UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

VELOCIDADE DE PROPAGAÇÃO DE ONDAS DE ULTRA-SOM NA MADEIRA PARA DIFERENTES CONDIÇÕES DE UMIDADE

ODILON ANTONIO LEME DA COSTA

CAMPINAS SETEMBRO DE 2005

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

VELOCIDADE DE PROPAGAÇÃO DE ONDAS DE ULTRA-SOM NA MADEIRA PARA DIFERENTES CONDIÇÕES DE UMIDADE

Tese submetida à banca examinadora para obtenção do título de Doutor em Engenharia Agrícola na área de concentração Construções Rurais e Ambiência

ODILON ANTONIO LEME DA COSTA

ORIENTADOR: PROF^a. DR^a. RAQUEL GONÇALVES

CAMPINAS SETEMBRO DE 2005

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA - BAE - UNICAMP

C823v	Costa, Odilon Antonio Leme da Velocidade de propagação de ondas de ultra-som na madeira para diferentes condições de umidade / Odilon Antonio Leme da CostaCampinas, SP: [s.n.], 2005.
	Orientador: Raquel Gonçalves. Tese (Doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola.
	 Testes não-destrutivos. 2. Madeira - Densidade. 3. Ondas ultra-sonicas. 4. Industria madeireira. 5. Madeira – Pesquisa. 6. Madeira – Qualidade. 7. Madeira – Testes. 8. Madeira – Secagem. I. Gonçalves, Raquel. II. Universidade Estadual de Campinas. Faculdade de Engenharia Agrícola. III. Título.

Titulo em Inglês: Variations in ultrasonic wave velocity with moisture content Palavras-chave em Inglês: Nondestructive test, Effective density, Wave propagation in radial - tangential and longitudinal directions Área de concentração: Construções Rurais e Ambiência Titulação: Doutor em Engenharia Agrícola Banca examinadora: Carlos Alberto Szucs, Nilson Franco, Francisco Antonio Rocco Lahr e Almir Sales Data da defesa: 09/09/2005

SUMÁRIO

PA	AGINA DE ROSTO	i
SU	JMÁRIO	ii
LIS	STA DE FIGURAS	iii
LIS	STA DE TABELAS	v
LIS	STA DE SÍMBOLOS / SIGLAS	vii
RE	ESUMO	viii
AB	BSTRACT	ix
1.	Introdução	1
2.	Revisão Bibliográfica	3
2.1	1 Variação de Propriedades da Madeira com a Umidade	4
2.2	2 Variação da Velocidade de Propagação de Ondas com a Umidade	7
2.3	3 Determinação da Constante Dinâmica (C)	12
21	4 Variação da Constante Elástica (C) obtida por meio da Propagação de Ondas na	
2.4	+ vanação da Constante Llastica (C) obtida por meto da Propagação de Ondas na	
2.4	Madeira com a Umidade	13
2.4	Madeira com a Umidade	13 17
2.4 2.5 2.6	 Madeira com a Umidade	13 17 18
2.4 2.5 2.6 3.	 Madeira com a Umidade	13 17 18 20
 2.4 2.5 2.6 3. 4. 	 Madeira com a Umidade	13 17 18 20 26
 2.4 2.5 2.6 3. 4. 4.1 	 Madeira com a Umidade	13 17 18 20 26 26
 2.5 2.6 3. 4. 4.1 4.2 	 Madeira com a Umidade	13 17 18 20 26 26 26 42
 2.4 2.5 2.6 3. 4. 4.1 4.2 4.3 	 Madeira com a Umidade	13 17 18 20 26 26 26 42 54
2.5 2.6 3. 4. 4.1 4.2 4.3 4.4	 Madeira com a Umidade	13 17 18 20 26 26 26 42 54 54
2.5 2.6 3. 4. 4.1 4.2 4.3 4.4 5.	 Madeira com a Umidade	13 17 18 20 26 26 26 26 54 54 54 62
2.5 2.6 3. 4. 4.1 4.2 4.3 4.4 5. 6.	 Madeira com a Umidade	13 17 18 20 26 26 26 54 54 62 65 67
2.5 2.6 3. 4. 4.1 4.2 4.3 4.4 5. 6. An	 Wantquo da Constante Elastica (C) oblida por filcio da Fropagação de Ondas ina Madeira com a Umidade	13 17 18 20 26 26 26 54 54 62 65 67 70

Lista de Figuras

Figura 2.1	Influência do conteúdo de umidade nos módulos e elasticidade de Sitka spruce		
Figura 2.2	Velocidade de propagação de ondas de ultra-som ao longo da direção longitudinal e a correspondente atenuação como funções do conteúdo de umidade para a espécie metasequóias	8	
Figura 2.3	Velocidade de propagação das ondas em função da umidade média	10	
Figura 2.4	Variação do coeficiente da matriz de rigidez na direção longitudinal em função do conteúdo de umidade, para diferentes espécies de madeira	14	
Figura 3.1	Esquema e dimensões dos corpos de prova	20	
Figura 3.2	Equipamento de ultra-som utilizado nos ensaios	21	
Figura 3.3	ura 3.3 Corpo de prova demarcado nas três faces para as medições de tempo de propagação da onda de ultra-som		
Figura 3.4	Medição do tempo de propagação da onda na direção longitudinal	22	
Figura 3.5	Calibração do equipamento com corpo de prova padrão	23	
Figura 4.1	Curvas representativas dos modelos de variação da velocidade com a umidade para pinus elliottii	34	
Figura 4.2	Curvas representativas dos modelos de variação da velocidade com a umidade para pinho do Paraná	35	
Figura 4.3	Curvas representativas dos modelos de variação da velocidade com a umidade para cupiúba	35	
Figura 4.4	Curvas representativas dos modelos de variação da velocidade com a umidade para imbuia	36	
Figura 4.5	Curvas representativas dos modelos de variação da velocidade com a umidade para eucalipto	36	
Figura 4.6	Comportamento dos coeficientes da matriz de rigidez em função da umidade, utilizando os modelos de regressão obtidos para umidades acima e abaixo do PSF – pinho do Paraná	53	
Figura 4.7	Comportamento dos coeficientes da matriz de rigidez em função da umidade, utilizando os modelos de regressão obtidos para umidades acima e abaixo do PSF – cupiúba	53	
Figura 4.8	Comportamento dos coeficientes da matriz de rigidez em função da umidade, utilizando os modelos de regressão obtidos para umidades acima e abaixo do PSF – eucalipto	54	
Figura 4.9	Variação da anisotropia do Pinus elliottii (Pinus elliottii) com a umidade	57	
Figura 4.10	Variação da anisotropia com a umidade para o Pinho do Paraná (Araucária angustifólia)	57	
Figura 4.11	Variação da anisotropia com a umidade para a Cupiúba (Goupia glabra)	58	

Figura 4.12	Figura 4.12 – Variação da anisotropia com a umidade para a espécie Imbuia (<i>Ocotea porosa</i>)	58
Figura 4.13	Variação da anisotropia com a umidade para a espécie Eucalipto citriodora (Eucaliptus citriodora)	59

Lista de Tabelas

Tabela 2.1	Ponto de saturação das fibras para várias espécies	4
Tabela 2.2	Equações de variação da velocidade (m/s) com a umidade (%)	17
Tabela 4.1	Resultados de velocidade na madeira de pinus elliottii	26
Tabela 4.2	Resultados de velocidade na madeira de pinho do Paraná	27
Tabela 4.3	Resultados de velocidade na madeira de cupiúba	27
Tabela 4.4	Resultados de velocidade na madeira de imbuia	27
Tabela 4.5	Resultados de velocidade na madeira de eucalipto	28
Tabela 4.6	Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para pinus elliottii	29
Tabela 4.7	Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para pinho do Paraná	30
Tabela 4.8	Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para cupiúba	31
Tabela 4.9	Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para imbuia	32
Tabela 4.10	Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para eucalipto	33
Tabela 4.11	Equações representativas da variação da velocidade com a umidade para pinus elliotti	37
Tabela 4.12	Equações representativas da variação da velocidade com a umidade para pinho do Paraná	38
Tabela 4.13	Equações representativas da variação da velocidade com a umidade para cupiúba	39
Tabela 4.14	Equações representativas da variação da velocidade com a umidade para imbuia	40
Tabela 4.15	Equações representativas da variação da velocidade com a umidade para eucalipto	41
Tabela 4.16	Valores da densidade básica nos quinze corpos de prova ensaiados para cada espécie	43
Tabela 4.17	Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – pinus elliotti	44
Tabela 4.18	Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – pinho do Paraná	44
Tabela 4.19	Valores de C _{LL} , C _{RR} e C _{TT} para cada condição de umidade – cupiúba	45
Tabela 4.20	Valores de C _{LL} , C _{RR} e C _{TT} para cada condição de umidade – imbuia	45
Tabela 4.21	Valores de C _{LL} , C _{RR} e C _{TT} para cada condição de umidade – eucalipto	46

Tabela 4.22	Modelos de correlação dos coeficientes de rigidez em função da umidade para o pinus elliottii	46
Tabela 4.23	Modelos de correlação dos coeficientes de rigidez em função da umidade para o pinho do Paraná	47
Tabela 4.24	Modelos de correlação dos coeficientes de rigidez em função da umidade para a cupiúba	47
Tabela 4.25	Modelos de correlação dos coeficientes de rigidez em função da umidade para a imbuia	48
Tabela 4.26	Modelos de correlação dos coeficientes de rigidez em função da umidade para o eucalipto	48
Tabela 4.27	Valores de K_{LL} , K_{RR} e K_{TT} para as cinco espécies estudadas	51
Tabela 4.28	Modelos de correlação dos coeficientes de rigidez corrigidos em função da umidade acima do PSF para a cupiúba	52
Tabela 4.29	Modelos de correlação dos coeficientes de rigidez corrigidos em função da umidade acima do PSF para o eucalipto	52
Tabela 4.30	Relações V_L/V_T , V_L/V_R e V_R/V_T para as cinco espécies estudadas	55
Tabela 4.31	Modelos e parâmetros da correlação (R e P _{valor}) obtidos para n pares de valores de umidade x anisotropia	60

Lista de Símbolos / Siglas

NDT - Non Destructive Testing

NDE - Non Destructive Evaluation

V_{ii} - Velocidade de propagação das ondas de ultra-som na direção ii

C_{ii} - Coeficiente de rigidez na direção ii

PSF - ponto de saturação das fibras

 ρ_{ef} - densidade efetiva da madeira com umidades superiores ao PSF

 ρ_0 - densidade do corpo de prova seco em estufa

kii - coeficiente empírico na direção ii que indica a mobilidade da água livre

Resumo

A madeira, sendo um material higroscópico, tem suas propriedades mecânicas e elásticas afetadas por condições ambientais. Sendo assim, a relação de dependência de propriedades da madeira com a variação do teor de umidade tem merecido, há muito tempo, a atenção de pesquisadores de todo o mundo. Um dos grandes avanços obtidos nos últimos anos na caracterização de materiais, tanto do ponto de vista mecânico quanto de qualidade, é a aplicação de técnicas não destrutivas, denominadas internacionalmente como NDT - Non Destructive Testing e NDE – Non Destructive Evaluation, destacando-se dentro elas o uso do ultra-som. No entanto, da mesma forma que as propriedades mecânicas e elásticas, sabese que a velocidade de propagação das ondas de ultra-som na madeira é afetada pela umidade, o que torna a quantificação desta influência de fundamental importância para a análise e a projeção de resultados obtidos nas mais diversificadas propostas de estudos que envolvam a aplicação do método do ultra-som. Este projeto teve, portanto, o objetivo de estudar o comportamento da velocidade de propagação de ondas de compressão (longitudinais) na madeira em função da umidade. Paralelamente foram também estudados o comportamento dos coeficientes da diagonal da matriz de rigidez (C_{LL}, C_{RR} e C_{TT}), bem como a anisotropia da madeira por meio da avaliação da velocidade nas três direções principais (longitudinal, radial e tangencial). Para a medição das velocidades de propagação das ondas de ultra-som (VLL, VRR e VTT) e para o cálculo dos termos da diagonal da matriz de rigidez (C_{LL}, C_{RR} e C_{TT}) foram utilizados 75 (setenta e cinco) corpos de prova de dimensões 300 mm na direção longitudinal, 60 mm na direção radial e 30 mm na direção tangencial ou 300 mm na direção longitudinal, 30 mm na direção radial e 60 mm na direção tangencial, sendo 15 corpos-de-prova de cada uma das cinco espécies de madeira estudadas: Pinho do Paraná (Araucária angustifólia), a Imbuia (Ocotea porosa), a Cupiúba (Goupia glabra), o Pinus elliottii (Pinus elliottii) e o Eucalipto citriodora (Eucalyptus citriodora). Essas medições foram sendo realizadas durante a secagem dos corpos de prova, ou seja, desde a condição saturada até a condição seca em estufa. Os resultados permitiram concluir que a equação quadrática foi o modelo mais adequado para representar a variação da velocidade de propagação das ondas com a umidade para todas as espécies estudadas. Além disso, também para todas as espécies, foi possível concluir que a influência da umidade na velocidade de propagação das ondas de ultra-som se dá de maneira diferenciada em dois trechos, correspondentes a umidades abaixo e acima do ponto de saturação das fibras (PSF), sendo mais acentuada para o trecho correspondente a umidades abaixo do PSF. Foi também observado que a velocidade de propagação das ondas é mais influenciada pela umidade na direção longitudinal, seguida da radial e, por último da tangencial. Em relação aos coeficientes de rigidez, observou-se que, para umidades abaixo do PSF, o comportamento é semelhante aos obtidos para a resistência e a rigidez da madeira na maioria das propriedades mecânicas, ou seja, decresce com o acréscimo da umidade. Em algumas espécies, para o trecho correspondente a umidades acima do ponto de saturação das fibras, esse comportamento é afetado pela presença de água livre e pode ser corrigida utilizando-se, no cálculo, a densidade efetiva em lugar da densidade aparente. O comportamento da anisotropia foi diferenciado para as espécies estudadas.

Palavras-chave: ensaio não destrutivo, densidade efetiva, coeficiente de rigidez, anisotropia.

Abstract

The wood, being a higroscopic material, has their mechanical and elastic properties affected for environmental conditions. Being like this, the relationship of dependence of properties of the wood with the variation of the moisture content has been deserving, since a long time, the researcher's attention. One of the great progresses obtained in the last years in the characterization of materials, as much of the mechanical point of view as of quality, it is the application of techniques non destructive, denominated internationally like NDT - Non Destructive Testing and NDE - Non Destructive Evaluation, emphasizing the use of the ultrasound. However, in the same way that the mechanical and elastic properties, it is known that the speed of propagation of the ultrasound waves in the wood is affected by the moisture content, what turns the quantification of this influence of fundamental importance for the analysis and the projection of results obtained in the more diversified proposed of studies that involve the application of the method of the ultrasound. This project had, therefore, the objective of studying the behavior of the speed of propagation of compression waves (longitudinal) in the wood in function of the moisture content. Parallel they were also studied the behavior of the coefficients of the diagonal of the stiffness matrix (CLL, CRR and CTT), as well as the anisotropia of the wood through the evaluation of the speed in the three main directions (longitudinal, radial and tangential). For the measurement of the speeds of propagation of the ultrasound waves (VLL, VRR and VTT) and for the calculation of the terms of the diagonal of the rigidity matrix (CLL, CRR and CTT) were used 75 (seventy five) specimens and its dimensions were 300 mm in the longitudinal direction, 60 mm in the radial direction and 30 mm in the tangential direction or 300 mm in the longitudinal direction, 30 mm in the radial direction and 60 mm in the tangential direction, being 15 specimens of each one of the five studied species: Paraná Pine(Araucária angustifólia), Imbuia (Ocotea porosa), Cupiúba (Goupia glabra), Pinus elliottii (Pinus elliottii) and Eucalipto citriodora (Eucalyptus citriodora). Those measurements went being accomplished during the drying of the specimens, in other words, from the condition saturated to the anhidrous condition. The results allowed to conclude that the quadratic equation was the most appropriate model to represent the variation of the speed of propagation of the waves with the moisture content for all of the studied species. Besides, also for all of the species, it was possible to conclude that the influence of the moisture content in the speed of propagation of the ultrasound waves feels in way differentiated in two intervals, corresponding to moisture content below and above the saturation fibers point (PSF), being more accentuated for the interval corresponding to moisture content below PSF. It was also observed that the speed of propagation of the waves is more influenced by the moisture content in the longitudinal direction, following by the radial and, last by the tangential. In relation to the rigidity coefficients, it was observed that, for moisture content below PSF, the behavior is similar to the obtained for the resistance and the rigidity of the wood in most of the mechanical properties, in other words, it decreases with the increment of the moisture content. In some species, for the passage corresponding to moisture content above the point of saturation of the fibers, that behavior is affected by the presence of free water and it can be corrected being used, in the calculation, the basic density or the effective density instead of the apparent density. The behavior of the anisotropia was different for the studied species.

Keywords: Nondestructive testing, effective density, stiffness terms, anisotropy.

1. Introdução

A madeira, como material obtido a partir do crescimento de um elemento vivo, apresenta características peculiares que devem ser conhecidas por aqueles que desejam utiliza-la em diferentes aplicações. Uma dessas características se refere à presença e a movimentação de água durante a vida e após o corte, bem como o entendimento de seu comportamento higroscópico, que faz com que a madeira seja um material em constante troca de umidade com o ambiente. Esse entendimento torna-se fundamental, uma vez que as propriedades mecânicas e elásticas da madeira são afetadas por sua condição de umidade. Um importante aspecto relacionado com a movimentação de água na madeira é a secagem, uma vez que se trata de procedimento que, se mal conduzido, certamente será responsável por defeitos e comportamento não desejado do material.

Também de fundamental importância para a correta aplicação da madeira como material é o entendimento de seu comportamento ortotrópico, ou seja, diferenciado segundo três direções principais (longitudinal, radial e tangencial).

A Norma Brasileira 7190/97 prevê, em seu Anexo B5, a determinação da umidade através de secagem em estufa até massa constante utilizando corpos de prova de seção 0,02 x 0,03 x 0,05 m. Segundo essa norma, o processo para o cálculo do teor de umidade é por meio da determinação da massa inicial do corpo-de-prova com sensibilidade de 0,01 g, seguida de secagem em estufa a 103 ± 2 °C, sendo a massa medida a cada 6 horas até que a variação entre duas medidas consecutivas seja $\leq 0,5$ % da última medida. Esse procedimento, embora com resultados bastante precisos, gera dificuldades nas aplicações práticas de acompanhamento de secagem.

Industrialmente o teor de umidade tem sido determinado por meio de equipamentos que medem a passagem da corrente elétrica pela peça. Tais medidores apresentam bons resultados para madeiras de baixa densidade e valores de umidade entre 6% e 25 %. Além disso, a maior parte desses equipamentos tem como princípio de funcionamento a necessidade de cravação de sondas, que podem criar pontos de maior transmissão de calor, afetando o resultado.

Sendo assim, tornam-se importantes estudos que visem simplificar o acompanhamento da secagem em processos industriais.

Um dos grandes avanços na caracterização de materiais tem sido a aplicação de técnicas não destrutivas (NDT). Dentre os métodos não-destrutivos o ultra-som tem se destacado como um dos mais viáveis, tanto do ponto de vista da qualidade dos resultados quanto do ponto de vista da possibilidade de transferência tecnológica para o setor industrial.

Os métodos não destrutivos têm sido utilizados em diferentes países para caracterizar e classificar diferentes materiais, dentre eles a madeira, apresentando vantagens importantes nas aplicações práticas tais como: o material sujeito ao ensaio não tem suas propriedades afetadas, o ensaio pode ser repetido na mesma peça, é possível avaliar-se os materiais *in situ*, é possível detectar defeitos internos, a aplicação é, normalmente, rápida e permite analisar grandes populações tendo versatilidade para se adequar a rotinas padronizadas de linhas de produção.

No ensaio utilizando o ultra-som, a velocidade de propagação da onda é afetada por aspectos relacionados à estrutura interna do material e também por aspectos ligados ao equipamento (freqüência e tipo de transdutor, por exemplo) e geometria do material ensaiado. Para o caso da madeira a velocidade é afetada, ainda, pela direção de propagação da onda (longitudinal, radial ou tangencial) e pelo teor de umidade da peça ensaiada.

Tendo em vista que a influência da umidade na velocidade de propagação da onda é significativa, a hipótese deste trabalho é a de que é possível identificar variações de umidade utilizando a velocidade de propagação da onda como parâmetro.

Sendo assim o objetivo principal da pesquisa foi avaliar a influência da umidade na velocidade de propagação das ondas de ultra-som na madeira, de maneira a quantificar essa influência, bem como avaliar o comportamento dessa variação no trecho compreendido entre a saturação e a condição seca. Conhecido o modelo de variação em uma determinada espécie é possível realizar o caminho inverso, ou seja, conhecendo-se a velocidade, estimar a faixa de umidade.

Os objetivos secundários foram avaliar a anisotropia da madeira para diferentes condições de umidade por meio da variação da velocidade nas diferentes direções de propagação e avaliar a variação dos coeficientes da matriz de rigidez em função da umidade.

2. Revisão bibliográfica

A relação de dependência entre as propriedades da madeira e o teor de umidade tem sido amplamente estudada por muitos pesquisadores.

Skaar (1988) fornece em seu livro extensivo tratamento das relações madeiraágua.

Em contraste com procedimentos adotados para outros materiais, para os quais a umidade é expressa em termos de peso do material úmido, é usual expressar o teor de umidade da madeira em termos do seu peso seco em estufa (base seca) (USDA Forest Products Laboratory, 1987). A determinação do teor de umidade é realizada, normalmente, em pequenos corpos de prova isentos de defeitos por técnicas gravimétricas. Diversos métodos para se medir o teor de umidade da madeira roliça, serrada e de compósitos à base de madeira foram descritas por Kollmann e Höckele (1962) e por Siau (1984).

No Brasil, a NBR 7190/97, em seu anexo B.5, descreve os procedimentos a serem seguidos na determinação do teor de umidade da madeira. Nesse anexo propõe-se a utilização de corpos de prova de seção transversal retangular, com dimensões nominais 2,0 cm x 3,0 cm e comprimento, ao longo das fibras de 5,0 cm .

O teor de umidade de equilíbrio da madeira e de produtos à base de madeira é atingido quando, para uma dada combinação de umidade relativa do ar e de temperatura, nenhuma difusão de água ocorre interna ou externamente.

Para a árvore viva, dependendo da estação do ano, da espécie e da localização da árvore, o teor de umidade da madeira verde varia de 60 a 200% (Zimmermann 1983).

A madeira verde normalmente contém água em três diferentes formas: água líquida preenchendo parcialmente ou completamente as cavidades celulares, vapor de água nos espaços vazios das cavidades celulares e água na parede celular. A água existente nas cavidades celulares é chamada de "água livre" e a água contida nas paredes celulares "água de impregnação". O ponto de saturação das fibras corresponde a um teor de umidade obtido quando a umidade relativa do ar é próxima de 100%, ou mais exatamente 98% como indicado por Siau (1984). Neste caso as cavidades celulares não

contêm mais água enquanto as paredes estão saturadas. Para espécies de zonas temperadas inúmeras pesquisas já foram realizadas para se determinar com exatidão o ponto de saturação de várias espécies, estando este ponto entre 28% e 30%, (Kollmann, 1951).

O valor do ponto de saturação das fibras é assumido, muitas vezes, como sendo 30 %. No entanto, o ponto de saturação de algumas espécies varia muito em relação a este valor fixo (30 %) (tabela 2.1). Uma das causas da variação nas espécies em que o PSF é reduzido, é a presença de extrativos.

Espécie	PSF (%)
Southern Yellow pine	28
Sitka spruce	28
Western redcedar	18
Redwood	22
Teak	18
Rosewood	15

Tabela 2.1 – ponto de saturação das fibras para várias espécies (Adaptado de Haygreen (1995) p.165)

2.1 Variação de Propriedades da Madeira com a Umidade

Tiemann (1906) também citado por Siau (1984) foi o primeiro a destacar que as propriedades mecânicas da madeira não eram afetadas pela água livre, explicando que somente a parede celular contribui na resistência.

A redução da resistência e do módulo de elasticidade com o aumento do conteúdo de umidade, até o ponto de saturação, é mostrada na Figura 2.1. Nesta figura, E_L , E_R e E_T representam os módulos nas direções longitudinal, radial e tangencial, respectivamente.

Nesta figura se observa que o aumento do conteúdo de umidade acima do ponto de saturação não influencia, significativamente, os parâmetros mecânicos.

FIGURA 2.1 – Influência do conteúdo de umidade nos módulos de elasticidade de Sitka spruce. Adaptado de BUCUR, 1995. p. 199.

Gerhards (1982) resumiu diversos trabalhos que mostravam a influência da umidade e da temperatura em várias propriedades mecânicas da madeira. Todos os trabalhos confirmam a redução da resistência e do módulo de elasticidade da madeira com o acréscimo da umidade até valores de teor de umidade próximos de 30%. Segundo o autor, acréscimos de teores de umidade acima deste ponto não mais influenciavam os parâmetros mecânicos.

No Brasil, diversos foram, também, os pesquisadores que se interessaram pelo estudo da influência da umidade em propriedades mecânicas da madeira. Brotero (1956), de maneira simplificada definiu um *coeficiente de influência* da umidade da madeira, assumindo um comportamento linear do diagrama resistência-umidade entre valores de 10% e 20% de umidade.

Hellmeister (1982) indica que, logo após a derrubada da árvore a madeira apresenta teores de umidade que variam de 40% a 140%. O autor cita em seu trabalho os

resultados das pesquisas de Mateus (1961), o qual representou matematicamente a relação resistência-umidade por meio de relações lineares a partir de trechos da curva experimental. Hellmeister (1982) cita, ainda, Wilson que, buscando uma melhor aproximação dos resultados experimentais adotou a transformação de variáveis e trabalhou com o logaritmo da resistência obtendo um comportamento efetivamente retilíneo para o fenômeno da variação da resistência com a umidade na madeira.

Pigozzo (1982) realizou ensaios estáticos de compressão paralela às fibras utilizando corpos de prova de Pinho do Paraná, Peroba Rosa e Eucalipto citriodora em diferentes condições de umidade. Para expressar a influência da umidade na compressão paralela às fibras o autor ajustou os dados experimentais à equações exponenciais e logarítmicas obtendo ajuste satisfatório.

Mendes (1984) realizou ensaios estáticos de cisalhamento utilizando corpos de prova de Pinho do Paraná, Peroba Rosa e Jatobá para diferentes condições de umidade. Para expressar a influência da umidade no cisalhamento o autor ajustou os dados experimentais à equações logarítmicas obtendo boas correlações.

Gonçalves (1986) realizou ensaio estático de flexão (resistência e módulo de elasticidade) utilizando corpos de prova das espécies Jatobá, Eucalipto teretcornis, Pinus elliottii e Cumarú. Para expressar a influência da umidade o autor ajustou os dados experimentais a equações lineares obtendo ajustes satisfatórios.

Seguindo tendência mundial, o novo texto da Norma Brasileira para o Projeto de Estruturas de Madeira (NBR 7190/97) definiu uma umidade de referência para reportar resultados de resistência e rigidez da madeira. Assim, na caracterização usual de propriedades os valores devem ser corrigidos para a umidade padrão de 12% por meio de expressões teóricas de correção (equação 2.1 e equação 2.2).

$$f_{12} = f_{u\%} [1 + \frac{3.(u\% - 12)}{100}] \quad (2.1)$$

$$E_{12} = E_{u\%} \left[1 + \frac{2.(u\% - 12)}{100} \right] \quad (2.2)$$

Tais expressões são obtidas no trecho entre 10 e 20% de umidade e onde f_{12} = resistência a 12%, $f_{u\%}$ = resistência à umidade U %, E_{12} = módulo de elasticidade a 12%.

Considera-se ainda, que para umidade acima de 20% a resistência e a rigidez da madeira sofrem apenas pequenas variações.

Ballarin e Ribeiro (1998) estudaram a variação da resistência à compressão paralela às fibras da madeira de Eucalipto citriodora com a umidade visando a confirmação experimental da expressão apresentada na NBR 7190/97 concluindo que, embora a experimentação tenha validado a expressão teórica proposta, maior precisão foi obtida com o uso da expressão modificada, considerando-se o fator de influência da umidade igual a 2,5 ao invés de 3,0 (equação 2.1).

2.2 Variação da Velocidade de Propagação de Ondas com a Umidade

Bucur e Sarem (1992) analisaram o comportamento da velocidade e da atenuação das ondas de ultra-som em corpos de prova da espécie spruce medida nas condições saturada e seca ao ar. A atenuação foi expressa pelo valor da amplitude máxima obtida por meio do espectro de freqüência. Na condição seca ao ar as velocidades obtidas para o ultrasom foram 14% maiores que na condição saturada na direção longitudinal, 35% maiores na direção radial e 9% menor na direção tangencial. A atenuação cresce da condição saturada para a seca ao ar de maneira acentuada na direção longitudinal (de –5,34 dB para –31,55 dB) e de maneira menos acentuada, mas igualmente importante, para as direções radial e tangencial. Na direção tangencial a atenuação foi maior que nas outras direções, tanto para o caso da madeira saturada quanto seca ao ar, aspecto esse explicado pela grande fricção interna observada na direção tangencial.

Bartholomeu (2001) observou que o teor de umidade apresenta influência considerável na velocidade de propagação do ultra-som em peças de madeira, confirmando dados obtidos na literatura, e indicando a necessidade de que sejam obtidos modelos de variação para as espécies crescidas no Brasil.

A relação existente entre a velocidade de propagação, a correspondente atenuação e o conteúdo de umidade pode ser vista na Figura 2.2. Nessa figura pode ser verificado que a velocidade diminui à medida que o conteúdo de umidade aumenta, ao passo que a atenuação aumenta conforme aumenta o conteúdo de umidade. O máximo valor de velocidade e o mínimo valor de atenuação são obtidos quando a madeira encontra-se seca.

Figura 2.2 – Velocidade de propagação das ondas de ultra-som ao longo da direção longitudinal e a correspondente atenuação como funções do conteúdo de umidade para a espécie metasequóias. Adaptado de BUCUR, 1995. p. 200.

É interessante observar, ainda, na Figura 2.2, que a variação da velocidade em função do conteúdo de umidade possui um ponto crítico, U_1 , correspondente ao ponto de saturação das fibras, enquanto a variação da atenuação em função do conteúdo de umidade possui um ponto crítico U_2 , diferente de U_1 e abaixo deste. Os autores desse trabalho apresentam como principais conclusões:

- a) A velocidade de propagação decresce rapidamente à medida em que o conteúdo de umidade aumenta, até o ponto de saturação U₁. A partir deste ponto, a variação é muito pequena.
- b) A atenuação é praticamente constante para pequenos valores de umidade, mas aumenta sensivelmente a partir do ponto crítico U₂.

- c) Para baixos valores de umidade, ou seja, U < U₂, quando toda água existente na madeira se encontra ligada às moléculas de celulose da parede celular, o pulso ultrasônico é praticamente dispersado pelos elementos anatômicos e pelos contornos destes elementos. Nestes contornos, analogamente ao que ocorre nos contornos dos grãos de um sólido policristalino, há uma descontinuidade do módulo de elasticidade e, conseqüentemente, da impedância acústica característica. A tensão, ou pressão de radiação, que atua nas partículas das moléculas de celuloses, resultante da passagem da onda ultra-sônica através do elemento anatômico, reorienta a posição da hidroxila (OH) ou outro radical pertencentes àquelas moléculas. Neste caso, o mecanismo de atenuação relacionado às características das paredes celulares constitui, provavelmente, o fator mais importante.
- d) Para valores de conteúdos de umidade compreendidos entre o ponto crítico U_2 e o ponto de saturação das fibras U_1 , a dispersão nos contornos dos elementos anatômicos é, possivelmente, o mais importante mecanismo de atenuação. Após o ponto de saturação U_1 , em que há água livre ou de embebição no interior das cavidades dos elementos anatômicos, a porosidade da madeira atua como fator preponderante na dispersão do pulso ultra-sônico.

Kang e Booker (2002) estudaram o comportamento da propagação de ondas na madeira durante a secagem e observaram efeito do gradiente de umidade na velocidade de propagação das ondas bem como na amplitude do sinal. A propagação de onda foi realizada utilizando transdutores de 54,2 kHz de freqüência e para a análise do sinal foi utilizado osciloscópio acoplado ao equipamento. Para o experimento os ensaios foram conduzidos em cinco diferentes camadas, em corpos-de-prova ensaiadas com diferentes gradientes de umidade. O ensaio foi conduzido em 21 corpos-de-prova de 5mm de espessura, 50 mm de largura e 150mm de comprimento fora cortados de uma tábua de *radiata pine sapwood* na condição seca ao ar. Esses corpos-de-prova foram divididos em 7 grupos e condicionados a umidades de equilíbrio de 30, 25, 20, 15, 10, 5 e 0% em quarto de climatização. Um corpo-de-prova de cada grupo foi levado a secagem total (0% de umidade) a fim de que fosse possível a previsão da umidade do lote. Os ensaios foram realizados em cinco posições: 2 nas bordas, 2 no centro e 1 na medula. Durante a secagem em estufa o peso e o tempo de propagação da onda foram sendo simultaneamente medidos

e armazenados. A velocidade de propagação das ondas e a média das umidades foram então inseridas em um gráfico (Figura 2.3). A dispersão desses valores indica que a velocidade não é só função do conteúdo médio de umidade, mas também do gradiente de umidade na madeira.

FIGURA 2.3 –Velocidade de propagação das ondas em função da umidade média. Fonte Kang e Booker, 2002. p. 211.

Segundo os autores, o diagrama que relaciona a velocidade de propagação da onda em um corpo-de-prova em função da umidade média revela três padrões: Para os corpos-de-prova com umidades médias baixas (ao redor 6%) há uma relação positiva entre a velocidade de propagação das ondas e o conteúdo de umidade central, enquanto que para corpos-de-prova com umidades médias altas (ao redor 23%) há uma relação negativa entre esses parâmetros. Os autores concluem que as ondas longitudinais são transmitidas pelo exterior dos corpos-de-prova quando a condição de umidade é baixa, mas a conteúdos de umidade altos essas ondas se propagam pelo centro. Para os corpos-de-prova com valores de umidade médios (ao redor 15%) o diagrama apresentou formas parabólicas, cujo pico está situado no ponto no qual o teor de umidade do centro é praticamente igual ao externo.

Os autores estudaram, ainda, os fatores que influenciam as propriedades das ondas transmitidas por uma tábua durante secagem forçada. As principais conclusões foram:

- 1. A velocidade e a amplitude das ondas mudam com a temperatura, comportamento esse que é parcialmente atribuído à alterações nas propriedades dos transdutores.
- O efeito do gradiente de umidade na velocidade de propagação de ondas varia com a umidade média da tábua.
- Os gráficos de variação da velocidade de propagação das ondas em função da umidade para a madeira são mais bem representadas por curvas em lugar de trechos retos.
- 4. O tempo de propagação de ondas por uma tábua durante secagem forçada tem influência da temperatura utilizada no programa de secagem devido, provavelmente, a interferências no transdutor.

Oliveira et al., 2005 apresentam estudo de avaliação da sensibilidade da aplicação de propagação de ondas de ultra-som na madeira Cupiuba (Goupia glabra) na detecção da variação da umidade. Para o estudo os autores utilizaram seis tábuas de 750 mm de comprimento e seção transversal de 25 x 300 mm com umidades variando de 60% a 6%. O equipamento de ultra-som utilizado possuía transdutores de 22 kHz de freqüência. Os autores indicam que ambas velocidades (longitudinal e transversal) foram fortemente e continuamente afetadas pela umidade, mas que na direção longitudinal a influência foi maior. O acréscimo da velocidade da condição saturada para a condição seca foi de 11,4% na direção longitudinal e 7,6% na direção perpendicular. Os autores concluíram que a velocidade de propagação das ondas de ultra-som diminui com o acréscimo da umidade e que há um ponto de inflexão em torno do ponto de saturação das fibras. Abaixo desse ponto as velocidades são mais afetadas pela umidade do que acima desse ponto. Na direção perpendicular às fibras os autores indicaram que o comportamento foi semelhante à direção longitudinal mas a resposta é menos forte. O coeficiente de determinação obtido para a variação da velocidade com a umidade na direção longitudinal foi de 0,97 e na direção tangencial de 0,78. Os autores concluem que o ultra-som tem sensibilidade para detectar variações de umidade na madeira.

2.3 <u>Determinação da Constante Dinâmica (C) utilizando métodos de propagação</u> <u>de ondas</u>

Os nove termos independentes da matriz de rigidez ou de flexibilidade caracterizam o comportamento elástico da madeira considerada como material ortotrópico. Como conseqüência podem ser encontrados os 12 parâmetros da engenharia: três módulos de elasticidade de Young, três módulos de elasticidade transversais e seis coeficientes de Poisson. A determinação dos termos da matriz de rigidez pode ser realizada por meio da propagação de ondas de volume nos materiais. A teoria que envolve a determinação das equações que correlacionam a propagação da onda aos termos da matriz de rigidez foi apresentada com profundidade por Hermon (1961), Musgrave (1970), Green (1973), Auld (1973), Dieulesaint e Royer (1974) e Alippi e Mayer (1987).

A forma geral para a determinação dos seis termos da diagonal da matriz de rigidez é dada pela equação 2.3.

 $C_{ii} = V^2 \rho$ onde i = 1, 2, 3......6 (2.3)

Onde:

V = velocidade de propagação da onda no material e ρ = densidade do material

O cálculo dos termos da não diagonal da matriz de rigidez requer valores de velocidade obtidos para as ondas quasi-longitudinais e quasi-transversais. Estes valores, por sua vez, dependem do vetor de propagação e, conseqüentemente, da orientação do corpo de prova (ângulo α).

A inversão da matriz de rigidez [C] fornece a matriz de flexibilidade [S] e, conseqüentemente, os módulos de elasticidade e os coeficientes de Poisson podem ser calculados utilizando-se equações de correlação.

Bodig e Jayne (1982) apresentam o equacionamento que permite determinar as relações entre os termos da matriz de rigidez e os módulos de elasticidade longitudinais e transversais. Para os termos da diagonal essas relações são dadas pelas equações 2.4 a 2.6

$$C_{LL} = E_L \frac{1 - \gamma_{RT} \gamma_{tr}}{1 - 2\gamma_{RL} \gamma_{TR} \gamma_{LT} - \gamma_{LT} \gamma_{TL} - \gamma_{RT} \gamma_{TR} - \gamma_{LR} \gamma_{RL}}$$
(2.4)

$$C_{RR} = E_R \frac{1 - \gamma_{TL} \gamma_{LT}}{1 - 2\gamma_{RL} \gamma_{TR} \gamma_{LT} - \gamma_{LT} \gamma_{TL} - \gamma_{RT} \gamma_{TR} - \gamma_{LR} \gamma_{RL}}$$
(2.5)

$$C_{TT} = E_T \frac{1 - \gamma_{RL} \gamma_{LR}}{1 - 2\gamma_{RL} \gamma_{TR} \gamma_{LT} - \gamma_{LT} \gamma_{TL} - \gamma_{RT} \gamma_{TR} - \gamma_{LR} \gamma_{RL}}$$
(2.6)

Das Equações se observa que o coeficiente da matriz de rigidez é correspondente ao módulo de elasticidade multiplicado por uma relação envolvendo os coeficientes de Poisson.

Dadas as características viscoelásticas da madeira os coeficientes C são sempre maiores que os módulos de elasticidade nas direções correspondentes, uma vez que esses módulos são provenientes dos coeficientes da matriz de flexibilidade que, por sua vez, são obtidos por meio do ensaio destrutivo, onde as deformações e os tempos de duração dos carregamentos são maiores.

2.4 <u>Variação da Constante Elástica (C), obtida por meio da propagação de ondas</u> na madeira, em função da Umidade

Assim como a variação da velocidade em função da umidade, a variação da rigidez com a umidade possui um ponto crítico, correspondente, também, ao ponto de saturação das fibras. Para valores de umidade abaixo deste ponto, o coeficiente de rigidez diminui conforme o conteúdo de umidade aumenta. Entretanto, para valores de umidade superiores ao ponto de saturação, o coeficiente de rigidez aumenta à medida em que o conteúdo de umidade aumenta, devido, principalmente, ao fato da densidade da madeira aumentar com o aumento da umidade e à presença de água livre, que está relacionada à porosidade da madeira (Figura 2.4).

Figura 2.4 - Variação do coeficiente da matriz de rigidez na direção longitudinal em função do conteúdo de umidade, para diferentes espécies de madeiras. Adaptado de BUCUR, 1995. p. 201.

A teoria da propagação de ondas elásticas em materiais porosos foi desenvolvida por Biot (1956) e aprofundada por Plona (1980). Adaptada para as características da madeira, esta teoria pode vir a revelar métodos ultra-sônicos para o controle não destrutivo de processos de impregnação. No entanto, o comportamento das constantes elásticas representadas na Figura 2.4 não é compatível ao comportamento elástico da madeira que acima do PSF é praticamente constante.

Wang et al (2002) indicaram procedimento de correção da densidade aparente na determinação do coeficiente da matriz de rigidez, para valores situados acima do ponto de saturação das fibras. Esse procedimento é interessante, uma vez que permite corrigir a distorção que ocorre no intervalo correspondente às umidades acima do ponto de saturação, uma vez que os valores do coeficiente da matriz de rigidez crescem com o acréscimo da umidade ao invés de permanecer praticamente constante como o esperado.

Wang et al. (2003) estudaram o efeito da umidade e da densidade aparente na velocidade de propagação de ondas de ultra-som na Madeira Taiwania (Taiwania cryptomerioides Hay.) nas direções longitudinal e radial. O modulo de elasticidade dinâmico foi ajustado para valores de umidade acima do ponto de saturação das fibras. Os autores observaram que a velocidade aumentou com a redução da umidade e que o efeito da umidade foi maior no trecho abaixo do ponto de saturação das fibras. Todavia, os autores observaram que para essa espécie a velocidade na direção longitudinal diminuiu com o acréscimo da densidade aparente, enquanto que na direção radial o comportamento foi inverso, ou seja, aumentou com a densidade aparente. A correlação entre a velocidade de propagação da onda, a umidade e a densidade aparente pode ser representada por um modelo polinomial de regressão. Os autores utilizam o módulo de elasticidade ajustado para valores acima do ponto de saturação das fibras, conforme Wang 2002. Tendo em vista as correlações obtidas os autores concluem que a técnica de propagação de ondas de ultra-som pode ser utilizada para estimar algumas propriedades físicas de árvores em pé.

Sobue (1993) apresenta expressão para se determinar a densidade efetiva. (Equação 2.7).

$$\rho_{ef} = \frac{(100 + MC_u)\rho_0}{(100 + 28\rho_0)} \times \left[1 - \frac{(1 - k)(MC_u - 28)}{(100 + MC_u)}\right] (2.7)$$

Onde:

 ρ_{ef} = densidade efetiva da madeira com umidades superiores ao PSF ρ_0 = densidade do corpo de prova na condição anidra k = valor empírico situado no intervalo 0,0 a 1,0.

Nessa expressão o valor de k indica a mobilidade da água livre e é definido, nas aplicações utilizando métodos dinâmicos, como sendo a relação entre o peso da água livre que vibra simultaneamente com a parede celular da madeira e o peso total da água livre. Quando k = 0,0 toda a água livre vibra de maneira adversa à parede celular e quando k = 1 toda a água livre vibra junto com a parede celular de maneira que k aumenta, a relação entre a densidade efetiva e a umidade torna-se significativa.

Wang et al. (2002) indicam que com o valor da densidade efetiva se pode determinar a velocidade ajustada (V_{aj}) (Equação 2.8).

$$V_{aj} = \sqrt{\frac{C_{fPS}}{\rho_{ef}}} \quad (2.8)$$

Onde: C_{fPS} = termo da matriz de rigidez no ponto de saturação das fibras (valor experimental)

Utilizando-se valores de k variando de 0,0 a 1,0 se pode determinar as densidades efetivas para cada um desses valores, e, com a densidade efetiva a velocidade ajustada. Utilizando-se as velocidades obtidas experimentalmente para valores de umidades acima do ponto de saturação das fibras, o método dos mínimos quadrados pode ser usado para a obtenção do valor ótimo de k.

Finalmente, a densidade efetiva calculada com o valor ótimo de k, é utilizada para a determinação dos valores dos coeficientes da matriz de rigidez ajustados (C_{aj}), para umidades acima do ponto de saturação (Equação 2.9).

$C_{aj} = V^2 \rho_{ef} \quad (2.9)$

No artigo de Wang et al. (2002) a espécie estudada foi a Taiwania (*Taiwania cryptomerioides Hay*), uma conífera de densidade aparente, na condição seca ao ar, de aproximadamente 0,42 g/cm³. Para essa conífera, o valor de k obtido para a direção longitudinal foi 0,58; para a direção radial de 0,33 e para a direção tangencial de 0,01.

Nesse trabalho as variações da velocidade de propagação das ondas de ultra-som com a umidade foram ser representadas por equações polinomiais do segundo grau para as três direções (longitudinal, radial e tangencial). Os resultados mostraram, também, que o comportamento dessa variação é diferenciado para trechos acima e abaixo do ponto de saturação das fibras, podendo ser representado por equações lineares em cada um desses trechos. As equações de correção obtidas pelo autor podem ser vistas na Tabela 2.2.

direção	U %	Equações	\mathbb{R}^2	F
longitudial	0%~240%	$V = 0,03 U^2 - 14,26 U + 5098,7$	0,98	249,9**
	>PSF	V = -5,79 U + 4622	0,97	181,6**
	<psf< td=""><td>V = -24,9 U + 5249,6</td><td>0,97</td><td>194,3**</td></psf<>	V = -24,9 U + 5249,6	0,97	194,3**
radial	0%~220%	$V = 0,04 U^2 - 10,74 U + 2684,1$	0,91	45,9**
	>PSF	V = -1,25 U + 2223,3	0,84	25,4**
	<psf< td=""><td>V = -18,71 U + 2799,4</td><td>0,97</td><td>245,2**</td></psf<>	V = -18,71 U + 2799,4	0,97	245,2**
tangencial	0%~230%	$V = 0,0003 U^3 + 0,132 U^2 - 15,56 U + 1738,$	0,89	31,4**
	>PSF	V = 1,46 U + 1210,1	0,56	5,2(-)
	<psf< td=""><td>V = -16,87 U + 1769,1</td><td>0,97</td><td>20,5**</td></psf<>	V = -16,87 U + 1769,1	0,97	20,5**

Tabela 2.2 – Equações de variação da velocidade (m/s) com a umidade (%) Adaptado de Wang et al (2002)

** e⁽⁻⁾ indicam respectivamente significância e não significância em nível 0,01 do teste F

2.5 Determinação da Anisotropia da madeira utilizando a propagação de ondas

A anisotropia da madeira expressa por parâmetros de ultra-som em várias condições de umidade, pode ser usada como indicador dos processos de secagem. A anisotropia pode ser expressa por relações de velocidades (V_{LL}/V_{RR} , V_{LL}/V_{TT} , V_{RR}/V_{TT}) ou atenuações obtidas em diferentes eixos, Bucur (1995). Maiores relações significam maiores anisotropias e esta resposta pode significar muito para a secagem de madeiras.

Bucur (1995) apresentou resultados de anisotropia obtidos para várias espécies de coníferas e dicotiledôneas. Esses resultados demonstram que existe grande variação entre as espécies e que, normalmente, as relações são maiores para as coníferas do que para as dicotiledôneas. Um dos resultados comparativos apresentados pela autora foi o da *Picea*

abies, cuja relação V_L/V_R foi 4,7 em comparação com o Pernambuco (nome atribuído ao "Pau Brasil" pela autora), cuja relação foi de apenas1,27.

Bucur e Sarem (1992) apresentaram resultados da variação da anisotropia com a umidade. Esses resultados demonstram não haver comportamento único entre diferentes espécies, ou seja, em alguns casos a anisotropia aumenta com a redução da umidade enquanto em outros diminui.

Ringger et al. (2003) realizaram estudo para avaliar a anisotropia de duas espécies de madeira, uma conífera (spruce) e uma dicotiledônea (beach). Para o estudo os pesquisadores utilizaram 77 corpos-de-prova de 30 mm de comprimento, 30 mm de largura e 15 mm de espessura, sendo 43 corpos-de-prova da espécie spruce e 34 corpos-de-prova da espécie beach e equipamento de ultra-som de freqüência variando entre 20kHz e 350 kHz. Como resultados os pesquisadores obtiveram as velocidades de propagação das ondas de ultra-som nas direções Longitudinal (VL), radial (VR) e tangencial (VT). Para a conífera VL/VT = 3,5 e VR/VT = 1,33 e para a dicotiledônea VL/VT = 2,75 e VR/VT = 1,33. Os autores finalizam o artigo concluindo que a utilização da propagação de ondas de ultra-som em corpos-de-prova podem ser utilizados como ferramenta para avaliar a anisotropia do material.

2.6 Influência do comprimento de onda

O comprimento de onda (λ) é função da velocidade de propagação da onda no meio considerado e da freqüência do transdutor. Corpos de prova de dimensões finitas podem afetar as condições de propagação das ondas de ultra-som. Desta maneira é desejável que o corpo de prova tenha dimensões algumas vezes maiores do que o comprimento de onda, aproximando as condições do ensaio das condições de um meio infinito.

Bucur (1995) ensaiando corpos de prova da espécie Spruce verificou que as velocidades de propagação se tornavam constantes, ou seja, não eram mais afetadas pelo comprimento de onda quando o comprimento de percurso da onda era maior do que 2 λ .

Dessa forma, quanto menor o corpo de prova, maior deverá ser a freqüência do transdutor, já que haverá redução do comprimento de onda. No entanto é importante observar que, para a madeira, freqüências acima de 1MHz não são aconselháveis, já que os comprimentos de onda nesses casos seriam reduzidos a valores próximos aos da estrutura celular do material aumentando em muito a atenuação.

Bartholomeu et al (2003) estudaram a dispersão das ondas de ultra-som em função da geometria das peças de Madeira. Para isso realizaram dois tipos de avaliação da propagação da onda. Primeiramente ensaiaram tábuas de eucalipto nas quais mantinham a seção e variaram o comprimento e depois, mantendo o comprimento e variando a seção. As tábuas de eucalipto foram escolhidas de maneira a possuírem, na seção transversal, anéis de crescimento bem posicionados na direção radial e tangencial. As peças estavam com umidade de aproximadamente 12% e tinham comprimento inicial de 2m e seção transversal variando de (0.05 m x 0.07 m) a (0.05 m x 0.14 m). Dois tipos de onda foram avaliados – de superfície e de compressão – ambas na direção longitudinal. As medições foram feitas com equipamento de ultra-som marca STEINKAMP Ltda. Modelo BP7, com transdutores de 45 kHz. Para facilitar o entendimento do fenômeno de dispersão da onda, a variação da velocidade foi expressa em função da relação: distância de propagação da onda (d) versus comprimento de onda (λ). Segundo os autores a velocidade de propagação da onda de superfície depende do plano de polarização e, geralmente, a polarização no plano LR produz velocidade mais alta do que no plano LT. Os autores concluíram que para $d/\lambda > 5$ as ondas de superfície se transformam em ondas de compressão com mesma velocidade de propagação, além de representar intervalo no qual a velocidade de propagação da onda deixa de ser afetada pelo comprimento de percurso. Sendo assim, para relações d/ λ acima desse valor tanto ondas de superfície como de compressão podem ser utilizadas para a avaliação do material. Além disso os autores concluem que é recomendado que a seção transversal tenha relação R/T maior do que 0,3 de V_{LL} e que 0,75 de V_{TT} uma vez que nessa faixa as velocidades de propagação se tornam constantes.

3. Material e Métodos

Para o desenvolvimento da pesquisa foram adotadas duas coníferas: Pinus elliottii (*Pinus elliottii*) e Pinho do Paraná (*Araucária angustifólia*), sendo a primeira de reflorestamento e a segunda nativa, e três dicotiledôneas: Eucalipto citriodora (*Eucalyptus citriodora*), Imbuia (*Ocotea porosa*) e Cupiúba (*Goupia glabra*), sendo a primeira de reflorestamento e as duas últimas nativas. Essas espécies foram adotadas por apresentarem ampla faixa de densidades e assim permitirem avaliação mais ampla do comportamento da velocidade de propagação da onda de ultra-som em função da umidade.

Para a medição das velocidades de propagação das ondas de ultra-som nas três direções principais (V_{LL} , V_{RR} e V_{TT}) e para o cálculo dos termos da diagonal da matriz de rigidez (C_{LL} , C_{RR} e C_{TT}) foram utilizados 15 (quinze) corpos de prova de cada espécie, com dimensões nominais 300 mm na direção longitudinal, 60 mm na direção radial e 30 mm na direção tangencial ou 300 mm na direção longitudinal, 30 mm na direção radial e 60 mm na direção tangencial (Figura 3.1). A variação nas dimensões radial e tangencial (ora 30 mm ora 60 mm) ocorreu em função do posicionamento dos anéis de crescimento nas peças de onde os corpos de prova foram retirados.

As dimensões radial e tangencial foram adotadas em função das dimensões de tábuas comerciais e o comprimento foi adotado visando permitir a secagem em estufa disponível no laboratório de Materiais e Estruturas da Faculdade de Engenharia Agrícola da UNICAMP.

Tendo em vista que o transdutor a ser utilizado nas medições deve ficar circunscrito à região ensaiada, optou-se pela utilização do transdutor de face exponencial (Figura 3.2), cuja freqüência era de 45 kHz. Dessa forma, dada a freqüência do transdutor e a dimensão dos corpos de prova, na direção longitudinal a relação comprimento de percurso (L)/comprimento de onda (λ) foi de aproximadamente 3 e nas direções radial e tangencial de aproximadamente 1. O equipamento de ultra-som utilizado nas medições foi da marca Steinkamp, modelo BP7, (Figura 3.2).

Figura 3.1 – Esquema e dimensões dos corpos-de-prova

Figura 3.2 – Equipamento de ultra-som utilizado nos ensaios

As medições de tempo de propagação das ondas de ultra-som foram realizadas em três posições para cada uma das três direções (longitudinal, radial e tangencial). A Figura 3.3. mostra um corpo-de-prova com as marcações em cada face e a Figura 3.4 as medições sendo realizadas na direção longitudinal. Das três medições em cada direção se determinou a média do tempo de propagação.

Figura 3.3 – corpo de prova demarcado nas três faces para as medições de tempo de propagação da onda de ultra-som

Figura 3.4 – Medição do tempo de propagação da onda na direção longitudinal

Antes da realização das medições de tempo o equipamento era calibrado utilizandose corpo de prova padrão em acrílico, no qual o tempo de propagação é conhecido (10 µs) (Figura 3.5.)

Figura 3.5 - Calibração do equipamento com corpo de prova padrão

Inicialmente todos os corpos-de-prova foram imersos em tanques para saturação. O controle da saturação foi realizado por variação de peso.

Dentre os corpos de prova inicialmente saturados, um deles foi retirado para servir de amostra de controle. Essa amostra foi levada à estufa para a obtenção do peso seco. Esse peso foi utilizado como referência para a obtenção da umidade inicial da amostra, com a qual foi possível se estabelecer os pesos esperados para cada umidade na qual se desejava realizar as medições. Ao final dos ensaios foi obtido o peso seco real e as umidades foram então corrigidas. Todos os procedimentos foram realizados separadamente para cada espécie, respeitando as diferenças em termos de tempo de absorção de água e de secagem.

Durante a secagem, as medições do tempo de propagação das ondas foram realizadas, nas direções longitudinal, radial e tangencial dos corpos de prova, sempre que o peso correspondia à variação de aproximadamente 1% na umidade.

Utilizando-se a Equação 3.1 foram calculadas as velocidades de propagação das ondas em cada direção,

$$Vii = Li/ti \dots (3.1)$$

Onde

i = direção de propagação da onda (L, R or T)

Li = comprimento de percurso da onda em cada direção

ti = tempo de propagação da onda na direção i

Vii = velocidade de propagação da onda na direção i

Os termos da diagonal da matriz de rigidez (Cii) foram calculados inicialmente utilizando-se a equação 3.2,

Cii =
$$\rho$$
 (Vii)² (3.2)

Onde:

i = direção de propagação da onda (L, R or T)

Cii = termos da diagonal da matriz de rigidez na direção i

Vii = velocidade de propagação da onda na direção i

 ρ = densidade aparente a U% de umidade

Os cálculos da umidade durante os ensaios foram realizados utilizando-se a Equação 3.3

 $U(\%) = [(W_u - W_0)/W_0] \times 100....(3.3)$

Onde:

U (%) = umidade do corpo de prova em vários estágios durante a secagem (%)
 Wu = peso do corpo-de-prova em diferentes estágios durante a secagem
 W₀ = peso do corpo-de-prova na condição anidra

Para que não houvesse o aparecimento de defeitos, a secagem foi realizada de forma gradativa e lenta e foi conduzida separadamente para cada uma das espécies.

Da condição saturada até a umidade de equilíbrio ao ar a secagem se deu naturalmente, em local arejado e coberto. Após atingir a umidade de equilíbrio os corposde-prova foram levados à estufa, com temperatura moderada (~30°C). Essa temperatura foi sendo elevada gradativamente e inspeções diárias eram feitas para observar o aparecimento de qualquer tipo de defeito de secagem. Após atingir umidade entre 2 a 5%, a última medição era realizada e o corpo-de-prova era levado à estufa para a secagem completa e para a determinação do peso seco real. Com esse peso as umidades eram corrigidas.

Para ajustar os valores dos termos da matriz de rigidez acima do PSF, calculou-se a densidade efetiva (ρ_{ef}) e a velocidade ajustada (V_{aj}), de acordo com as expressões 2.5 e 2.6. O cálculo do valor ótimo de k foi realizado de acordo com a metodologia proposta por Wang et al. (2002) (item 2.4).

A anisotropia foi calculada pela relação das velocidades entre os eixos Longitudinal e Radial, Longitudinal e Tangencial e Radial e Tangencial. Esse cálculo foi realizado para cada uma das condições de umidade adotadas.

Os modelos de regressão para a variação da velocidade com a umidade, nas direções longitudinal, radial e tangencial, foram analisados utilizando-se o programa computacional Statgraphics Plus 4.1. Para adoção final dos modelos foi verificada a normalidade dos dados, o coeficiente de correlação (R^2), o teste F com nível de significância de 5% e os resíduos da regressão. A análise foi realizada em três etapas.

Etapa 1 – Obtenção, para cada espécie, dos modelos de variação da velocidade com a umidade para cada corpo-de-prova isoladamente.

Etapa 2 – Obtenção, para cada espécie, dos modelos de variação da velocidade com a umidade para todos os corpos-de-prova da espécie

Etapa 3 – Obtenção de modelo de variação da velocidade com a umidade para as coníferas e para as dicotiledôneas avaliadas.
4. Resultados e Discussão

Os resultados serão inicialmente apresentados por espécie e, posteriormente, se apresentará uma discussão geral, englobando todas as espécies.

4.1 Velocidade de Propagação em função da umidade

As Tabelas 4.1 a 4.5 apresentam os resultados médios obtidos para as velocidades de propagação das ondas para umidades variando a cada 1%, considerando os 15 corposde-prova de cada espécie. Os valores individuais obtidos são apresentados nas tabelas A.1 a A5 do Anexo A.

Nessas tabelas se pode observar que a variação da velocidade (valor mínimo e valor máximo) foi maior para o Pinus elliottii (*Pinus elliottii*) (superior a 100% para todas as direções), seguida da Imbuia (*Ocotea porosa*) (média de 60% considerando as três direções), Pinho do Paraná (*Araucária angustifólia*) (média de 44% considerando as três direções) Cupiúba (*Goupia glabra*) (aproximadamente 25% para as direções longitudinal e radial e 52% para a direção tangencial) e, por último o Eucalipto citriodora (*Eucaliptus citriodora*) (média de 18% considerando as três direções). Essas diferenças exprimem a variabilidade dos corpos-de-prova ensaiados, o que certamente refletirá nos modelos adotados.

Essa mesma observação pode ser feita avaliando-se os resultados obtidos para cada corpo-de-prova considerado de maneira isolada, uma vez que para uma mesma umidade as velocidades foram bastante variáveis, indicando diferenças de rigidez das peças.

	V _{LL} (m.s-1)	V _{TT} (m.s-1)	V _{RR} (m.s-1)
média	4103	1000	1451
desvio	729,5	246,2	331,6
CV(%)	17,8	24,6	22,9
mínimo	2217	667	735
máximo	5142	1425	2070

Tabela 4.1 – Resultados de velocidades na madeira de Pinus elliottii (Pinus elliottii)

	$V_L (m.s-^1)$	V_{T} (m.s- ¹)	$V_R (m.s-1)$
média	5038	1159	1185
desvio	307	72	102
CV(%)	6	6	9
mínimo	4517	1057	1012
máximo	6292	1490	1536

Tabela 4.2 – Resultados de velocidade na madeira de Pinho do Paraná (Araucária angustifólia)

Tabela 4.3 Resultados de velocidade na madeira de Cupiúba (Goupia glabra)

	V_{L} (m.s- ¹) V_{T} (m.s- ¹)		$V_R (m.s-1)$
média	4491	1610	1900
desvio	252	136	71
CV(%)	6	8	4
mínimo	3992	1205	1699
máximo	5087	1829	2056

Tabela 4.4 Resultados de velocidade na madeira de Imbuia (Ocotea porosa)

	$V_L (m.s-1)$	V_{T} (m.s- ¹)	$V_R (m.s-^1)$
média	3290	1589	1651
desvio	365	198	182
CV(%)	11	12	11
mínimo	2593	1295	1228
máximo	3947	2146	2021

	V_L (m.s- ¹)	V_{T} (m.s- ¹)	V_{R} (m.s- ¹)
média	4506	1776	2123
desvio	135	95	79
CV (%)	3	5	4
mínimo	4290	1591	1903
máximo	4821	1972	2261

Tabela 4.5 Resultados de velocidade na madeira de Eucalipto citriodora (*Eucaliptus citriodora*)

As Tabelas 4.6 a 4.10 resumem os modelos de variação da velocidade na direção longitudinal em função do teor de umidade, obtidos para cada corpo-de-prova de maneira isolada, bem como os modelos obtidos para todos os corpos-de-prova ensaiados, nas três direções e para as diferentes espécies.

Corpos-de-Prova	Equações	\mathbf{R}^2
1	$V_{LL} = 0,1091U^2 - 26,823 U + 5271$	0,98
2	$V_{LL} = 0,1212 \text{ U}^2 - 28,4 \text{ U} + 5438$	0,97
3	$V_{LL} = 0,1293 \text{ U}^2 - 28,249 \text{ U} + 5106$	0,96
4	$V_{LL} = 0,1379 \text{ U}^2 - 33,412 \text{ U} + 5037$	0,99
5	$V_{LL} = 0,1713 \text{ U}^2 - 42,758 \text{ U} + 5006$	0,98
6	$V_{LL} = 0,0749 \text{ U}^2 - 23,512 \text{ U} + 4579$	0,99
7	$V_{LL} = 0,1048 \text{ U}^2 - 29,927 \text{ U} + 5471$	0,99
8	$V_{LL} = 0,0634 \text{ U}^2 - 21,306 \text{ U} + 5400$	0,94
9	$V_{LL} = 0,1397 \text{ U}^2 - 31,939 \text{ U} + 5330$	0,97
10	$V_{LL} = 0,1253 \text{ U}^2 - 30,396 \text{ U} + 5752$	0,98
11	$V_{LL} = 0,0724 \text{ U}^2 - 20,856 \text{ U} + 3706$	0,99
12	$V_{LL} = 0,0904 \text{ U}^2 - 23,072 \text{ U} + 4029$	0,99
13	$V_{LL} = 0,0966 \text{ U}^2 - 23,237 \text{ U} + 4238$	0,99
14	$V_{LL} = 0,0632 \text{ U}^2 - 18,94 \text{ U} + 4657,7$	0,91
15	$V_{LL} = 0,2262 \text{ U}^2 - 39,374 \text{ U} + 5232$	0,99
Todos os cps	$V_{LL} = 0,0916 \text{ U}^2 - 25,584 \text{ U} + 5017$	0,70

Tabela 4.6 – Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para a Pinus elliottii (*Pinus elliottii*), considerando cada corpo-de-prova e o bloco com todos os corpos-de-prova da espécie . Faixas de umidades: 212 a 6%.

Tabela 4.7 – Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para o Pinho do Paraná (*Araucária angustifólia*), considerando cada corpo-de-prova e o bloco com todos os corpos-de-prova da espécie . Faixas de umidades do ensaio: 120 a 5%.

Corpos-de-Prova	Equações	\mathbf{R}^2
1	$V_{LL} = 0,1625 \text{ U}^2 - 27,647 \text{ U} + 6176$	0,93
2	$V_{LL} = 0,1433 \text{ U}^2 - 26,503 \text{ U} + 6024$	0,96
3	$V_{LL} = 0,1039 \text{ U}^2 - 23,123 \text{ U} + 6008$	0,98
4	$V_{LL} = 0,0731 \text{ U}^2 - 18,573 \text{ U} + 5785$	0,99
5	$V_{LL} = 0,1087 \text{ U}^2 - 22,922 \text{ U} + 6004$	0,95
6	$V_{LL} = 0,1489 \text{ U}^2 - 26,572 \text{ U} + 5925$	0,97
7	$V_{LL} = 0,1216 \text{ U}^2 - 24,013 \text{ U} + 5922$	0,95
8	$V_{LL} = 0,1246 \text{ U}^2 - 24,711 \text{ U} + 5669$	0,82
9	$V_{LL} = 0,1369 \text{ U}^2 - 26,001 \text{ U} + 6088$	0,95
10	$V_{LL} = 0,0929 \text{ U}^2 - 20,981 \text{ U} + 5755$	0,94
11	$V_{LL} = 0,1154 \text{ U}^2 - 23,776 \text{ U} + 5775$	0,94
12	$V_{LL} = 0,1047 \text{ U}^2 - 21,711 \text{ U} + 5776$	0,96
13	$V_{LL} = 0,1228 U^2 - 23,537 U + 6070$	0,93
14	$V_{LL} = 0,1486 \text{ U}^2 - 27,917 \text{ U} + 6119$	0,95
15	$V_{LL} = 0,1594 \text{ U}^2 - 27,514 \text{ U} + 6097$	0,92
Todos os cps	$V_{LL} = 0,077 \text{ U}^2 - 17,14 \text{ U} + 5724$	0,81

Tabela 4.8 – Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para a Cupiúba (*Goupia glabra*), considerando cada corpo-de-prova e o bloco com todos os corpos-de-prova da espécie . Faixas de umidades do ensaio: 71% to 8%.

Corpos-de-Prova	Equações	\mathbf{R}^2
1	$V_{LL} = 0,2569 \text{ U}^2 - 31,545 \text{ U} + 5304$	0,99
2	$V_{LL} = 0,2037 \text{ U}^2 - 27,525 \text{ U} + 5085$	0,99
3	$V_{LL} = 0,1937 \text{ U}^2 - 25,375 \text{ U} + 5227$	0,99
4	$V_{LL} = 0,1815 \text{ U}^2 - 25,932 \text{ U} + 5205$	0,99
5	$V_{LL} = 0,2426 \text{ U}^2 - 29,422 \text{ U} + 5338$	0,98
6	$V_{LL} = 0,2186 \text{ U}^2 - 27,443 \text{ U} + 5037$	0,98
7	$V_{LL} = 0,2405 \text{ U}^2 - 29,944 \text{ U} + 5216$	0,98
8	$V_{LL} = 0,1862 \text{ U}^2 - 26,992 \text{ U} + 5050$	0,98
9	$V_{LL} = 0,239 \text{ U}^2 - 30,396 \text{ U} + 5098$	0,97
10	$V_{LL} = 0,2565 \text{ U}^2 - 31,373 \text{ U} + 5264$	0,99
11	$V_{LL} = 0,2302 \text{ U}^2 - 29,367 \text{ U} + 5280$	0,98
12	$V_{LL} = 0,1572 \text{ U}^2 - 23,822 \text{ U} + 5201$	0,99
13	$V_{LL} = 0,2203 \text{ U}^2 - 28,327 \text{ U} + 4996$	0,98
14	$V_{LL} = 0,1962 \text{ U}^2 - 27,459 \text{ U} + 5226$	0,97
15	$V_{LL} = 0,2289 \text{ U}^2 - 29,085 \text{ U} + 5423$	0,98
Todos os cps	$V_{LL} = 0,2322 U^2 - 29,82 U + 5235$	0,89

Tabela 4.9 – Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para a Imbuia (*Ocotea porosa*), considerando cada corpo-de-prova e o bloco com todos os corpos-de-prova da espécie . Faixas de umidades do ensaio: 113% to 5%.

Corpos-de-Prova	Equações	\mathbf{R}^2
1	$V_{LL} = 0,0731 \text{ U}^2 - 17,383 \text{ U} + 3912$	0,98
2	$V_{LL} = 0,1181 \text{ U}^2 - 22,866 \text{ U} + 3539$	0,97
3	$V_{LL} = 0,073 \text{ U}^2 - 18,736 \text{ U} + 3792$	0,98
4	$V_{LL} = 0,1244 \text{ U}^2 - 22,277 \text{ U} + 3510$	0,98
5	$V_{LL} = 0,073 \text{ U}^2 - 17,82 \text{ U} + 3647$	0,98
6	$V_{LL} = 0,0455 \text{ U}^2 - 17,54 \text{ U} + 4234$	0,96
7	$V_{LL} = 0,0879 \text{ U}^2 - 19,371 \text{ U} + 3940$	0,92
8	$V_{LL} = 0,0306 \text{ U}^2 - 14,694 \text{ U} + 4020$	0,98
9	$V_{LL} = 0,069 \text{ U}^2 - 17,024 \text{ U} + 4053$	0,96
10	$V_{LL} = 0,0771 \text{ U}^2 - 19,492 \text{ U} + 4157$	0,96
11	$V_{LL} = 0,0772 \text{ U}^2 - 18,111 \text{ U} + 4055$	0,96
12	$V_{LL} = 0,079 \text{ U}^2 - 18,593 \text{ U} + 4079$	0,96
13	$V_{LL} = 0,1056 \text{ U}^2 - 21,844 \text{ U} + 4297$	0,95
14	$V_{LL} = 0,0973 \text{ U}^2 - 20,64 \text{ U} + 4342$	0,97
15	$V_{LL} = 0,0641 \text{ U}^2 - 16,687 \text{ U} + 3861$	0,97
Todos os cps	$V_{LL} = 0,036 \text{ U}^2 - 12,9 \text{ U} + 3788$	0,67

Tabela 4.10 – Equações de correlação entre velocidade de propagação das ondas na direção longitudinal e umidade para o Eucalipto citriodora (*Eucaliptus citriodora*), considerando cada corpo-de-prova e o bloco com todos os corpos-de-prova da espécie . Faixas de umidades do ensaio: 43% to 5%.

Corpos-de-Prova	Equações	\mathbf{R}^2
1	$V_{LL} = 0,2945 \text{ U}^2 - 29,415 \text{ U} + 5131$	0,71
2	$V_{LL} = 0,2417 \text{ U}^2 - 26,023 \text{ U} + 5047$	0,72
3	$V_{LL} = 0,4051 \text{ U}^2 - 35,868 \text{ U} + 5142$	0,87
4	$V_{LL} = 0,1958 \text{ U}^2 - 24,659 \text{ U} + 5000$	0,68
5	$V_{LL} = 0,0962 \text{ U}^2 - 19,806 \text{ U} + 4964$	0,74
6	$V_{LL} = 0,3546 \text{ U}^2 - 32,772 \text{ U} + 5007$	0,90
7	$V_{LL} = 0,6124 \text{ U}^2 - 40,565 \text{ U} + 5044$	0,95
8	$V_{LL} = 0,6727 \text{ U}^2 - 40,677 \text{ U} + 5008$	0,95
9	$V_{LL} = 0,5092 \text{ U}^2 - 38,204 \text{ U} + 4821$	0,96
10	$V_{LL} = 0,6662 \text{ U}^2 - 43,239 \text{ U} + 5058$	0,92
11	$V_{LL} = 0,6866 \text{ U}^2 - 44,114 \text{ U} + 5111$	0,93
12	$V_{LL} = 0,6584 \text{ U}^2 - 41,161 \text{ U} + 5072$	0,93
13	$V_{LL} = 0,7479 \text{ U}^2 - 44,386 \text{ U} + 5066$	0,92
14	$V_{LL} = 0,6589 \text{ U}^2 - 42,589 \text{ U} + 5121$	0,95
15	$V_{LL} = 0,524 \text{ U}^2 - 35,943 \text{ U} + 5071$	0,94
Todos os cps	$V_{LL} = 0,394 \text{ U}^2 - 29,24 \text{ U} + 4227$	0,87

As equações de correlação apresentadas nas Tabela 4.6 a 4.10 também permitem observar a variabilidade dos corpos-de-prova, uma vez que, para as espécies que apresentaram corpos-de-prova com maior variabilidade ou seja, Pinus elliottii (*Pinus elliottii*) e Imbuia (*Ocotea porosa*), embora todas as equações representativas da variação

da velocidade com a umidade nos corpos-de-prova isolados apresentem ótimas correlações, os parâmetros da regressão são muito variáveis, demonstrando variação do grau de dependência da velocidade com a umidade. Essa variabilidade se reflete na correlação obtida para a equação representativa da variação da velocidade na direção longitudinal com a umidade quando se considera todos os corpos-de-prova ($R^2 = 0,70 e 0,67$ para o Pinus elliottii (*Pinus elliottii*) e Imbuia (*Ocotea porosa*), respectivamente.

A avaliação através da tabela ANOVA demonstra que todos os parâmetros da regressão são significativos para os modelos e que existe correlação significativa entre a velocidade de propagação nas três direções estudadas e a umidade (pvalor < 0,05). Além disso, o teste de Durbin-Watson (DW > 1,4) bem como os gráficos de resíduos indicam que os mesmos têm distribuição normal.

As Figuras 4.1 a 4.5 apresentam as curvas representativas dos modelos adotados para a variação da velocidade com a umidade para as cinco espécies estudadas, nas direções longitudinal, radial e tangencial quando se englobam todos os corpos-de-prova ensaiados.

Figura 4.1 – curvas representativas dos modelos de variação da velocidade com a umidade para o Pinus elliottii (*Pinus elliottii*).

Figura 4.2 – curvas representativas dos modelos de variação da velocidade com a umidade para o Pinho do Paraná (*Araucária angustifólia*)

Figura 4.3 – curvas representativas dos modelos de variação da velocidade com a umidade para a Cupiúba (*Goupia glabra*)

Figura 4.4 – curvas representativas dos modelos de variação da velocidade com a umidade para a Imbuia (*Ocotea porosa*)

Figura 4.5 – curvas representativas dos modelos de variação da velocidade com a umidade para o Eucalipto citriodora (*Eucaliptus citriodora*)

Observa-se que, para as três direções estudadas há variação na inclinação do gráfico, indicando a existência de dois trechos distintos, havendo variação mais acentuada da velocidade com a umidade no trecho correspondente a umidades abaixo do ponto de saturação das fibras. Esse comportamento é mais acentuado na direção longitudinal. Nas direções tangencial e radial, exceto para o Pinus elliottii (*Pinus elliottii*), esse comportamento não é tão evidente.

Para detalhar essa observação foram determinadas as relações entre a velocidade de propagação das ondas de ultra-som segundo dois trechos, ou seja, acima e abaixo do ponto de saturação das fibras.

Tendo em vista que não foi realizado estudo específico para a determinação do ponto de saturação das fibras, adotou-se, para todas as espécies, a umidade 30% como sendo esse ponto.

As Tabelas 4.11 a 4.15 apresentam as regressões para todo o trecho, bem como para os dois trechos considerados separadamente (antes e depois do ponto de saturação). Os modelos de regressão foram avaliados utilizando-se a tabela ANOVA (coeficiente de correlação; significância dos termos da regressão e do modelo de regressão – Pvalor; análise dos resíduos). Sempre que o Pvalor referente ao termo quadrático era maior do que 0,05 adotava-se equação linear para representar o comportamento da velocidade no trecho.

Direção	U (%)	Equações	\mathbf{R}^2	Pvalor
	6~212	V_{LL} = 0,091 U ² - 25,5 U + 5017	0,70	0,0000
Longitudinal	<psf< td=""><td>V_{LL}=-25,2 U+ 5105</td><td>0,42</td><td>0,0012</td></psf<>	V _{LL} =-25,2 U+ 5105	0,42	0,0012
	>PSF	V _{LL} =-4,43 U+ 4088	0,21	0,0366
	6~212	V _{RR} =0,03 U ² - 9,6 U+ 1856	0,83	0,0001
Radial	<psf< td=""><td>V_{RR}=-18,2 U+ 2046</td><td>0,57</td><td>0,0001</td></psf<>	V _{RR} =-18,2 U+ 2046	0,57	0,0001
	>PSF	V _{RR} =-3,07 U+1564	0,71	0,0000
	6~212	V _{TT} =0,02 U ² - 7,54 U+1330	0,75	0,0000
Tangencial	<psf< td=""><td>V_{TT}=-1,32 U+ 1235</td><td>0,24</td><td>0,5251*</td></psf<>	V _{TT} =-1,32 U+ 1235	0,24	0,5251*
	>PSF	V _{TT} =-2,58 U+ 1124	0,78	0,0000

Tabela 4.11 – Equações representativas da variação da velocidade com a umidade para o Pinus elliottii (*Pinus elliottii*)

Tabela 4.12 – Equações representativas da variação da velocidade com a umidade para o Pinho do Paraná (*Araucária angustifólia*)

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
	5~120	V_{LL} =0,077 U ² – 17,14U + 5724	0,81	0,0000
Longitudinal	> PSF	$V_{LL} = 5300 - 4,93 \text{ U}$	0,69	0,0000
	< PSF	$V_{LL} = 6011 - 28,6 \text{ U}$	0,65	0,0000
	5~120	$V_{RR} = 0,154U^2 - 11,96U + 2079$	0,61	0,0000
Radial	> PSF	$V_{RR} = 1611 + 5,24 \text{ U}$	0,86	0,0000
	< PSF	$V_{RR} = 2057 - 8,01 \text{ U}$	0,49	0,0003
	5~120	$V_{\rm TT} = 0,040 \text{ U}^2 - 6,13\text{U} + 1337$	0,70	0,0000
Tangencial	> PSF	$V_{TT} = 1119 + 0,12 U$	0,016	0,28*
	< PSF	$V_{TT} = 1393 - 7,38 \text{ U}$	0,90	0,00000

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
	8~71	$V_{LL} = 0,2466U^2 - 31,1U + 5253$	0,87	0,0000
Longitudinal	> PSF	$V_{LL} = 4627 - 5,5 \text{ U}$	0,29	0,0020
	< PSF	$V_{LL} = 5193 - 23 \text{ U}$	0,80	0,0000
	8~71	$V_{RR} = 0,154U^2 - 11,96U + 2079$	0,61	0,0000
Radial	> PSF	$V_{RR} = 1611 + 5,24 \text{ U}$	0,86	0,0000
	< PSF	$V_{RR} = 2057 - 8,01 \text{ U}$	0,49	0,0003
	8~71	$V_{\rm TT} = 0,127 \ {\rm U}^2 - 4,63 {\rm U} + 1556$	0,84	0,0000
Tangencial	> PSF	$V_{TT} = 1282 + 7,73 \text{ U}$	0,95	0,0000
	< PSF	$V_{TT} = 1587 - 4,39 \text{ U}$	0,18	0,06*

Tabela 4.13 – Equações representativas da variação da velocidade com a umidade para a Cupiúba (*Goupia glabra*)

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
	5~113	$V_{LL} = 0,036 \text{ U}^2 - 12,9 \text{ U} + 3788$	0,67	0,0000
Longitudinal	> PSF	$V_{LL} = 3565 - 7,05 \text{ U}$	0,35	0,0021
	< PSF	$V_{LL} = 3895 - 19 \text{ U}$	0,30	0,0087
	5~113	V _{RR} = 1717 – 1,35 U	0,06	0,08*
Radial	> PSF	$V_{RR} = 1540 + 0,75 \text{ U}$	0,013	0,59*
	< PSF	$V_{RR} = 1797 - 4,98 \text{ U}$	0,031	0,43*
	5~113	$V_{TT} = 0,07 \text{ U}^2 - 9,72 \text{ U} + 1810$	0,19	0,005
Tangencial	> PSF	$V_{TT} = 1492 + 0,57 \text{ U}$	0,72	0,69*
	< PSF	$V_{TT} = 1851 - 11,3 \text{ U}$	0,14	0,08*

Tabela 4.14 – Equações representativas da variação da velocidade com a umidade para a Imbuia (*Ocotea porosa*)

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
	5~43	$V_{LL} = 0,394 \text{ U}^2 - 29,2 \text{ U} + 4927$	0,87	0,0000
Longitudinal	> PSF	$V_{LL} = 4525 - 3,57 \text{ U}$	0,10	0,3055*
	< PSF	$V_{LL} = 4831 - 15,74 \text{ U}$	0,81	0,0000
	5~43	$V_{RR} = 0,19 \text{ U}^2 - 8,1 \text{ U} + 2190$	0,07	0,1082*
Radial	> PSF	$V_{RR} = 1751 + 10,5 \text{ U}$	0,5	0,0069
	< PSF	$V_{RR} = 2112 + 0.85 \text{ U}$	0,64	0,7110*
	5~43	$V_{TT} = 6,71 \text{ U} + 1617$	0,64	0,0000
Tangencial	> PSF	$V_{TT} = 1382 + 12,4 U$	0,60	0,0019
	< PSF	$V_{TT} = 1592 + 8,6 \text{ U}$	0,56	0,0000

Tabela 4.15 – Equações representativas da variação da velocidade com a umidade para o Eucalipto citriodora (*Eucaliptus citriodora*)

Os resultados apresentados nas Tabelas 4.11 a 415 permitem observar que, de maneira geral, a velocidade é mais influenciada pela umidade no trecho correspondente a umidades abaixo do ponto de saturação das fibras para todas as direções, exceto para o Eucalipto citriodora (*Eucaliptus citriodora*) na direção radial e para o Pinus elliottii (*Pinus elliottii*) na direção tangencial. Essa conclusão pode ser verificada observando-se os coeficientes da regressão, que indicam a inclinação da reta.

Outra avaliação que se pode fazer observando-se os valores das Tabelas 4.11 a 4.15 é que, para os dois trechos considerados, a variação da velocidade é mais significativa na direção longitudinal, seguida da radial e por último da tangencial, avaliação esta que também pode ser verificada pelos coeficientes do modelo de regressão.

Considerando-se as equações dos modelos obtidos para umidades abaixo de 30% (considerado como Ponto de Saturação) pode ser obtido o coeficiente de influência da umidade na velocidade de propagação das ondas na direção longitudinal para cada 1% de variação (acréscimo de umidade). Esse coeficiente apresenta os valores: -29 para o Pinho do Paraná (*Araucária angustifólia*) ; -25 para o Pinus elliottii (*Pinus elliottii*); -23 para a Cupiúba (*Goupia glabra*); -19 para a Imbuia (*Ocotea porosa*) e -16 para o Eucalipto citriodora (*Eucaliptus citriodora*). Comparativamente, na direção longitudinal, a velocidade é mais afetadas pela umidade para as espécies pinho e Pinus elliottii (*Pinus elliottii*) , seguido da Cupiúba (*Goupia glabra*), Eucalipto citriodora (*Eucaliptus citriodora*) e Imbuia (*Ocotea porosa*). Tomando-se as médias, para as coníferas o coeficiente de variação da umidade seria aproximadamente -27 e das dicotiledôneas aproximadamente –19.

4.2 Coeficientes de Rigidez em função da umidade

A Tabela 4.16 resume as densidades básicas, bem como a variação dessa densidade nos 15 corpos-de-prova ensaiados em cada espécie. Esses resultados permitem avaliar a variabilidade já observada nas Tabelas 4.1 a 4.5 em relação à velocidade.

	Pinus	Pinho do Paraná	Cupiúba	Imbuia	Eucalipto
Média	0,39	0,46	0,70	0,51	0,94
Desvio padrão	0,04	0,01	0,01	0,04	0,03
CV (%)	9,31	2,27	1,56	8,29	3,66
Mínimo	0,34	0,44	0,68	0,45	0,87
máximo	0,45	0,47	0,72	0,62	0,98

Tabela 4.16 Valores médios e variabilidade da densidade básica (g.cm⁻³) das espécies ensaiadas

Pelos resultados da Tabela 4.16 as espécies Pinus elliottii (*Pinus elliottii*) e Imbuia (*Ocotea porosa*) são as que apresentam maior variabilidade em termos de densidade. Tendo em vista serem, também, as que apresentam maior variabilidade em termos de velocidade, os coeficientes de rigidez (diretamente dependentes desses dois parâmetros) serão os mais afetados.

As Tabelas 4.17 a 4.21 apresentam, para todas as espécies estudadas, os valores médios dos coeficientes de rigidez calculados para as três direções (longitudinal, radial e tangencial) em cada umidade. Os valores obtidos são apresentados nas tabelas A.6 a A.10 do Anexo A.

O comportamento dos coeficientes de rigidez em função da umidade para os trechos correspondentes a valores de umidade acima e abaixo do ponto de saturação (considerado como sendo 30%) pode ser observado nos modelos apresentados nas Tabelas 4.22 a 4.26.

Tabela 4.17. Valores de C_{LL}, C_{RR} e C_{TT} (kN.cm⁻²) para cada condição de umidade - Pinus elliottii (*Pinus elliottii*)

	CLL	CRR	CTT
média	1057	130	62
desvio	212	24	14
CV (%)	20	18	23
mínimo	685	73	35
máximo	1012	134	72

Tabela 4.18. Valores de C_{LL}, C_{RR} e C_{TT} (kN.cm⁻²) para cada condição de umidade – Pinho do Paraná (*Araucária angustifólia*)

	CLL	CRR	CTT
média	1830	117	98
desvio	58	6	3
CV	3	5	3
mínimo	1640	98	87
máximo	1883	122	101

	CLL	CRR	CTT
média	1989	336	226
desvio	134	43	61
CV	7	13	27
mínimo	1668	289	145
máximo	2228	463	390

Tabela 4.19. Valores de C_{LL}, C_{RR} e C_{TT} (kN.cm⁻²) para cada condição de umidade – Cupiúba (*Goupia glabra*)

Tabela 4.20. Valores de C_{LL} , C_{RR} e C_{TT} (kN.cm⁻²) para cada condição de umidade – Imbuia (*Ocotea porosa*)

	CLL	CRR	CTT
média	802	190	184
desvio	87	47	53
CV	11	24	29
mínimo	644	103	111
máximo	930	291	312

	CLL	CRR	CTT
Média	2414	520	355
Desvio	89	48	66
CV	4	9	19
mínimo	2234	442	280
máximo	2608	619	493

Tabela 4.21. Valores de C_{LL}, C_{RR} e C_{TT} (kN.cm⁻²) para cada condição de umidade – Eucalipto citriodora (*Eucaliptus citriodora*)

As Tabelas 4.16 a 4.21 indicam que a variabilidade dos corpos-de-prova da espécie Pinus elliottii (*Pinus elliottii*) e Imbuia (*Ocotea porosa*) são elevadas, o que provavelmente dificultará a obtenção de boas correlações entre a rigidez e a umidade quando se misturam todos os corpos-de-prova da espécie.

Tabela 4.22. Modelos de correlação dos coeficientes de rigidez em função da umidade para o Pinus elliottii (*Pinus elliottii*).

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< PSF	$C_{LL} = 999 + 0.74$ U	0,005	0,7310*
	> PSF	$C_{LL} = 1020 + 1,14 \text{ U}$	0,0392	0,5835*
Radial	<psf< td=""><td>$C_{RR} = 131 + 0,14 \text{ U}$</td><td>0,0270</td><td>0,7992*</td></psf<>	$C_{RR} = 131 + 0,14 \text{ U}$	0,0270	0,7992*
	> PSF	$C_{RR} = 130 - 0.07 \text{ U}$	0,0320	0,6179*
Tangencial	< PSF	$C_{TT} = 63 + 0,20 \text{ U}$	0,0171	0,5238*
	> PSF	$C_{TT} = 59 - 0,06 \text{ U}$	0,10	0,3706*

Tabela 4.23. Modelos de correlação dos coeficientes de rigidez em função da umidade para o Pinho do Paraná (*Araucária angustifólia*).

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< PSF	$C_{LL} = 1798 + 2,75$ U	0,83	0,0000
	> PSF	$C_{LL} = 1968 - 2,26 \text{ U}$	0,69	0,0016
Radial	<psf< td=""><td>$C_{RR} = 115 + 0,25 \text{ U}$</td><td>0,77</td><td>0,0000</td></psf<>	$C_{RR} = 115 + 0,25 \text{ U}$	0,77	0,0000
	> PSF	$C_{RR} = 132 - 0.24 \text{ U}$	0,72	0,0009
Tangencial	< PSF	$C_{TT} = 94 + 0.24 \text{ U}$	0,94	0,0000
	> PSF	$C_{TT} = 107 - 0.14 \text{ U}$	0,82	0,0001

Tabela 4.24. Modelos de correlação dos coeficientes de rigidez em função da umidade para a Cupiúba (*Goupia glabra*).

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< PSF	$C_{LL} = 2146 - 9,28$ U	0,41	0,0005
	> PSF	$C_{LL} = 1637 + 7,71 \text{ U}$	0,7	0,0193
Radial	<psf< td=""><td>$C_{RR} = 399-5,14 \text{ U}$</td><td>0,45</td><td>0,0002</td></psf<>	$C_{RR} = 399-5,14 \text{ U}$	0,45	0,0002
	> PSF	$C_{RR} = 181 + 3,95 \text{ U}$	0,95	0,0000
Tangencial	< PSF	$C_{TT} = 233 - 2,24 \text{ U}$	0,27	0,0070
	> PSF	$C_{TT} = 51 + 4,85 \text{ U}$	0,78	0,0017

Tabela 4.25. Modelos de correlação dos coeficientes de rigidez em função da umidade para a Imbuia (*Ocotea porosa*).

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< PSF	$C_{LL} = 871 - 4,65$ U	0,15	0,0735*
	> PSF	$C_{LL} = 903 + 1,36 \text{ U}$	0,21	0,0857*
Radial	<psf< td=""><td>C_{RR} = 199- 1,46 U</td><td>0,047</td><td>0,3340*</td></psf<>	C _{RR} = 199- 1,46 U	0,047	0,3340*
	> PSF	$C_{RR} = 105 + 1,27 \text{ U}$	0,41	0,0098
Tangencial	< PSF	$C_{TT} = 176 - 0,29 \text{ U}$	0,029	0,787*
	> PSF	$C_{TT} = 139 + 0.95 \text{ U}$	0,21	0,0085

Tabela 4.26. Modelos de correlação dos coeficientes de rigidez em função da umidade para o Eucalipto citriodora (*Eucaliptus citriodora*).

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< PSF	$C_{LL} = 2537 - 7,53$ U	0,52	0,000
	> PSF	$C_{LL} = 2259 + 2,99 \text{ U}$	0,046	0,5767*
Radial	<psf< td=""><td>$C_{RR} = 503 + 0.27 \text{ U}$</td><td>0,035</td><td>0,75*</td></psf<>	$C_{RR} = 503 + 0.27 \text{ U}$	0,035	0,75*
	> PSF	$C_{RR} = 310 + 6,65 \text{ U}$	0,36	0,0668*
Tangencial	< PSF	$C_{TT} = 271 + 3,84 \text{ U}$	0,60	0,0000
	> PSF	$C_{TT} = 72 + 9,64 \text{ U}$	0,62	0,0070

*regressão não significativa

Para o pinus não foi possível obter nenhuma equação de correlação significativa quando se analisa o conjunto dos corpos-de-prova (Grupo), dada a variabilidade desses corpos-de-prova. O mesmo ocorre com grande parte das equações de correlação obtidas para a Imbuia (*Ocotea porosa*). Dessa forma, para essas espécies as correlações foram avaliadas por corpo-de-prova, permitindo visualizar o comportamento esperado caso as amostras fossem mais homogêneas. Os resultados obtidos para o Pinus elliottii (*Pinus elliottii*) e Imbuia (*Ocotea porosa*), respectivamente considerando cada corpo-de-prova são apresentados no anexo B.

Tendo em vista que o coeficiente de rigidez pode ser equiparado ao Módulo de Elasticidade, era esperado que o mesmo fosse decrescente com o acréscimo da umidade para valores abaixo do ponto de saturação das fibras. No entanto, observando-se os modelos de variação das Tabelas 4.22 a 4.26 verifica-se que esse comportamento só foi compatível com os resultados da Cupiúba (*Goupia glabra*), Imbuia (*Ocotea porosa*) e Eucalipto citriodora (*Eucaliptus citriodora*) na direção longitudinal.

Para valores acima do ponto de saturação das fibras diversos pesquisadores observaram que, devido ao acréscimo da umidade, os valores dos coeficientes dinâmicos tendem a crescer com o acréscimo da umidade. Esse resultado, no entanto, não é compatível com o que se espera para a rigidez do material, que deveria permanecer praticamente constante (não existência de correlação) ou decrescer com menor intensidade do que para umidades acima do ponto de saturação.

Sendo assim, comportamento compatível com o obtido por outros pesquisadores ocorreu somente com a Cupiúba (*Goupia glabra*) e com o Eucalipto citriodora (*Eucaliptus citriodora*) na direção tangencial. No caso do Pinus elliottii (*Pinus elliottii*) e da Imbuia (*Ocotea porosa*) as correlações não podem ser consideradas e no caso do Pinho do Paraná (*Araucária angustifólia*) são inversas ao que se esperava ou seja, os coeficientes de rigidez cresceram com o acréscimo da umidade no trecho onde a umidade era menor que o ponto de saturação e decresceram para valores acima do ponto de saturação.

Para valores acima do ponto de saturação foram determinados, de acordo com a metodologia proposta por Wang et al. (2002), os valores de K. A Tabela 4.27 apresenta esses valores para cada direção e cada espécie. Esses valores de K posteriormente foram utilizados para a determinação da densidade efetiva com a qual os valores dos coeficientes da matriz de rigidez em cada direção foram calculados para valores acima do ponto de saturação.

De acordo com o que foi definido por Wang, valores de k próximos de 1,00 indicam maiores influências da umidade na rigidez, o que, no caso dos resultados obtidos nesse trabalho levariam a concluir que as maiores influências ocorrem para a direção longitudinal para a Cupiúba (*Goupia glabra*) e Imbuia (*Ocotea porosa*); nas direções longitudinal e radial para o Eucalipto citriodora (*Eucaliptus citriodora*) e nas três direções para o pinus, embora os resultados globais para o pinus não sejam confiáveis devido aos problemas de variabilidade dos corpos-de-prova já destacados anteriormente. Para o Pinho do Paraná (*Araucária angustifólia*) a umidade não mostrou nenhuma direção significativa.

Espécie	K _L	K _R	K _T
Pinus elliottii (Pinus elliottii)	1,00	1,00	1,00
Pinho do Paraná (Araucária angustifólia)	0,01	0,01	0,01
Cupiúba (Goupia Glabra)	0,87	0,06	0,01
Imbuia (Ocotea porosa)	0,88	0,01	0,01
Eucalipto citriodora (Eucaliptus citriodora)	1,00	1,00	0,01

Tabela 4.27. Valores de K_L, K_R e K_T para as cinco espécies estudadas.

As Tabelas 4.28 e 4.29 apresentam as correlações para os coeficientes da matriz de rigidez corrigidos (calculados com a densidade efetivas) em função da umidade para umidades acima do Ponto de Saturação, para as espécies Cupiúba (*Goupia glabra*) e Eucalipto citriodora (*Eucaliptus citriodora*). Para as espécies Pinus elliottii (*Pinus elliottii*) e Imbuia (*Ocotea porosa*) esses cálculos não foram feitos, uma vez que não havia sentido em se corrigir uma correlação que já não existia e para o Pinho do Paraná (*Araucária angustifólia*) o comportamento não necessitava de correção.

As Figuras 4.6 a 4.8 mostram gráficos representativos do comportamento dos coeficientes de rigidez em função da umidade para as espécies cujas correlações foram significativas.

Tabela 4.28. Modelos de correlação dos coeficientes de rigidez corrigidos em função da umidade acima do PS para a Cupiúba (*Goupia glabra*)

Direção	U (%)	Equações	\mathbf{R}^2	Pvalor
Longitudinal	> PSF	$C_{LL} = 1653 + 4,15 \text{ U}$	0,30	0,1297*
Radial	> PSF	$C_{RR} = 254 + 1,08 \text{ U}$	0,4	0,0501*
Tangencial	> PSF	$C_{TT} = 129 + 2,14 \text{ U}$	0,49	0,0369

Tabela 4.29. Modelos de correlação dos coeficientes de rigidez corrigidos em função da umidade acima do PS para o Eucalipto citriodora (*Eucaliptus citriodora*).

Direção	U (%)	Equações	R ²	P _{valor}
Longitudinal	> PSF	$C_{LL} = 2301 - 4,18 \text{ U}$	0,055	0,5146*
Radial	> PSF	$C_{RR} = 389 + 2,83 \text{ U}$	0,079	0,4311*
Tangencial	> PSF	$C_{TT} = 189 + 4,82 \text{ U}$	0,44	0,0363

Figura 4.6 - Coeficientes da matriz de rigidez em função da umidade utilizando os modelos de regressão obtidos para umidades abaixo e acima do PSF – Pinho do Paraná (*Araucária angustifólia*)

Figura 4.7 - Coeficientes da matriz de rigidez em função da umidade utilizando os modelos de regressão obtidos para umidades abaixo e acima do PSF - Cupiúba (*Goupia glabra*)

Figura 4.8 - Coeficientes da matriz de rigidez em função da umidade utilizando os modelos de regressão obtidos para umidades abaixo e acima do PSF – Eucalipto citriodora (*Eucaliptus citriodora*)

4.3 Anisotropia em função da umidade

A anisotropia, principalmente entre eixos, é fator de grande importância para o uso da madeira, uma vez que é o parâmetro que dá indicações sobre o comportamento da espécie quanto a variações dimensionais. Essa anisotropia que no caso da madeira fica caracterizada como ortotropia pode ser calculada pelas relações entre as velocidades de propagação das ondas nas diferentes direções.

Para a caracterização da anisotropia nas cinco espécies utilizando a propagação de ondas, foram analisadas as relações entre as velocidades nas três direções: longitudinal, radial e tangencial. A Tabela 4.30 apresenta, para todas as espécies, as relações médias obtidas considerando todo o intervalo de umidade bem como as relações obtidas considerando os intervalos acima e abaixo do ponto de saturação das fibras.

Fsnécie	Espácia		Anisotropia		
Especie		V _L /V _T	V _L /V _R	V _R /V _T	
	média	4,25	2,90	1,47	
(Pinus elliottii)	< PSF	3,94	2,77	1,42	
	> PSF	4,57	3,05	2,50	
-	média	4,31	3,96	1,08	
(Araucária angustifólia)	< PSF	4,32	3,93	1,10	
	> PSF	4,31	3,97	1,08	
	média	2,83	2,37	1,19	
(Goupia glabra)	< PSF	3,16	2,49	1,27	
	> PSF	2,63	2,30	1,14	
	média	2,12	2,01	1,07	
(Ocotea porosa)	< PSF	2,22	2,10	1,07	
	> PSF	2,05	1,93	1,06	
	média	2,52	2,16	1,16	
(Eucaliptus citriodora)	< PSF	2,68	2,18	1,23	
	> PSF	2,39	2,15	1,11	

Tabela 4.30 - relações V_L/V_T, V_L/V_R e V_R/V_T para as cinco espécies estudadas

Para o Pinho do Paraná (*Araucária angustifólia*) e Imbuia (*Ocotea porosa*), as diferenças entre V_L/V_T e V_L/V_R pequenas (9% e 5% respectivamente). Diferença muito superior foi obtida para o Pinus elliottii (*Pinus elliottii*) (47%) e diferenças médias para o Eucalipto citriodora (*Eucaliptus citriodora*) e a Cupiúba (*Goupia glabra*) (17% e 19% respectivamente).

Também no caso da relação entre eixos (V_R/V_T), os menores valores foram obtidos para o Pinho do Paraná (*Araucária angustifólia*) e para a Imbuia (*Ocotea porosa*) (1,08 e 1,07 respectivamente); a maior foi para o Pinus elliottii (*Pinus elliottii*) (1,47) e os valores intermediários para o Eucalipto citriodora (*Eucaliptus citriodora*) e Cupiúba (*Goupia glabra*) (1,16 e 1,19 respectivamente). A literatura indica que essas relações estão correlacionadas com a estrutura anatômica do material, bem como com a presença de extrativos. Infelizmente nesse trabalho não se realizou avaliação anatômica do material, o que poderia ter enriquecido os resultados de anisotropia.

Com relação à variação da anisotropia com a umidade, observou-se que o comportamento não foi o mesmo para as diferentes espécies e para as diferentes direções.

Considerando os valores médios da Tabela 4.30 (média acima e abaixo do PSF) verifica-se que, no caso do Pinus elliottii (*Pinus elliottii*) a anisotropia cresceu com o decréscimo da umidade nas três direções consideradas, sendo esse crescimento de 16% para a relação V_L/V_T ; 10% para a relação V_L/V_R e de 76% para a relação V_R/V_T . No caso do Pinho do Paraná (Araucária angustifólia), pode se considerar que a variação da anisotropia foi muito pequena para todos os eixos (zero para V_L/V_T , 1% para V_L/V_R e 2% para V_R/V_T). No caso da Cupiúba (*Goupia glabra*), Imbuia (*Ocotea porosa*) e Eucalipto citriodora (*Eucaliptus citriodora*) as anisotropias nas três direções diminuíram com o aumento da umidade. Essa diminuição foi de 20%, 82% e 12% para V_L/V_T ; 8%, 9% e 1% para V_L/V_R e 11%, zero e 11% para V_R/V_T considerando a Cupiúba (*Goupia glabra*), a Imbuia (*Ocotea porosa*) e o Eucalipto citriodora (*Eucaliptus citriodora*), respectivamente.

As Figuras 4.9 a 4.13 permitem visualizar, para cada espécie, o comportamento da variação da anisotropia com a variação da umidade considerando todos os pares umidade x anisotropia em cada direção.

Figura 4.9 – Variação da anisotropia do Pinus elliottii (Pinus elliottii) com a umidade

Figura 4.10 – Variação da anisotropia com a umidade para o Pinho do Paraná (*Araucária angustifólia*)

Figura 4.11 – Variação da anisotropia com a umidade para a Cupiúba (Goupia glabra)

Figura 4.12 – Variação da anisotropia com a umidade para a espécie Imbuia (*Ocotea porosa*)

Figura 4.13 – Variação da anisotropia com a umidade para a espécie Eucalipto citriodora (Eucaliptus citriodora)

Utilizando-se o Programa Computacional Statgraphics as correlações entre as diferentes relações e a umidade foram avaliadas estatisticamente para cada espécie. Para todos os casos a relação linear foi a mais adequada.

A Tabela 4.31 resume os modelos de correlação obtidos quando a correlação entre as variáveis era considerada estatisticamente significativa a 95% de confiança.

Direção	n	Equações	R	P _{valor}
		Pinus elliottii (Pinus elliottii)		
V_L/V_R (A1)	46	A1 = 2,71 + 0,003 U	0,53	0,0001
V_L/V_T (A2)	46	A2 = 3,87 + 0,005 U	0,52	0,0002
V_T/V_R (A3)	46	A3 = 1,28 – 0,003 U	0,88	0,0000
		Pinho do Paraná (Araucária angustifólia)		
V_L/V_R (A1)	97	A1 = 3,89 + 0,001 U	0,70	0,0000
V_L/V_T (A2)	97	-	-	0,5085*
V_T/V_R (A3)	97	A3 = 1,11 – 0,003 U	0,64	0,0000
		Cupiúba (Goupia glabra)		
V_L/V_R (A1)	70	A1 = 2,60 - 0,006 U	0,83	0,0000
V_L/V_T (A2)	70	A2 = 3,41 - 0,015	0,84	0,0000
V_T/V_R (A3)	70	A3 = 1,32 - 0,003	0,67	0,0000
		Imbuia (Ocotea porosa)		
V_L/V_R (A1)	112	A1 = 2,18 - 0,0037	0,55	0,0000
V_L/V_T (A2)	112	A2 = 2,31 - 0,004-	0,40	0,0018
V_T/V_R (A3)	112	-	-	0,7645*
		Eucalipto citriodora (Eucaliptus citriodora)		
V_L/V_R (A1)	64	-	-	0,8738*
V_L/V_T (A2)	64	A2 = 2,77 - 0,007	0,68	0,0000
V_T/V_R (A3)	64	A3 = 1,28 - 0,003	0,88	0,0000

Tabela 4.31 – Modelos e parâmetros da correlação (R e P_{valor}) obtidos para n pares de valores de umidade x anisotropia

Observa-se, pela Tabela 4.31, que os modelos refletem o que já foi discutido considerando os valores médios da Tabela 4.30. Verifica-se que, na maioria dos casos, existe correlação estatisticamente significativa entre a anisotropia e a umidade (Pvalor inferior a 0,01) e que essa correlação é variável entre as espécies e entre os eixos (0,88 < R < 0,40). Considerando-se a correlação entre eixos (A3) observa-se que o Pinus elliottii

(*Pinus elliottii*) e o Eucalipto citriodora (*Eucaliptus citriodora*) exibem os maiores coeficientes de correlação; a cubiuba e o Eucalipto citriodora (*Eucaliptus citriodora*) correlações moderadas enquanto que a imbuia não apresenta nenhuma correlação. Esse resultado pode ser indicativo da influência da umidade na anisotropia entre eixos nas diferentes espécies.

Bucur (1995) comparou a anisotropia obtida para 7 espécies de coníferas e 9 espécies de dicotiledôneas, tendo obtido para as coníferas valores de V_R/V_T entre 1,72 (pine) e 4,78 (spruce) e para as dicotiledôneas valores entre 1,27 (pernambuco) a 2,25 (Tulip tree). Não há informação sobre o teor de umidade dos corpos de prova ensaiados. No caso desse trabalho, considerando-se a madeira com umidade abaixo do ponto de saturação, o maior valor de anisotropia entre eixos foi 1,42 para o Pinus elliottii (*Pinus elliottii*) e o menor foi de 1,07 para a Imbuia (Ocotea porosa). Embora fosse de se esperar que as coníferas sempre apresentassem maiores anisotropias, isto não se verificou para o caso do Pinho do Paraná (*Araucária angustifólia*), os resultados obtidos nesse trabalho indicam que apresentou valores bem baixos. No entanto, os dados apresentados por Bucur (1995) também refletem esse mesmo resultado, uma vez que embora no geral se observe esse fato, há casos de coníferas com anisotropias menores do que dicotiledôneas. Esse resultado deve estar relacionado com características específicas das espécies tais como anatomia, presença de extrativos dentre outros.
4.4 Correção da Velocidade

Utilizando os modelos de correlação obtidos para cada espécie foram determinadas as expressões de correção das velocidades.

A título de comparação são apresentadas, a seguir, as expressões obtidas por STEIGER em sua Tese de Doutorado (1996) utilizando a espécie Fichte (*Picea abies*).

Para velocidades abaixo do Ponto de Saturação das fibras, nesse trabalho adotado como sendo 28%:

$$V_{12} = \frac{V_U}{1 - 0,0053(U - 12)}$$

Para velocidades acima do Ponto de Saturação das fibras:

$$V_{12} = \frac{V_U}{0,9367 - 0,0007(U - 28)}$$

Os resultados no presente trabalho permitiram obter as seguintes correlações:

Expressão para a Imbuia

$$V_{12} = \frac{V_U}{1 - 0.0049(U - 12)}$$

Para velocidades abaixo do Ponto de Saturação das Fibras, nesse trabalho adotado como sendo 30%

$$V_{12} = \frac{V_U}{0,9153 - 0,0020(U - 30)}$$

Para velocidades acima do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

Expressão para o Eucalipto

$$V_{12} = \frac{V_U}{1 - 0,0033(U - 12)}$$

Para velocidades abaixo do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

$$V_{12} = \frac{V_U}{0,9367 - 0,0007(U - 30)}$$

Para velocidades acima do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

Expressão para a Cupiúba

$$V_{12} = \frac{V_U}{1 - 0.0044(U - 12)}$$

Para velocidades abaixo do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

$$V_{12} = \frac{V_U}{0,8910 - 0,0011(U - 30)}$$

Para velocidades acima do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

Expressão para o Pinho do Paraná

$$V_{12} = \frac{V_U}{1 - 0,0048(U - 12)}$$

Para velocidades abaixo do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

$$V_{12} = \frac{V_U}{0,880 - 0,0008(U - 30)}$$

Para velocidades acima do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

Expressão para o Pinus

$$V_{12} = \frac{V_U}{1 - 0.0049(U - 12)}$$

Para velocidades abaixo do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

$$V_{12} = \frac{V_U}{0,800 - 0,0000(U - 30)}$$

Para velocidades acima do Ponto de Saturação da Fibras, nesse trabalho adotado como sendo 30%

5. Conclusões

Os resultados obtidos na experimentação e na análise estatística permitiram confirmar algumas conclusões já obtidas por outros autores, bem como alcançar novos resultados:

- A velocidade de propagação das ondas de ultra-som, nas direções longitudinal, radial e tangencial, tende a aumentar com a diminuição da umidade.
- A variação da velocidade de propagação das ondas de ultra-som na direção longitudinal é mais significativa e seu comportamento é mais estável do que nas outras duas direções (radial e tangencial). Nas direções radial e tangencial o padrão de comportamento das velocidades em função das umidades variou conforme a espécie.
- As maiores variações de velocidade de propagação das ondas com a variação da umidade ocorrem na direção longitudinal, seguida dna direção radial e, finalmente da tangencial.
- As relações velocidade de propagação x umidade podem ser representadas por função quadrática. Os coeficientes de correlação obtidos no ajuste dessas curvas variaram de 0,67 a 0,87, quando se considera todos os corpos-de-prova da espécie.
- Abaixo do ponto de saturação das fibras o efeito da umidade na velocidade de propagação das ondas de ultra-som é mais significativo do que acima desse ponto. Para esses dois trechos o modelo que melhor se ajusta ao comportamento da variação da velocidade com a umidade é o linear.
- A variação dos valores dos coeficientes da matriz de rigidez em função da umidade difere entre direções e entre espécies. Os modelos são menos significativos do que para a velocidade. A variações mais significativas ocorrem na direção longitudinal, que apresenta comportamento mais estável.
- Quando os valores de k são próximos de 1,00, a influência da presença de água é mais significativa. Valores de k próximos de 0,00 mostram pouca influência da umidade. Para as espécies onde k se aproxima de 1,00 a utilização da densidade efetiva corrige o comportamento do coeficiente da matriz de rigidez para umidades acima do Ponto de Saturação das Fibras, fazendo com que esse comportamento seja compatível com as demais propriedades da madeira.

- O comportamento da anisotropia com a umidade não foi o mesmo para todas as espécies. Essa variação de comportamento pode estar relacionada à anatomia do material, bem como à presença de extrativos, mas essa afirmação não pode ser conclusiva uma vez que a avaliação da anatomia e de extrativos não fez parte do escopo dessa pesquisa. Com base nos resultados de anisotropia obtidos nesse trabalho foi possível observar que:
 - Para o pinho do Paraná não houve variação da anisotropia com a umidade;
 - Para o eucalipto, a imbuia e a cupiuba, a anisotropia diminui com o aumento da umidade
 - Para o pinus a anisotropia aumenta com o aumento da umidade
- A anisotropia entre eixos (V_R/V_T) foi de 1,47 para as o pinus, 1,19 para a cupiúba, 1,16 para o eucalipto, 1,08 para o pinho do Paraná e 1,07 para a imbuia.

6. Referências Bibliográficas

Allippi, A; Mayer, W.G. (Eds). Ultrasonic Methods in the Evaluation of Inhomogeneous Materials NATO ASI Ser. E: Applied Science n^o. 126. Martinus Nijhoff, Dordrecht. 1987.

Auld, B. A. Acoustic Fields and Waves in Solids. Vol. 1. Wiley Interscience, New York. 1973.

Associação Brasileira de Normas Técnicas: NBR 7190/97 – Projeto de Estruturas de Madeira – Rio de Janeiro, 1997.

Ballarin, A.W. e Ribeiro, A.B. Variação da resistência à compressão paralela às fibras da madeira de E. citriodora com a umidade. Anais do VI EBRAMEM. Vol.3. 230-240. Florianópolis, 1998.

Bartholomeu, A. Classificação de peças estruturais de madeira através de ultra-som. Tese (Doutorado em Engenharia Agrícola na área de concentração de Construções Rurais). Escola de Engenharia Agrícola. UNICAMP. 2001

Bartholomeu, A.; Gonçalves, R.e Bucur V. Dispersion of ultrasonic waves in Eucalyptus lumber as a function of the geometrtry of boards . Scientia Forestalis n. 63 p. 235-240, jun. 2003.

Biot, M.A. Theory of propagation of elastic waves in a fluid-satureted porous solid. Low-frequency range. JASA. 28(2), 168-178; II Higher frequency range. JASA. 28(2), 179-192. 1956.

Bodig, J.; Jayne, B.A. Mechanical of Wood and Wood Composites. Van Nostrand Reinhold Company Inc, 1982, Canadá.

Brotero, F.A. Métodos adotados no IPT para o Estudo de Madeiras Nacionais. Boletim 31. Instituto de Pesquisas Tecnológicas, 1956. 62p.

Bucur, V. Acoustics of Wood. CRC Press, Inc. 1995. 284p.

Bucur, V. e Sarem, M. An experimental study of ultrasonic wave propagation in dry and satureted solid wood. Anais do IV EBRAMEM. São Carlos. 1992.

Dieulesaint, E; Royer, D. Ondes élastiques dans les Solides. Masson et Cie, Paris. 1974.

Gerhards, C. Effect of moisture content and temperature on mechanical properties of wood. An analysis of immediate effects. Wood and Fiber. 14(1), 4-36. 1982.

Gonçalves, R. Influência da umidade e da densidade em propriedades de resistência e elasticidade da madeira. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, USP. 1986.

Green, R.E., JR. Ultrasonic investigation of mechanical properties. Academic Press, New York. 1973.

Haygreen, John G. e Bowyer, Jim L. Forest Products and Wood Science. Iowa State University Press - AMES. 1995.

Hellmeister, J.C. Sobre a determinação das características físicas da madeira. São Carlos: EESC/USP, 1982. 119p. (Apostila)

Hermon, R.F.S. An Introduction to Applied Anisotropic Elasticity. Oxford University Press, Oxford. 1961.

Kang, H. I. And Booker, R.E. 13th International Symposium on Nondestructive Testing Wood . Proceedings / 2002. University of California, Berkeley, California, USA.

Kollmann, F. Technologie des Holzes und des Holzwerkstoffe.Springer-Verlag, Berlin. 1951

Kollmann, F.F.P. and Höckele, G. Kritischer Verleich einiger Bestimmungsverfahren der Holzfeuchtigkeit. Holz Roh Werkst. 20, 461-473. 1962.

Mendes, A.P. Resistência da madeira ao cisalhamento. São Carlos. 157p. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, USP. 1984.

Musgrave, M.J.P. Crystal Acoustics. Holden-Day, San Francisco. 1970.

Oliveira, Fabiana Goia Rosa; Candian, Marcela; Lucchette, Francieli F.; Salgon, José Luis; Sales, Almir. Moisture content effect on ultrasonic velocity in *Goupia glabra*. Materials Research 8 (1), 2005.)

Pigozzo, J.C. Influência da umidade e da densidade na resistência à compressão da madeira. São Carlos. 141p. Dissertação (Mestrado em Engenharia de Estruturas). Escola de Engenharia de São Carlos, USP. 1982.

Plona, T.J. Observations of a second bulk compressional wave in a porous medium at ultrasonic frequencies. Apll. Phys. Lett. 36(4), 259-261. 1980.

Ringger, T.; Höfflin, L.; Dill-Langer, G.; Aicher, S. Mesurements on the acoustic anisotropy of soft and hard wood. Otto-Graf Journal, 14. 2003.)

Siau, J. F. Transport Processes in Wood. Springer-Verlag, Berlin. 1984.

Skaar, C. Wood-Water Relations. Springer-Verlag, Berlin. 1988.

Sobue, N. Simulation study on stress wave velocity in wood above fiber saturation point. Mokuzai Gakkaishi 1993.

Tiemann, H. D. Effect of Moisture Upon The Strength and Stiffness of Wood. USDA Forest Service Bull. 70, cited by Siau (1984).1906.

U.S. Forest Products Laboratory (USFPL). 1987. Wood Handbook: Wood as an Engineering Material. USDA Forest Pruducts Service. Handbook. 72.

Wang, S.Y.; CHIU, C.M.; LIN, C.J. Variation in ultrasonic wave velocity and dynamic Young's modulus with moisture content for Taiwania plantation lumber. Wood and Fiber Science, 34(3), 2002, pp. 370-381.

Wang, S. Y.; Lin, C.J.; Chiu, M. The Adjusted Dynamic Modulus of Elasticity Above the Fiber Saturation Point in Taiwania Plantation Wood by Ultrasonic-Wave Measurement. Holzforschung, 57(5), 2003.)

Zimmermann, M. H. Xylem Structure and The Ascent of Sap. Springer-Verlag, Berlin. 1983.

Resultados médios obtidos para as velocidades de propagação das ondas e coeficientes da matriz de rigidez para umidades variando a cada 1%

Tabela A.1 – Resultados de velocidade na madeira de pinus elliottii

U(%)	V _{LL} (m.s-1)	V _{TT} (m.s-1)	V _{RR} (m.s-1)	U (%)	V _{LL} (m.s-1)	V_{TT} (m.s-1)	V_{RR} (m.s-1)
6	5099	1425	2070	30	4558	1185	1488
7	5071	1132	1545	32	3323	955	1489
8	4960	1227	1818	33	4520	918	1477
9	4687	1218	1763	34	3910	1175	1630
10	4776	1291	1840	35	3806	980	1459
12	4822	1253	1902	36	3843	1182	1311
13	4540	1176	1739	122	3787	713	1200
14	5142	988	1778	128	3611	676	1039
15	5100	1209	1959	141	2883	667	1074
16	4463	1241	1658	143	3245	754	1259
17	4418	1184	1633	145	3870	709	1074
18	4636	1186	1665	153	2616	710	1103
19	4489	1201	1619	154	3729	706	1100
20	4645	1243	1755	157	2217	672	975
21	4106	1238	1573	161	4105	717	1223
22	4590	1242	1827	165	3871	689	1207
23	4628	1279	1772	172	3365	669	993
24	4689	1302	1817	175	2758	761	735
26	4416	1078	1513	179	2847	670	857
27	4190	1127	1445	202	3697	689	1057
29	4548	866	1418	212	3734	688	1093

	4	1	1		1	1	
U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	V_{R} (m.s- ¹)	U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	V_{R} (m.s- ¹)
5	6292	1366	1396	61	5011	1063	1165
6	5870	1360	1536	62	4971	1117	1176
7	5849	1345	1467	63	4988	1084	1244
9	5388	1335	1281	64	4923	1102	1134
10	5783	1297	1489	67	4953	1112	1179
11	5697	1317	1441	68	4813	1138	1066
12	5685	1220	1472	72	4983	1125	1192
13	5535	1249	1379	73	4875	1138	1153
19	5144	1304	1200	75	4711	1115	1096
21	5198	1229	1286	76	4985	1154	1161
22	5435	1222	1321	77	4994	1070	1369
23	5259	1217	1295	78	4983	1105	1146
24	5358	1231	1293	79	4974	1116	1106
25	5344	1209	1287	80	4766	1088	1101
26	5376	1195	1270	84	4717	1137	1085
27	5289	1176	1259	85	4909	1127	1155
28	5317	1185	1256	86	4517	1162	1103
29	5400	1210	1257	87	5093	1157	1140
30	5064	1159	1171	88	4816	1092	1103
31	5239	1135	1178	90	4905	1155	1200
32	5119	1152	1190	93	4791	1101	1145
33	4950	1124	1151	94	4832	1120	1152
34	5209	1120	1182	95	5013	1159	1185
35	5131	1115	1219	96	4948	1139	1187
36	5148	1153	1213	97	4775	1141	1147
37	5048	1153	1186	98	4960	1131	1069
39	5180	1146	1199	99	4729	1152	1167
40	5198	1105	1135	100	4810	1145	1178
41	5024	1097	1154	101	4728	1132	1080
42	5183	1135	1227	102	4731	1158	1012
43	5134	1140	1194	104	4823	1109	1144
44	5093	1146	1181	105	4807	1123	1139
45	5153	1153	1179	106	4836	1124	1156
46	5110	1127	1143	107	4729	1144	1155
47	4968	1087	1117	108	4870	1111	1089
48	4848	1222	1161	109	4801	1130	1043
49	5204	1138	1178	110	4762	1214	1187
50	5094	1133	1144	111	4742	1114	1142
51	5124	1132	1195	112	4729	1140	1180

Tabela A.2 – Resultados de velocidade na madeira de pinho do Paraná

U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	V_{R} (m.s- ¹)	U (%)	V_{L} (m.s- ¹)	$V_{\rm T} ({\rm m.s-}^1)$	V_{R} (m.s- ¹)
52	5037	1107	1168	113	4723	1154	1120
53	5252	1192	1208	114	4695	1146	1102
54	4947	1490	1146	115	4640	1146	1087
55	4889	1057	1123	116	4686	1110	1055
56	5140	1146	1130	117	4802	1155	1127
57	4882	1115	1047	118	4707	1142	1045
58	4988	1086	1276	119	4762	1158	1045
60	5078	1105	1155	120	4580	1132	1054

U (%)	V_L (m.s- ¹)	V_{T} (m.s- ¹)	V_R (m.s- ¹)	U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	V_R (m.s- ¹)
8	5031	1645	1918	42	4515	1598	1898
9	5009	1561	2047	43	4363	1618	1866
10	4947	1514	2017	44	4322	1640	1853
11	5087	1475	2019	45	4433	1205	1820
12	4918	1596	1872	46	4403	1624	1862
13	4866	1644	1891	47	4198	1619	1900
14	4823	1450	1918	48	4350	1437	1845
15	4809	1568	2009	49	4314	1668	1860
16	4869	1435	1919	50	3992	1585	1894
17	4774	1450	1931	51	4281	1700	1849
18	4833	1431	1905	52	4284	1667	2056
19	4711	1492	1971	53	4283	1649	1900
20	4645	1500	1942	54	4409	1692	1887
21	4620	1414	1914	55	4237	1713	1909
22	4710	1507	1874	56	4312	1746	1878
23	4714	1535	1751	57	4133	1745	1916
24	4469	1690	1893	58	4263	1672	1870
26	4516	1525	1810	59	4288	1776	1935
27	4585	1509	1879	60	4479	1770	1928
28	4694	1367	1786	61	4374	1799	1948
29	4655	1476	1893	62	4240	1731	1919
30	4481	1528	1787	63	4229	1807	1934
31	4569	1523	1926	64	4301	1794	1964
33	4628	1567	1848	65	4307	1812	1935
34	4299	1579	1699	66	4314	1808	1941
35	4495	1502	1910	67	4299	1788	1990
37	4581	1458	1796	68	4295	1829	1978
38	4382	1570	1814	69	4328	1808	1976
39	4310	1621	1852	70	4232	1813	1969
40	4457	1621	1799	71	4162	1782	1994
41	4555	1541	1831				

Tabela A.3 Resultados de velocidade na madeira de cupiúba

U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	V_{R} (m.s- ¹)	U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	$V_R (m.s-1)$
5	3844	1802	1764	44	3268	1414	1738
6	3719	1766	1778	45	3413	1397	1669
7	3947	1519	1907	48	3145	1575	1554
8	3735	1718	1695	49	3073	1819	1313
9	3340	2146	1305	54	2746	1552	1633
10	3890	1565	2021	55	3362	1423	1753
11	3926	1564	1977	61	3354	1390	1460
12	3765	1655	1852	62	3350	1400	1450
13	3655	1824	1654	65	3112	1464	1739
14	3393	2060	1442	70	3126	1458	1777
15	3647	1705	1720	71	3181	1400	1700
16	3130	2105	1332	73	3169	1398	1650
17	3666	1485	1894	83	2720	1672	1492
18	3810	1561	1751	84	3079	1490	1697
19	3718	1495	1748	85	3059	1484	1643
20	3050	1528	1924	86	2704	1775	1463
23	3328	1492	1871	87	3001	1661	1518
24	3451	1450	1711	88	3276	1611	1607
25	3775	1358	1577	90	2953	1450	1755
27	3443	1485	1769	91	2899	1477	1726
29	3145	1935	1263	97	2593	1769	1403
30	3388	1450	1791	98	2733	1639	1535
31	2930	1947	1228	99	2902	1520	1678
33	3473	1776	1470	102	2882	1484	1593
34	3623	1295	1703	111	2779	1477	1640
40	3478	1405	1770	113	2805	1511	1612
43	3419	1390	1814				

Tabela A.4 Resultados de velocidade na madeira de imbuia

U (%)	V_{L} (m.s- ¹)	V_{T} (m.s- ¹)	$V_R (m.s-^1)$	U (%)	$V_L (m.s-^1)$	V_{T} (m.s- ¹)	V_R (m.s- ¹)
5	4821	2261	1750	24	4482	2190	1831
6	4753	2220	1591	25	4495	2200	1841
7	4805	2169	1644	26	4494	2179	1822
8	4739	2110	1672	27	4460	2155	1835
9	4717	2058	1608	28	4413	2150	1881
10	4726	2074	1678	29	4335	1903	1797
11	4652	2059	1648	30	4466	2122	1821
12	4618	2123	1705	31	4439	2108	1800
13	4512	2071	1706	32	4407	2072	1806
14	4553	2004	1688	33	4358	2050	1736
15	4517	2017	1708	34	4355	2077	1782
16	4507	2077	1723	35	4404	2124	1837
17	4472	2190	1817	36	4330	2028	1755
18	4483	2181	1810	38	4443	2204	1876
19	4494	2173	1803	39	4416	2185	1901
20	4569	2003	1682	40	4391	2210	1972
21	4492	2158	1804	41	4443	2204	1876
22	4504	2003	1618	42	4290	2150	1917
23	4472	2190	1817	43	4387	2208	1930

Tabela A.5 Resultados de velocidade na madeira de eucalipto

U %	CLL	CRR	СТТ	U %	CLL	CRR	CTT
0	880	105	50	20	1033	143	83
2	948	134	68	22	1060	149	74
3	987	101	52	23	1005	196	92
4	899	115	58	24	1136	135	76
5	1012	130	64	25	890	97	52
6	975	129	72	26	1107	136	76
7	1172	133	66	27	885	105	62
8	1015	139	66	28	979	95	35
9	1172	154	79	30	1202	128	81
11	1105	185	76	35	974	117	35
12	1039	142	73	121	1438	145	51
13	870	130	52	141	835	116	45
14	1135	136	42	153	685	122	50
15	961	121	67	160	1816	161	55
16	965	143	74	171	1149	100	45
17	1034	141	71	179	803	73	44
18	1004	133	66	201	1428	117	50
19	984	144	74	211	1468	126	50

Tabela A.6 Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – Pinus

U %	CLL	CRR	CTT	U %	CLL	CRR	CTT
5	1801	114	95	27	1865	121	101
6	1807	115	96	28	1863	121	100
7	1812	116	96	29	1862	120	101
9	1817	117	97	30	1860	120	101
10	1824	116	97	35	1869	121	100
11	1840	119	97	40	1848	120	100
12	1820	117	97	50	1847	122	101
13	1839	119	98	60	1870	122	101
19	1859	120	99	72	1854	117	99
21	1875	121	100	80	1843	117	97
22	1864	122	100	90	1827	118	96
23	1855	121	101	100	1762	110	95
24	1857	121	101	110	1640	99	90
25	1871	121	101	120	1651	98	87
26	1883	121	101				

Tabela A.7 Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – pinho do Paraná

U %	CLL	CRR	CTT	U %	CLL	CRR	CTT
7	2177	320	216	24	1668	299	239
8	2060	333	207	25	1808	291	206
9	2107	348	200	26	1804	339	220
10	2066	357	198	27	2000	318	204
11	2228	319	215	28	2005	299	184
12	2025	296	209	29	1922	312	201
13	1882	289	216	30	1885	315	218
14	2059	335	179	34	1827	320	228
15	1963	314	213	40	2007	319	265
16	1977	339	160	45	1859	343	176
17	2002	321	189	50	2107	380	303
18	2062	301	164	55	2181	411	322
19	1823	342	191	60	2035	425	362
20	1841	331	202	65	2227	429	376
21	2032	301	145	70	2071	463	390
22	1952	298	212				

Tabela A.8 Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – cupiúba

U %	CLL	CRR	CTT	U %	CLL	CRR	CTT
5	865	182	190	25	930	162	120
6	794	181	179	27	697	184	130
7	885	207	131	29	649	105	246
8	840	173	178	30	739	206	135
9	677	103	279	34	869	109	111
10	909	245	147	40	928	150	151
11	889	225	141	45	862	192	144
12	880	213	170	49	726	240	254
13	781	160	195	55	869	263	156
14	718	130	265	61	926	200	159
15	779	173	170	65	784	206	174
16	644	116	291	70	925	184	201
17	867	231	142	83	732	133	277
18	885	187	149	90	815	240	197
19	850	188	137	97	670	236	312
20	731	291	184	102	764	175	202
23	802	254	161	111	745	174	210
24	680	167	120	113	763	245	222

Tabela A.9 Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – imbuia

U %	CLL	CRR	CTT	U %	CLL	CRR	CTT
0	2602	523	281	20	2362	454	320
1	2608	548	288	21	2287	443	293
2	2558	524	293	22	2234	442	289
3	2520	513	293	23	2453	588	411
4	2507	484	282	24	2450	585	409
5	2485	503	301	25	2468	577	397
6	2488	524	300	26	2432	549	404
7	2460	522	287	27	2363	541	370
8	2572	513	307	28	2373	533	415
9	2505	515	325	29	2319	447	398
10	2421	464	280	30	2301	519	346
11	2425	468	295	34	2393	600	453
12	2373	449	280	35	2378	494	389
13	2378	479	315	36	2289	502	376
14	2359	512	322	38	2427	544	427
15	2399	542	360	39	2459	559	479
16	2397	493	319	40	2445	619	493
17	2409	507	359	41	2367	604	472
18	2274	496	328	42	2335	587	466
19	2358	458	326	43	2320	588	461

Tabela A.10 Valores de C_{LL} , C_{RR} e C_{TT} para cada condição de umidade – eucalipto

ANEXO B

Modelos de correlação dos coeficientes de rigidez em função da umidade considerando cada corpo-de-prova ensaiado para pinus e imbuia

Modelos de correlação dos coeficientes de rigidez em função da umidade para o pinus considerando cada corpo-de-prova ensaiado.

direção	U (%)	equações	\mathbf{R}^2	P _{valor}
longitudinal	< FPS	CLL = 996,525 + 4,30372*U	0.31	0.0955
	> FPS	CLL = 914,247 + 2,24375*U	**	
radial	< FPS	CRR = 78,7032 + 2,22449*U	0.43	0.0385
Tautai	> FPS	CRR = 91,9059 + 0,11497*U	**	
tangangial	< FPS	CTT = 31,8824 + 1,29573*U	0.63	0.0060
tangencial	> FPS	CTT = 33,2529 + 0,0770661*U	**	

CP1

CP2

direção	U (%)	equações	R^2	P _{valor}
lon aitu din al	< FPS	CLL = 1206,48 + 0,725655*U	0.002	0.8972*
longituumai	> FPS	CLL = 1123,34 + 2,49606*U	*	*
radial	< FPS	CRR = 88,7869 + 3,25179*U	0.60	0.0086
	> FPS	CRR = 111,744 + 0,0185389*U	*	*
tongongial	< FPS	CTT = 53,6801 + 0,759474*U	0.17	0.2321*
tangencial	> FPS	CTT = 81,3731 - 0,21645*U	*	*

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 1167,84 + 2,73305*U	0.037	0.5962*
longituumai	> FPS	CLL = 1017,63 + 2,31857*U	*	*
radial	< FPS	CRR = 122,192 + 2,14009*U	0.33	0.0811
	> FPS	CRR = 126,52 - 0,138138*U	*	*
tongonaial	< FPS	CTT = 68,0791 + 0,563693*U	0.15	0.2692*
tangencial	> FPS	CTT = 84,3889 - 0,299892*U	*	*

direção	U (%)	equações	\mathbf{R}^2	P _{valor}
longitudinal	< FPS	CLL = 913,018 + 3,50517*U	0.27	0.1212*
longituumai	> FPS	CLL = 844,078 + 1,77756*U	*	*
no di ol	< FPS	CRR = 90,916 + 0,769632*U	0.26	0.1280*
radial	> FPS	CRR = 96,0673 + 0,0227702*U	*	*
ton oon oiol	< FPS	CTT = 50,4075 + 1,01159*U	0.50	0.0241
tangencial	> FPS	CTT = 52,5908 - 0,0414991*U	*	*

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 837,403 + 0,407585*U	0.018	0.9064*
longituumai	> FPS	CLL = 729,881 + 0,40871*U	*	*
madial	< FPS	CRR = 72,8326 + 0,832007*U	0.43	0.0386
radiai	> FPS	CRR = 83,8753 - 0,0615287*U	*	*
tongonaial	< FPS	CTT = 48,1814 + 1,19355*U	0.31	0.0954
tangencial	> FPS	CTT = 44,5966 - 0,00072328*U	*	*

direção	U (%)	equações	\mathbf{R}^2	P _{valor}
lan aitu din al	< FPS	CLL = 713,113 + 2,84598*U	0.23	0.1627*
longituumai	> FPS	CLL = 713,081 + 0,0112146*U	*	*
radial	< FPS	CRR = 61,9052 + 2,82538*U	0.38	0.0590
	> FPS	CRR = 91,5955 - 0,233668*U	*	*
tongongial	< FPS	CTT = 48,5482 + 1,0088*U	0.53	0.0163
tangencial	> FPS	CTT = 70,9063 - 0,0945946*U	*	*

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 1024,87 + 4,16181*U	0.35	0.0701
longitudinai	> FPS	CLL = 868,728 + 2,77502*U	*	*
radial	< FPS	CRR = 113,323 + 0,627736*U	0.11	0.3536*
	> FPS	CRR = 99,9243 + 0,0831369*U	*	*
tangencial	< FPS	CTT = 43,558 + 0,886924*U	0.28	0.1142*
	> FPS	CTT = 37,6751 + 0,0593901*U	*	*

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 915,523 + 10,9671*U	0.40	0.0513
	> FPS	CLL = 873,995 + 2,80702*U	*	*
radial	< FPS	CRR = 134,565 + 0,118101*U	0.004	0.8602*
	> FPS	CRR = 115,111 + 0,0499532*U	*	*
ton con oio1	< FPS	CTT = 48,5917 + 1,09423*U	0.41	0.0454
tangencial	> FPS	CTT = 31,7408 + 0,0858192*U	*	*

direção	U (%)	equações	\mathbf{R}^2	P _{valor}
longitudinal	< FPS	CLL = 1152,32 + 2,52232*U	0.12	0.3313*
longituumai	> FPS	CLL = 984,739 + 3,78201*U	*	*
radial	< FPS	CRR = 169,28 + 0,583776*U	0.06	0.4985*
	> FPS	CRR = 132,869 + 0,142906*U	*	*
tongongial	< FPS	CTT = 74,2251 + 0,918219*U	0.28	0.1188*
tangencial	> FPS	CTT = 69,3624 - 0,111108*U	*	*

CP10

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 1339,23 + 7,70069*U	0.38	0.0567
longituumai	> FPS	CLL = 1197,03 + 3,85135*U	*	*
radial	< FPS	CRR = 146,247 + 1,46969*U	0.28	0.1189*
	> FPS	CRR = 127,036 + 0,212024*U	*	*
tongonaial	< FPS	CTT = 74,4976 + 1,09034*U	0.44	0.0372
tangencial	> FPS	CTT = 94,2428 - 0,241479*U	*	*

direção	U (%)	equações	\mathbb{R}^2	P _{valor}
longitudinal	< FPS	CLL = 571,574 + 0,479074*U	0.01	0.7629*
	> FPS	CLL = 511,227 - 0,0638529*U	*	*
radial	< FPS	CRR = 111,395 + 0,442842*U	0.08	0.4247*
	> FPS	CRR = 98,1266 - 0,00785744*U	*	*
4 1	< FPS	CTT = 61,3706 + 0,163603*U	0.04	0.5914*
tangencial	> FPS	CTT = 71,4983 - 0,16216*U	*	*

direção	U (%)	equações	\mathbf{R}^2	P _{valor}
1	< FPS	CLL = 644,05 + 2,38212*U	0.23	0.1583*
longituumai	> FPS	CLL = 571,694 + 0,740513*U	*	*
radial	< FPS	CRR = 122,068 + 1,58842*U	0.31	0.0971
	> FPS	CRR = 118,921 + 0,019136*U	*	*
tonconcial	< FPS	CTT = 61,1466 + 0,44835*U	0.18	0.2168*
tangencial	> FPS	CTT = 48,7767 + 0,0111206*U	*	*

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 780,594 + 1,18773*U	0.05	0.5213*
longituumai	> FPS	CLL = 735,189 + 0,705289*U	*	*
no di o l	< FPS	CRR = 191,722 + 0,284534*U	0.007	0.8228*
radial	> FPS	CRR = 126,941 - 0,0791926*U	*	*
tongongial	< FPS	CTT = 70,7599 + 0,491749*U	0.29	0.1064*
tangencial	> FPS	CTT = 76,5589 - 0,225548*U	*	*

direção	U (%)	equações	\mathbf{R}^2	P _{valor}
longitudinal	< FPS	CLL = 1035,24 - 0,663558*U	0.01	0.7561*
longituumai	> FPS	CLL = 818,931 + 1,65566*U	*	*
radial	< FPS	CRR = 164,47 + 1,78196*U	0.26	0.1301*
Taulai	> FPS	CRR = 149,991 + 0,0623756*U	*	*
tanganaial	< FPS	CTT = 68,8593 + 1,13573*U	0.41	0.0478
tangenciai	> FPS	CTT = 86,0349 - 0,203606*U	*	*

CP15

direção	U (%)	equações	R^2	P _{valor}
longitudinal	< FPS	CLL = 1244,67 + 1,30831*U	0.03	0.6471*
> F	> FPS	CLL = 1036,52 + 3,30737*U	*	*
madial	< FPS	RR = 158,451 + 0,0931598*U	0.001	0.9234*
	> FPS	CRR = 130,891 + 0,112147*U	*	*
tongongial	< FPS	CTT = 76,8462 + 0,967859*U	0.29	0.1049
tangenciai	> FPS	CTT = 97,4193 - 0,382792*U	*	*

*regressão não significativa

**só havia dois pontos nesse intervalo

Modelos de correlação dos coeficientes de rigidez em função da umidade para a imbuia considerando cada corpo-de-prova ensaiado.

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 752 - 1,92$ U	0,37	0,0153
Longitudinai	> FPS	$C_{LL} = 687 + 0,77 \text{ U}$	0,99	0,0561
Dadial	<fps< td=""><td>$C_{RR} = 189-0,11 \text{ U}$</td><td>0,31</td><td>0,8415*</td></fps<>	$C_{RR} = 189-0,11 \text{ U}$	0,31	0,8415*
Kaulai	> FPS	$C_{RR} = 171.8 + 0.7 \text{ U}$	0,82	0,2775*
T	< FPS	$C_{TT} = 117 + 0,65 \text{ U}$	0,37	0,0147
rangenciai	> FPS	$C_{TT} = 87,7 + 1,12 \text{ U}$	0,99	0,0032

CP 1

CP 2

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 873 - 6,02$ U	0,75	0,00000
	> FPS	C _{LL} = 746-1,22 U	0,95	0,14770*
Radial	<fps< td=""><td>C_{RR} = 327- 1,29 U</td><td>0,07</td><td>0,3108*</td></fps<>	C _{RR} = 327- 1,29 U	0,07	0,3108*
	> FPS	$C_{RR} = 277 + 0,79 \text{ U}$	0,49	0,5052*
Tangencial	< FPS	$C_{TT} = 199 - 0,62 \text{ U}$	0,11	0,2030*
	> FPS	$C_{TT} = 139 + 1,18 \text{ U}$	0,99	0,0415

Direção	U (%)	Equações	\mathbb{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 808 - 3,02$ U	0,55	0,0016
Longituamai	> FPS	C _{LL} = 728-0,31 U	0,46	0,3235*
Dadial	<fps< td=""><td>$C_{RR} = 120 + 0.04 \text{ U}$</td><td>0,12</td><td>0,9021*</td></fps<>	$C_{RR} = 120 + 0.04 \text{ U}$	0,12	0,9021*
Radial	> FPS	$C_{RR} = 67,7 + 1,49 \text{ U}$	0,96	0,0190
Tanaanaial	< FPS	$C_{TT} = 299 - 0,67 \text{ U}$	0,10	0,2385*
rangenciai	> FPS	$C_{TT} = 241 + 0,60 \text{ U}$	0,63	0,2074*

CP	4
----	---

Direção	U (%)	Equações	R ²	P _{valor}
Longitudinal	< FPS	$C_{LL} = 741 - 4,57$ U	0,72	0,00001
Longitudinai	> FPS	$C_{LL} = 614 + 0.19 \text{ U}$	0,53	0,2687*
Dadial	<fps< td=""><td>C_{RR} = 116- 0,01 U</td><td>0,069</td><td>0,7685*</td></fps<>	C _{RR} = 116- 0,01 U	0,069	0,7685*
Radial	> FPS	$C_{RR} = 43 - 1,83 \text{ U}$	0,95	0,0255
Tanganaial	< FPS	$C_{TT} = 323 - 1,70 \text{ U}$	0,47	0,0047
rangenciai	> FPS	$C_{TT} = 237 + 0.8 \text{ U}$	0,68	0,1737*

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 738 - 3,3$ U	0,53	0,0020
Longitudinai	> FPS	$C_{LL} = 648 + 0.25 \text{ U}$	0,62	0,2104*
Dadial	<fps< td=""><td>$C_{RR} = 102 - 0,09 \text{ U}$</td><td>0,073</td><td>0,7607*</td></fps<>	$C_{RR} = 102 - 0,09 \text{ U}$	0,073	0,7607*
Radial	> FPS	$C_{RR} = 62 + 1,31 \text{ U}$	0,97	0,0126
Tanganaial	< FPS	$C_{TT} = 299 - 1,40 \text{ U}$	0,33	0,0241
rangenciai	> FPS	$C_{TT} = 207 + 0.92 \text{ U}$	0,80	0,1045

Direção	U (%)	Equações	\mathbb{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 973 - 2,02$ U	0,08	0,2790*
	> FPS	$C_{LL} = 876 - 0,22 \text{ U}$	0,24	0,6696*
Radial	<fps< td=""><td>C_{RR} = 246- 1,08 U</td><td>0,09</td><td>0,2608*</td></fps<>	C _{RR} = 246- 1,08 U	0,09	0,2608*
	> FPS	$C_{RR} = 178 + 0.43 \text{ U}$	0,81	0,2803*
Tangencial	< FPS	$C_{TT} = 121 - 0,22 \text{ U}$	0,03	0,4776*
	> FPS	$C_{TT} = 89 + 0,65 \text{ U}$	0,99	0,0304

CP	7
~-	

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 815 - 2,87$ U	0,19	0,1019
	> FPS	$C_{LL} = 720 + 0,79 \text{ U}$	0,85	0,0756*
Dadial	<fps< td=""><td>$C_{RR} = 237 - 1,11 \text{ U}$</td><td>0,29</td><td>0,0395</td></fps<>	$C_{RR} = 237 - 1,11 \text{ U}$	0,29	0,0395
Kadial	> FPS	$C_{RR} = 177 + 1,00 \text{ U}$	0,99	0,0021
Tangencial	< FPS	$C_{TT} = 124 \ 0.47 \ U$	0,14	0,1635*
	> FPS	$C_{TT} = 86 + 1,47 \text{ U}$	0,99	0,0075

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 866 - 2,96$ U	0,43	0,0083
	> FPS	$C_{LL} = 833 - 0,24 \text{ U}$	0,05	0,7717*
Radial	<fps< td=""><td>$C_{RR} = 213 - 0,203 \text{ U}$</td><td>0,54</td><td>0,7956*</td></fps<>	$C_{RR} = 213 - 0,203 \text{ U}$	0,54	0,7956*
	> FPS	$C_{RR} = 194 + 0.95 \text{ U}$	0,94	0,0318
Tangencial	< FPS	$C_{TT} = 104 + 2,34 \text{ U}$	0,38	0,0149
	> FPS	$C_{TT} = 114 + 0,92 \text{ U}$	0,95	0,0229

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 949 - 2,90$ U	0,23	0,0740
	> FPS	$C_{LL} = 865 + 0.87 \text{ U}$	0,72	0,1535*
Radial	<fps< td=""><td>C_{RR} = 242- 0,75 U</td><td>0,05</td><td>0,4258*</td></fps<>	C _{RR} = 242- 0,75 U	0,05	0,4258*
	> FPS	$C_{RR} = 201 + 0,70 \text{ U}$	0,94	0,0320
Tangencial	< FPS	$C_{TT} = 152 + 0.34 \text{ U}$	0,04	0,4515*
	> FPS	$C_{TT} = 131 + 1,03 \text{ U}$	0,99	0,0046

CP	10
UГ	10

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 950 - 3,21$ U	0,21	0,0841
	> FPS	$C_{LL} = 840 + 0,50 \text{ U}$	0,82	0,0927
Radial	<fps< td=""><td>$C_{RR} = 228 - 1,13 \text{ U}$</td><td>0,09</td><td>0,2521*</td></fps<>	$C_{RR} = 228 - 1,13 \text{ U}$	0,09	0,2521*
	> FPS	$C_{RR} = 159 + 1,24 \text{ U}$	0,97	0,0156
Tangencial	< FPS	$C_{TT} = 138 + 0,64 \text{ U}$	0,08	0,2973*
	> FPS	$C_{TT} = 107 + 1,15 \text{ U}$	0,93	0,0335

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 973 - 4,72$ U	0,44	0,0074
	> FPS	$C_{LL} = 867 + 0.88 \text{ U}$	0,65	0,1946*
Radial	<fps< td=""><td>$C_{RR} = 253 - 0,22 \text{ U}$</td><td>0,15</td><td>0,8909*</td></fps<>	$C_{RR} = 253 - 0,22 \text{ U}$	0,15	0,8909*
	> FPS	$C_{RR} = 205 + 1,18 \text{ U}$	0,90	0,0508
Tangencial	< FPS	$C_{TT} = 146 + 0,28 \text{ U}$	0,02	0,5766*
	> FPS	C _{TT} = 154- 1,18 U	0,99	0,0912

Direção	U (%)	Equações	\mathbf{R}^2	Pvalor
Longitudinal	< FPS	$C_{LL} = 1009 - 6,49$ U	0,34	0,0228
	> FPS	$C_{LL} = 921 + 0,32 \text{ U}$	0,06	0,8329*
Dadial	<fps< td=""><td>C_{RR} = 260- 0,96 U</td><td>0,35</td><td>0,4994*</td></fps<>	C _{RR} = 260- 0,96 U	0,35	0,4994*
Radial	> FPS	$C_{RR} = 226 + 0.87 \text{ U}$	0,61	0,4321*
Tangencial	< FPS	$C_{TT} = 143 + 0,95 \text{ U}$	0,14	0,1617*
	> FPS	$C_{TT} = 83 + 1,65 \text{ U}$	0,99	0,0328

CP	13
UI.	15

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 1042 - 4,44$ U	0,40	0,0086
	> FPS	$C_{LL} = 931 - 0,06 \text{ U}$	0,98	0,0978
Radial	<fps< td=""><td>$C_{RR} = 184-0,76 \text{ U}$</td><td>0,15</td><td>0,1353*</td></fps<>	$C_{RR} = 184-0,76 \text{ U}$	0,15	0,1353*
	> FPS	$C_{RR} = 153 + 0.34 \text{ U}$	0,98	0,0978
Tangencial	< FPS	$C_{TT} = 147 - 0,29 \text{ U}$	0,02	0,5874*
	> FPS	$C_{TT} = 92 + 1,11 \text{ U}$	0,99	0,0163

Direção	U (%)	Equações	R ²	P _{valor}
Longitudinal	< FPS	$C_{LL} = 1055 - 2,85$ U	0,36	0,0141
	> FPS	$C_{LL} = 929 + 1,35 \text{ U}$	0,96	0,1215*
Radial	<fps< td=""><td>$C_{RR} = 158 + 0,47 \text{ U}$</td><td>0,14</td><td>0,1529*</td></fps<>	$C_{RR} = 158 + 0,47 \text{ U}$	0,14	0,1529*
	> FPS	$C_{RR} = 135 + 1,33 \text{ U}$	0,99	0,0409
Tangencial	< FPS	$C_{TT} = 154 - 0,60 \text{ U}$	0,07	0,3275*
	> FPS	$C_{TT} = 124 + 1,40 \text{ U}$	0,99	0,0539

CP 15

Direção	U (%)	Equações	\mathbf{R}^2	P _{valor}
Longitudinal	< FPS	$C_{LL} = 727 - 1,95$ U	0,22	0,0789
Longitudinai	> FPS	$C_{LL} = 665 + 0,79 \text{ U}$	0,95	0,0241
Radial	<fps< td=""><td>$C_{RR} = 178 - 0,29 \text{ U}$</td><td>0,02</td><td>0,6505*</td></fps<>	$C_{RR} = 178 - 0,29 \text{ U}$	0,02	0,6505*
	> FPS	$C_{RR} = 150 + 0.94 \text{ U}$	0,97	0,0127
Tangencial	< FPS	$C_{TT} = 104 - 1,03 \text{ U}$	0,16	0,1375*
	> FPS	$C_{TT} = 88 + 1,13 \text{ U}$	0,99	0,0056

*regressão não significativa