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Abstract

Atherosclerosis is one of the main causes of stroke and is responsible for millions of deaths per

year. Magnetic resonance (MR) is a common way of assessing carotid artery atherosclerosis. A

newly proposed cine fast spin echo (FSE) MR imaging method can now obtain dynamic MR

data (i.e., generate images across the cardiac cycle). This work introduces a post-processing

technique that automatically segments the common carotid artery (CCA) wall-blood bound-

ary (lumen) across the cardiac cycle with no need of human interaction. To the best of our

knowledge, this work is the Ąrst proposed technique for segmenting cardiac cycle-resolved cine

FSE images. The technique overcomes some limitations of dynamic compared to static images

(e.g., lower spatial resolution). It combines a priori knowledge about the size and shape of

the CCA, with the max-tree data structure, random forest classiĄer and tie-zone watershed

transform from identiĄed internal and external markers to segment the vessel lumen (i.e.,

vessel wall-blood boundary). Technique performance was assessed using 3-fold cross valida-

tion with 15 cine FSE sequences per fold, each sequence consisting of 16 temporal bins across

the cardiac cycle. The automatic segmentation was compared against manual segmentation

results. Our technique achieved an average Dice coefficient, sensitivity and false positive rate

of 0.926 ∘ 0.005 (mean ∘ standard deviation), 0.909 ∘ 0.011 and 0.056 ∘ 0.003 , respectively,

compared to the voting consensus of three experts manual segmentation.

Keywords: max-tree, markers, tie-zone watershed, random forest, carotid, lumen, cineFSE

imaging



Abstract

A aterosclerose é uma das principais causas de derrame cerebral e é responsável por milhões

de mortes por ano. A ressonância magnética (RM) é uma maneira comum de avaliar a

aterosclerose da artéria carótida. Um novo método de imagem de RM cine fast spin echo

(FSE) agora pode obter dados de RM dinâmicos (i.e., gerar imagens em todo o ciclo cardíaco).

Este trabalho apresenta uma técnica de pós-processamento que automatiza a segmentação

do limiar entre sangue e parede (lumen) da artéria carótida comum (ACC) ao longo do ciclo

cardíaco. Até onde sabemos, este trabalho é a primeira técnica proposta para segmentar

imagens cine FSE com resolução de ciclo cardíaco. A técnica supera algumas limitações da

dinâmica em comparação com imagens estáticas (ex., resolução espacial mais baixa). Ele

combina o conhecimento a priori sobre o tamanho e a forma da ACC, com a estrutura de

dados max-tree, classiĄcador Random Forest e a transformada tie-zone watershed a partir de

marcadores internos e externos para segmentar o lúmen do vaso. O desempenho da técnica

foi avaliado usando validação cruzada com 3 folds com 15 sequências cine FSE por fold.

Cada sequência consiste de 16 pontos de tempo em todo o ciclo cardaco. A segmentação

automática foi comparada com resultados de segmentação manual. Nossa técnica alcançou

um coeĄciente dice, sensibilidade e taxa de falso positivo de 0.926 ∘ 0.005 (média ∘ desvio

padrão), 0.909 ∘ 0.011 e 0.056 ∘ 0.003, respectivamente, em comparação com o consenso da

segmentação manual de três especialistas.

Palavras-chaves:árvore máxima, marcadores, tie-zone watershed, Ćoresta aleatória, caró-

tida, lúmen, imagem Cine FSE

Resumo
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1 Introduction

1.1 Introduction

Stroke is one of the most common causes of death in the world. It is estimated that 4.4

million people die every year due to stroke and 5,000 in every 1,000,000 people suffer from

stroke-related disability ((YUAN et al., 2001)). Atherosclerosis is one of the main causes

of stroke, causing about 25% of all ischemic events ((SAAM et al., 2007)). Atherosclerotic

vessel disease is characterized by accumulation of lipid, Ąbrin, cholesterol and calcium in

artery walls, speciĄcally at bifurcations and in regions of vessel curvature. Atherosclerosis

progression is complex with severe cases resulting in complex plaques in the vessel wall and,

eventually, a reduction in cross-sectional area (i.e., the development of lumenal stenosis).

Currently there are several different types of exams to identify aterosclerotic plaques

and analyze the carotid. The most used for determining carotid distensibility are ultrassound

techniques, once they are lower cost (when compared with MRI), easier and with high tem-

poral resolution. However these techniques have poor blood-wall contrast and calciĄcations

contribute to create image shadowing ((BOESEN et al., 2015)). On the other hand, x-ray

techniques, such as computed tomography angiographys (CTAs) do not excel in tissue con-

trast ((MENDES et al., 2011)).

Magnetic resonance imaging (MRI) is a technique that provides a great tissue contrast

between vessel wall and lumen. Besides, it permits the evaluation of plaque morphology

and composition, better deĄning the absence or presence of vulnerable (or "at-risk") carotid

plaques ((YUAN et al., 2001)) that can be treated medically (e.g., statin therapy) or with

surgery. (Figure [1])

For the development of this project we used Cine Fast Spin Echo (FSE) images, which

differs from usual MR imaging for bring us dynamic information about distensibility and

contraction of carotid artery through cardiac cycle. The method developed is applied on each

slice individually, therefore we do not use the dinamic nature of the image for segmentation

purposes. Despite the fact that usual MRI acquires images with a good tissue contrast, they

usually have motion artifacts due the long time needed for acquisition ((MENDES et al.,

2011)). Cine FSE imaging, on the other hand, is capable of acquiring a number N of images

(N between 10 and 20) during a cardiac cycle with the same time used by a standard FSE

to acquire only one static image ((MENDES et al., 2011; BOESEN et al., 2015)).
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Figure 1 Ű Example of normal and vulnerable plaque (NAGHAVI, 2003).

1.2 Motivation

CCA lumen manual segmentation is not an easy task. It is time consuming and very

subjective, specially in the limiar between lumen and CCA wall, which is the region most

affected by the artifacts and blood Ćow, thus the most susceptible to be mistaken. Currently

we can Ąnd in the literature many different methods of semi-automatic segmentation, however

all of them have human iteration at some level.

Despite current image exams have good tissue contrast and good resolution, it is not

common to Ąnd plaques in earlier stages ((NAGHAVI, 2003)). It is interesting to develop a

non invasive, fast and robust method to quantify, monitor and assess carotid artery. Despite

we do not use the dynamic information of cine FSE images for segmentation, one can analyze

the elasticity of carotid artery and use this information to help identifying atherosclerosis

disease in earlier stages. For so, we need the segmentation of CCA lumen as an initial step.

Besides there are many studies on the literature presenting vessel lumen segmentation, as

we will present on a later section, there is no technique proposing segmentation of dynamic

images of vessels.

1.3 Objectives

This work is the Ąrst step of a larger project that intends to study carotid artery

distensibility curves (CCA and bifurcation) and, based on them, classify patients as healthy

or non-healthy. These curves are possible to be created due the dynamic nature of Cine FSE

images, which will be explained on the next chapter.

Finally, the main objective of this work is the development of a fully automatic method

to segment the lumen of Common Carotid Artery (CCA) using Cine FSE images. Since this

is an initial project, to verify the viability of lumen segmentation on dynamic images, we will
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not focus on carotid bifurcation or plaque composition.

1.4 Bibliographic Review

Currently, we can Ąnd in the literature many articles concerning vessel lumen seg-

mentation. There is a great variety of methods and types of images used, such as MRI,

Magnetic Resonance Angiography (MRA), CTA, among others. In this topic, we will present

some works developed, their methods and Ąnal result. In order to classify the studies, we will

divide them into three larger groups, based on (LESAGE et al., 2009):

∙ Geometric models: The segmentation is based on vessel shape.

(ARIAS-LORZA et al., 2016) created an optimal surface graph-cut algorithm to seg-

ment the carotid wall bifurcation on MRI with minimum user interaction. To do so,

they also segment the lumen. The method is based on three main steps: At Ąrst, the

image is pre-processed and three seed points are manually chosen. Then, centerlines

are computed and the lumen is coarsely segmented by centerline dilatation. As second

step, a surface graph is constructed and Ąnally the minimum graph cut is computed. To

validate the method the authors used 31 unhealthy subjects. To compute the center-

lines Black Blood MRI (BBMRI) and Proton density weight MRI (PD-W MRI) images

were used. They achieved a dice coefficient of 0.89 ∘ 0.09 for lumen segmentation and

0.86 ∘ 0.06 for complete vessel.

∙ Appearance models: Based on luminance properties, depend on the imaging modal-

ity.

(UKWATTA et al., 2013) proposed a multi-region segmentation method, partitioning

the image into lumen, outer wall and background. In order to do so, they compute the

lumen intima boundery (LIB) and carotid adventia boundery (CAB). To do so, they

utilize the Probability Density Function (PDF) of intensities (i.e. intensity histogram)

as global descriptor. The two surfaces CLIB and CAB are then propagated to their

PDF models using the minimal Bhattacharyya distance. Finally, they end up in an

optimization problem for the simultaneous evolution of the two surfaces. This problem

is globally solved using convex relation and introducing a new continuous max-Ćow-

based algorithm. The method is done with minimal user interaction. It is needed to

choose a few voxels of carotid wall, lumen and background on one single transverse

slice. The authors used two different datasets, the Ąrst one was composed by 12 T1W

3T MRI images, in which they found a dice of 93.3% ∘ 1.4% for LIB and 93% for AB
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and the second dataset composed composed by 26 T1W 1.5T MRI images, in which

they got a dice coefficient of 91.3% ∘ 1% for CAB and 92.4% ∘ 2.1% for LIB

∙ Hybrid models: Combine appearance and geometric models.

(LOPEZ V.NARANJO, 2011) segmented the aorta artery in MRI images. They devel-

oped a semi-automatic algorithm based in mathematical morphology and watershed

transform. To do so, they process the 3D MRI image slice by slice. The image is pre-

processed with morphological Ąlters and for segmentation they choose two markers,

internal and external to aorta artery, to be used as input to the watershed transform.

The internal marker is chosen as the geodesic center of the descending aorta and ex-

ternal marker is the dilation of this point by a structuring element of n=30. The Ąrst

point is selected by the user. As result, they Ąnd a Jaccard coefficient of 0.81 ∘ 0.02

and a Dice coefficient of 0.878.

(SAKELLARIOS et al., 2012) proposed a luminal border, outer vessel wall detection

and plaque composition characterization. They used 1.5T MRI images performed in

24 patients. As pre-processing, they perform an image cropping, contrast enhancement

and media Ąltering, The next step is the luminal border detection, done in axial TOF

MR images. First they Ąnd a coarse segmentation using OtsuŠs method. Then, Canny

technique is applied for edge detection. With the result of this step, a 3D volume is

generated and an in-house 2D clearing algorithm is used to eliminate points that are

not classiĄed as luminal borders. For the Ąrst image, seeds need to be identiĄed by

the user. For bifurcation, they use connected components theory, assuming that CCA

is one large component and internal carotid artery (ICA) and external carotid artery

(ECA) are two different components of comparable sizes. Finally, active contour is used

to detect the Ąnal borders of CCA, ICA and ECA. For plaque characterization, they

use a three-level decision tree for classiĄcation and fuzzy c-means for categorization of

the plaque. They found a variability for lumen and outer vessel wall of -1.6∘ 6.7% and

0.56 ∘ 6.28 %. Dice coefficient was not reported.

After studying the existing work of vessel segmentation found on the literature, we

could notice that there is no consensus about the method. Since the authors differ in relation

to the tools, there is no solidiĄed method as the best to use for solving the problem of lumen

segmentation of vessels and arteries such as the carotid artery. Therefore, we have created a

new method that could best Ąt our type of images, which also differ from the ones found in

the literature due to its dynamic nature.

In the present work, a hybrid model was used in Cine Fast Spin Echo (Cine FSE)

time-series of MR images with the goal of Ąnding a robust pattern of the carotid surface
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area. Each MR time-series volume is composed of one sequence of 16 temporal bins that

compose a period of a cardiac cycle. Our method uses the max-tree (SALEMBIER et al.,

1998; JONES, 1999) with tie-zone watershed (LOTUFO et al., 2002) and random forest

classiĄer (BREIMAN, 2001) to get accurate segmentations.

1.5 Organization of the dissertation

This dissertation is organized as follows: Chapter 2 presents a brief theoretical back-

ground concerning max-tree, watershed, cine-FSE images, Random Forest, features descrip-

tors, such as HOG and LBP, and the metrics used to assess the method. Chapter 3 explains

the method developed for automatic CCA segmentation. Chapter 4 presents the method re-

sults and ground truth used and discuss the results. Also, we show a best case scenario using

the Tie-Zone Watershed Transform and make a few changes on the code to analyze each one

of the proposed steps. Chapter 5 presents the conclusions, future work and a publications

list related to this research.
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2 Theoretical Background

In this chapter, it is presented a brief theoretical background about Cine FSE Images,

Max-Tree, Watershed, Random Forest and some feature descriptors and metrics used in our

methodology.

2.1 Cine FSE Images

Conventional static MR imaging techniques generate images with acceptable vessel

wall-blood image contrast and allow for the depiction of vessel wall morphology and character-

ization of plaques components. FSE images, with proton density-, T1- and/or T2-weightings

are commonly used ((SAAM et al., 2007; YUAN et al., 2001)). These images provide only

a snap-shot (time averaged) of the vessel wall morphology and composition over the cardiac

cycle. They can also suffer from cardiac motion-induced artifacts due to their long data acqui-

sition times ((MENDES et al., 2011)). Cine FSE imaging is a new technique that is capable of

acquiring images across the cardiac cycle in total acquisition times similar to those required

for a standard static FSE technique, albeit often with reduced spatial resolution ((BOESEN

et al., 2015; MENDES et al., 2011)). Because cine FSE images are resolved over the cardiac

cycle they potentially can reduce image artifacts due to motion(BOESEN et al., 2015).

Cine FSE acquires data over the entire acquisition window asynchronously with re-

spect to the contraction of the heart. The acquired raw MR data is however tagged with its

acquisition time within the cardiac cycle (typically using information from a pulse oximeter).

The raw data is then rebinned into 𝑁 temporal bins that evenly cover the average cardiac

cycle. 𝑁 is user selectable and typically is between 10 and 20. Because the raw MR data was

collected asynchrounoulsy, each rebinned data set will, in general, be incomplete. Therefore

sophisticated, non-linear reconstruction methods, based on compressed sensing ((LUSTIG

et al., 2007)), are required to generate images. Compared to static FSE images, cine FSE

images are able to generate a similar range of image contrasts (weightings), with potentially

lower resolution and signal-to-noise, but fewer motion artifacts. For this project, we used

sequences of images rebinned into 16 temporal bins, as we can see on Figure 2. The cine FSE

data acquisition process is fully explained in (BOESEN et al., 2015).

The major differences between the usual MR acquisition and Cine FSE images are

image contrast, resolution and motion artifacts. Usual MR has better contrast and resolution,

while Cine FSE is faster and deals with motion artifact problems (Figure 3).
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be, and it may even split in two or more components (Figure 4).

(a)

(b) (c) (d) (e)

(f)

Figure 4 Ű Connected components for different threshold (T) values (a) Original Image I. (b)
I > 0 (c) I > 1 (d) I > 2 (e) I > 3 (f) I > 4

2.2.1 Component Tree

Before deĄning the component tree, we need to introduce the deĄnition of a node: A

node is an abstract representation of the CCs, keeping information as gray level, attributes

values, area, eccentricity, perimeter ((JONES, 1999)). The Component Tree is a set of nodes,

each one representing a particular CC. It represents the image according the gray level of the

CC.

Figure 5(b) represents the construction of component tree corresponding to a 1D

sequence (Figure 5(a)). As we can see, the Ąrst CC, also called root, represent the entire

image as a superset of all the CCs. As we analyze the component tree, we can observe that

all nodes are linked to each other at a higher gray level with exception of one node. This node

is called the regional maximum. The pixels around a regional maximum will always have a

lower gray level than it.

2.2.2 Max-Tree

As we said before, for the component tree, the nodes are representations of the CCs.

This means that all the pixels of the CCs are represented in the node and all the CCs will
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2.3 Watershed

The watershed method considers the image as a topographic surface based on Ćooding

simulation. Regional minimum (RM) are the origin of a Ćooding that increases until water

from different RM start to merge. By this time, a dam is created to avoid the waters to merge,

as we can see on Figure [8]. The Ąnal segmented image is composed by the watershed lines,

represented by the visible dams above the waterline. We call catchment basin the resulting

areas Ćooded from one RM ((DOUGHERTY; LOTUFO, 2003)).

Figure 8 Ű Watershed ((DOUGHERTY; LOTUFO, 2003))

Usually, watershed is applied on the gradient image, however the gradient is composed

by numerous regional minimum. This characteristics of the image leads to over-segmentation,

this means, the Ąnal result will have more damns than the expected, as we can see on Figure

9(c). To avoid this, we use the watershed from markers.

2.3.1 Watershed from markers

To avoid over-segmentation, we can use watershed from markers. In this case, the

Ćooding simulation is done with a small change: We punch holes on the markers regions.

Now, the Ćooded water will be colored, each color representing one marker. Different of

the watershed without markers, in this case a dam will be created only when waters of

different colors begin to merge, minimizing the number of Watershed lines ((DOUGHERTY;

LOTUFO, 2003)). This process is represented on Figure [10]. Although this case lowers the

over-segmentation, the markers extraction needs to be done carefully and precisely. Usually

we have markers for the background and markers for the foreground. If a marker is not well

placed or if it is missing, a part of the segmentation will be compromised, as we can see on

Figure 11].
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(a)

(b) (c)

Figure 9 Ű Watershed Segmentation Example (a) Original Image I (b) Gradient Image of I
(c) Watershed lines for I

Figure 10 Ű Watershed from markers Dougherty03

2.3.2 Tie-Zone Watershed

The watershed transform from markers can be seen as an optimization problem. (AU-

DIGIER et al., 2005) showed that the watershed transform may have multiple solutions, and

its output may depend on algorithm implementation details, such as the order the image

pixels or pixels neighbors are processed (Figure 12). For instance, the watershed result ap-

plied to an image can be different of the watershed result applied to the same image rotated

by 90◇, which is an undesirable feature. The tie-zone watershed ((AUDIGIER et al., 2005))

assigns a tie-zone label to the regions that have the same cost to more than one marker. The

tie-zones regions then may be addressed in a subsequent post-processing step.

The tie-zone watershed from markers applied to a carotid MR image is illustrated in

Figure 13. Two markers are used in this case, one internal marker in the carotid lumen and
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(a) (b)

Figure 13 Ű Illustration of the tie-zone watershed from markers. (a) Internal (green) and
external (red) markers. (b) Tie-zone watershed result with the tie-zones shown
in blue.

data to create a optimization function in each of the split nodes. Each split node represents

a class histogram, and we can determine the probability of a certain test sample to be of a

class S based on the node histogram Figure [14](b),(c),(d).

Being X a dataset containing a number N of different classes, we can do more than

one split to classify the samples. Depending on the split,we can optimize the prediction and

achieve a better accuracy on the classiĄer. In Figure [15(a)] we have a dataset containing

two different classes. If we trace two different lines to split it, we can see that a vertical

line Figure [15(b)] will work better for splitting the dataset correctly than an horizontal line

Figure [15(b)]. Those lines are the representation of the function used by the nodes to split

the data. Those functions, or criteria, are better explained on the next section.

2.4.2 Entropy and Information Gain

The entropy measures the uncertainty of a given random experiment. The more un-

certain the result of a random experiment, the greater the information obtained by observing

its occurrence.((CRIMINISI; KONUKOGLU, 2012)). For a better split of tree nodes, we look

for a reduction on the entropy, also known as Information Gain (IA). In other words, the

attribute with higher IA will be the better one to describe a given dataset. The Information

Gain and Entropy can be deĄned as shown on Equations (2.1) and (2.3), respectively.

𝐼(𝐴) = 𝐻(
𝑝

𝑝 + 𝑛
,

𝑛

𝑝 + 𝑛
) ⊗ 𝐸𝐻(𝐴) (2.1)

𝐻(Þ) = ⊗
∑︁

Þ𝑙𝑜𝑔Þ (2.2)
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In order to assess the performance of classiĄers, the following metrics were used:

∙ Precision

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

(𝑡𝑝 + 𝑓𝑝)
(2.5)

∙ Recall

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
(2.6)

∙ F1-Score

𝐹1 ⊗ 𝑆𝑐𝑜𝑟𝑒 =
2 * (𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 * 𝑟𝑒𝑐𝑎𝑙𝑙)

(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙)
(2.7)

Being 𝑡𝑝, 𝑓𝑝 and 𝑓𝑛 true positive, false positive and false negative, respectively. They

can be deĄne on Table 1, also known as confusion matrix for binary cases.

Table 1 Ű Confusion Matrix for binary cases
Predicted Class 0 Predicted Class 1

Actual Class 1 TP FN
Actual Class 0 FP TN

Precision deĄnes the correct predictions rate for a given class within all the predictions,

that is, the ones that were relevant. In other words, the proportion of predictions that

were correctly classiĄed among all the predictions.

Recall is deĄned by the correct predictions rate within a given class, that is, a proportion

of relevant labels that have been predicted.

F1-score is the weighted average between precision and recall. It varies from 0 to 1,

being 1 the best result one could achieve.

2.7 Chapter Conclusions

This chapter presented the minimal theoretical background necessary for the devel-

opment of subsequent chapters. More detailed and formal deĄnitions can be found on cited

bibliography.
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3 Common Carotid Artery Lumen Segmenta-

tion

In this chapter we will present the developed method for CCA lumen segmentation.

Our solution uses appropriate size and shape information obtained from the max-tree algo-

rithm to Ąnd CCA centroid, internal and external (to the carotid artery lumen) markers that

then are used by the tie-zone watershed transform. The max-tree is a good tool for Ąnding

structures of the image that present an important gray level difference among their neigh-

bours. For internal and external markers we Ąnd nodes on lumen and vessel wall, this means,

dark and bright structures, respectively. The proposed method developed has Ąve main steps

detailed below (Figure 21).

Figure 21 Ű Flowchart of our proposed method.

Initially, we automatically select CCA centroid. This selection is done using max-tree

Ąltering and random forest classiĄcation. Using the selected centroids, we build the max-tree

of negated image and gradient image. Those will deliver us an internal an external marker,

respectively. The markers will feed a tie-zone watershed transform. Finally, we perform a
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classiĄcation on the tie-zone pixels and get the Ąnal segmentation. All the steps of the method

are better explained bellow.

3.1 CCA Centroid Selection

The Ąrst step of the method requires the automatic selection of the left and right

CCA centroids, detailed on Figure 22. For so, we used max-tree for image Ąltering and

feature extraction and random forest classiĄcation for Ąnal selection.

Figure 22 Ű Flowchart of CCA centroid Selection algorithm

∙ Max-Tree Filtering

For this Ąrst step, we have as input an entire sequence of cine FSE images, this means,

all 16 temporal bins. Initially, we use a max tree Ąlter to return only the nodes with

area between 14.5mm2 and 46.6mm2, once CCA areas are well established from mea-

surements in the literature (diameters ranging from 4.3 mm to 7.7 mm) ((LIMBU et

al., 2006)). This Ąlter is used on all 16 temporal bins of the sequence.

∙ Probability Image and Binary Image

A probability image is created by summing all 16 Ąltered images of the previous step.

Then we apply a threshold of 0.8 on the probability image, maintaining only pixels that
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discrepancy between histograms then comparing the Ąrst and second bins, ie, the peaks

of histograms of consecutive temporal bins are closer than peaks of histogram of non-

consecutive temporal bins..

For selecting the (IM) we are interested in the carotid lumen which is a dark point

of the image. At Ąrst, we build the max-tree of the negative of the input image (min-tree),

then, we analyze the max-tree area signature starting from the selected centroid all the way

down to the max-tree root. Then, we create a Ąlter using the previous knowledge about CCA

area, reducing the number of max-tree nodes that need to be analyzed. We can see on Figure

25 that after the signature fall we only have nodes representing the carotid, both lumen and

vessel wall. Among those, we need to Ąnd the internal marker.

From the Ąnal candidate nodes, the IM is selected based on our histogram assumption.

We select as an internal marker the candidate with gray-level value closest to the gray level

of the previous temporal bin. For the Ąrst temporal bin, we select the node with gray level

closest to the highest peak of the histogram, once the vessels are the darkest structures of

the image.

3.3 External Marker Selection

For external markers (EM), we are interested in the vessel wall, which is the brighter

structure around the lumen. For so, we built the max-tree of the gradient image to Ąnd nodes

around the carotid artery lumen. We use the gradient image because it accentuates the artery

walls due to the sudden change in gray-level between the wall and the lumen. We choose the

node in which its centroid has the smallest Euclidean distance compared to the centroid of

the IM, found on step 3.2. Usually, the carotid artery wall is not entirely represented by a

single max-tree node (Figure 27(b)), and the EM will work better if it enclosures all the

entire lumen. Therefore, the Ąnal EM was composed of a circle of diameter equal 1.5 times

the greatest distance between the pixels of the selected max-tree node and the manual seed.

The diameter is not allowed to exceed 7.7 mm, the assumed maximum diameter for the CCA

((LIMBU et al., 2006)).

By adjusting the EM diameter, we improve tie-zone watershed transform done on the

next step, once a large EM can create leakages on the Ąnal result and a small EM, ie, with

a diameter smaller than CCA lumen diameter, can make us lose information.
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4 Results and Discussion

4.1 Introduction

In this chapter we will present and discuss results obtained from the application of the

methodology explained on the previous chapter. The results demonstrate the automatic seg-

mentation of the CCA lumen compared with manual segmentation of three different experts

and a Ąnal consensus. Also we will present a best case scenario where we can see the best

result we could achieve by using tie-zone methodology and we will also analyze the effects of

removing the tie-zone step of the algorithm. Finally, we will do an feature analysis of tie-zone

classiĄcation. For all experiments of this work, we used a dataset composed by 10 sequencies

of healthy subjects, each one with 16 temporal bins. More information obout the dataset will

be given below.

4.2 Centroid Selection

4.2.1 Dataset

In order to increase the classiĄcation robustness for centroid selection, we performed

data augmentation, created a new dataset with rotated, shifted and re-scaled images derived

from the cine FSE images (Figure 30)

Finally, our training and validation set was composed by 105 sequences of 16 temporal

bins, including the augmented data. For testing, we had 25 sequences of images composed

only by real images, unknown by the classiĄer. It is important to emphasize that despite the

input of the automatic centroid selection algorithm is the sequence of 16 temporal bins, the

input of the classiĄer is not an image, but the extracted feature matrix, explained on chapter

3.

4.2.2 Classification

∙ Training and validation

After extracting all features from the training images, we ended up with 8107 candidate

pairs, being only 126 of those true carotid pairs. In order to avoid underĄtting due

unbalanced dataset, the candidate pairs were shuffled and some of false examples were
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(a) (b)

(c) (d) (e) (f)

(g) (h)

Figure 30 Ű New dataset created to simulate patient movement during acquisition (a) Orig-
inal image (b) Re-scaled Image (c) Rotated 30o left (d) Rotated 30o right (e)
shifted 20 pixels right and down (f) shifted 20 pixels left and up (g) Rotated 15o

left and shifted (h) Rotated 15o right and shifted

ignored. Finally, we had 1000 pairs, 874 being false examples and 126 of true examples.

This dataset was divided into 70% for training and 30% for validation.

In order to decide the best classiĄer to be used also ran Logistic Regression (LogR) and

Suport Vector Machine (SVM) classiĄers on training and validation dataset, however,

as we can see on table 3, RF presented the best results.

Table 3 Ű Comparison between classiĄers (RF, LogR and SVM). Here we can see Precision
and Recall of the positive class, that means, the class that represents the true
candidate pairs. As we can see, RF had the best results.

Classifier Training Validation
Precision Recall Precision Recall

RF 1 1 0.96 0.90
LogR 0.82 0.81 0.80 0.83
SVM 0.92 0.99 0.89 0.86

As we explained before, despite the input of the algorithm is an image, RF receives a
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(a) (b) (c)

Figure 31 Ű Examples of centroid automatic selection

feature matrix as input. So, in some cases, it returned more than one pair of candidates

as centroid or, in other cases, none. In order to avoid these issues, instead of using a

binary classiĄer, we analyze the probability returned by the RF. The pair with higher

probability is assigned as centroids. Doing so, we increase our Ąnal accuracy.

∙ Testing

Despite our classiĄer encountered some mistaken samples, as we can see on the confusion

matrix (Table 4), when we have the Ąnal result given by the candidate pair with highest

probability, we achieve 100% of accuracy on our test set. Some examples can be seen

on Figure 31.

Table 4 Ű Confusion Matrix for test set. As we can see, there are 3 false negatives and 18
false positives. Using the classiĄer probability, we have 100% of accuracy on test
set.

0 1
0 2545 18
1 3 22

4.3 Segmentation

4.3.1 Dataset

Our dataset is composed by a total of 5 different acquisitions of 10 healthy subjects,

totalizing 50 sequences of 16 temporal bins with a resolution of 0.6 x 0.6 x 2 mm3. However,

one subject was discarded due to lack of manual segmentation (Figure 32).

4.3.2 Tie Zone Assignment Classifier

In order to assess RF as the best classiĄer to the project, we made some tests using

LogR and SVM classiĄers. As we can see on Table 5, the results are very similar, specially

between RF and SVM, that presented the same accuracy and F1-Score. Between those two,

RF was chosen due the processing time, that is smaller than SVM.
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(a) (b)

(c) (d) (e)

Figure 33 Ű Ground Truth Example (a) Original Image (b) Voting Consensus (c) Specialist
1 (d) Specialist 2 (d) Specialist 3

Table 6 Ű Dice coefficient, sensitivity and false positive rate (FPR) metrics. Averages (mean
∘ standard deviation shown) across all 3 folds are reported comparing automatic
segmentation (AS) against the manual segmentation majority voting consensus
(VC) and experts (Exp).

Sensitivity Dice FPR
AS x VC 0.909 ∘ 0.011 0.926 ∘ 0.005 0.056 ∘ 0.003

AS x Exp1 0.923 ∘ 0.005 0.906 ∘ 0.011 0.057 ∘ 0.003
AS x Exp2 0.896 ∘ 0.01 0.905 ∘ 0.009 0.084 ∘ 0.007
AS x Exp3 0.90 ∘ 0.013 0.914 ∘ 0.004 0.071 ∘ 0.009

Exp1 x Exp2 0.921 ∘ 0.005 0.918 ∘ 0.008 0.075 ∘ 0.005
Exp1 x Exp3 0.941 ∘ 0.004 0.941 ∘ 0.006 0.057 ∘ 0.009
Exp2 x Exp3 0.908 ∘ 0.011 0.908 ∘ 0.005 0.057 ∘ 0.009

Analyzing table 6, we can see that our method can be comparable with experts seg-

mentation. In fact, when we compare the automatic segmentation versus expert 3, we notice

a bigger dice than comparing two experts segmentation (Expert 2 and Expert 3).

4.3.5 Processing Time

On Figure 36 we can see the amount of time that each step of the process takes.

Although TZ assignment seems to be the least efficient algorithm, taking longer time to

process, it is important to emphasize that feature selection algorithm (inserted into TZ

assignment) is all written in Python programming language, while centroid selection, internal

and external markers are based on a efficient Max-Tree library, written in programming

language C.



Chapter 4. Results and Discussion 48

Figure 34 Ű Cross Validation scheme. Subjects were randomly partitioned into 3 folds con-
taining 15 images from 3 different subjects (5 acquisitions per subject).

4.4 Algorithm analysis - Tie-Zone assignment

4.4.1 Watershed from markers x Tie-zone assignment

The methodology proposed is composed by many steps, which increases its complexity

and processing time as shown on the previous topic. One of the less efficient steps is TZ

algorithm, which is responsible for a increase of 1.3s, which is almost 47% of the processing

time. In order to analyze the importance of this step, we generated new results, removing the

TZ assignment of the methodology and leaving the segmentation only with the watershed

with markers, explained on Chapter 2. Although TZ increase the Ąnal processing time, it

also increases 2.3% in accuracy, leading to approximately 24% of error reduction. As this is

an introductory study, an optimization work can be done on the code aiming to reduce the

processing time, once we had an important accuracy increase and error reduction resulted

by the addiction of TZ. The comparison between both cases can be seen on Table 8

4.4.2 Feature Analysis

Using RF classiĄer we run a feature analysis, where we can see which features are

more important to classify the tie-zone pixels. This can be seen on table 7.
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(a) (b) (c)

(d) (e) (f)

Figure 35 Ű Examples of one aquisition, taken from three different patients. Final automatic
segmentation result in green and VC in blue. First line: Best results. Second line:
worst results. (D = Dice, S = Sensitivity) (a) S = 0.94 |D = 0.95 |FPR = 0.05
(b) S = 0.98 |D = 0.97 |FPR = 0.05 (c)S = 0.931 |D = 0.922 |FPR = 0.089 (d)
S = 0.47 |D = 0.63 |FPR = 0.01 (e) 0.83 |D = 0.90 |FPR = 0.02 (f) S = 0.89 |D
= 0.89 |FPR = 0.12

Figure 36 Ű Sequence of 16 temporal bins of the same slice during the cardiac cycle (zoom in
around a CCA) collected with Cine FSE technique.

Table 7 Ű Feature importance for RF classiĄer, in order of importance (TZ Hist: Tie Zone
Histogram; Glv Mean: Gray level of 8-neighbor window; Glv: gray level of pixel

Glv TZ Hist [2] Glv Mean TZ Hist [1] HOG[1] HOG[2] LBP HOG[0]
0.21 0.21 0.20 0.14 0.05 0.04 0.03 0.03

HOG[3] HOG[4] HOG[5] TZ Hist [0] HOG[6] HOG [7] HOG [8]
0.03 0.03 0.03 0.02 0 0 0
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As we can see, tie zone histogram and gray level information are the features with

bigger importance.

4.4.3 Best Case Scenario

In order to analyze the Tie-Zone methodology, we created a best case scenario, in

which we labeled all the TZ pixels according the voting consensus. The result of this exper-

iment return the best result we could achieve by using the TZ. In other word, this is the

result we would achieve by Ąnding 100% of accuracy on RF classiĄer.

Table 8 shows us the Ąnal best case scenario results and compares them with the

previous discussed results.

Table 8 Ű Comparison between Ti-zone Assignment results, Watershed with markers and
the best case solution.

Method TZ Assignment Watershed from Markers Best Case Scenario
Sensitivity Dice FPR Sensitivity Dice FPR Sensitivity Dice FPR

Method x VC 0.909 ∘ 0.011 0.926 ∘ 0.005 0.056 ∘ 0.003 0.859 ∘ 0.018 0.903 ∘ 0.003 0.043 ∘ 0.02 0.937 ∘ 0.008 0.96 ∘ 0.001 0.015 ∘ 0.008
Method x Exp1 0.923 ∘ 0.005 0.906 ∘ 0.011 0.057 ∘ 0.003 0.90 ∘ 0.003 0.856 ∘ 0.018 0.044 ∘ 0.018 0.947 ∘ 0.001 0.924 ∘ 0.008 0.027 ∘ 0.008
Method x Exp2 0.896 ∘ 0.01 0.905 ∘ 0.009 0.084 ∘ 0.007 0.856 ∘ 0.023 0.893 ∘ 0.002 0.061 ∘ 0.027 0.908 ∘ 0.014 0.923 ∘ 0.008 0.059 ∘ 0.018
Method x Exp3 0.90 ∘ 0.013 0.914 ∘ 0.004 0.071 ∘ 0.009 0.85 ∘ 0.011 0.891 ∘ 0.004 0.058 ∘ 0.022 0.915 ∘ 0.002 0.934 ∘ 0.004 0.043 ∘ 0.01

Figure 37 shows us the comparison between the three previous cases: Automatic seg-

mentation, algorithm without tie-zone and best case scenario.

4.5 Chapter Conclusions

In this chapter we presented Ąnal results and discussions based on the developed

methodology.

Based on the results and discussion presented on this chapter, we can conclude that

the Tie-Zone assignment is the most complex part of the method, and besides it has shown

to be better than watershed with markers, we can see there are improvements to be done on

the Random Forest classiĄer, based on best case scenario and feature analyses.

Finally, we can conclude that the segmentation methodology based on tie-zone wa-

tershed and random forest classiĄer with internal and external markers found by a max-tree-

based algorithm returned satisfactory results. If we analyze Table 6, we can notice that our

Ąnal dice (against the vote consensus) is comparable with dice between the experts. In fact,

only the combination Exp1 x Exp3 presented a higher score than the one presented by our

method.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Figure 37 Ű We can see the Ąnal automatic segmentation result in green and the VC in
blue. First column: Original Image; Second Column: Tie-Zone Assignment; Third
Column: Watershed with markers; Fourth column: Best Case scenario.
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5 Conclusions

5.1 Final Thoughts and Future Work

This work presented a new methodology proposal for CCA lumen segmentation. De-

spite there are some vessel segmentation methods described on the literature, we could not

Ąnd any using Cine FSE images. We can not make a direct comparison between the results

on the literature, once the dataset and the image nature are different. However we can see

that our results are relatively close with the state of art. (UKWATTA et al., 2013) reported

a dice coefficient of 0.93 in statical 3T images. Our Ąnal dice was 0.92. Despite a lower result,

we take in account the fact that our dataset is more challenger once Cine FSE images have

lower resolution. Besides, analyzing Table 6, we can conclude that our automatic method

is comparable with human manual segmentation. Also, currently in the literature, the seg-

mentation methods available are semi-automatic, with human interaction at some level. We

developed a fully automatic method, including the centroid selection. We could not Ąnd any

public dataset of the images presented on papers in order to do an adequate comparison.

We can notice that there is still room for improvements on the method, specially on

tie-zone assignment algorithm. When we analyze the best case scenario, we can notice that

the classiĄer still loses information. Analyzing those results and feature analysis (Table 7)

together, we can conclude that the features selection can be improved, either removing some

of them (for instance, those that returned zero importance) or adding some more relevant

features for the problem.

Between the difficulties found in the project, we can cite the low resolution of cine

FSE images and high presence of artifacts (Figure 32), which increased the complexity of

the methods. Also, we can cite the low quantity of images available for this study. At Ąrst,

we only had two subjects to work with and no ground truth available for them, reason why

those two images were not part of the Ąnal dataset for the method development. Finally, the

second dataset available (used on the project) had only the manual segmentation of the left

CCA, which reduced our dataset. In order to improve the method, it is necessary a greater

amount of images. Despite we found good results, a bigger dataset would bring us more

robust results.

For future work, it would be interesting to expand the method beyond CCA for

segmenting carotid bifurcation and atherosclerotic plaque. With plaque segmentation we can

also create a component study and analysis of the patient vulnerability. Besides, this work
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is part of a bigger project which aims to identify patients with atherosclerosis disease yet

in earlier stages. For the segmentation method implemented here, we did not use dynamic

information of the images, however, as future work, we can do a study of distensibility curves.

This study is based on the hypothesis that the more rigid the vessel wall, bigger the chance

of the patient to have atherosclerotic disease. Therefore, cine FSE images are necessary not

only for minimizing movement artifacts, as said before, but for allowing the visualization of

expansion and contraction of carotid during cardiac cycle, allowing analysis of the elasticity.

To a better analysis of the curves, it would be necessary to have the sequence referent

to other positions of carotid artery. However, another limitation of our dataset was to present

only one sequence of 16 temporal bins. While cine FSE images usually presents 8 sequences

of N temporal bins each, being able to show bifurcation, our dataset only contained CCA

images.

5.2 Publications

The following articles were published as a result of this research.

5.2.1 Conference Articles

∙ Rodrigues, L; Souza, R; Rittner, L; Frayne, R; Lotufo, R. Common Carotid Artery

Lumen Segmentation from Cardiac Cycle-Resolved Cine Fast Spin Echo Magnetic Res-

onance Imaging In: 2017 30th SIBGRAPI Conference on Graphics, Patterns and Images

(SIBGRAPI), 2017, Niteroi. 2017 30th SIBGRAPI Conference on Graphics, Patterns

and Images (SIBGRAPI). IEEE, 2017. p.442 -

∙ Rodrigues, L; Souza, R; Rittner, L; Frayne, R; Lotufo, R. Common Carotid Artery

Lumen Automatic Segmentation from Cine Fast Spin Echo Magnetic Resonance Imag-

ing, SIPAIM Ű MICCAI Biomedical Workshop, Granada, 2018

5.2.2 Abstracts

∙ Rodrigues, L; Souza, R; Rittner, L; Frayne, R; Lotufo, R. Common Carotid Artery

Lumen Segmentation from Cardiac Cycle-resolved Cine Fast Spin Echo Magnetic Res-

onance Imaging In: Society for Magnetic Resonance Angiography Annual COnference,

2017, Stellenbosch.
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∙ Rodrigues, L; Souza, R; Rittner, L; Frayne, R; Lotufo. Semi-automatic Common

Carotid Lumen Segmentation on Dynamic MR Images In: Canadian Stroke Congress,

2017, Calgary.

∙ Rodrigues, L; Souza, R; Rittner, L; Frayne, R; Lotufo. Common Carotid Lumen

Segmentation using Cine Fast Spin Echo Magnetic Resonance In: 4rd Brainn Congress,

2017, Campinas.
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