (STO of 16
samples).

5.3. ICFO AND STO 71

5.3.0.2 Non-Data-Aided STO Estimation

Repetitive structures in the received signals can be used to decide the symbol

start, as is the case of the CP, that repeats itself since, a copy of the OFDM symbol is

pre-pended to itself to avoid ISI. Algorithms that behave this way are called Non-Data-

Aided or blind synchronization algorithms since no known sequence is used to estimate the

symbol start. Although this kind of algorithms are suitable for continuous transmissions,

like the ones based on frames, and the IEEE802.15.4g standard defines a packet by packet

oriented protocol, its analysis determines the difficulty of the estimation of the fine symbol

start problem.

In Non-Data-Aided or blind STO CP based algorithms, usually, two sliding

windows spaced by the symbol length are correlated in time domain. In [21], an STO

estimation technique using the symbol CP is presented, it estimates the STO by taking

the difference between the two halves of the size of the CP separated by the symbol size.

(5.8) shows the mathematical operation, where, 𝑦𝑙 is the received noisy signal, 𝑁𝑐𝑝 is the

CP size, 𝑁 the symbol size and à̂ is the estimated time offset from a set of Σ possible

values. Therefore, when the difference between the two halves is minimum the similarity

between them is maximum yielding the starting point. This algorithm shows immunity to

CFO. Figure 5.18 shows an example of the square difference algorithm for a time offset of

10 samples for noisy symbol, with an SNR of 20dB. Here, symbol size is of 128 samples

and CP size 32 samples.

à̂ = arg min
à𝜖Σ

¶
𝑁cp⊗1
∑︁

𝑛=0

(♣𝑦𝑙[𝑛 + à]♣⊗♣𝑦*

𝑙 [𝑛 + à + 𝑁]♣)2♢ (5.8)

Square difference Sample
0 10 20 30 40 50 60 70

S
q
u
a
re

 d
if
fe

re
n
c
e
 V

a
lu

e

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Figure 5.18 – Example of the results of the square difference algorithm.

Another blind algorithm that shows immunity to CFO is presented in [46],

it estimates the starting point by using the auto-correlation function. The mathematical

operation is shown in (5.9). In this approach, when the correlation is maximum so is the

5.3. ICFO AND STO 72

similarity between the halves. Figure 5.19 shows the results of the ACF algorithms for a

time offset of 10 samples and a noisy signal with SNR of 20dB. A symbol size of 128 and

32 samples of CP are used.

à̂ = arg max
à𝜖Σ

¶♣
𝑁cp⊗1
∑︁

𝑛=0

(𝑦𝑙[𝑛 + à]𝑦*

𝑙 [𝑛 + à + 𝑁])♣♢ (5.9)

Correlation Sample

0 10 20 30 40 50 60 70

C
o
rr

e
la

ti
o
n
 V

a
lu

e

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Figure 5.19 – Example of the results of the auto correlation function algorithm.

Figure 5.20, shows the probability of success for the CP based methods of

(5.8) and (5.9) for a noisy channel in presence of ICFO for all four MR-OFDM Options.

In this scenario a symbol taken after the SHR was used, that is all the estimations where

performed adding noise toa random generated symbol, then equation (5.8) and (5.9)

where used to estimate the STO. The correlated sequences sizes is of 1/4 symbol size, the

size of the CP. Again, a random value of STO between 0 and the CP size is generated

for every iteration, as well as a random value of ICFO between 0 and the symbol size.

It can be seen from Figure 5.20 that the method based on the square difference shows

better performance than that of the ACF method, in fact the ACF fails at achieving an

optimal estimation even for small noise level or high SNR values. As can be seen from

Figure 5.18 and Figure 5.19 a plateau is found at the minimum value of the curve for the

square difference algorithm, which means that the differences between estimated values

is small between adjacent à values, thus, the minimum value is affected greatly by noise,

similar behavior can be seen for the ACF algorithm, adjacent values in magnitude of the

autocorrelation show smalls differences, thus hindering the estimation.

5.3.0.3 Fine STO estimation in frequency domain

A fine synchronization algorithm also presented in [21], estimates the STO

in frequency domain using training sequences. According to (2.23, refer to Chapter 1),

the time error introduces a phase shift that is constant, thus, if 𝑌 [𝑘] = 𝑌 [𝑘 ⊗ 1], the

5.3. ICFO AND STO 73

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0.2

0.4

0.6

0.8

1
Option = 4

CPs ACF

CPs DIff

Figure 5.20 – Probability of success of the CP based methods in a noisy channel for all
OFDM Options.

phase difference between adjacent carriers must be equal. (5.10) shows the mathematical

operation.

à̂ =
𝑁

2Þ
arg¶

𝑁⊗1∑︁

𝑘=1

(𝑌 [𝑘]𝑌 *[𝑘 ⊗ 1])♢ (5.10)

Since the training sequence samples are not completely equal (as required

by (5.10)) in the LTF field of the synchronization header for the IEEE802.15.4g stan-

dard, a slightly modification to (5.10) must be made. Taking the absolute value of every

component of the complex samples yields (5.11)

à̂ =
𝑁

2Þ
arg¶

𝑁⊗1∑︁

𝑘=1

♣ℜ(𝑌 [𝑘]𝑌 *[𝑘 ⊗ 1])♣ + ♣ℑ(𝑌 [𝑘]𝑌 *[𝑘 ⊗ 1])♣♢ (5.11)

The probability of correct STO estimation for the Data-Aided phase difference

in frequency domain for all MR-OFDM Options is shown in Figure 5.21. In this scenario,

an STO generated randomly in time domain is added to the LTF training sequence,

then the FFT is performed over this sequence, and finaly the STO estimated according

to (5.11). This process is repetead for every iteration in SNR point in the performance

curve. For this algorithm the probability of success decreases with the symbol size, the

smaller the symbol size (the LTF size) the better the estimation rate.

5.3. ICFO AND STO 74

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0.2

0.4

0.6

0.8

1
Option = 4

Figure 5.21 – Probability of success in estimating the STO for the Data-Aided frequency
domain algorithm for all MR-OFDM Options.

The probability of success of the three STO estimation methods for a noisy

channel is shown in Figure 5.22 for all MR-OFDM Options. The phase difference in

frequency domain (the Data-Aided algorithm) shows better results than the CP based

ones (the Non-Data-Aided algortihms). The phase difference in frequency domain attains

a perfect residual timing estimation for a SNR greater than 10dB for the MR-OFDM

Option 4 and SNR greater than 20dB for MR-Option 1, while only the square difference

algorithm achieves close to optimal optimization after only 40dB of SNR.

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0.2

0.4

0.6

0.8

1
Option = 4

CPs ACF

CPs Diff

Phase Difference

Figure 5.22 – Probability of success in estimating the STO for all MR-OFDM Options.

Another factor that hinders the proper demodulation of the incoming signals

5.3. ICFO AND STO 75

that has not been taken into account is the signal degradation caused by the multipath

channel. Simulation results for a multipath channel are shown in Figure 5.23 and Fig-

ure 5.24 for the square difference and the ACF based algorithm respectively. Both CP

based algorithms show degradation in performance for a noisy and multipath channel,

since both algorithms depend on the CP to estimate the STO.

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0.2

0.4

0.6

0.8

1
Option = 4

Without Channel

With Channel

Figure 5.23 – Probability of success in estimating the STO for CP based square difference
under a multipath Channel.

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8
Option = 1

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8
Option = 2

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8
Option = 3

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0.2

0.3

0.4

0.5

0.6

0.7
Option = 4

Without Channel

With Channel

Figure 5.24 – Probability of success in estimating the STO for CP based ACF under a
multipath channel.

5.3. ICFO AND STO 76

Results for the phase difference in the frequency domain are shown in Figure

5.25. This algorithm fails at estimating the residual STO. Not only a degradation in the

estimation is shown as in the CP based algorithms, but a completely inexact estimation.

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-40 -20 0 20 40 60

P
ro

b
a
b
ili

ty
 o

f
S

u
c
e
s
s

0.2

0.4

0.6

0.8

1
Option = 4

Without Channel

With Channel

Figure 5.25 – Probability of success in estimating the STO for the phase difference in
frequency domain algorithm under a multipath channel for all MR-OFDM
Options.

Results from the estimation of STO show very poor performance for a noisy

and multipath channel, neither the CP based approaches nor the phase difference in

frequency domain approach achieves a perfect STO estimation, even for low level noise.

The square difference algorithm shows the best performance among the three algorithms.

5.3.0.4 ICFO Estimation in the frequency domain with immunity to STO

Another approach to solving the problem is to find methods that estimate the

ICFO even with the presence of the residual timing error, which is the case of the work

presented by BoAi in [17]. Here, a Data-Aided algorithm in the frequency domain which

is not affected by timing errors is presented. The operation is as described in (5.12)

�̂� = max
𝑙𝜖𝐿

¶
𝑊∑︁

𝑘=1

♣𝑌𝑚,𝑘𝑋*

𝑚,𝑘+𝑙♣♢ (5.12)

Here, 𝑊 is the number of continuous samples, 𝑌𝑚,𝑘 is the 𝑘𝑡ℎ sample of the 𝑚𝑡ℎ

received noise corrupted OFDM symbol after the FFT, 𝑋𝑚,𝑘 is the uncorrupted reference

in frequency domain, 𝐿 is the estimation range, and 𝑙 the sliding window.

5.3. ICFO AND STO 77

LTF

0 20 40 60 80 100 120 140

C
o
rr

e
la

ti
o
n
 V

a
lu

e

900

950

1000

1050

1100

1150

1200

Figure 5.26 – Example in estimating a ICFO of 35 carriers for the BoAi Proposed Method.

Figure 5.26 shows the result of the BoAi algorithm for a residual STO no

greater than the CP size, additive white Gaussian noise and an ICFO of 35 subcarriers

for a symbol size of 128 samples. The result of the correlations shows that a maximum

peak value is found at sample 35, the actual ICFO in the signal.

5.3.0.5 FFT Based ICFO Estimation with immunity to STO

Although computing the cross-correlation using (5.2) between the training

sequences in the presence of a small STO does not yields the actual ICFO, the correlation

must yield a maximum value when the similarity between two signals is maximum. In

this sense, the ICFO must yield a maximum value from within a set of maximum of

correlations values. Finding the correlations of the shifted signals with STO must yield a

maximum when those signals similarities are maximized, that is when the STO is equal to

zero. (5.13) shows the mathematical operation. Where, 𝑦(𝑛) is the received long training

sequence in the time domain, 𝑥(𝑛) is the reference training sequence also in the time

domain and * implies pointwise multiplication between 𝑦 and 𝑥. An example of the

maximum of correlations is shown in Figure 5.27, where a 128 samples symbol is used, an

STO of 7 samples and an ICFO of 23 subcarriers. Clearly, a peak value if found for the

eighth correlation (when the STO becomes 0) in the 23rd sample of that correlation.

𝜃 = max
𝜃

[max ℱ [𝑦(𝑛 + 𝜃) * 𝑥*(𝑛)]] (5.13)

Performance of the BoAi algorithm and the maximum of correlations method

for all MR-OFDM options in the presence of only white noise is presented in Figure 5.28.

As can be seen, the maximum of correlations outperforms the Boai algorithm by approx-

imately 15dB. It reaches a perfect ICFO estimation at approximately -10dB, while the

BoAi algorithm at approximately 5dB. Figure 5.29 shows the performance results of both

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 78

10
8

6

θ (STO)

4
2

00Correlation Sample (ICFO)

50

100

6

8

4

2

0
150

A
B

S
(c

o
rr

e
la

ti
o

n
)

Figure 5.27 – Example of the maximum of correlations method for estimating the ICFO.

algorithms without a multipath channel (WoC), and with a multipath channel (WC),

here the results are almost the same as with only white noise, the multipath channel

does not affect the estimation in a considerable amount. It is worth noticing that for the

option with the least number of carriers, MR-OFDM Option 4, the BoAi algorithm fails

to estimate the ICFO correctly, this is not the case for the ICFO.

From the results obtained for the STO and ICFO estimation, we can conclude

that the blind techniques tested show much worse performance than that of the Data-

Aided techniques for a noisy channel. Also, a robust estimation of the STO is difficult to

achieve at this point in the synchronization process, because channel impairments, as well

as frequency errors, are still present in the signal making it difficult to estimate a perfect

symbol time offset even for high SNR values. A small residual time offset that falls in the

CP of the symbol can be corrected by the one tap equalizer [47], so perfect estimation is

not entirely needed in the OFDM synchronization process.

5.4 STO and ICFO hardware implementations

To evaluate the tradeoff between performance and implementation, analysis of

the cost of implementation of the previously presented methods for estimating the STO

and ICFO are presented. Area and throughput are the main parameters to consider for

the hardware architectures presented.

5.4.1 CP Based Architectures

As it was shown on Section 5.3.0.2, the CP of the OFDM symbol can be used

to perform a not so robust fine time estimation. Two methods where presented employing

similar operations to estimate the STO, one is based on the auto-correlation function

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 79

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 4

Max Correlations

BoAi

Figure 5.28 – Probability of success in estimating the ICFO for the BoAi and maximum
of correlations Proposed Methods for all OFDM Options.

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 1

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 2

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 3

SNR(dB)
-25 -20 -15 -10 -5 0 5 10

P
ro

b
a

b
ili

ty
 o

f
S

u
c
e

s
s

0

0.2

0.4

0.6

0.8

1
Option = 4

Max Correlation WoC

Max Correlation WC

BoAi WoC

BoAi WC

Figure 5.29 – Probability of success in estimating the ICFO for the BoAi and maximum
of correlations Proposed Methods for all OFDM Options under a multipath
channel.

(ACF) while the other takes the difference between two CP size spaced windows. The

implementations of those methods are very similar in logic, as we will see.

Figure 5.30 shows the architecture for the ACF CP Based algorithm, its com-

putation is as follows. For every clock cycle, two samples from two windows separated by

the symbol size are multiplied, the result is sent to an adder that sums the current results

with the previously computed one, the sum is saved in a register. CP clock cycles after,

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 80

the current sum stored value is sent to the CORDIC operating in circular coordinates in

vectoring mode, its output is the module of the sum. Also every CP clocks cycles, a à

counter (Count à in Figure 5.30) is incremented by one. The computed module is then

compared with the previous greater module found, if the current value is greater than

the previous one, its value is stored in the register reg ACF and the current count of the

Count à counter is saved. The process is repeated shifting the input sequence until the

estimated range is reached; at that moment the current stored value of the sums counter

is the estimated STO.

Figure 5.30 – Serial Architecture for the CP Based ACF algorithm

The architecture in Figure 5.30 is a serial architecture, therefore, it computes

one operation per clock cycle. The total delay for the maximum CP size for the MR-

OFDM option 1 and an estimation range of 10 (a maximum STO of 10 samples) is of 320

clock cycles.

Figure 5.31 shows the architecture of the square difference algorithm; the func-

tioning of this architecture is similar to that of the ACF. For this algorithm accumulator

followed by a comparator compute the minimum value among the many shifted squared

difference values of the symbol size spaced sequences. In this case, the module is computed

first. Two CORDIC blocks (one for each sample, with one of them conjugated) compute

the modules input, modules that are then subtracted and its result finally multiplied by

itself. This result then goes to the same structure as in the ACF architecture to compute

the STO. The time spent in the computation is the same as in the ACF architecture, i.e.,

CP times the estimation range, for MR-OFDM option 1, 320 clock cycles.

The delay in the computation time of both architectures can be reduced by

parallelizing the multiplication for the ACF and subtraction for the square difference

algorithm, an example is shown in Figure 5.32 for the ACF architecture. There, the

registers are replaced by a series of 𝑛 registers connected that feed 𝑛/2 multipliers (4 in

the example) and these registers, in turn, feed a tree of 𝑛/2 ⊗ 1 adders. The delay is

reduced by 𝐶𝑃/(𝑛/2). For the squared difference algorithm the multipliers are replaced

by subtractors and multipliers, one pair for each sample.

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 81

Figure 5.31 – Serial Architecture for the CP Square Difference algorithm

Figure 5.32 – Parallel multipliers in STO ACF architecture

5.4.2 Fine STO estimation in frequency domain Architecture

Figure 5.33 shows the architecture of the fine STO estimator in the frequency

domain according. Its functioning is as follows, first each carrier of the OFDM symbol in

the corrupted LTF is multiplied by its adjacent conjugate subcarrier, yielding its phase

difference. The absolute value of each component of the complex signal is computed and

the results accumulated for 𝑠𝑦𝑚𝑏𝑜𝑙𝑠𝑖𝑧𝑒 samples. Finally, the angle of the sum is computed

using the CORDIC, and the result multiplied by 𝑁/(2 * 𝑝𝑖), this output is then the STO.

The delay of this architecture is of one OFDM symbol, e.g., 128 clock cycles are needed to

compute the STO for the MR-OFDM option 1. It is worth noticing that this architecture

shows poor performance under a multipath channel; therefore additional hardware is

needed to estimate the channel and compensate its contribution to the signal phase in

the frequency domain in order to accurately estimate the STO.

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 82

Figure 5.33 – Architecture for the Fine STO estimator in frequency domain

5.4.3 BoAi Algorithm Architecture

Figure 5.34 shows the BoAi implementation for the ICFO. It has some similar-

ities with the CP based implementations. An accumulator and a register saves the current

count and sends data to be compared to previously accumulated values. The computation

ends when the estimation range is reached; at that moment the ICFO value is the value

stored in the index registers, a registry that is updated every time a maximum value is

found.

Figure 5.34 – BoAi algorithm implementation

Since the correlation of this algorithm is performed in the frequency domain,

where the LTF is composed of +/-1𝑠 and 0𝑠, a simpler implementation can be accom-

plished. The simplification resides in the multiplier at the input of the architecture, since

the multiplication is performed in the frequency domain it becomes a 0 or +1/⊗1 multi-

plication, in hardware that can be accomplished by a series of XOR gates, one for every

bit of the sample, followed by an adder.

The delay of this architecture if of 128x𝑟𝑎𝑛𝑔𝑒 clock cycles. For example, for an

estimation range of 10 subcarriers, 1280 clock cycles are required. As with the CP based

architectures the process can be parallelized, XOR multipliers and CORDICs blocks in

parallel (one for each sample) allow the reduction of the delay at the cost of more hardware.

A parallelization of 4 samples is shown in Figure 5.35. The outputs of the CORDICs blocks

are added and sent to the accumulator; the rest of the computation process remains the

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 83

same, its values are accumulated and compared to extract the maximum value. The down-

side of this parallelization is the use of the CORDIC block, which uses lots of resources.

The number of clock cycles is reduced to (𝑆𝑦𝑚𝑏𝑜𝑙𝑆𝑖𝑧𝑒)/(𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒𝑠)x𝑟𝑎𝑛𝑔𝑒, for

the example shown in Figure 5.35 for a estimation range of 10 carriers, 128/4 * 10 = 320

clock cycles. Even though this implementation may use more sources than the STO imple-

mentations alone, the estimation of the ICFO by this method uses no additional hardware.

That is, the costs in hardware to estimate the ICFO using the STO methods is greater

than the costs in hardware needed by this method, since those architectures require the

additional hardware of the ICFO shown in Figure 5.4.

Figure 5.35 – BoAi algorithm implementation in parallel

5.4.4 Maximum of correlations Algorithm

Only a slightly modification to the implementation presented in Section 5.1 is

performed for this architecture. At the input, a buffer of size 𝑠𝑦𝑚𝑏𝑜𝑙𝑠𝑖𝑧𝑒 + 𝑆𝑇𝑂𝑟𝑎𝑛𝑔𝑒

stores the symbol plus a small group of samples, corresponding to the STO ranges to

estimate, for every correlation computed the buffer shifts one sample off the buffered

sequence. The symbol size sequence is then point-wise multiplied in the time domain by

the uncorrupted reference LTF and the result sent to the FFT block, the FFT output

now goes to the peak searcher, that finds a local maximum, then the buffered sequence

is shifted, and another correlation is computed. The local maximum of the computed

correlation is then compared with the local maximum of all the correlations previously

computed, the index of the maximum of local maximums (the global maximum) is the

ICFO. The previously peak searcher shown previously in section 5.1 is changed to compute

the maximum of maximum values. The new peak searcher block is shown in Figure 5.36.

To find the global maximum (the maximum of the maximum of all the com-

puted correlations) the peak searcher compares the current FFT sample output with the

previous sample. Every time a maximum value is found within the FFT samples, its value

is stored in the register reg local max, in parallel, the local index of where this maximum

value was found is stored in the register reg idx max local. When the samples count reaches

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 84

Figure 5.36 – Peak searcher for the FFT based maximum of correlations algorithm

the symbol size, the value of the maximum register along with the value of its index is

passed to a global comparator that compares the current maximum local value with the

previous partial global found. The index value is stored in an auxiliary register, if the

current value is greater than the previous one, the current value is stored, and the global

index register is updated with the auxiliary register value. The process ends when the

STO range value is reached.

Since the computation of the ICFO using this method involves the FFT com-

putation, the delay of the computation includes the delay of the FFT, which slows down

the process. For this method the delay is given by (5.14).

𝑑𝑒𝑙𝑎𝑦𝑚𝑎𝑥𝑐𝑜𝑟𝑟 = (𝑑𝑒𝑙𝑎𝑦𝐹 𝐹 𝑇 + 𝑆𝑦𝑚𝑏𝑜𝑙𝑠𝑧) * 𝑆𝑇𝑂𝑟𝑎𝑛𝑔𝑒 (5.14)

𝑑𝑒𝑙𝑎𝑦𝑓𝑓𝑡 =
𝐹𝐹𝑇𝑠𝑧

2
log2 𝐹𝐹𝑇𝑠𝑧 (5.15)

For an STO of 10 samples and MR-OFDM option 1, the delay of this ar-

chitecture is of 5760 clock cycles. The delay of this architecture is the greatest of all

the implementations presented. However, some modifications can be done to reduce this

delay:

∙ Pipeling the FFT : with this method the delay of the computation is reduced to

𝑆𝑦𝑚𝑏𝑜𝑙𝑠𝑧 * 𝑆𝑇𝑂𝑟𝑎𝑛𝑔𝑒. Although it may seem that the advantages of the FFT imple-

mentation presented previously are lost with the use of a pipeline architecture, the

use of a CORDIC based butterfly that eliminates the use of ROM memories to store

twiddle factors can still be used in a pipeline structure. The only disadvantage of the

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 85

pipeline approach would be hardware reuse. For FFT sizes smaller than 128 much

of the hardware occupied by the FFT would remain without utilization. It is worth

noticing, that blocks with very large delays halt the system, requiring buffers to

compensate those delay which is the case of the current FFT serial implementation.

The pipeline version of the FFT could alleviate the need of those buffers, at the cost

of more area and possibly more power. A pipelined FFT would allow implementing

the presented method without much delay, and with advantages over other ICFO

implementations, for example, the ICFO range that this implementation allows is of

a symbol size (128 for OFDM option 1), whereas the BoAi implementation requires

128 * 128 to estimate the same range of ICFO. The analysis of the requirements

and the benefit of the pipeline architecture in the whole MR-OFDM system is still

an ongoing task. Power is an important variable in determining the advantages and

disadvantages of the pipeline FFT implementation.

∙ Modules running at different clock frequencies By running different modules at dif-

ferent clocks frequencies, a reduction in blocks delays can be achieved. If the FFT

block runs at a higher frequency than that of the rest of the design, the delay of this

block can be compensated, this, of course, has implications in power consumption.

Tables 5.6 and 5.7 show a summary of the resource consumption of every ar-

chitecture presented in FPGA. The values shown are estimations of the area consumption

of the architectures for comparative purposes taken from raw, simple implementations,

no rigorous verification was performed on these blocks. It is worth noticing that the val-

ues are shown in Tables 5.7 are for only the STO estimation, the ICFO estimation with

immunity to STO using these methods requires the use of the ICFO presented in section

5.1. Table 5.8 shows the area consumption required to compute the ICFO for all proposed

methods. As can be seen from Table 5.7, blind STO algorithms in time domain consume

much more hardware than the STO method presented in the frequency domain.

Table 5.6 – Resource Utilization by Entity in the ICFO architectures

Entity Combinational ALUT Registers

Maximum of Correlations 1579 642
Peak Search 700 642
Complex Multiplier 879 0

BOAI Top 738 662
CORDIC 653 574
XOR Multiplier 33 32

The results presented show that the choice of an optimal ICFO estimator

is carried on plenty of variables to analyze, area consumption, estimation range, good

performance under a noisy channel as well as immunity to multipath channel and STO

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 86

Table 5.7 – Resource Utilization by Entity in the STO architectures

Entity Combinational ALUT Registers

CP ACF Top 2473 641
CORDIC 951 574
Complex Multiplier 1423 0

CP Diff Top 2267 1199
CORDIC 2*951 2*574
Multiplier 298 0

STO Frequency 1891 645
CORDIC 653 635
Complex Multiplier 980 0

Table 5.8 – Resource Utilization of the ICFO architectures

Entity Combinational ALUT Registers

BOAI Top 738 662
Maximum of Correlations 1579 642
STO Frequency 3660 1417
STO CP ACF Top 4242 1413
STO CP Diff Top 3039 1840

are some of the variables that determine the choice of an optimal ICFO estimator. Other

issues not yet analyzed could also impact the choice of an optimal ICFO estimator, e.g.,

power consumption, one of the requirements of the intended application.

The approach of estimation and correction of the STO before the ICFO com-

putation shows poor performance for the Non-Data-Aided or blind algorithms. Also, the

Data-Aided algorithm tested show poor performance with channel multipath in the fre-

quency domain. Moreover, fine STO estimation algorithms show greater hardware con-

sumption than ICFO estimation methods. In conclusion, robust STO estimation if diffi-

cult to achieve, it must deal with all the impairments in the system, yet to be corrected.

However, estimation of small STOs does not have to be perfect or exact, since the phase

difference introduced by it in the frequency domain can be corrected using the equalization

process, as long as the residual error falls inside the symbol CP.

The other methods presented (maximum of correlations and the BoAi algo-

rithm) are not affected by the STO, show immunity to the multipath channel and good

performance for noisy signals. These methods are more suitable for the ICFO estimation

since less area, and computation complexity is used. For the BoAi algorithm, the multi-

plications performed are simpler, since the multiplication is achieved through only XOR

gates, it consumes much less hardware than a typical complex multiplier. In performance,

the maximum correlation algorithm shows good results. If performance is a must, it can

be achieved at much less costs with the maximum correlations at the cost of more com-

putation time and more hardware consumption. However, this method can be improved

5.4. STO AND ICFO HARDWARE IMPLEMENTATIONS 87

by pipelining the FFT or by a multi-frequency clock system, where the clock frequency

is increased for certain blocks, in our case the FFT, reducing the overall time spent to

perform the computation. The feasibility of a pipeline implementation of the FFT must

be analyzed with the whole OFDM Modem, its consumption in area as well as power are

two of the main parameters to consider. Chip costs are also another variable in which the

algorithms can have an impact, a better ICFO estimator can mean a cheaper oscillator

crystal which means a cheaper chip.

As was shown, the choice of the optimal algorithm for the ICFO estimator

depends on many variables, some of them unknown at this point of the project, e.g., chip

costs and chip area available. From the results obtained and the analysis performed until

this point, it can be concluded that the proposed method, the maximum of correlations

method, is an optimal choice only if performance is a must. The algorithm shows good

performance for a noisy and multipath channel as well as immunity to residual STO.

Also, the architecture can be very much improved, by different methods. It is believed

that the impact not only on the ICFO but also on the overall MR-OFDM Modem could

compensate for the modifications in the architecture, i.e., improving the frequency of

the FFT computation could improve the entire PHY performance. This is a preliminary

conclusion taken from the currently available results, other factors, as performance of

other blocks in the system, could discard the advantages presented, i.e. if any of the

other blocks in the receiver does not work with negative SNRs, the advantage of the

current implementation with the cost of additional hardware would be lost. The overall

performance would be limited by the lower performance block.

88

6 Conclusions

The main purpose of this work was to find optimal solutions to blocks con-

cerning an ASIC intended system, thus, implementations that show low complexity, low

area and good performance where pursued, as well as synthesizable architectures. This

work also presented a methodology to ASIC design and hardware prototyping, the process

from the conceptual problem definition until the hardware realization of the algorithms

is showed.

An FFT/IFFT architecture that meets the system requirements were pre-

sented. It allows to process sequences of various sizes as well as forward and inverse Fourier

Transforms while minimizing the resource consumption when compared with other FPGA

implementations. The architecture presented is a collection of methods found in the liter-

ature that simplify the FFT implementation. It was prototyped in FPGA and integrated

with the whole MR-OFDM PHY for a working demo that was presented in [48]. Also,

in [49] details of the main components of the MR-OFDM PHY Modem implemented for

preliminary hardware prototyping were presented, including the FFT engine proposed.

A first version of the ICFO FFT based method and its ASIC implementation result was

also published in [50]. The Logical and physical synthesis showed that the architecture is

synthesizable and can be implemented in an ASIC.

Another issue addressed in this work is the synchronization in OFDM systems,

more specifically the integer part of the frequency offset. An architecture that shows

good performance and takes advantage of the OFDM system saving hardware resources

was presented. This FFT based correlation architecture showed low area consumption

when compared with similar approaches for the computation of the ICFO. The additional

hardware required for the computation (besides the FFT) is minimal if compared with the

direct implementation (that is the direct correlation performed in the frequency domain).

Although the frequency estimator when tested under more realistic conditions,

such as in the presence of STO, showed poor results. a method to overcome this has been

proposed. Two scenarios were analyzed: first, methods that try to estimate and remove the

STO, to be used in conjunction with the ICFO estimator already implemented. A second

scenario where methods to estimate the ICFO that show immunity to the STO where

presented. Others variables that affect the estimation performance of both estimators

(STO and ICFO) were also considered, e.g., the frequency selective channel. The maximum

of correlations method, developed in this work showed good results for area consumption

and the best performance for channel impairments with a trade-off in computation time,

solutions to overcome the slowness of this architecture were also proposed.

6.1. FUTURE WORK 89

6.1 Future Work

As was shown the STO and ICFO are closely related problems. Different meth-

ods for the computation of the STO and its performance were shown. Although the meth-

ods tested for the STO estimation did not yield optimal results, one that does would allow

the use of the correlation using the FFT using the correlation theorem, which is an opti-

mal solution in terms of hardware and performance. Hence, the finding of a robust STO

estimator is an ongoing task.

Although the FFT shows good results in its implementation, some level of

parallelism could be applied possibly reducing the power consumption in the process. In

summary, the power consumption with some parallelism goes up, while the time spent

performing the computation is reduced. A study of the power consumption, parallelism

and computation time will give the optimal solution to the FFT computation. In any case,

the architecture and methods proposed in this work can be of benefit for new architectures.

Since the chip is projected for mobile applications, power consumption is a

must. Impact of the different implementation in power is yet to be performed. Also, a

study of methods for power reduction applied to the FFT computation process could be

performed. In [51] and [52], methods for reducing switching activity in the data bus of

FFT and similar algorithms are shown.

This work was hosted and sponsored by Eldorado research Institute.

90

Bibliography

[1] “IEEE Std. 802.15.4g-2012: ‘Part 15.4: Wireless Medium Access Control and Physical

Layer Specifications for Low-Rate Wireless Personal Area Networks – Amendment

4: Physical Layer Specifications for Low Data Rate Wireless Smart Metering Utility

Networks,” March 2012.

[2] Wold and Despain, “Pipeline and parallel-pipeline FFT processors for VLSI imple-

mentations,” IEEE Transactions on Computers, vol. C-33, no. 5, pp. 414–426, May

1984.

[3] H. L. Groginsky and G. A. Works, “A pipeline fast Fourier transform,” IEEE Trans-

actions on Computers, vol. C-19, no. 11, pp. 1015–1019, Nov 1970.

[4] W. Li and L. Wanhammar, “A pipeline FFT processor,” vol. 19, 02 1999, pp. 654 –

662.

[5] R. M. Jiang, “An area-efficient FFT architecture for OFDM digital video broadcast-

ing,” IEEE Transactions on Consumer Electronics, vol. 53, no. 4, pp. 1322–1326,

Nov 2007.

[6] N. Kirubanandasarathy, K. Karthikeyan, and K. Thirunadanasikamani, “VLSI de-

sign of mixed radix FFT processor for MIMO OFDM in wireless communications,”

in 2010 International Conference on Communication control and computing Tech-

nologies, Oct 2010, pp. 98–102.

[7] S. He and M. Torkelson, “A new approach to pipeline FFT processor,” in Proceedings

of International Conference on Parallel Processing, Apr 1996, pp. 766–770.

[8] X. Xiao, E. Oruklu, and J. Saniie, “Efficient FFT Engine with Reduced Addressing

Logic,” in Electro/Information Technology, 2007 IEEE International Conference on,

May 2007, pp. 390–395.

[9] E. Oruklu, X. Xiao, and J. Saniie, “Reduced Memory and Low Power Architectures

for CORDIC-Based FFT Processors,” Journal of Signal Processing Systems, vol. 66,

no. 2, pp. 129–134, 2012.

[10] X. Xiao, E. Oruklu, and J. Saniie, “Fast memory addressing scheme for radix-4 FFT

implementation,” in 2009 IEEE International Conference on Electro/Information

Technology, June 2009, pp. 437–440.

BIBLIOGRAPHY 91

[11] Y. Ma, “An effective memory addressing scheme for fft processors,” IEEE Transac-

tions on Signal Processing, vol. 47, no. 3, pp. 907–911, March 1999.

[12] S. Y. Park, N. I. Cho, S. U. Lee, K. Kim, and J. Oh, “Design of 2k/4k/8k-point

fft processor based on cordic algorithm in ofdm receiver,” in 2001 IEEE Pacific

Rim Conference on Communications, Computers and Signal Processing (IEEE Cat.

No.01CH37233), vol. 2, Aug 2001, pp. 457–460 vol.2.

[13] E. Oruklu, X. Xiao, and J. Saniie, “Reduced memory and low power architectures

for cordic-based fft processors,” Journal of Signal Processing Systems, vol. 66, no. 2,

pp. 129–134, 2012. [Online]. Available: http://dx.doi.org/10.1007/s11265-011-0586-x

[14] J.-C. Kuo, C.-H. Wen, C.-H. Lin, and A.-Y. A. Wu, “Vlsi design of a variable-length

fft/ifft processor for ofdm-based communication systems,” EURASIP Journal on

Advances in Signal Processing, vol. 2003, no. 13, p. 439360, Dec 2003. [Online].

Available: https://doi.org/10.1155/S1110865703309060

[15] F. Classen and H. Meyr, “Frequency synchronization algorithms for ofdm systems

suitable for communication over frequency selective fading channels,” vol. 3, 07 1994,

pp. 1655 – 1659 vol.3.

[16] T. M. Schmidl and D. C. Cox, “Robust frequency and timing synchronization for

ofdm,” IEEE Transactions on Communications, vol. 45, no. 12, pp. 1613–1621, Dec

1997.

[17] b. ai, J.-h. GE, Y. Wang, S.-y. Yang, P. Liu, and G. Liu, “Frequency offset estimation

for ofdm in wireless communications,” vol. 50, pp. 73 – 77, 03 2004.

[18] M. Speth, S. Fechtel, G. Fock, and H. Meyr, “Optimum receiver design for ofdm-based

broadband transmission .ii. a case study,” IEEE Transactions on Communications,

vol. 49, no. 4, pp. 571–578, April 2001.

[19] T. H. Pham, S. A. Fahmy, and I. V. McLoughlin, “Efficient integer frequency offset

estimation architecture for enhanced ofdm synchronization,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 24, no. 4, pp. 1412–1420, April

2016.

[20] D. Toumpakaris, J. Lee, and H.-L. Lou, “Estimation of integer carrier frequency

offset in ofdm systems based on the maximum likelihood principle,” Broadcasting,

IEEE Transactions on, vol. 55, pp. 95 – 108, 04 2009.

[21] Y. Cho, J. Kim, W. Yang, and C. Kang, MIMO-OFDM Wireless Communications

with MATLAB, ser. Wiley - IEEE. Wiley, 2010.

BIBLIOGRAPHY 92

[22] S. Weinstein and P. Ebert, “Data transmission by frequency-division multiplexing

using the discrete Fourier transform,” IEEE Transactions on Communication Tech-

nology, vol. 19, no. 5, pp. 628–634, October 1971.

[23] T. Chiueh, P. Tsai, and I. Lai, Baseband Receiver Design for Wireless MIMO-OFDM

Communications, ser. Wiley - IEEE. Wiley, 2012.

[24] R. Prasad, OFDM for wireless communications systems. Artech House, 2004.

[25] T. Pollet, M. V. Bladel, and M. Moeneclaey, “BER sensitivity of OFDM systems to

carrier frequency offset and Wiener phase noise,” IEEE Transactions on Communi-

cations, vol. 43, no. 2/3/4, pp. 191–193, Feb 1995.

[26] M. J. Canet, V. Almenar, J. Marin-Roig, and J. Valls, “Time synchronization for

the IEEE 802.11 a/g WLAN standard,” in Personal, Indoor and Mobile Radio Com-

munications, 2007. PIMRC 2007. IEEE 18th International Symposium on. IEEE,

2007, pp. 1–5.

[27] T. Sato, D. Kammen, B. Duan, M. Macuha, Z. Zhou, J. Wu, M. Tariq, and S. Asfaw,

Smart Grid Standards: Specifications, Requirements, and Technologies. Wiley, 2015.

[28] J. R. Barry, D. G. Messerschmitt, and E. A. Lee, Digital Communication: Third

Edition. Norwell, MA, USA: Kluwer Academic Publishers, 2003.

[29] P. Duhamel and M. Vetterli, “Fast Fourier transforms: a tutorial review and a state

of the art,” Signal processing, vol. 19, no. 4, pp. 259–299, 1990.

[30] S. Winograd, “On computing the discrete Fourier transform,” Mathematics of com-

putation, vol. 32, no. 141, pp. 175–199, 1978.

[31] D. Kolba and T. Parks, “A prime factor fft algorithm using high-speed convolution,”

IEEE Transactions on Acoustics, Speech, and Signal Processing, vol. 25, no. 4, pp.

281–294, Aug 1977.

[32] H. Hassanieh, P. Indyk, D. Katabi, and E. Price, “Simple and practical algorithm for

Sparse Fourier Transform,” in Proceedings of the Twenty-third Annual ACM-SIAM

Symposium on Discrete Algorithms, ser. SODA ’12. Philadelphia, PA, USA: Society

for Industrial and Applied Mathematics, 2012, pp. 1183–1194. [Online]. Available:

http://dl.acm.org/citation.cfm?id=2095116.2095209

[33] A. Agarwal, H. Hassanieh, O. Abari, E. Hamed, D. Katabi, and Arvind, “High-

throughput implementation of a million-point sparse Fourier transform,” in 2014 24th

International Conference on Field Programmable Logic and Applications (FPL), Sept

2014, pp. 1–6.

BIBLIOGRAPHY 93

[34] J. Proakis and D. Manolakis, Digital Signal Processing: Principles, Algorithms, and

Applications. Prentice Hall, 1996.

[35] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Com-

plex Fourier Series,” Mathematics of computation, vol. 19, no. 90, pp. 297–301, 1965.

[36] E. Chu and A. George, Inside the FFT Black Box: Serial and Parallel Fast Fourier

Transform Algorithms, ser. Computational Mathematics Series. CRC-Press, 2000.

[37] P. V. Stojanovic, “Lecture notes communication system design 6.973,” Spring 2006.

[38] E. Chu and A. George, Inside the FFT Black Box: Serial and Parallel Fast Fourier

Transform Algorithms, ser. Computational Mathematics Series. CRC-Press, 2000.

[39] J. E. Volder, “The cordic trigonometric computing technique,” Electronic Computers,

IRE Transactions on, no. 3, pp. 330–334, 1959.

[40] T. D. Perez, E. R. Lima, and L. G. Meloni, “Um Critério de Otimização para Imple-

mentação de um CORDIC Paralelo e sua Aplicação.” in XXXIV Simpósio Brasileiro

de Telecomunicações e Processamento de Sinais - SBrT, September 2016.

[41] Altera Corporation, “High Performance, Low Cost FPGA Correlator for Wideband

CDMA and Other Wireless Applications,” May 2016.

[42] E. Weisstein, CRC Concise Encyclopedia of Mathematics, Second Edition. CRC

Press, 2002.

[43] Altera, “High performance, low cost fpga correlator for wideband cdma and other

wireless applications,” May 2003.

[44] Altera Corporation, “Cyclone V Device Overview,” June 2016, https://www.altera.

com/en_US/pdfs/literature/hb/cyclone-v/cv_51001.pdf [Accessed 14th Jun 2016].

[45] M. J. Canet, V. Almenar, J. Marin-Roig, and J. Valls, “Time synchronization for

the ieee 802.11a/g wlan standard,” in 2007 IEEE 18th International Symposium on

Personal, Indoor and Mobile Radio Communications, Sept 2007, pp. 1–5.

[46] C. L. Nguyen, “Robust time and frequency synchronization in 802.11a

communication wireless system,” Theses, Université Paris-Nord - Paris XIII, May

2014. [Online]. Available: https://tel.archives-ouvertes.fr/tel-01235696

[47] D. c. Chang, “Analysis and compensation of channel correction in pilot-aided ofdm

systems with symbol timing offset,” in 2006 IEEE International Conference on Elec-

tro/Information Technology, May 2006, pp. 324–329.

BIBLIOGRAPHY 94

[48] A. F. Queiroz, G. S. da Silva, C. G. Chaves, T. D. Perez, D. G. Urdanetta, D. C. Alves,

M. C. Garcia, and E. R. de Lima, “Demo: Fpga implementation of an ieee802.15.4g

mr-ofdm baseband modem for smart utility networks,” in 4th IEEE Global Conference

on Consumer Electronics (GCCE 2015), Osaka, Japan, October 2015.

[49] D. C. Alves, G. S. da Silva, E. R. de Lima, C. G. Chaves, D. Urdaneta, T. Perez,

and M. Garcia, “Architecture design and implementation of key components of an

ofdm transceiver for ieee 802.15.4g,” in IEEE International Symposium on Circuits

and Systems 2016 (ISCAS 2016), Montreal, Canada, May 2016.

[50] Daniel G. Urdaneta, Eduardo R. de Lima, Gabriel S. da Silva, Jacqueline G. Mertes,

and Luis G.P. Meloni, “FFT-Based Integer Carrier Frequency Estimator and Correc-

tor for IEEE802.15.4g MR-OFDM PHY,” in 6th Workshop on Circuits and Systems

Design (WCAS 2016), Belo Horizaonte, Brazil, September 2016.

[51] E. A. C. da Costa, J. C. Monteiro, and S. Bampi, Gray Encoded Arithmetic

Operators Applied to FFT and FIR Dedicated Datapaths. Boston, MA: Springer US,

2006, pp. 281–297. [Online]. Available: https://doi.org/10.1007/0-387-33403-3_18

[52] Y. Shin, S.-I. Chae, and K. Choi, “Partial bus-invert coding for power optimization

of application-specific systems,” IEEE Transactions on Very Large Scale Integration

(VLSI) Systems, vol. 9, no. 2, pp. 377–383, April 2001.

95

Annex

96

ANNEX A – ASIC Design Flow

Since the main purpose of this work is the design of blocks concerning an Ap-

plication Specific Integrated Circuit ASIC, an overview of the design process is presented

in this section.

ASICs are custom made integrated circuits intended to perform specific tasks.

A Bitcoin Miner or a Radio Frequency Identification (RFID), transceivers or audio pro-

cessing chips are all examples of ASICs. Design, test and evaluation of ASICs are very

complex tasks. Three main variables dictates the constraints in the design process:

1. Speed: as in speed of operation, i.e. how fast the chip can perform its computations.

2. Area: in how much the design can occupy in terms of logic gates or transistors, since

occupied area means manufacturing costs and portability.

3. Power : in how much power is consumed, since much of these devices are designed to

operate in mobile applications that depends on battery, and due to heating problems

caused by power dissipation.

ASIC design can be classified into two major categories: Digital Design, where

circuits that use a great number of standard pre-designed standard cells that describe

basic logic functions (as in and, or gates for example) are employed. Digital circuits can

employ millions of those standard cells. On the other hand, analog circuits, the second

major category of ASIC circuits, use a smaller number of cells. Analog circuits are cus-

tom made, use different voltage levels and much less transistors than digital circuits.

Amplifiers, mixers and Voltage Controlled Oscillators are all examples of analog circuit

implementations, whereas digital circuits implementations include, decoders, correlators,

digital filters, communication protocols, routing algorithms. The review of the design flow

presented in this chapter is only concerned with the digital design flow.

Figure A.1 shows the basic digital design flow. The first stage of the digital

design process is the functional specification. It comprises a description of the system,

application, requirements, as well as design constraints. The constraints are derived for

the intended application and are based on the three key parameters mentioned before:

power, area and speed. E.g. low power designs with low area consumption are the adopted

approach for mobile applications, since this kind of application are often powered by

batteries. After specifications analysis and constraints definitions, models are developed.

A.1. FRONT-END 97

Fixed or floating point behavioral models, described in a high level language, validate the

functional specification.

Figure A.1 – ASIC design flow

A.1 Front-end

Once the requirements are defined, the next step is to design the architecture

of every block in the system. The architecture is a description of the digital circuit that

must perform an intended tasks, also called of Register Transfer Level (RTL), the digital

circuit performs complex computations, protocol management or reorders data. The tasks

are described with logic gates, state machines, combinational and sequential logic, and,

or gates, multiplexors and flip flops. After the architecture is completely defined, an RTL

description in a Hardware Description Language (HDL) is performed. HDLs describe the

structure and behavior of the digital logic circuit, similar to a programming language, it

achieves the description by means of a textual description consisting of expressions and

statements.

This RTL behavioral model then goes through a verification process, the be-

havioral RTL written in HDL language is simulated, and the results are compared with

that of the high level language reference model. During the verification process, the circuit

is stimulated with real data and timing and functional behavior is tested. The high level

language model written in e.g. C, Matlab or Phyton, receives the same stimulus of the

behavioral RTL model and generates a reference output. The two outputs are then com-

pared and the RTL debugged if necessary, in case of differences with the reference. Time,

behavioral and functional verification at this stage also allows for architectural explo-

A.2. BACK-END 98

ration, optimal data widths and quantization levels can be adjusted for blocks involving

fixed point computations, also performance issues can be identified.

Once the RTL is verified and no errors are present, Gate Level Synthesis is

performed. This synthesis verifies if the HDL description can in fact be mapped to a spe-

cific digital hardware. Every logic that is described in the HDL language is mapped onto

basic logic gates, and, or gates and lookup tables, memories and registers are also inferred

from the RTL HDL description. Those primitives components are also known as standard

cells. The gate level synthesis output is then, a description on a more low level stage. The

netlist (the output at this stage) shows an entire structural description of the RTL design.

At this stage rough, area, timing and power estimations can be performed, therefore if

the goals of the design are not meet e.g. if the maximum frequency of operation defined

was 20MHz and the circuit only achieves 15MHz, the behavioral description or even the

architecture must be changed in order to attain the time/power/area requirements.

FPGA prototyping is also performed at this stage, to extend the design verifi-

cation. FPGA simulation time is faster than that of a PC allowing less simulation time.

Moreover, FPGA prototyping allows for early integration in the embedded system and a

more realistic verification, since real stimulus can be applied to the design. Another rea-

son to expend time prototyping in FPGA is total development costs. FPGAs prototypes

increase the probability of getting the design bug-free in fewer tape-outs.

A.2 Back-end

Once the frontend bug-free netlist is generated, a physical implementation is

performed. Basically the process follows three key steps:

∙ Floor Planing In Floorplaning the subblocks that compose the design are strate-

gically distributed on the chip area. Blocks are placed in such a way that noise

between components is avoided, reduction in timing paths is also accomplished and

power distribution of the chip is planed.

∙ Placement The placement process maps the logic with the standard cells and tries

to adjust all the cells within the chip area to that of the restrictions defined in the

floorplaning. The placement process also maps the standard cells to the actual tech-

nology used, the pre-designed cells are provided by the foundry (the semiconductor

fabrication facility) chosen to manufacture the chip.

∙ Routing: Finally the routing process uses the information on the netlist to connect

the standard cells one with another. The placement and routing process are iterative,

they go back and forth until the process is completed.

A.2. BACK-END 99

After the routing process is complete and timing, function and power require-

ments are checked, a physical verification is performed. A series of tests are performed

on the final circuit: the design rule check (DRC) test some design rules imposed by the

foundry over the layout representation, so that the chip can perform as expected. Also,

the layout versus schematic (LVS), where the functionality of the final layout is tested

by comparing it with that of the schematic circuit. Finally an electric rule check (ERC)

is performed on the physical verification, ERC checks for required values in the electrical

components of the circuit.

There is a chance in almost all stages of the ASIC design flow (if the timing,

area or power goals are not reached withing that stage) that it may be necessary to go

back to previous stages and modify the design, architecture, RTL (even algorithms can

change) if in the final stages the design does not reach the desired results, e.g. if the

timing requirements are not met after the routing stage, it may be possible to change

architectures defined in the front-end stage in order to met those timing requirements,

and then repeat the whole process from that point on.

100

ANNEX B – ASIC Results

B.1 Synthesys Results

The proposed design was synthesized on the Cadence Encounter RTL Compiler

version 14.20 for frequencies ranging from 1.3333 MHz (maximum FFT/IFFT Sample

Rate for IEEE802.15.4g) up to 200 MHz. The Worst time Slack1 (WS), amount of required

cells 2, Area occupation and power consumption of the entire FFT/IFFT block, for each

of the clock frequencies, are listed in Table B.1. Table B.2 show the results for the same

parameters for the ICFO implementation.

Table B.1 – Logical synthesis results for 65𝑛𝑚 CMOS for the FFT Architecture

Freq Cells CellsArea WS Leakage Dynamic Total
MHz µm2 ps µW µW µW

1.333 13057 74864 523179 21.098 220.069 241.169
2.5 13047 74850 278166 21.086 261.741 282.828
5 13060 74856 138166 20.996 385.393 406.390
10 13046 74847 68166 20.973 1170.029 1191.003
20 13033 74836 33166 20.922 2116.889 2137.811
40 13030 74834 14537 20.963 3699.561 3720.524
80 13108 74902 3759 21.070 6767.198 6788.268
100 13880 75326 2603 21.082 8368.232 8389.314
166 16247 78345 166 22.655 14133.956 14156.611
200 16849 79965 -6 23.344 17647.131 17670.475

It is worth noticing that both designs can work until clock frequencies of 166

MHz without a negative worst slack, although the the maximum frequency required for

the entire MR-OFDM transceiver is of 1.33 MHz, as shown in table 3.1, on chapter 2.

The leakage power of the ICFO is greater than the leakage power as expected since the

area of this block is greater than the area occupied by the FFT block.

1 The difference between the required arrival time of a signal at the input of the block being analyzed
and the actual arrival time.

2 A cell is the minimum building block used by the synthesis tool. Unlike ALMs in FPGA, where there
is only one type, the minimum building block in the Encounter RTL Compiler is of many types and
can be composed of a few or several logic gates. Different kind of cells can be found in different
technologies. Unfortunately, cells characteristics are proprietary and confidential so that no further
information can be provided.

B.1. SYNTHESYS RESULTS 101

Table B.2 – Logical synthesis results for 65𝑛𝑚 CMOS for the ICFO Architecture

Freq Cells CellsArea WS Leakage Dynamic Total
MHz µm2 ps µW µW µW

1.333 31110 154046 515257 45.634 208.834 254.469
2.5 31100 154048 273744 45.638 246.130 291.769
5 31114 154052 135728 45.633 332.961 378.595
10 31106 154047 65728 45.882 1643.020 1688.902
20 31105 154050 30728 45.639 2789.674 2835.313
40 31134 154066 11544 45.435 5764.384 5809.820
80 31749 154568 2048 45.636 11227.396 11273.032
100 32980 155281 1221 45.900 13172.190 13218.099
166 37999 161416 34 48.768 22944.270 22993.039
200 39895 165869 -43 50.818 28016.074 28066.893

The successful logic synthesis and positive worst slack show that both designs

are synthesizable and that its ASIC implementation is achievable. Integration of both

blocks in the MR-OFDM modem was already done as can be seen in [49]; currently,

the back-end process of the ASIC design flow is being performed. Also, an early power

estimation given by the Cadence Encounter RTL compiler tool is shown in the results.

ANNEX C. IEEE802.15.4G PARAMETERS 102

ANNEX C – IEEE802.15.4g Parameters

C.1 Long training Field

Table C.1 – LTF for MR-OFDM Option 1

Tone# Value Tone# Value Tone# Value Tone# Value
–64 0 –32 –1 0 0 32 –1
–63 0 –31 –1 1 1 33 –1
–62 0 –30 –1 2 –1 34 –1
–61 0 –29 1 3 1 35 1
–60 0 –28 1 4 –1 36 1
–59 0 –27 –1 5 1 37 1
–58 0 –26 –1 6 1 38 1
–57 0 –25 –1 7 –1 39 1
–56 0 –24 –1 8 –1 40 1
–55 0 –23 –1 9 1 41 –1
–54 0 –22 1 10 –1 42 –1
–53 0 –21 1 11 1 43 –1
–52 –1 –20 –1 12 1 44 –1
–51 1 –19 1 13 1 45 –1
–50 1 –18 –1 14 1 46 –1
–49 –1 –17 –1 15 –1 47 1
–48 –1 –16 1 16 1 48 –1
–47 –1 –15 –1 17 1 49 1
–46 –1 –14 1 18 1 50 1
–45 1 –13 1 19 1 51 –1
–44 1 –12 1 20 1 52 1
–43 –1 –11 1 21 –1 53 0
–42 –1 –10 –1 22 1 54 0
–41 1 –9 –1 23 –1 55 0
–40 1 –8 1 24 1 56 0
–39 1 –7 1 25 –1 57 0
–38 –1 –6 –1 26 1 58 0
–37 –1 –5 1 27 –1 59 0
–36 1 –4 1 28 1 60 0
–35 1 –3 –1 29 1 61 0
–34 –1 –2 1 30 –1 62 0
–33 –1 –1 1 31 1 63 0

C.1. LONG TRAINING FIELD 103

Table C.2 – LTF for MR-OFDM Option 2

Tone# Value Tone# Value Tone# Value Tone# Value
–32 0 –16 1 0 0 16 1
–31 0 –15 –1 1 1 17 –1
–30 0 –14 1 2 –1 18 –1
–29 0 –13 1 3 1 19 –1
–28 0 –12 –1 4 1 20 –1
–27 0 –11 –1 5 –1 21 –1
–26 -1 –10 –1 6 1 22 1
–25 -1 –9 1 7 –1 23 –1
–24 –1 –8 1 8 –1 24 –1
–23 –1 –7 –1 9 1 25 –1
–22 1 –6 1 10 –1 26 1
–21 1 –5 1 11 1 27 0
–20 1 –4 1 12 1 28 0
–19 –1 –3 –1 13 –1 29 0
–18 1 –2 –1 14 –1 30 0
–17 –1 –1 –1 15 1 31 0

Table C.3 – LTF for MR-OFDM Option 3

Tone# Value Tone# Value Tone# Value Tone# Value
–16 0 –8 1 0 0 8 –1
–15 0 –7 1 1 –1 9 1
–14 0 –6 1 2 –1 10 1
–13 1 –5 1 3 1 11 –1
–12 –1 –4 1 4 –1 12 –1
–11 1 –3 1 5 1 13 1
–10 –1 –2 1 6 1 14 0
–9 1 –1 –1 7 –1 15 0

Table C.4 – LTF for MR-OFDM Option 4

Tone# Value Tone# Value Tone# Value Tone# Value
–8 0 –4 1 0 0 4 1
–7 1 –3 –1 1 –1 5 –1
–6 –1 –2 1 2 1 6 –1
–5 1 –1 1 3 1 7 –1

Table C.5 – Modulation Schemes for every MCS and OFDM Option

MCS OFDM Option1 OFDM Option2 OFDM Option3 OFDM Option4
0 BPSK BPSK - -
1 BPSK BPSK BPSK -
2 QPSK QPSK QPSK QPSK
3 QPSK QPSK QPSK QPSK
4 - QPSK QPSK QPSK
5 - 16-QAM 16-QAM 16-QAM
6 - - 16-QAM 16-QAM

