UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

ADMINISTRAÇÃO LIMPA E ENXUTA EM SISTEMAS HIDRÁULICOS DE COLHEDORAS DE CANA-DE-AÇÚCAR: UMA PROPOSTA METODOLÓGICA

MAURO TOMAZELA

CAMPINAS AGOSTO DE 2007

UNIVERSIDADE ESTADUAL DE CAMPINAS FACULDADE DE ENGENHARIA AGRÍCOLA

ADMINISTRAÇÃO LIMPA E ENXUTA EM SISTEMAS HIDRÁULICOS DE COLHEDORAS DE CANA-DE-AÇÚCAR: UMA PROPOSTA METODOLÓGICA

Tese de Doutorado submetida à banca examinadora para obtenção do título de Doutor em Engenharia Agrícola na área de concentração em Planejamento e Desenvolvimento Rural Sustentável.

MAURO TOMAZELA

ORIENTADOR: Prof. Dr. LUIZ ANTONIO DANIEL

CAMPINAS AGOSTO DE 2007

FICHA CATALOGRÁFICA ELABORADA PELA BIBLIOTECA DA ÁREA DE ENGENHARIA E ARQUITETURA - BAE - UNICAMP

Tomazela, Mauro

T591a Administração limpa e enxuta em sistemas hidráulicos de colhedoras de cana-de-açúcar: uma proposta metodológica. /

Mauro Tomazela.--Campinas, SP: [s.n.], 2007.

Orientador: Luiz Antonio Daniel

Tese (Doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Agrícola.

 I. Daniel, Luiz Antonio. II. Bergamasco, Sonia Maria Pessoa Pereira. III. Universidade Estadual de Campinas.
 Faculdade de Engenharia Agrícola. IV. Título.

Título em Inglês:

Palavras-chave em Inglês: Cleam production, Leam production, Competitively,

Competitiveness. Total productive maintenance

Área de concentração: Desenvolvimento Rural Sustentável

Titulação: Doutor em Engenharia Agrícola

Banca examinadora: Acires Dias, Cláudio Bianor Sverzut, Marcos Milan, Maria

Lúcia Pereira da Silva

Data da defesa: 15/08/2007

Programa de Pós-Graduação: Engenharia Agrícola

Este exemplar corresponde à redação final da Tese Doutorado defendida por Mauro Tomazela, aprovada pela Comissão Julgadora em 15 de agosto de 2007, na Faculdade de Engenharia Agrícola da Universidade Estadual de Campinas.

> Prof. Dr. Luiz Antonio Daniel - Presidente FEAGRI/UNICAMP

Prof. Dr. Acires Dias - Membro Titular UFSC/ Florianópolis - SC

Profa. Dra. Maria Lúcia Pereira da Silva - Membro Titular POLI/USP

> Prof. Dr. Marcos Milan - Membro Titular ESALQ/USP

Prof. Dr. Cláudio Bianor Sverzut - Membro Titular FEAGRI/UNICAMP

DEDICO

A Deus que guia os meus passos.

À minha esposa Graça, minhas filhas Renata e Priscila, pelo amor, carinho, compreensão, incentivo, doação e dedicação.

Aos meus Pais Geraldo Tomazela e Teresinha (in memorian), pela dedicação na criação de seus 13 filhos e pelos ensinamentos de fraternidade, amor, valores éticos e morais, respeito e trabalho, que deixou para cada um nós, mesmo com todas as adversidades enfrentadas.

AGRADECIMENTOS

Ao Prof. Dr. Luiz Antônio Daniel, pela orientação, apoio, confiança e especialmente pela amizade e incentivo durante todo o desenvolvimento do trabalho.

A Faculdade de Engenharia Agrícola da UNICAMP e a CPG na pessoa de Ana Paula Montagner e Marta A. Rigonatto Vechi pela atenção dedicada.

A FAEP/UNICAMP pela concessão de ajuda financeira para realização de viagens a campo.

Ao Prof. Dr. Marcos Garcia Costa, Diretor da FATEC Sorocaba, pela amizade, apoio e oportunidade de concluir este trabalho.

À Usina São Martinho pela cessão de recursos humanos, informações, laboratórios e pela infra-estrutura para realização dos experimentos.

Aos colaboradores da USM, que contribuíram com este trabalho, em especial ao Ademir, Manoel, Maurílio e Sandro, pela atenção e prontidão.

Ao Prof. Eik Tenório (FATEC Tatuí) pela sua ajuda na formatação deste trabalho.

Às Prof.ªs Rosana Veronesi e Maria das Graças Junqueira Machado Tomazela (FATEC Indaiatuba) pela contribuição no desenvolvimento e formatação do software aplicado para identificação de falhas potenciais.

Ao CEETEPS e seus dirigentes pela confiança e apoio institucional concedido.

À Mara Silvia Vaccaro Daniel pela atenção a mim sempre dispensada e pela amizade cultivada.

Aos colegas de curso Anderson, Lucarelli, Luciana, Jane, Marcos e Roberta, pelo convívio e amizade.

A Nona Lourdes, aos meus irmãos, cunhados, sobrinhos, pela alegria em compartilharmos uma grande família.

A todos os amigos das FATEC`s Tatuí, Sorocaba e Indaiatuba, que contribuíram direta ou indiretamente, para a realização deste trabalho.

SUMÁRIO

LISTA DE FIGURAS	X
LISTA DE TABELAS	xii
RESUMO	xiii
ABSTRACT	xiv
1. INTRODUÇÃO	1
2. OBJETIVOS	7
3. REVISÃO BIBLIOGRÁFICA	8
3.1 - O Agronegócio no Brasil	8
3.2 - Sistemas de Produção	10
3.2.1 - Aspectos da Biodiversidade	10
3.2.2 - Sustentabilidade	11
3.2.3 – Sustentabilidade – Biodiversidade.	12
3.2.4 – Aspectos de Segurança	13
3.2.4.1 – Foco no trabalhador	14
3.2.4.2 – Foco na Segurança	14
3.2.5 – Aspectos da Qualidade e Inovação.	15
3.2.6 – Aspectos da Produção.	16
3.2.7 - O FMEA (FAILURE MODES AND EFFECTS ANALYSIS).	17
3.2.8 – MPT (Manutenção Produtiva Total) e MCC (Manutenção Centr	RADA NA
Confiabilidade)	19
3.3 - Produção Enxuta	27
3.4 - Produção Limpa	29
3.5 - Administração Limpa e Enxuta (ALE)	32
3.6 - Operações de Mecanização Agrícola	35
3.6.1 - MECANIZAÇÃO AGRÍCOLA E SUA RELAÇÃO SÓCIO AMBIENTAL	36
3.6.2 - Manutenção de Máquinas Agrícolas	41
3.6.3 – Definição da Colhedora de Cana	43
3.7 - Manutenção	46
3.7.1 - Mantenabilidade	46
3 7 1 1 _ Definição de mantenarii idade	16

3.7.1.2 – MEDIDAS DE MANTENABILIDADE	50
3.7.1.2.1 - Fatores de confiabilidade	51
3.7.1.2.2 - Medidas de freqüência de falha	51
3.7.1.3 - Distribuição de freqüência (histogramas) e freqüência acumulada	52
3.7.1.4 - Modelos de distribuição probabilísticos	53
3.7.1.5 - Fatores de mantenabilidade	53
3.7.1.5.1 - Medidas de tempo de manutenção	53
3.7.1.5.2 - Medidas de freqüência de manutenção	56
3.7.1.5.3 - Medidas de custo de manutenção	56
3.7.1.5.4 - Medidas de utilização de mão de obra de manutenção	57
3.7.1.5.5 - Fatores humanos	57
3.8 - ACV – Avaliação de Ciclo de Vida	58
3.9 - O Aspecto Social	60
3.10 - Aspectos teóricos da Metodologia.	60
4 - MATERIAIS E MÉTODOS	62
4.1 - Materiais	62
4.1.1 - Caracterização da área de estudo	64
4.1.2 – Processo de Colheita	70
4.1.3 – Frota de colheita mecanizada	72
4.2 - Métodos	73
4.2.1 - Critério para escolha das unidades de colheita (colhedoras) para estudo	73
4.2.2 - Determinação de Modos de Falha no sistema hidráulico de colhedoras	74
4.2.3 - Critérios para análise e avaliação de causas e efeitos das falhas	78
5 - RESULTADOS E DISCUSSÃO	79
5.1 – Apresentação dos resultados a partir do banco de dados do ERP	79
5.2 - Proposta de Metodologia para a implantação de controle de falhas	85
5.3 - Apresentação dos resultados obtidos a partir da "Ficha de Control	E DE
Falhas"	86
5.4 - METODOLOGIA PARA IMPLANTAÇÃO DA ALE (ADMINISTRAÇÃO LIMPA E ENXUTA)	87
5 5 - Análise de Dados e Resultados	96

5.6 - APRESENTAÇÃO DO SOFTWARE BASEADO NO ORGANOGRAMA OFCI	E PARA ANALISE E
TOMADA DE DECISÕES	101
6 - CONCLUSÕES	110
7 - RECOMENDAÇÕES PARA TRABALHOS FUTUROS	111
8 - REFERÊNCIAS BIBLIOGRÁFICAS	112
ANEXOS	124
APÊNDICE A	128
APÊNDICE B	151

LISTA DE FIGURAS

Figura 1 – Programa de conscientização e treinamento na Usina São Martinho5
Figura 2 - Cadeia de produção agroindustrial (Fonte – Portal do Agronegócio, 2007)8
Figura 3 – Integração: conservação de solo/água/agricultura (BRAGAGNOLO et al, 1997)38
Figura 4 - Componentes da colhedora de cana. Extraído e adaptado de NEVES (2003)43
Figura 5 - Equipamento para retirada e abastecimento de óleo hidráulico65
Figura 6 - Óleo em tambores para abastecimento nas oficinas de manutenção66
Figura 7 – Comboio de abastecimento e detalhe do sistema de abastecimento em campo67
Figura 8 - Equipamento desenvolvido para ensaios nos componentes do sistema hidráulico69
Figura 9 – Colhedora em processo de colheita. Detalhe da retirada dos ponteiros70
Figura 10 – Transbordo efetuado em espaço reservado para manobras de veículos71
Figura 11 - Ilustra a colheita onde as soqueiras são preservadas durante o tráfego das
colhedoras e das carretas de transbordo
Figura 12 - Sistema de tombamento da cabine para acesso aos componentes hidráulicos e
mecânicos da colhedora CASE série 770072
Figura 13 - Colhedora CASE IH – modelo 7700, ano 200373
Figura 14 - Gráfico das causas e efeito na cadeia de falhas em sistema hidráulico de
colhedoras de cana-de-açúcar
Figura 15 - Diagrama de representação das variáveis que determinam o melhor desempenho
operacional de máquina (MDOM) para uma colhedora83
Figura 16 - Gráfico comparativo de produção durante a safra de 2005, em toneladas / dia83
Figura 17 - Consumo específico de óleo diesel (l.ton ⁻¹) durante a safra 2005/200684
Figura 18 - Desperdício específico de óleo hidráulico (l.ton ⁻¹) durante a safra 2005/200684
Figura 19 - Fluxograma de decisão para definição de metodologia para aplicação dos
conceitos de Administração Limpa e Enxuta a uma colhedora de cana-de-açúcar de uma usina
sucroalcoleira85
Figura 20 – Fluxograma para metodologia de tomada de decisão
Figura 21 - Organograma de Falhas Componente - Elemento (OFCE) para Análise do Nível
de Importância das Falhas e respectivos indicadores em Sistemas Hidráulicos de Colhedoras
de Cana-de-Acúcar. 93

Figura 22 - Exemplo de tabela quantitativa: representação parcial da tabela	94
Figura 23 - Exemplo de definição de indicador econômico – quantidade de óleo / categoria	de
falha baseado no controle de falhas para a máquina 17	94
Figura 24 - Tela principal do software "OFCE" com a barra de Ferramentas10	02
Figura 25 - Tela de pesquisa para gerar relatórios de desperdício, por máquina, por operado	or,
por falha, por componente ou por nível, considerando um período selecionado1	02
Figura 26 - Tela de pesquisa de desperdícios para nível 1	03
Figura 27 - Tela de pesquisa de desperdícios para nível 2	03
Figura 28 - Tela de pesquisa de desperdícios para nível 3	04
Figura 29 - Tela de pesquisa de desperdícios para "Texto da Causa"	04
Figura 30 - Continuação tela de pesquisa de desperdícios para "Texto da Causa"10	05
Figura 31 - Continuação tela de pesquisa de desperdícios para "Texto da Causa"10	05
Figura 32 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar dados nível 110	06
Figura 33 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar dados nível 210	06
Figura 34 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar dados nível 310	06
Figura 35 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar todos os dados10	07
Figura 36 – Tela de relatório de todas as ocorrências referentes a máquina 1710	07
Figura 37 - Foto parcial da Usina São Martinho. Em primeiro plano as áreas de cultivo e	as
áreas de preservação ambiental. Ao fundo as instalações industriais da USM12	24
Figura 38 – Estrutura societária do Grupo São Martinho (Fonte USM, 2007)	25

LISTA DE TABELAS

Tabela 1 - Perspectivas compatíveis sobre a sustentabilidade (fonte – ABBOTT et al, 2002). 13
Tabela 2 - Ficha de controle de falhas do Sistema Hidráulico utilizado nas colhedoras
monitoradas preenchidas pelos operadores
Tabela 3 - Valores totalizados da safra 2005/2006 obtidos a partir do banco de dados do SAP-
USM para obtenção de: Produção (ton), produtividade (ton.dia-1 e ton.h-1) e consumo
específico/desperdício (l.h ⁻¹ , l.dia ⁻¹ e l.ton ⁻¹) das colhedoras de cana-de-açúcar 14, 15, 16, 17 e
19. Base de validade (Número de dias – Horas horímetro)
Tabela 4 - Resultados obtidos em função da equação de determinação de maior MDOM82
Tabela 5 - Check-List - Lista de verificação do sistema hidráulico das colhedoras para
potenciais causas de falhas nas unidades de colheita monitoradas
Tabela 6 - Tabela comparativa desperdício óleo hidráulico - safras 2006/2007 e 2007/200896
Tabela 7 - Desperdício de óleo hidráulico por h/horímetro e custo (safra 2005/2006)96
Tabela 8 – Desperdício óleo hidráulico por tonelada colhida custo (safra 2005/2006)97
Tabela 9 – Custo tempo de parada por falha (máquina 17 – safra 2005/2006)97
Tabela 10 – Custo/máquina (hora/horímetro trabalhada – safra 2005/2006)98
Tabela 11 – Desperdício de óleo hidráulico por colhedora (safra 2005/06)98
Tabela 12 – Disponibilidade em função dos tempos improdutivos por parada de máquinas99
Tabela 13 - Modos de falha por operador, extraídos do controle de falhas do sistema
hidráulico
Tabela 14 - Tempos de máquinas paradas e/ou aguardando comboio. Dados Extraídos da
Tabela de controle de falhas do sistema hidráulico das colhedoras

RESUMO

Dentre as importantes mudanças nos processos de produção, está a necessidade de garantir sustentabilidade aos empreendimentos humanos. O progresso desordenado, provocado pelo adensamento demográfico, tem gerado problemas, quando embasado nos padrões do paradigma capitalista. Isso faz prever mudanças na gestão empresarial, para adequar-se a um novo modelo, com a inserção dos conceitos de Produção limpa (PL), Mais Limpa (P+L), Enxuta (PE) e Manutenção Produtiva Total (MPT). A MPT visa obter a máxima eficiência do sistema produtivo, identificando os possíveis desperdícios que possam ocorrer, bem como sua prevenção. Aliada à Produção limpa e Enxuta (PLE), que propõe um planejamento ambiental, como forma de eliminar qualquer forma de desperdício com a melhoria dos processos, a MPT pode fazer com que a economia se fortaleça juntamente com a melhoria da produtividade, gerando melhorias no desenvolvimento social, rumo ao desenvolvimento sustentável. A sustentabilidade ambiental deve ser promovida com a conservação da diversidade biológica, com o uso sustentável de seus componentes, com uma distribuição justa e equitativa dos benefícios advindos da utilização racional dos recursos disponíveis. O foco principal deste trabalho foi elaborar uma metodologia que possibilitou garantir a confiabilidade nos sistemas hidráulicos das colhedoras de cana-de-açúcar, identificando e analisando os modos de falhas, de modo a resultar, numa melhoria da qualidade ambiental e sócio-econômica no ambiente de uma indústria sucroalcoleira por meio da diminuição significativa de derramamento de óleo hidráulico. O trabalho teve como base a análise de um estudo envolvendo os princípios da Produção limpa e Enxuta, a partir de critérios para avaliação de modos de falhas que provocam vazamentos no sistema hidráulico das colhedoras, visando à melhoria contínua da Manutenção Produtiva Total. Por meio do histórico existente no ERP (Enterprise Resource Planning), utilizado em uma Usina sucroalcoleira, foi possível fazer o acompanhamento do desempenho operacional de colhedoras de cana-de-açúcar, utilizadas durante 03 safras, com relação aos modos de falhas no sistema hidráulico das mesmas, sendo que, em uma das safras foi elaborado e efetuado um controle total do sistema hidráulico de 5 colhedoras. Os dados obtidos e a metodologia desenvolvida permitiram apontar indicadores de sustentabilidade desejados para a situação estudada, com os quais foi possível desenvolver um software especifico para tomada de decisões.

Palavras-chave: produção limpa, produção enxuta, competitividade, manutenção produtiva total.

ABSTRACT

Among the important changes in the production processes, it is the need to guarantee the sustainability of the human enterprises. The disordered progress, provoked by the demographic agglomeration, it has been generating problems, when based in the patterns of the capitalist paradigm. That makes to foresee changes in the managerial administration, to adapt to a new model, with the insert of the concepts of clean production (PL), more it Cleans (P+L), Dried (FOOT) and Total Productive Maintenance (TPM). TPM seeks to obtain the maxim efficiency of the productive system, identifying the possible losses that can happen, as well as your prevention. Allied to the clean Production and Dried (PLE), that proposes an environmental planning, as form of eliminating any waste form with the improvement of the processes, TPM can do with that the economy strengthens together with the improvement of the productivity, generating improvements in the social development, and heading for the maintainable development. The environmental sustainability should be promoted with the conservation of the biological diversity, with the maintainable use of your components, with a fair and equal distribution of the occurring benefits of the rational use of the available resources. The main focus of this work was to elaborate a methodology that made possible to guarantee the reliability in the waterworks of the harvester sugar-cane, identifying and analyzing the manners of flaws, in way to result, in an improvement of the environmental and socioeconomic quality in the atmosphere of an industry of sugar-cane through the significant decrease of spill of hydraulic oil. The work had as base the analysis of a study involving the beginnings of the Production it cleans and Dry, starting from criteria for evaluation of manners of flaws that they provoke leaks in the waterworks of the harvesters, seeking to the continuous improvement of the Total Productive Maintenance. Through the existent report in ERP (Enterprise Resource Planning), used in a Sugar-cane Industry Plant, it was possible to do the accompaniment of the operational acting of sugar-cane harvester, used during 03 crops, with relationship to the manners of flaws in the waterworks of the same ones, and, in one of the crops it was elaborated and made a total control of the waterworks of 5 harvesters. The obtained data and the developed methodology allowed to point sustainability indicators wanted for the studied situatiith which it was possible to develop software I specify for electric outlet of decisions.

KEYWORDS: Clean production, learn production, competitively, total productive maintenance.

GLOSSÁRIO E ABREVIATURAS

- 1. ACV Avaliação de ciclo de vida;
- 2. ABNT Associação Brasileira de Normas Técnicas;
- **3. ADT** Atraso administrativo;
- **4. ALE** Administração Limpa e Enxuta definida por TOMAZELA (1999) em "Produção enxuta e Limpa: Uma Estratégia para a Competitividade";
- **5. BSC** *Balanced Scorecard* Metodologia para auxiliar no gerenciamento do Pilar da Manutenção Planejada, o pilar responsável pela gestão da manutenção no programa MPT;
- **6. CAI** Complexo Agroindustrial , "agribusiness" ou Agronegócio Soma total das operações de produção e distribuição de produtos e suprimentos agrícolas;
- 7. CC Consumo de óleo Diesel em litros por hora por colhedora estudada;
- **8. CDB** Convenção sobre Diversidade Biológica Acordo assinado na ECO 92 e adotada por mais de 180 países que estabelece tres objetivos principais: conservação, uso sustentável e distribuição equitativa dos benefícios advindos do uso da biodiversidade;
- 9. Crade-to-Grave Prevenção dos impactos à saúde e ao meio ambiente do berço a cova;
- **10.DO** Desperdícios de óleo hidráulico por hora por colhedora estudada;
- **11.Diagrama de Ishikawa** Proposto por Kaoru Ishikawa na década de 60 e também conhecido como Diagrama de Causa e Efeito ou Espinha de Peixe. É uma ferramenta gráfica que permite estruturar, explorar e representar hierarquicamente as causas de determinado problema e seus efeitos como uma oportunidade de melhoria;
- 12.EI Ecologia Industrial é o meio pelo qual a humanidade pode, deliberadamente e racionalmente, alcançar e manter a capacidade de suporte desejável, promovendo uma continuidade da evolução econômica, cultural e tecnológica. O conceito requer que o sistema industrial seja visto não isoladamente dos sistemas existentes nos seus entornos, mas em conjunto com eles. É uma visão de sistema, no qual se procura otimizar o ciclo total de materiais, desde o material virgem ao material acabado, componentes, produtos, e disposição final. Os fatores a serem otimizados incluem recursos, energia e capital;
- **13.End-of-Pipe** modelo que trata os resíduos antes de descartá-lo ao meio ambiente controle, contenção e tratamento no interior da fábrica;
- 14.EPI's Equipamentos de proteção individual;

- **15.ERP** software para controle de processo conhecido comercialmente como *Enterprise Resource Planning* (ERP), cujo sistema de informação é composto de vários módulos que integram fortemente as áreas financeira, industrial, comercial, administrativa e contábil da empresa e que tem tratamento das informações indispensáveis à gestão das rotinas e das mudanças aceleradas no ambiente empresarial;
- **16. FMEA -** *Failure Mode and Effect Analysis*: Análise de modos e efeitos de falhas é uma ferramenta que busca evitar por meio da análise das falhas potenciais e propostas de ações de melhoria, que ocorram falhas no projeto do produto ou do processo;
- 17. FTA Fault Tree Analysis Análise da Árvore de Falhas;
- **18. ISO** *International Standard Organization*;
- 19. ISO 9000 Normas Internacionais de gestão e garantia da qualidade;
- 20. ISO 14000 Série de normas referentes a questões ambientais;
- 21. ISO 18000 Série de normas referentes a questões de segurança ambiental;
- **22. JIPM** *Japanese Institute of Plant Maintenance* nstituto Japonês de Manutenção de Plantas, o órgão máximo de disseminação do MPT no mundo (PALMEIRA, 2002);
- **23. Just-in-Time** Filosofia de trabalho que significa produzir somente o necessário na quantidade certa e no momento exato;
- **24.** LDT atraso logístico;
- **25. M** tempo médio de manutenção efetiva;
- **26.** MCC Manutenção centrada na confiabilidade;
- 27. MCE manutenção corretiva de emergência;
- 28. M ct tempo médio de manutenção corretiva efetiva;
- **29.** Mct tempo mediano de manutenção corretiva;
- 30. MCR Manutenção Centrada no Reparo;
- 31. MDO mão de obra;
- **32. MIL-STD 1629A** Norma para o desenvolvimento do FMECA criada pelo Departamento Norte- Americano de Defesa;
- **33. Mmáx** tempo máximo de manutenção corretiva;
- **34.** MMH/OS tempo de manutenção em homem-hora por ação de manutenção;
- 35. MMH/OH tempo de manutenção em homem-hora por hora de operação;
- **36.** MMH/mês tempo de manutenção em homem-hora por mês;

- 37. MMH/missão tempo de manutenção em homem-hora por missão ou fase de missão;
- **38. MPT** Manutenção Produtiva Total;
- **39. M pt** tempo médio de manutenção preventiva efetiva;
- **40. MTBD** tempo médio entre demanda;
- 41. MTBF esperança matemática do tempo entre falhas;
- **42.** MTBM tempo médio entre manutenções;
- **43.** MTBMu tempo médio entre manutenções corretivas;
- 44. MTBR tempo médio entre substituições;
- 45. MTFF tempo médio até primeira falha;
- **46.** MTTF tempo médio até falha;
- 47. MTTR tempo de restabelecimento médio;
- **48. NPR** número de prioridade de risco obtido através do FMEA.
- **49. OFCE -** Organograma de Falhas Componente Elemento (OFCE) para Análise do Nível de Importância das Falhas e respectivos indicadores em Sistemas Hidráulicos de Colhedoras de Cana-de-Açúcar. Ferramenta desenvolvida neste trabalho para a sistematização da melhoria continua da ALE e PMMPT;
- **50.** P Toneladas de cana-de-açúcar colhidas por hora por colhedora estudada;
- **51. PIB** Produto Interno Bruto;
- **52. Produção Enxuta** produção sem desperdícios, utilizando-se de um pensamento sistêmico com auxílio de técnicas, visando à utilização de uma menor quantidade de recursos, para a execução de uma tarefa ou para a concepção de um produto;
- 53. Produção Limpa produção com a menor quantidade de recursos, sem que estes gerem resíduos durante a sua produção e o seu ciclo de vida. e, caso gerem, possam ser reciclados ou reutilizados;
- **54. Produção mais limpa -** Melhoria contínua aplicada aos conceitos de produção limpa;
- **55. Pu** probabilidade de não estar apto durante um tempo "t";
- **56. QS—9000** *Quality Standard* Conjunto de normas da qualidade usado pelas empresas automotivas Chrysler, Ford e General Motors;
- **57. Remonta** Quantidade de óleo adicionado ao reservatório para completar o nível, que baixou em consequência do derramamento por falhas no sistema hidráulico;

- **58.** *Right to Know* "controle democrático" que requer que todos tenham livre acesso a informações referentes a impactos ambientais;
- **59. RNA** Sal Sódico do Ácido Ribonucléico, exportado e utilizado na indústria farmacêutica e alimentícia como matéria-prima e ressaltador de sabor;
- **60. SAE** *Society of Automotive Engineers*;
- **61. SAP** Fornecedora do ERP, o seu software é conhecido como R/3 e é designado para ajudar a organizar o processo de manufatura e contabilização. SAP também oferece módulos de logística e recursos humanos;
- **62. SGI** Sistema de Gestão Integrada;
- **63. SHE** *Safety, Health and Environment* (Segurança, Saúde e Meio-Ambiente). Pilar da MPT responsável pelo estabelecimento de sistema de gestão que proporcione à empresa a oportunidade de atingir Acidente, Doença Ocupacional e Danos Ambientais Zero.
- **64. PMMPT** Programa de Melhoria baseado na MPT aplicado na USM
- **65. Stakeholders** atores / indicadores ambientais;
- **66. Td** tempo de inatividade de equipamento devido à manutenção corretiva;
- 67. TPM *Total Productive Maintenance*: estágio que agrega à execução da manutenção do sistema de produção outros aspectos, tais como manutenção preditiva, participação de outros setores da empresa, envolvimento de pessoal de todos os níveis hierárquicos (da alta direção aos trabalhadores produtivos), aproveitamento de mecanismos de motivação através do trabalho em grupo, e aproveitamento econômico de máquinas, equipamentos e instalações considerando todo o seu ciclo de vida;
- **68. TQC** *Total Quality Control*: é um sistema eficaz para a integração dos esforços de desenvolvimento, manutenção e melhoria da qualidade dos vários grupos dentro de uma organização, de tal modo a tornar capazes de proporcionar a plena satisfação do cliente, nos níveis mais econômicos;
- **69. USM** Usina São Martinho S.A -Empresa dedicada a produção de álcool e açúcar, localizada em Pradópolis/SP, pertencente à 6ª região administrativa de Ribeirão Preto, próximo às cidades de Guariba e Jaboticabal;
- **70. VHP** Tipo de açúcar padrão negociado no mercado internacional;
- **71. WCM -** *World Class Manufacturing* ou Manufatura de Classe Mundial, que se caracteriza pela alta disponibilidade e flexibilidade dos meios de produção.

1. INTRODUÇÃO

Estudos e pesquisas ambientais devem ser intensificados para constatar se os processos de produção agrícola e agroindustrial estão em conformidade com as necessidades requeridas para uma maior competitividade de vários segmentos do agronegócio brasileiro.

Atitudes voltadas à obtenção da máxima produção (uso indiscriminado dos recursos naturais, produção de grande quantidade de produtos descartáveis, elevado consumo de água e energia, geração elevada de resíduos) estão usualmente degradando o meio ambiente, gerando uma série de problemas que afetam o bem-estar da sociedade envolvida no sistema.

O desenvolvimento sustentável está apresentado num relatório encomendado pela ONU (Organização das Nações Unidas), denominado "Nosso Futuro Comum", de 1987. Tal relatório considera que o desenvolvimento sustentável funciona como "o atendimento das necessidades da geração presente sem comprometer a capacidade de as gerações futuras atenderem também às suas". Para que a sustentabilidade seja atingida há a necessidade da aplicação deste conceito aos diversos processos relacionados ao ser humano, para que ele seja um integrante cotidiano das atividades.

A grande preocupação em aplicar o relatório encomendado pela ONU, que trata do desenvolvimento sustentável, ao setor produtivo também produziu novas definições, entre elas estão a Produção limpa e Enxuta que, em conjunto com a MPT (Manutenção Produtiva Total) tornam o tripé do Desenvolvimento Sustentável cada vez mais estável.

Produção limpa surgiu como resposta de campanhas ambientalistas da Greenpeace. A poluição industrial com crescente geração de resíduos, o atual modelo de sociedade de descarte com crescente aumento do volume de lixo de origem industrial e doméstico, fomentou propostas que vão além dos conceitos dos Manuais da EPA-US - Agência de Proteção Ambiental dos Estados Unidos e normas aplicadas à gestão ambiental.

O assunto ganhou força com o programa Cleaner Production do PNUMA – Programa das Nações Unidas para o Meio Ambiente – cuja proposta foi fomentar a manufatura de produtos e o uso contínuo de processos industriais que aumentassem a eficiência (produção enxuta); prevenissem a poluição do ar, água e solo, reduzissem os resíduos na fonte de poluição e minimizassem os riscos para a população humana e o ambiente (produção limpa).

Com a tendência mundial na busca do desenvolvimento sustentável, tem-se observado a preocupação dos setores de produção em buscar soluções ambientalmente corretas e que, conseqüentemente, acarretam uma melhoria na competitividade e na qualidade de vida (FURTADO, 1997).

Os conceitos de "produção limpa", apesar de estarem bem definidos até mesmo por entidades internacionais, são relativamente novos e, aparentemente, não há ainda uma consciência e uma posição firmada por parte das empresas agrícolas. Para adotar as estratégias em que se possam obter vantagens ambientais competitivas, os sistemas de gestão de produção poderão seguir por algum dos três níveis de gerenciamento ambiental.

- 1°) limitar-se à conformidade legal, atendendo às legislações;
- 2°) antever-se e adotar uma postura de atendimento ao cliente, ultrapassando os limites da conformidade legal;
- 3°) optar pelo desenvolvimento sustentável (definido por MAIMON (1996) como "a busca simultânea de eficiência econômica, justiça social e harmonia ecológica").

Considera-se que qualquer insumo que não foi corretamente utilizado significa perda de produtividade. Segundo ROMM (1996), o termo produtividade esta definido como a preocupação básica de retratar uma relação entre entradas e saídas de um processo ou sistema. Essa relação é genericamente representada pela expressão: Produtividade = Saída Gerada / Entradas Consumidas, o que reflete o desempenho de um processo específico, de um sistema de produção ou de uma empresa.

A redução de 70% nas emissões e resíduos em processos industriais, com resultados lucrativos do ponto de vista tecnológico e econômico foi demonstrada na UNEP (Agência da Organização das Nações Unidas de Proteção Ambiental) 1994, através dos diversos estudos de caso apresentados. O retorno dos investimentos varia de acordo com a natureza do produto/processo e do mercado. Investimentos entre US\$ 6 mil e US\$10 milhões deram retorno entre 1 a 66 meses (UNEP, 1993). Vantagens tecnológicas, ambientais e sócio-econômicas foram demonstradas em mais de 600 estudos de casos (GEE, 1994).

Tecnológica e gerencialmente, o sistema produtivo baseado em P+L (proposta da UNEP) ou em PL (defendida por organizações ambientalistas e vários centros de P&D) supera a Série ISO14000.

Tanto a Produção limpa quanto a Produção Enxuta pressupõem a definição e o uso de uma série de ferramentas e métodos que permitem a definição de indicadores, que estratificados possibilitam a implantação de um sistema de gestão integrada que nos conduz ao desenvolvimento da sustentabilidade.

Nenhuma outra atividade produtiva relaciona-se tão proximamente com o ambiente como a atividade agrícola, pois qualquer intervenção no meio rural determina impactos em recursos ambientais. Estes, todavia, se bem monitorados, podem ser minimizados ou mesmo transformados em impactos positivos, potencializando ainda mais as possibilidades de uso dos referidos recursos.

Para tanto, o aproveitamento dos talentos da natureza para a produção de riquezas no campo deve ser conduzido, levando-se em conta a sua necessária manutenção. Assim, o correto manejo do solo, como forma de impedir sua erosão e compactação; a manutenção das áreas de preservação permanente e de reserva legal, como forma de evitar o assoreamento e a degradação dos recursos hídricos e a perda da biodiversidade; e, finalmente, o cuidado na aplicação de agrotóxicos e na destinação final de suas embalagens, como forma de diminuir os riscos à saúde humana e ao ambiente, têm de ser consideradas, todas, ações indispensáveis ao correto gerenciamento ambiental do meio rural.

A sobrevivência e a sustentabilidade do empreendimento dependem diretamente da maneira como os recursos naturais são tratados.

A atividade rural é desenvolvida em contato com o meio ambiente. Sendo assim, solos, água, ar e seres vivos, como integrantes desse meio, estão diretamente relacionados com a qualidade e suficiência dos alimentos e de outras matérias-primas produzidas.

Os recursos naturais podem ser considerados como auto-renováveis, como os cursos de água, bacias lacustres; renováveis ou conserváveis, como solos para agricultura e os revestimentos florísticos; e os não-renováveis, como os gases naturais e as reservas minerais.

Incrementar o processo de produção agrícola, especificamente no setor sucroalcooleiro, em função das exigências dos mercados, interno e externo, na produção de álcool e açúcar, fez com que a mecanização agrícola para a exploração da cultura canavieira promovesse a intensificação do uso da terra e, conseqüentemente, uma aplicação mais intensa da motomecanização.

A aplicação da motomecanização, exigente em máquinas e equipamentos de maior potência operacional e de maiores níveis tecnológicos, tem como principais conseqüências diretas, aspectos econômicos (custo/produção), sociais (tecnologia/qualificação) e ambientais (uso/impactos), exigindo, para tanto, análises técnicas e críticas da relação custo/benefício desse processo produtivo.

A colhedora autopropelida de cana-de-açúcar, ou seja, a colhedora de cana "crua" é o elemento de maior importância dentro dessa análise tecnológica. As consequências de sua aplicação no contexto dos custos operacionais, do nível tecnológico agregado e dos aspectos ambientais envolvidos constituem objeto de relevante significado investigativo de modo a serem encontradas novas formas de agregar valor às diversas atividades já existentes e praticadas na manutenção em máquinas e equipamentos agrícolas.

O Brasil é o maior produtor mundial de cana-de-açúcar para a produção de álcool e açúcar, e a Usina São Martinho S.A. (USM), localizada em Pradópolis/SP, possui a maior esmagadora da matéria prima, tendo batido o seu próprio recorde na safra de 2006, ao atingir em maio daquele ano o número de 43.702 toneladas diárias e 290.953 toneladas semanais.

No momento do processo investigativo deste trabalho, a frota da Usina era composta de 280 tratores, 46 colhedoras, 530 implementos, 240 caminhões, 360 carretas, 75 veículos leves. Para movimentar esta frota são consumidos anualmente cerca de 340.000 litros de óleos lubrificantes. A Usina São Martinho desenvolve práticas na manutenção de máquinas e equipamentos agrícolas que são inseridas nas atividades de produção, tais como: manutenção básica, controle de estoque de combustíveis e lubrificantes, de implementos, gerenciamento de oficina mecânica, de consumo de energia, de utilização de matéria-prima, custos e orçamentos.

Controla também o desgaste e recauchutagem de pneus, faz análise de óleos, executa a manutenção preventiva, preditiva e detectiva, faz gerenciamento de agregados e da moto mecanização, controla os custos de mecanização, agrícola e faz armazenamento adequado nos períodos de inatividade. Faz também o gerenciamento de resíduos sólidos, a reutilização das águas servidas, recondicionamento, reuso, reciclagem em toda planta, prevenção da poluição, dos contaminantes do solo, das emissões, análise de tempos e métodos, controle de consumo de óleos e combustíveis, estoque mínimo, planejamento e controle da produção, entre outros.

A Figura 1 mostra estratégias utilizadas na Usina São Martinho para envolvimento dos colaboradores nos programas de capacitação voltados para os processos de melhoria

contínua em toda a cadeia de produção de açúcar e álcool. Estes programas de capacitação tomam grande parte do período da entressafra, e são desenvolvidos com a aplicação de embasamentos teóricos com cursos em salas de aulas, e práticos utilizando os recursos disponíveis nas próprias oficinas de manutenção. Os temas abordados dizem respeito à manutenção das máquinas, importância da preservação ambiental, cuidados com a planta, compactação do solo, pisoteio, produtividade, saúde e segurança do trabalhador. Os tempos de treinamento estão relacionados à importância de cada tema em relação aos problemas apresentados em safras anteriores. Normalmente são ministradas 30 horas por tema.

Figura 1 – Programa de conscientização e treinamento na Usina São Martinho.

Esta empresa agroindustrial lança mão do Programa de Melhoria baseado na Manutenção Produtiva Total aplicado na USM (PMMPT), um Programa de melhoria, apoiado nos 8 (oito) pilares da MPT (Melhoria Focada, Manutenção Autônoma, Manutenção Planejada, Educação e Treinamento, Controle Inicial, Manutenção da Qualidade, TPM Office, Segurança ou SHE (*Safety, Health and Environment* - Segurança, Saúde e Meio-Ambiente)), visando um sistema de gestão operacional eficaz. Utiliza também um software de ERP (*Enterprise Resource Planning*) bastante comuns em grandes empresas, para outros fins, tais como o controle dos processos que ocorrem no empreendimento. Para contribuir com a otimização da PMMPT, é importante que se estabeleça uma metodologia voltada à obtenção de tais melhorias. Tem-se como hipótese de trabalho que a utilização dos princípios da Administração Limpa e Enxuta (ALE), se afigure como medida adequada para tais fins.

Não obstante a Usina São Martinho adotar o sistema de Gestão de Melhoria baseada na manutenção produtiva total (PMMPT) e recorrer ao ERP, observou-se na safra 2002/2003 um desperdício de 108.622 litros de óleo hidráulico em remonta nas colhedoras. Essa quantidade foi desperdiçada, em conseqüência de falhas do sistema hidráulico, mesmo a colhedora contando com um dispositivo que desliga o funcionamento da máquina em 14 segundos, caso ocorram rompimentos de mangueiras e conexões. Neste intervalo de tempo, ocorre vazamento de até 12 litros de óleo. Esse derramamento ocorre no campo, considerando que toda a manutenção preventiva da colhedora se processa nas oficinas durante o período da entressafra onde todo o óleo do sistema é esgotado e os resíduos são coletados por meio de bandejas coletoras e, enviados para reciclagem e reutilização. Qualquer interferência programada no campo adota o mesmo procedimento citado para coleta do óleo hidráulico nas oficinas. Na safra 2003/2004 foram 70.561 litros, na safra 2004/2005 115.298 litros e na safra 2005/2006 foram 117.315 litros de óleo hidráulico desperdiçados.

O melhor momento para a troca de óleos, pode não estar condicionado à recomendação do fabricante, mas a uma análise das propriedades do óleo em função das diversas variáveis de utilização. Casos de prolongamento na utilização em até três vezes foram constatados, o que inevitavelmente conduz à obtenção de benefícios enxutos e limpos. Desta forma, pode se considerar que os resultados dos aspectos econômico, social e ambiental sob o prisma de um tripé para o desenvolvimento sustentável representam avanços quando analisados sob o ponto de vista da aplicação conjunta do Programa de Melhoria da Manutenção Produtiva Total aplicada na Usina São Martinho (PMMPT) e da Administração Limpa e Enxuta (ALE). Este é o "Lema" que nos conduz a um novo paradigma na Mecanização Agrícola. Na busca da melhoria contínua, o desperdício de óleo por falhas no sistema hidráulico é um fator negativo. Melhorar este quesito é fundamental considerando a quantidade de vazamentos que ocorre por safra e que consequentemente diminui a capacidade de competir globalmente.

2. OBJETIVOS

O presente trabalho tem por objetivo geral o emprego de técnicas ligadas a Administração Limpa e Enxuta (ALE) como critérios para avaliação de modos de falhas que provocam vazamentos no sistema hidráulico de colhedoras de cana-de-açúcar, visando à melhoria contínua do Programa de Melhoria da Manutenção Produtiva Total aplicada na Usina São Martinho (PMMPT). A proposta de oferecer um tratamento sistêmico de prevenção da poluição (produção limpa), eliminação dos desperdícios (produção enxuta) e prevenção das quebras (PMMPT), promove melhorias na qualidade e na produtividade.

Como objetivos específicos desenvolveram-se o seguinte:

- Metodologia para análise dos modos de falhas do sistema hidráulicos de colhedoras de cana-de-açúcar;
- 2. OFCE (Organograma de Falhas Componente-Elemento) Sistematização e qualificação dos modos de falhas existentes por meio do OFCE
- Software Desenvolvimento de um software para tomada de decisões em função das falhas de maior impacto no desperdício de óleo hidráulico.

Procurou-se neste trabalho caracterizá-lo o mais próximo possível da abordagem qualitativa. A pesquisa qualitativa, segundo BRYMAN (1995), deverá distanciar-se do pressuposto de que está nas mãos do pesquisador a definição dos pontos a serem tratados, mas, sim de investigações profundas sobre as relações entre os indivíduos e o meio.

3. REVISÃO BIBLIOGRÁFICA

3.1 - O Agronegócio no Brasil

O agronegócio brasileiro é responsável por cerca de 1/3 do produto interno bruto do Brasil, empregando 38% da mão de obra e sendo responsável por 36% das nossas exportações. É um dos setores mais importantes da nossa economia.

Com a globalização de mercados, o sucesso de uma empresa, principalmente no agronegócio, depende da inter-relação dos fornecedores, produtores de matéria prima, processadores e distribuidores. Propõe-se que o conceito de agronegócio representa o enfoque que considera todas as empresas que produzem, processam, e distribuem produtos agropecuários (PORTAL DO AGRONEGÓCIO, 2007). A figura 2 ilustra tal proposta.

Figura 2 - Cadeia de produção agroindustrial (Fonte – Portal do Agronegócio, 2007).

Profissionais que atuam no agronegócio têm sido muito requeridos. Entretanto, existe uma demanda crescente e urgente por profissionais que possam atuar em toda a cadeia agroindustrial, permitindo aumentar a eficiência do mercado de insumos agropecuários, produção agropecuária, processamento industrial e distribuição.

Qualquer empresa ou organização do agronegócio necessita profissionais capacitados para atuar nas relações entre empresas, equacionar soluções, pensar estrategicamente, introduzir modificações, atuar preventivamente, transferir e gerar conhecimentos, com uma visão ampla de toda a cadeia de produção (PORTAL DO AGRONEGÓCIO, 2007).

Portanto, a formação dos profissionais do Agronegócio envolve capacitação em economia, mercado, finanças, administração, contabilidade e pesquisa operacional, além de aplicações práticas de gerenciamento e controle do Agronegócio.

O enfoque do agronegócio é essencial para retratar as profundas transformações verificadas na agricultura brasileira nas últimas décadas, período no qual o setor primário deixou de ser um mero provedor de alimentos in-natura e consumidor de seus próprios produtos, para ser uma atividade integrada aos setores industriais e de serviços.

Os principais insumos da agropecuária, tais como fertilizantes, defensivos, rações, combustíveis e outros, bem como as máquinas utilizadas (tratores, colhedoras além de outros equipamentos), são predominantemente provenientes de setores industriais, especializados em produtos para a agropecuária. Da mesma forma, os produtos de origem agropecuária destinamse, crescentemente, a agroindústrias especializadas no processamento de matérias-primas e de alimentos industrializados, consumidos no mercado interno urbano e exportados (PORTAL DO AGRONEGÓCIO, 2007).

A compreensão desta realidade da agricultura brasileira foi difundida a partir da publicação do livro "Complexo Agroindustrial - o Agribusiness Brasileiro" de autoria de Ney Bittencourt de Araújo e outros (ARAUJO, 1990).

O Complexo Agroindustrial (CAI), "agribusiness" ou agronegócio é entendido como "a soma total das operações de produção e distribuição de suprimentos agrícolas; as operações de produção nas unidades agrícolas; o armazenamento, processamento e distribuição dos produtos agrícolas e itens produzidos com eles" (DAVIS & GOLDBERG, 1957).

Além do conceito de CAI, acoplam-se outros dois instrumentos conceituais e analíticos: as contas nacionais e a matriz de insumo-produto. As contas nacionais, ao retratarem as diversas etapas e transações realizadas pelos agentes econômicos, possibilitam a integração dos dados estatísticos com os conceitos macroeconômicos de renda nacional. Concebidas a partir de conceitos de KEYNES (1983), as contas nacionais foram estruturadas a partir dos agentes institucionais (empresas, famílias, governo e resto do mundo).

Derivado das próprias contas nacionais, a matriz de insumo-produto, desenvolvida por LEONTIEF (1983) enfoca a estrutura produtiva e a interdependência dos setores. Permite a construção da identidade contábil entre produto, renda e despesa. Este modelo foi recentemente incorporado ao sistema de contas nacionais.

Uma vez caracterizado o CAI, utilizam-se os conceitos fundamentais das Contas Nacionais e da Matriz de Insumo-Produto para estimar a magnitude deste complexo e, assim, avaliar o seu peso em relação ao total da economia brasileira (PORTAL DO AGRONEGÓCIO, 2007).

3.2 - Sistemas de Produção

3.2.1 - Aspectos da Biodiversidade.

A Convenção sobre Diversidade Biológica (CDB) de 1992, um dos acordos mais importantes assinados no Eco 92, no Rio de Janeiro, adotada por mais de 180 países, estabelece três objetivos principais:

- 1) Conservação da biodiversidade;
- 2) uso sustentável dos recursos biológicos; e,
- 2) distribuição equitativa dos benefícios advindos do uso da biodiversidade.
- O desenvolvimento sustentável compreende todas as ações que atendem as necessidades das gerações atuais, ao mesmo tempo em que preservam os ecossistemas, as espécies e os componentes genéticos que constituem a biodiversidade, a qual, por sua vez, é um fator crucial para que se possam atender às demandas das gerações futuras (ABBOTT, et al, 2002).

Tanto do ponto de vista ético quanto do pragmático, o desenvolvimento sustentável representa uma saída para conciliar produção de riqueza e bem-estar para a sociedade sem comprometer a sobrevivência do Planeta e da espécie humana. Estabelecer uma relação harmoniosa entre as três dimensões que embasam o conceito de desenvolvimento sustentável: economia, meio ambiente e sociedade.

Segundo ABBOTT, et al (2002) o conceito de biodiversidade vai além do uso racional da natureza e dos recursos naturais por parte das empresas de extração de recursos. Instituições financeiras, empresas de bens de consumo, companhias de serviços e de informações tecnológicas também são responsáveis pelos três objetivos fundamentais determinados pela Convenção sobre diversidade Biológica (CDB). Afirmam ainda que a responsabilidade social seja a obrigação que têm os administradores de empreender ações que

protejam e desenvolvam o bem-estar como um todo, junto com os seus próprios interesses. O termo Biodiversidade refere-se à variedade de formas de vida na Terra, incluindo a ampla gama de populações geneticamente distintas de cada espécie, assim como todas as várias espécies, comunidades e ecossistemas dos quais fazem parte. Por ser tão abrangente, este conceito aplica-se a toda a exosfera, seus ecossistemas e componentes vivos e os processos ecológicos e evolucionários que os mantêm em funcionamento e constante evolução. A Convenção sobre Diversidade Biológica (CDB), assim define biodiversidade: "a variedade de organismos vivos de todo o tipo de fonte, incluindo, organismos terrestres, marinhos e de outros ecossistemas aquáticos e os complexos ecológicos dos quais fazem parte; isso abrange a diversidade dentro das próprias espécies, entre as espécies e os ecossistemas".

3.2.2 - Sustentabilidade.

POUDEL (2002) definiu a sustentabilidade como "a eficácia na forma de gestão que está sendo aplicada para obtenção de objetivos definidos... Portanto, é preciso definir corretamente os critérios para avaliar os objetivos, as metas e os atores envolvidos na questão... Vários métodos foram propostos por distintos autores para determinar critérios e indicadores e resultaram em ferramentas significativas de avaliação...". A sustentabilidade possui indicadores que empregam o tripé constituído pelas necessidades econômicas, sociais e ambientais (POUDEL, 2002).

YOUNG (2001) mostra que, apesar de o ambiente ser o suporte de toda a vida, a sociedade foi criada pela humanidade (social) e definiu como essa deve funcionar (econômico), tendo sugerido que há uma base nesse tripé que estabelece o processo de governança que deve garantir sua estabilidade ao longo do tempo. Assim, índices que descrevam as três componentes do tripé devem ser obtidos.

Vários autores propuseram diferentes indicadores e/ou índices para as três componentes do tripé da sustentabilidade e, do mesmo modo, a ONU listou vários atores, normalmente citados como partes interessadas (*stakeholders*), a serem abordados quando da comunicação dos avanços conseguidos em direção ao desenvolvimento sustentável (UNEP, 1992).

Segundo GEE (1994) a sustentabilidade ambiental deve ser promovida com a conservação da diversidade biológica, com o uso sustentável de seus componentes, com uma distribuição justa e equitativa dos benefícios advindos da utilização racional dos recursos disponíveis.

A Convenção sobre Diversidade Biológica (CDB) define um ecossistema como "um complexo dinâmico de comunidades vegetais, animais e de microorganismos e seus ambientes não-vivos que interagem como uma unidade funcional".

Para uma empresa, uma perspectiva de ecossistema determina onde suas atividades se encaixam dentro de um contexto ecológico mais amplo. Os processos de produção de alguns setores, como a agricultura e a atividade florestal, dependem diretamente dos recursos naturais. As atividades econômicas causam impactos positivos e negativos nos ecossistemas.

3.2.3 – Sustentabilidade – Biodiversidade.

A 'conservação da diversidade biológica compreende a sustentabilidade ambiental', o 'uso sustentável de seus componentes' é referente à sustentabilidade econômica e 'a distribuição justa e equitativa dos benefícios advindos da utilização dos recursos genéticos' abrange a sustentabilidade social (ABBOTT et al, 2002).

Para muitos setores, como o de energia, mineração, alimentação, pesca e transporte, a gestão da produção está ligada à preservação da integridade dos ecossistemas.

Para que haja uma distribuição eqüitativa dos benefícios advindo da biodiversidade, as empresas precisam integrar uma gestão competente da biodiversidade à responsabilidade social. O uso sustentável traduz-se no uso dos componentes da diversidade biológica de tal forma e em tal proporção que não acarrete a perda em longo prazo da diversidade biológica, mantendo, assim, seu potencial de atender às demandas e aspirações das gerações atuais e futuras. Hoje o empresário reconhece claramente que o sucesso econômico ou financeiro está inexoravelmente ligado ao desempenho ambiental e social. Apesar desse não ser ainda o pensamento geral vigente, todas as empresas, em maior ou menor grau, estão atentas ao conceito de 'responsabilidade social corporativa'. Essa atenção tem levado as empresas a incorporar às suas práticas às três dimensões da sustentabilidade – ambiental econômica e social – as quais são também conhecidas como a base da tríplice.

A biodiversidade não constitui um elemento adicional, mas sim uma parte integrante da responsabilidade social corporativa e de programas de sustentabilidade de uma empresa (ABBOTT et al. 2002), como mostra a Tabela 1.

Tabela 1 - Perspectivas compatíveis sobre a sustentabilidade (fonte – ABBOTT et al, 2002).

Biodiversidade	Atividade Econômica	Finanças Sustentáveis	Desenvolvimento
	Sustentável		Sustentável
Conservação	proteção	Valor	Proteção
	ambiental	Ambiental	Ambiental
Uso	crescimento	Valor	Desenvolvimento
sustentável	econômico	Econômico	Econômico
distribuição	eqüidade	Valor	Desenvolvimento
eqüitativa	social	Social	Social

As questões referentes à biodiversidade fazem parte da gestão ambiental de uma empresa e, assim como outras questões ambientais, o conceito de biodiversidade como prática corporativa assenta-se sobre os riscos e as oportunidades. A principal preocupação da maioria das empresas sobre determinada questão ambiental relaciona-se com os riscos. A biodiversidade como uma prática corporativa oferece novas oportunidades às empresas de melhorar seu desempenho financeiro e de promover a sustentabilidade (ABBOTT et al, 2002).

Dentre os motivos apresentados, o predominante é a competitividade, advinda do conceito, cada vez mais difundido, de que hoje é impossível administrar sem uma preocupação ambiental ou, em outras palavras, a consciência mundial sabe que o Planeta não suporta mais e que o mito da inesgotabilidade não mais existe, tendendo a acontecer o mesmo com outro mito, o da impunidade (TOMAZELA, 1999).

3.2.4 – Aspectos de Segurança.

O mesmo conceito é válido para os aspectos de segurança e saúde no trabalho (SST).

Foi-se, há muito tempo, a prática de gerar resíduos à vontade durante o processo produtivo preocupando-se apenas com o tratamento final, lá na "estaçãozinha" do fundo da fábrica, muitas vezes cara, ineficaz e responsável por algumas manchetes, na maioria das

vezes, desastrosas. O mesmo vale com a prática de não avaliar as causas, valendo-se apenas do uso de equipamentos de proteção individual (EPI'S) (SALVATERRA, 2004).

3.2.4.1 – Foco no trabalhador.

Para TOMAZELA (1999) são enormes os desafios quanto às atividades a serem desenvolvidas pelo homem dentro de uma globalização impulsionada pela necessidade de produzir mais, com qualidade, com o menor custo e quantidade de recursos e, ao mesmo tempo, preservar a qualidade de vida sem degradação ambiental, para adquirirmos competitividade e desenvolvimento sócio-econômico. "É melhor não sujar do que limpar" é a linha mestra de qualquer gerenciamento ambiental, é o processo limpo, ou seja, o projeto limpo. Ainda mais se for lembrado que todo resíduo é matéria prima comprada e mal utilizada, é dinheiro jogado fora.

3.2.4.2 – Foco na Segurança.

Quanto custa implantar um sistema de gestão ambiental (SGI)?

- Cumprir a legislação é dever de todo o mundo;
- Descumprir a legislação gera multas, paralisações e arranha a imagem da empresa;
- Poder tornar visível a sua preocupação ambiental rompe barreiras e abre mercados;
- Qualidade de vida no trabalho aumenta a produtividade em qualquer lugar do mundo;
- Finalmente não se deve esquecer que quanto menor a geração de resíduos, maior a quantidade de matéria prima transformada em produto, consequentemente mais eficaz é o processo de produção.

A biodiversidade constitui o sistema de apoio à vida em nosso planeta. A sobrevivência da população mundial dependerá da biodiversidade do Planeta apoiada nas diversas formas de ecossistemas, espécies e material genético que estão sendo ameaçados em proporções alarmantes. Ela é a base para o desenvolvimento sustentável, pois afeta a qualidade de vida e constitui um componente essencial da sustentabilidade de toda atividade humana (ABBOTT et al, 2002).

3.2.5 – Aspectos da Qualidade e Inovação.

A visão ecossistêmica da qualidade total implica uma forma diferente de ver a empresa em sua relação com o resto da sociedade. Nessa forma ecossistêmica muda o conceito de empresa "ilha" ou "fortaleza" para o de "empresa-componente do ecossistema social", no qual, para que o equilíbrio se mantenha, é necessária uma troca equilibrada de contribuições e recompensas. Essa visão ecossistêmica procura no lugar de "maximizar os lucros", enfocar o "aperfeiçoar o bem-estar social", conforme BONILLA (1994).

Um produto ou serviço de qualidade é aquele que atende perfeitamente, de forma confiável, acessível, segura e no tempo certo às necessidades do cliente (CAMPOS, 1992).

Os sistemas de controle devem ser incorporados nas diferentes fases do desenvolvimento do produto e devem ser utilizados para avaliar vários aspectos do produto: resistência, confiabilidade, mantenabilidade, entre outros DIAS (1997).

De acordo com CAMPOS (1999) o controle de uma empresa em termos de Qualidade Total implica execução de duas ações fundamentais: "Rotina" e "Melhorias", as quais podem ser diferenciadas pela atitude gerencial, pelo objetivo gerencial e pelo plano gerencial.

BONILLA (1994) comenta que existem vinte e duas maneiras de fracassar, total ou parcialmente, na implantação de Qualidade Total numa empresa, e que os obstáculos para se desenvolver agricultura com qualidade devem-se, entre outros aspectos, à percepção da diferença entre uma atividade biológica (agricultura) e uma puramente industrial.

Para FRANCISCHINI (1994) a Estratégia Competitiva da empresa, no que diz respeito à Manufatura, pode ser de cinco tipos diferentes: Custo, Qualidade, Tempo, Flexibilidade e Inovação.

A Estratégia de Custos é adequada apenas nos casos de produtos cujos mercados apresentam pequena competição: os produtos são padronizados e há baixo nível de exigência por parte dos clientes.

A competição baseada no tempo comporta duas possibilidades básicas: (a) qualidade aos clientes no menor prazo possível; (b) atender aos clientes dentro de uma faixa de tempo, com a menor variação possível.

A Flexibilidade diz respeito à capacidade de mudança do que é oferecido pelo sistema de produção ao cliente, para atender as suas necessidades – mix de produtos data de entrega, etc., que sofrem alterações no curto prazo.

A inovação é a estratégia utilizada pelas empresas que desejam estar sempre à frente de seus competidores com vistas a um produto diferenciado e com características sem precedentes. Ainda segundo FRANCISCHINI (1994) a "Produção é a obtenção de produtos através da interação de recursos"; portanto, o conceito de Produção envolve, em resultado (produtos, isto é, bens e serviços), uma transformação (interação) e os itens que, sofrendo a transformação, dão origem aos produtos (recursos produtivos).

A estratégia da inovação é a estratégia da gestão tecnológica. É a estratégia do profissional atualizado. É a estratégia e o papel do tecnólogo. Tal Estratégia pode ser aplicada também à produção Agroindustrial e, mais especificamente, à produção sucroalcoleira. (TOMAZELA et al, 2002).

3.2.6 – Aspectos da Produção.

Fisicamente, a produção é realizada pelos chamados Sistemas de Produção (ou de Operações). A utilização do conceito de sistema é sugerida pela definição de produção que abrange entradas (recursos produtivos diretos — materiais, energia, mão-de-obra, equipamentos, serviços e instalações), processo (transformação/interação — operações) e saídas (produtos — bens, serviços, subprodutos, rejeitos e outras saídas). A produção de açúcar e álcool por meio da cultura da cana-de-açúcar é um sistema de produção.

A cana-de-açúcar é, economicamente, uma das mais importantes culturas do Brasil.

Na Safra 2006/2007, o Brasil moeu 426 milhões de toneladas de cana-de-açúcar, produzida em aproximadamente 6,2 milhões de hectares, produziu 32,4 milhões de toneladas de açúcar (Raw Value) e 17,7 milhões de m³ de álcool. Na mesma Safra, o Brasil exportou um total de 21,4 milhões de toneladas de açúcar (Raw Value), representando aproximadamente 44% das exportações de açúcar do mundo. Embora a área colhida mecanicamente seja inferior a 25%, essa tende a aumentar rapidamente, principalmente em face ao fomento para a produção de biocombustíveis limpos e devido às leis ambientais quanto à queimada no sistema de corte manual. A adoção desse sistema de colheita causa, dentre outros, o aumento dos índices de

impurezas na carga e perdas de cana no campo. O complexo Sucroalcooleiro ocupa especial lugar de destaque no agronegócio paulista, produzindo açúcar e álcool combustível, produtos de relevância para a economia nacional (UNICA, 2007).

Considerando que na safra 2006/2007 o Brasil moeu 426 milhões de toneladas de cana-de-açúcar, e que aproximadamente 25% deste total foi colheita mecanizada, então foram colhidas em torno de 106 milhões de toneladas com colhedoras.

Para permanecer entre os maiores produtores mundiais de etanol, o Brasil deverá ter uma produção que seja suficiente para substituir 10% da demanda por gasolina em 2025, acreditando-se que essa seja uma meta palpável, desde que o País aumente sua área de cultivo de cana-de-açúcar e adote tecnologias que elevem a produtividade (FAPESP, 2007).

Segundo MAGALHÃES & BRAUNBECK (1998), o interesse pela colheita de canade-açúcar com colhedoras de cana picada tem crescido, principalmente em áreas com topografia adequada e com problemas relacionados à mão-de-obra. Essas máquinas cortam, picam, limpam e carregam a cana-de-açúcar em operações integradas.

DANIEL et al., (2001) afirmam que o paradigma contemporâneo para o desenvolvimento competitivo e globalizado da agricultura mundial, independentemente do tamanho da propriedade agro-silvo-pastoril, tem como fator preponderante o "pacote tecnológico" aplicado ao processo de produção agrícola.

Qualquer empresa agrícola, independentemente de seu tamanho e do nível tecnológico empregado na produção, deve ser considerada como um sistema de produção agrícola. O enfoque de uma propriedade agrícola como um sistema de produção, permite realizar uma análise mais completa de todos os fatores envolvidos, fornecendo, de uma forma mais objetiva, os dados necessários para o projeto, controle e cálculo dos custos do sistema envolvido (BALASTREIRE, 1987).

3.2.7 - O FMEA (Failure Modes and Effects Analysis).

O FMEA é uma ferramenta de gerenciamento de risco que tem por objetivo identificar os possíveis modos de falhas de um dado produto/processo e suas respectivas causas, bem como os efeitos dessas sobre o cliente e, através de procedimentos apropriados, permite atuar sobre tais itens de forma a reduzir e/ou eliminar a chance de tais falhas virem a

ocorrer. Conhecidas as informações mencionadas, realiza-se a determinação do impacto de uma dada falha sobre o cliente, da probabilidade de uma dada causa e/ou modo de falha ocorrer e da possibilidade de se detectar o modo de falha e/ou a causa antes que o problema atinja o cliente (HAMMET, 2000).

Todas as informações e dados levantados são reunidos em um documento, na forma de uma tabela, que permite a rápida compreensão e avaliação dos resultados obtidos. Existem duas formas de se analisar os resultados obtidos, uma tradicional, através do número de prioridade de risco (NPR) e outra mais visual e preventiva, construindo-se um gráfico em que num eixo indica-se a possibilidade de ocorrência de um dado modo de falha ou suas causas e no outro a sua severidade (impacto da falha sobre o cliente) (HAMMET, 2000).

Os objetivos associados ao FMEA têm sido aplicados desde tempos mais remotos. Não havia documentação e talvez nem método, mas muitos inventores e pesquisadores, por exemplo, devem ter tentado imaginar como aquilo que haviam produzido ou idealizado poderia vir a falhar e como tal situação se processaria (HAMMET, 2000).

O primeiro método associado àquilo que o FMEA se propõe foi desenvolvido pelo exército norte-americano. Trata-se do procedimento militar MIL-P-1629, datado de 9 de novembro de 1949, intitulado Procedures for Performing a Failure Mode, Effects and Criticality Analisys, usado na determinação dos efeitos das falhas de sistemas e equipamentos, classificadas segundo o seu impacto sobre o sucesso da missão e sobre as condições de segurança referentes ao pessoal e aos equipamentos. Na década de 60, o FMEA foi amplamente utilizado pela indústria e agências de pesquisa aeroespacial e teve papel significativo no sucesso da primeira viagem tripulada à lua. Na década de 80, a Ford Motor Company, após a desastrosa performance do Ford Pinto, adotou o FMEA e passou a aplicá-lo, usando-o para conquistar avanços tanto nas áreas de projeto como de manufatura. Ao final da mesma década, através de uma força de trabalho composta por representantes da Chrysler Corporation, Ford Motor Company e General Motors Corporation desenvolveu-se a norma QS 9000, em que foi incluído o FMEA como uma das ferramentas de planejamento avançado da qualidade. Em fevereiro de 1993, a AIAG (Automotive Industry Action Group) e a ASQC (American Society for Quality Control) patentearam os padrões relacionados ao FMEA, criando um manual. O mesmo vale para a SAE (Society of Automotive Engineers) detentora do procedimento SAE J-1739 que trata do FMEA (HAMMET, 2000).

MIYAKE (1993) refere-se aos PMPQ's - Programas de melhoria da produtividade e qualidade como sendo filosofias de trabalho para a implementação e condução sistemática de melhorias de produtividade e qualidade. Podem ser apresentadas como sendo: JIT - "Just-in-Time" (orienta os processos de produção a "produzir somente aquilo que é necessário, na quantidade certa e no momento exato"), TQC -"Total Quality Control" (sistema eficaz para a integração dos esforços de desenvolvimento, manutenção e melhoria da qualidade dos vários grupos dentro de uma organização, de tal modo a tornar marketing, engenharia, produção e assistência técnica capazes de proporcionar a plena satisfação do cliente, nos níveis essencialmente econômicos) e MPT - "Manutenção Produtiva Total" (estágio que, agrega à execução da manutenção do sistema de produção, outros aspectos, tais como: manutenção preditiva, participação de outros setores da empresa, além da manutenção propriamente dita, envolvimento de pessoal de todos os níveis hierárquicos, aproveitamento de mecanismos de motivação mediante trabalho em grupo e aproveitamento econômico de máquinas, equipamentos e instalações, considerando todo o seu ciclo de vida).

3.2.8 – MPT (Manutenção Produtiva Total) e MCC (Manutenção Centrada na Confiabilidade)

Os autores FLEMING & FRANÇA (1997), PRADHAN (1994 e 1996) e RIIS et al. (1997) expõem a MPT conforme os comentários a seguir.

A MPT visa maximizar a eficácia geral dos equipamentos e a eliminação dos desperdícios de produção, devido à deficiência dos equipamentos, através da preservação e conseqüente prolongamento do período de vida entre falhas e da vida total dos sistemas. Focando a identificação dos principais desperdícios de produção, por conseqüência, revelamse os custos associados com a falta de uma apropriada manutenção para o sistema.

Pregam o desenvolvimento de um "sistema de manutenção total" para toda a vida do sistema de produção, atuando sobre os mecanismos de falhas, sobre o projeto dos sistemas e implantando programas de manutenções preditivas e preventivas. Ou seja, para alcançar seus objetivos a manutenção preventiva não é suficiente. Desta forma, adota uma postura de inferência no projeto e de atuação frente às degenerações primárias comuns dos equipamentos - atrito, sobrecarga, pequenos ajustes/regulagens, folgas, contaminações, temperatura, sujeira

- expondo tanto os defeitos aparentes como os ocultos.

A MPT é um modelo de gestão do trabalho, que visa à máxima eficiência do sistema produtivo, através da eliminação de desperdícios e do desenvolvimento do Homem e sua relação com o equipamento. Para que isto seja possível, existe uma metodologia da MPT, baseada em oito princípios, conhecidos como os oito pilares da MPT que servem de base para sua sustentação. Os oito pilares do MPT são: Melhoria Focada, Manutenção Autônoma, Manutenção Planejada, Educação e Treinamento, Controle Inicial, Manutenção da Qualidade, TPM Office, Segurança ou SHE.

A grande vantagem, empregada através da MPT é sua filosofia. Para obtenção dos resultados, promove uma atuação na organização da entidade produtiva (GERAGHTY, 1996) buscando a integração de todos os participantes do sistema de produção – desde a alta gerência até os operadores - na preservação das instalações produtivas, relacionando objetivos corporativos a metas de manutenção. Ou seja, procura romper a relação tradicional, "eu opero, você conserta". Como meio, utiliza conceitos baseados em grupos, envolve os operadores na manutenção dos equipamentos (manutenção autônoma), utiliza um gerenciamento motivacional através de pequenos grupos para promover a manutenção preventiva e preditiva e estimula a multicapacitação das diferentes profissões – mecânico, eletricista, funileiro, soldador, caldeireiro, encanador e montador.

Em um ambiente de MPT a manutenção não é apenas dos equipamentos nem da produção é da "produtividade". Isso tira a MPT do foco exclusivo da manutenção e muda a compreensão das pessoas com relação ao seu papel, tornando a MPT como uma missão de todos na empresa (FLEMING & FRANÇA, 1997 e FRANÇA, 1999).

Segundo BIASOTTO (2006) com o processo de globalização, as empresas brasileiras passaram por um período de grandes mudanças para se enquadrarem na nova ordem econômica mundial. Esse processo de mudança tem implicações diretas na postura das organizações. Dentro deste contexto, surge a *World Class Manufacturing* (WCM) ou Manufatura de Classe Mundial, que se caracteriza pela alta disponibilidade e flexibilidade dos meios de produção. Para o alcance desse estágio na manufatura, a manutenção industrial é um elemento chave, que, adaptada ao ambiente de competição globalizado, caracteriza o que se chama de Manutenção de Classe Mundial. Descreve o sistema de gestão TPM (*Total Productive Maintenance*) ou (MPT) Manutenção Produtiva Total como o sistema de gestão

fundamental na busca pela classe mundial nos processos de manutenção. Propõe ainda um modelo de aplicação da metodologia de gestão estratégica do *Balanced Scorecard* (BSC) para auxiliar no gerenciamento do Pilar da Manutenção Planejada, o pilar responsável pela gestão da manutenção no programa MPT. Sustenta que esta metodologia permite alinhar os indicadores de desempenho à estratégia proposta para o pilar (visão, missão e objetivos) nas perspectivas de finanças, clientes, processo interno e aprendizado e crescimento; e demonstra as relações de dependência (causa-efeito) entre os indicadores adotados pelo pilar num mapa estratégico, no intuito de auxiliar na tomada de decisão das devidas ações de melhoria (iniciativas estratégicas) que a função manutenção deve realizar.

O BSC estimula a constante re-alimentação da estratégia, promovendo a melhoria contínua e mostrando-se a evolução natural no gerenciamento da função manutenção que busca atingir e manter o padrão de classe mundial em seus resultados (BIASOTTO, 2006).

De acordo com JIPM (1997), a estrutura básica da MPT contempla: 8 pilares, 4 fases divididas em 12 etapas. Embora cada empresa, em função de sua cultura, tenha suas peculiaridades para a implementação da MPT, existem alguns princípios que são básicos para todas elas e que são denominados os pilares de sustentação da MPT (NAKAJIMA, 1989; PALMEIRA, 2002; JIPM, 2007; NEVES, 2002).

- 1. **Pilar da melhoria focada ou específica:** utiliza-se do conceito de manutenção corretiva de melhorias para atuar nos desperdícios crônicos relacionados aos equipamentos;
- 2. **Pilar da manutenção autônoma:** baseia-se no treinamento teórico e prático recebidos pelos trabalhadores focado no espírito de trabalho em equipe para a melhoria contínua das rotinas de produção e manutenção;
- 3. **Manutenção planejada:** refere-se às rotinas de manutenção preventiva baseadas no tempo ou na condição do equipamento, visando a melhoria contínua da disponibilidade e confiabilidade além da redução dos custos de manutenção;
- 4. **Treinamento e educação:** refere-se à aplicação de capacitação técnica e comportamental para liderança, a flexibilidade e a autonomia das equipes.
- 5. **Gestão antecipada:** baseia-se nos conceitos de prevenção da manutenção onde todo o histórico de equipamentos anteriores ou similares é utilizado desde o projeto afim de que se construam equipamentos com índices mais adequados de confiabilidade e mantenabilidade;

- 6. **Manutenção da qualidade:** refere-se à interação da confiabilidade dos equipamentos com a qualidade dos produtos e capacidade de atendimento a demanda;
- 7. **Segurança, saúde** e **meio ambiente:** dependente da atuação dos demais pilares, esse pilar tem o enfoque na melhoria contínua das condições de trabalho e na redução dos riscos de segurança e ambiental;
- 8. **Melhoria dos processos administrativos:** também conhecido como MPT de escritório (TPM *Office*), utiliza-se dos conceitos de organização e eliminação de desperdícios nas rotinas administrativas, que de alguma maneira acabam interferindo na eficiência dos equipamentos produtivos e processos.

Por ser a MPT uma filosofia que transforma as organizações e que também depende do aprendizado, da motivação e amadurecimento intelectual dos envolvidos, em geral as suas 12 etapas requerem aproximadamente 3 anos para a implementação e podem ser agrupadas em quatro fases (NAKAJIMA, 1989, *p. 45-46*).

- 1ª fase: Preparação que corresponde a obtenção de um ambiente propício para o início da implementação, onde se busca a conscientização e o comprometimento de toda a organização através do lançamento do programa 5S que será descrito mais adiante;
- 2ª fase: Introdução onde ocorre o lançamento do projeto. As atividades relacionadas ao lançamento devem servir como elemento motivador para toda a organização;
- **3ª fase**: Implantação, onde todas as atividades relacionadas à melhoria da eficiência global dos equipamentos (OEE Overall Equipment Effectiveness) são postas em marcha;
- **4ª fase**: Consolidação, onde a manutenção dos resultados obtidos durante a implementação passa a ser o grande desafio.

Ainda segundo Nakajima (1989) para que a MPT seja implementada com sucesso e alcance os resultados esperados, se faz necessário cumprir as 12 etapas:

- 1ª Etapa: Anúncio da alta direção da decisão de implantar MPT;
- 2ª Etapa: Campanha para introdução e esclarecimento iniciais;
- **3ª Etapa:** Estruturação do orgão encarregado da implementação:
- 4ª Etapa: Definição da política básica e metas a serem alcançadas;
- 5ª Etapa: Elaboração do plano diretor de implementação
- 6ª Etapa:. Início das atividades;
- 7ª Etapa: Implementação de melhorias nas máquinas e equipamentos;

8ª Etapa: Estruturação da Manutenção Autônoma;

9ª Etapa: Estruturação do setor de Manutenção e da Fase de Implementação;

10ª Etapa: Educação e treinamento para melhoria das habilidades do Pessoal da produção e de Manutenção;

11ª Etapa: Estrutura da gestão de equipamentos na fase inicial de funcionamento;

12ª Etapa: Consolidação do MPT e incremento do nível de Fase de Consolidação.

A MCC (Manutenção Centrada na Confiabilidade), ou RCM (Reliability Centered Maintenance), é uma sistemática que visa manter a confiabilidade inerente de qualquer sistema a um custo compatível. Buscam promover a modelagem entre os métodos de manutenção corretiva, preventiva e preditiva e o reprojeto dos equipamentos a fim de programar um equilíbrio entre a disponibilidade, confiabilidade e segurança operacional dos equipamentos a um custo de manutenção equilibrado com as metas organizacionais. Estabelece uma estratégia de manutenção para cada sistema, ao tempo que identifica pontos chaves para implementação de melhorias nos projetos futuros. Ou seja, como sistemática adota duas linhas de ações que definem muito bem seus propósitos (MOUBRAY, 1997; PRADHAN, 1994; PRADHAN, 1996; SMITH, 1993):

- avaliação do desempenho da mantenabilidade dos equipamentos/sistemas e identificação de pontos não satisfatórios para consequente definição de requisitos ao reprojeto ou mesmo projeto de modelos mais avançados;
- modelagem das atividades através da seleção do método de manutenção mais eficaz para cada modo de falha preponderante identificado.

A MCC tem por critério a preservação da função do sistema ao invés da preservação do equipamento. Para tal, conduz uma seqüência de análises que inicia por uma definição do sistema que será mantido, através da análise funcional, prossegue pela definição das funções operacionais e das falhas funcionais do sistema e de seus modos de falha, ou seja, de como os sistemas deixam de cumprir suas funções operacionais, pela priorização das falhas de acordo com suas conseqüências econômicas, operacionais, de segurança e ambientais pela seleção dos métodos de manutenção aplicáveis a um custo-eficiente, por meio de diagramas de decisão (FLEMING & FRANÇA, 1997; MOUBRAY, 1997; SMITH, 1993; SUTTON, 1995).

GERAGHETY (2002) diz que a Manutenção Produtiva Total (MPT) está relacionada com um repensar fundamental dos processos do negócio para obter melhorias no custo, na qualidade, velocidade, dentre outros. Enfatiza a importância das pessoas numa filosofia de "capaz de fazer" e "melhoria contínua", e a importância do pessoal de produção e de manutenção trabalhar em conjunto.

Segundo GERAGHETY (2002), a principal medida é conhecida como Efetividade Total do Equipamento (OEE – Overall Equipment Effectiveness), cujo índice amarra "seis grandes desperdícios" em três valores mensuráveis: Disponibilidade, Desempenho e Produção, os quais, quando multiplicados mostram o desempenho de qualquer parte de um equipamento.

Muitas aplicações de Manutenção Produtiva Total (MPT) têm obtido excelente progresso em diversas áreas. Estas incluem:

- Melhor compreensão do desempenho dos seus equipamentos;
- Melhor compreensão da criticidade dos equipamentos, onde vale a pena aplicar esforços de melhoria e quais os benefícios potenciais;
- Equipe de trabalho melhorada e uma abordagem menos conflituosa entre produção e manutenção;
- Procedimentos melhorados de preparação, com execução de tarefas de manutenção diária, melhor treinamento de operadores e do pessoal de manutenção, os quais conduzem à redução dos custos e melhor serviço;
- Entusiasmo geral aumentado da força de trabalho;

Ainda segundo GERAGHETY (2002), o processo da Manutenção Centrada em Confiabilidade (MCC) consiste em responder sete questões principais sobre a planta e seus subsistemas, a saber:

- Quais são as suas funções (da planta e seus subsistemas)?
- De que forma elas (as funções) podem falhar?
- Os que as fazem falhar?
- O que acontece quando elas falham?
- O que importa se elas falham?
- Pode alguma coisa ser feita para predizer ou prevenir a falha?
- Que devemos fazer se não podemos predizer nem prevenir a falha?

Para o autor, nenhuma política de manutenção é intrinsecamente "melhor" do que qualquer uma das outras. Cada uma possui o seu lugar, sendo que o verdadeiro desafio consiste em encontrar qual é este lugar.

A visão moderna da manutenção é que ela está totalmente voltada para preservar as funções dos bens físicos; promovendo tarefas para atender ao propósito central de assegurar que as máquinas disponíveis são capazes de realizar o que os usuários desejam que elas executem, quando eles querem que elas assim o façam (GERAGHETY, 2002).

A manutenção preditiva é a gestão de manutenção desenvolvida de modo a cobrir as lacunas da preventiva. A análise de óleos lubrificantes é, provavelmente, a técnica preditiva mais antiga. Coletando-se óleo lubrificante, pode-se avaliar, com um grau de certeza grande, a condição de vários componentes internos de máquinas rotativas, sem a necessidade de intervir com o funcionamento dela. Outras formas de análise são: vibrações; temperaturas; corrente elétrica; fluxo magnético; corrente de fuga; Ultra-sonografia. A manutenção Corretiva aguarda até uma falha ocorrer e então remedia a situação, enquanto que na manutenção Preventiva, uma atenção regular manterá afastado um modo de falha periódico. Assim, a manutenção Preditiva assume a visão de que se devem examinar os seus "sinais vitais" e inferir o que o equipamento está tentando relatar (GERAGHETY, 2002).

Para MOUBRAY (1997) a Manutenção Detectiva é um termo aplicado aos tipos que não são adequadamente atendidos pelas outras três políticas tradicionais. Estes são dispositivos que somente necessitam trabalhar quando necessário, e não contam quando estão em um estado de falha. Eles geralmente requerem uma verificação periódica para averiguar se ainda estão de fato operando. Um bom exemplo é o sistema de alarme de incêndio.

A soma do capital empregado em bens imóveis juntamente com um aumento acentuado do custo de capital gerou a necessidade de maximizar a vida dos equipamentos. Os custos de manutenção ocupam, em diversos setores, o segundo, senão, o principal elemento dos custos operacionais (MOUBRAY, 1997).

A preocupação com os desperdícios pela não produção ganham mais enfoque, pois, à medida que a filosofia do *just-in-time* se desenvolve, há uma redução dos estoques a níveis de utilização quase instantânea e, assim, qualquer interrupção do fluxo produtivo, em qualquer ponto do processo de manufatura, passa a ocasionar grandes paradas em toda a planta. As falhas de planejamento de produção e manutenção tornam-se mais evidentes e

com consequências mais sérias. Mesmo sendo uma técnica poderosa, observa-se a incapacidade da preditiva em resolver todos os problemas de manutenção (GERAGHETY, 1996). Nesse contexto, cresce em interesses a "Manutenção para a Produtividade Total (MPT)", com o objetivo de eliminar os desperdícios crônicos e identificar as potenciais fontes de desperdício por meio de atuação no modelo organizacional. A meta é de atingir a quebra-zero ou defeito-zero durante a operação do equipamento.

Segundo o Manual PMBOK® (2004), "O Gerenciamento de Projetos é a aplicação de conhecimento, habilidades, ferramentas e técnicas às atividades do projeto a fim de atender aos seus requisitos". O conhecimento a ser aplicado está relacionado às seguintes áreas de conhecimento do PMBOK®: integração, escopo, tempo, custos, qualidade, recursos humanos, riscos e comunicação, porém sem ser restringido a elas. Associados a esse conhecimento encontram- se ferramentas, técnicas e metodologias, que somados, garantem o sucesso do projeto.

Segundo TOMAZELA et al (2002) a aplicação da Manutenção Produtiva Total (MTP) aliada a Administração Limpa e Enxuta (ALE) deve ocasionar a redução dos impactos contra o meio ambiente, melhoria dos índices de produtividade, economia de recursos naturais e financeiros e enriquecimento de tarefas para garantia de estabilidade de empregos. Desta forma, projeta-se o tripé do desenvolvimento sustentável, formado pelo econômico, ambiental e social, a partir dos quais poderão ser definidos indicadores de gestão tecnológica em manutenção de máquinas e equipamentos agrícolas. Quanto aos aspectos econômicos, estudos de caso demonstram melhorias quanto ao custo, tempo e flexibilidade. Em relação aos aspectos sociais, podem-se estabelecer indicadores para segurança, saúde e bem estar. No que tange aos aspectos ambientais, há que definir indicadores para uso e manejo dos recursos naturais, reciclagem, reuso, recondicionamento e a interatividade com a comunidade.

Entre a década de 70 e início da década de 80, a disseminação da mecanização e da automação, em conseqüência da expansão industrial automotiva, relacionou-se ainda mais às falhas aos padrões de qualidade. As novas tecnologias alteraram e diversificaram o comportamento dos modos da falha de um componente para outro. Além disso, ainda, ocorreu a pressão das indústrias automobilísticas sobre os fornecedores de autopeças e a entrada dos produtos japoneses com os conceitos de TQM (*Total Quality Management*) (MOUBRAY, 1997).

SANDERS (1991) explica: "Ninguém pode garantir que os atos feitos numa determinada tarefa possam estar suficientemente livres de algum incidente ou acidente; errar é humano". Prevalece em muitas organizações a cultura que vem do senso popular onde "errar é humano", mas a confiabilidade do "fator humano" é tão ou mais importante do que os demais fatores de produção.

LEHMANN (2001) resume que as falhas humanas em empresas podem ser responsáveis por queda na produtividade, retrabalhos, acidentes de trabalhos, além de danos materiais e pessoais irrecuperáveis. As agroindústrias por absorverem mão de obra local, quando na zona rural, necessitam investir na prevenção das falhas humanas pois seus funcionários não possuem experiência e nem tão pouco afinidade com a cultura organizacional.

3.3 - Produção Enxuta

Segundo WOMACK (1991), a expressão produção enxuta utiliza o adjetivo para determinar menores quantidades de componentes incorporados em determinado processo, por comparação com a produção tradicional: menor esforço dos operários em seus postos de trabalho, menor utilização de espaço para produção, menor investimento em ferramentas, ausência de parada de máquinas e equipamentos em virtude de uma manutenção adequada e eficiente, menor quantidade de horas de planejamento para desenvolver novos produtos. Requer também menor quantidade de estoques no ambiente de produção, além de resultar em menor quantidade de defeitos e produzir uma maior e sempre crescente variedade de produtos.

Produção enxuta é, até certo ponto, uma simbiose de filosofias:- respeito à vida e à natureza; métodos:- redução do desperdício de recursos e produção de resíduos devido à esgotabilidade e capacidade de recuperação da natureza; técnicas:- conjunto dos métodos e pormenores práticos essenciais à execução perfeita de uma arte ou profissão para a produção de um bem, serviço ou informação; - tecnologias - aplicação dos conhecimentos científicos e tecnológicos a um determinado ramo de atividade, seja teórica ou prática, para obtenção dos produtos citados, tais como: qualidade total, produtividade, programas de aperfeiçoamento contínuo, automação, just-in-time e flexibilidade da produção (TOMAZELA, 1999).

A indústria, em geral, e em particular a automobilística mundial, vem passando, há alguns anos, por processos de mudanças profundas na sua administração (MATTAR, 1997). Essas mudanças, iniciadas na indústria automobilística japonesa, visam basicamente ao aumento da produtividade e da qualidade e a redução de custos, mediante a aplicação de técnicas desenvolvidas no Japão, a partir de teorias americanas, denominadas, no seu conjunto, de Produção Enxuta.

Logo após o fim da segunda grande guerra, os japoneses iniciaram a produção de carros de passeio. A princípio desejavam utilizar métodos da produção em massa que haviam sido estudados por diversos administradores japoneses nos Estados Unidos (WOMACK, 1998). No entanto, a tentativa em produzir automóveis em larga escala esbarrou numa série de problemas: o mercado japonês era limitado e demandava diversos modelos diferentes de automóveis, sendo que cada modelo não possibilitava escala para produção em massa; a força de trabalho nativa do Japão organizou-se formando sindicatos fortes, que exigiam maiores garantias de emprego, conseguindo restringir bastante os direitos das empresas de demitirem empregados, o que ocorre com freqüência na produção em massa, e a economia do País, devastado pela guerra, não dispunha de recursos para realizar os altos investimentos necessários para a implantação da produção em massa.

Premidas por essas dificuldades, a Toyota, inicialmente, e a Nissan, posteriormente, criaram novos métodos de produção e administração, conseguindo, simultaneamente, produzir modelos em pequena escala e diminuindo os custos. O conjunto desses métodos foi denominado de Produção Enxuta. Após algum tempo, as diversas montadoras mundiais passaram a trabalhar desta forma (WOMACK, 1991).

Segundo SLACK (1997), a Produção Enxuta visa atender à demanda instantaneamente, com qualidade perfeita e sem desperdício. A qualidade deve ser alta porque distúrbios na produção, devido a erros de qualidade, irão reduzir o fluxo de materiais, reduzir a confiabilidade interna de fornecimentos, além de gerar o aparecimento de estoques, caso os erros reduzam a taxa de produção em algum ponto da operação. A confiabilidade é um prérequisito para um fluxo rápido.

Para garantir a qualidade de seus produtos, a indústria automobilística desenvolveu normas para seus fornecedores: A QS-9000 foi desenvolvida e implementada desde 1994 como um requisito específico da indústria automotiva Americana. Os fabricantes de

automóveis dos Estados Unidos (Daimler Chrysler, Ford e General Motors) criaram os Requisitos de Sistema da Qualidade QS-9000 de forma a harmonizar em um único sistema os requisitos da qualidade a serem aplicados aos seus fornecedores (SLACK, 1997).

Com a implementação da QS-9000 as empresas estarão desenvolvendo um sistema de gestão da qualidade que proporciona a melhoria contínua, enfatizando a prevenção de defeitos e redução da variação e desperdício na cadeia de fornecimento (SLACK, 1997).

3.4 - Produção Limpa

Segundo a UNEP (1995), o conceito de Produção limpa, dentre outros conceitos que ela considera importantes, é entendido como sendo "a contínua aplicação de uma estratégia ambiental preventiva e integrada, aplicada a processos, produtos, e serviços, para aumentar o eco-eficiência e reduzir riscos humanos e ao ambiente". Aplicada aos processos prevê a "conservação de matérias primas e energia, eliminação de matérias primas tóxicas e redução na quantidade e toxidade de todas as emissões e resíduos". Em relação a produtos: "redução nos impactos negativos ao longo do ciclo de vida do produto, da extração da material prima até a disposição final". Para serviços pressupõe "incorporação de conceitos ambientais dentro do projeto e execução dos serviços".

Produção Limpa ultrapassa os objetivos da auditoria de redução de resíduos e dos procedimentos previstos nas normas técnicas, para incorporar fatores jurídicos, políticos e sociais. Estabelece a visão mais ampla das relações entre os sistemas de produção e o ambiente (FURTADO, 1997). "Sua filosofia medular consiste na substituição do modelo "endof-pipe" - modelo que trata os resíduos antes de descartá-lo ao meio ambiente - controle, contenção e tratamento no interior da fábrica - por conceitos, estratégias e procedimentos que levam em conta a prevenção dos impactos à saúde e ao meio ambiente, do berço-a-cova "cradle-to-grave", ou seja, matéria-prima e suas fontes naturais, processos industriais, uso ou consumo de produtos, destino e tratamento de resíduos, produtos e suas embalagens" (FURTADO, 1997).

Para TOMAZELA (1999), produção limpa é a ação contínua de produzir com a menor quantidade de recursos sem que estes gerem resíduos durante a sua produção e o seu ciclo de vida e, caso gerem, possam ser reutilizados, recondicionados ou reciclados.

Os sistemas de produção deverão buscar novas opções de gestão da produção, já que o simples controle, tratamento ou contenção de resíduos no interior da fábrica (modelo "endof-pipe") não está apresentando resultados satisfatórios uma vez que não reduzem os desperdícios e limpar custa caro.

Segundo ROMM (1996) descarte exige mão-de-obra e novos insumos. Muitas vezes a destinação final ocorre fora do ambiente gerador, o que implica procura de local apropriado. O aumento do custo, daí proveniente, reduz a capacidade de competir. Além da perda de produtividade e aumento de custos, produtos tóxicos significam riscos à saúde do trabalhador. Cuidar do seu ambiente de trabalho, em última análise, é preservar sua saúde. Como estratégia, a produção limpa pode melhorar a produtividade, baixar custos preservar a saúde e ganhar prestígio de imagem na sociedade.

Produção Limpa (PL) implica evitar (prevenir) a geração de resíduos, com profundos reflexos no comportamento da empresa, quanto ao processo, produto, embalagens, descarte, destinação, manejo de lixo industrial e restos de produtos, comportamento de consumidores e política ambiental da empresa. Os demais princípios têm maior objetividade e efetividade do que o compromisso de aprimoramento da conduta ambiental, proposto pela ISO 14001. Produção Limpa (PL) e Produção Mais Limpa (P+L) são distintas quanto a determinados princípios, mas ambas defendem a prevenção de resíduos na fonte, a exploração sustentável de fontes de matérias primas, a economia de água e energia e o uso de outros indicadores ambientais para a indústria. Produção Limpa vai mais longe, estabelecendo os compromissos para precaução (não usar matérias primas, nem gerar produtos com indícios ou suspeitas de geração de danos ambientais), visão holística do produto e processo (avaliação do ciclo de vida), controle democrático, e direito de acesso público a informações sobre riscos ambientais de processos e produtos. Estabelecem critérios para tecnologia limpa, reciclagem atóxica, marketing e comunicação ambiental. Limita o uso de aterros sanitários e condenam a incineração indiscriminada como estratégias de manejo de lixo e resíduos (FURTADO, 1997).

Produção Limpa e Produção Mais Limpa utilizam critérios e padrões internacionais, ao passo que as diretrizes para a série ISO14000 poderão ser determinadas por quadros de certificação locais, não necessariamente orientados para a sustentabilidade. A certificação para a ISO14000 atenderá aos interesses dos acionistas, mas não, necessariamente, dos demais agentes econômicos que defendem o desenvolvimento sustentável. A Série ISO14000 não

reduzirá, de *per se*, custos ambientais não contabilizados, tais como seguros, ações civis, perdas materiais, saúde ocupacional ou mesmo perda de mercado. Estas são vantagens explícitas da Produção limpa (FURTADO, 1997).

As Normas Ambientais são sistemas de gerenciamento interno na empresa, sem compromissos ou perspectivas efetivas de reorientação do sistema de produção de bens e serviços. Estes são atributos inerentes da Produção limpa. As iniciativas da empresa para Produção Limpa requerem maiores compromissos para reorientação de processos e produtos do que para a Produção Mais Limpa, levando-se em conta que esta última apóia-se em princípios menos rígidos do que a primeira. Ambas, porém, vão muito mais longe do que a ISO 14001 ou do esperado para as demais normas da Série ISO 14000. Conseqüentemente, auditoria é vocábulo de uso comum, porém, com significado, abrangência e resultados diferentes, quando utilizada para atender Normas Técnicas ou para implantar a PL ou a P+L (FURTADO, 1997).

O objetivo maior das normas e demais instrumentos é melhorar as condições ambientais e promover o desenvolvimento sustentável, a fim de proteger e melhorar a geração atual e não comprometer as oportunidades de escolha das gerações futuras.

A Produção limpa em geral não é considerada apenas como princípios, pois cada princípio pode ser associado com ferramentas, tais como avaliações ambientais, etc. Portanto, muitas das propostas descritas como ferramentas para a Ecologia Industrial são também consideradas ferramentas da Produção limpa. Assim, a maior divergência, encontra-se na geração deliberada de co-produtos, que é aceita pela Ecologia Industrial, mas não pela Produção limpa. Além disso, a Produção limpa tem como pressupostos fundamentais, trabalhados a partir do Manual de auditoria para prevenção de resíduos (PR) e economia de água e energia na fábrica, desenvolvido pelo Departamento de Engenharia de Produção, Fundação Vanzolini, [1998]:

- Visão sistêmica do processo;
- Aplicação de princípios fundamentais (precaução, prevenção); e,
- Direito de saber. (FURTADO, 1997).

A descrição de indicadores é adequada também para cumprir as determinações das ferramentas sugeridas pela Produção limpa e Produção Mais Limpa. Porém, as premissas fundamentais devem ser implantadas pelo estabelecimento de controles "sim/não". Um

exemplo de como implantar tais controles é pela resposta aos indicadores da Produção limpa, de acordo com o proposto pela Fundação Vanzolini (QUEIROZ, 2007). De modo geral os indicadores encontram-se no formato auditoria, porém, devem-se observar muitos desses indicadores pressupõem a obtenção de informações previamente à auditoria, e devem ser customizadas de acordo com o empreendimento avaliado.

A responsabilidade social pode ser analisada sob dois aspectos distintos, o interno e o externo. A análise interna leva em conta a saúde e segurança no trabalho e pode ser avaliada pelo ISO 18000; enquanto esta ainda não está completamente definida, podem-se utilizar similares como a BS 8800.

Segundo QUEIROZ (2007) o levantamento de dados para a caracterização do setor eletroeletrônico permite verificar se o conceito da Ecologia Industrial pode ser aplicado neste setor via *software* e também facilita a obtenção de índices de sustentabilidade.

3.5 - Administração Limpa e Enxuta (ALE)

A Produção Mais Limpa foi definida pela UNEP (*United Nations Environmental Program*), em 1992, como "a aplicação contínua de uma estratégia integrada de prevenção ambiental a processos, produtos e serviços, para aumentar a eficiência de produção e reduzir os riscos para o ser humano e o ambiente" (GIANNETTI, 2006). Por outro lado, a Produção Enxuta faz analogia ao ato de produzir sem desperdícios, utilizando-se de algumas ferramentas e de um pensamento sistêmico com auxílio de determinadas técnicas, visando à utilização de uma menor quantidade de recursos para a execução uma tarefa ou para a concepção de um produto. Sendo assim, enquanto o foco da Produção Limpa é para a minimização na fonte da formação do resíduo, a Produção Enxuta preocupa-se com o fluxo de materiais, o metabolismo industrial e sua interação com o meio ambiente.

A produção limpa e o planejamento ecológico levam as empresas a eliminar o desperdício sistematicamente com a melhoria dos processos. Essa sistemática invariavelmente aumenta a produtividade e enxuga a produção.

Segundo TOMAZELA (1999), os resultados apresentados em diversos estudos de caso, tais como reciclagem de pneus e latas de alumínio, substituição de combustível e manutenção de frotas, demonstram benefícios obtidos quando são aplicados sistemas de gestão

baseados na Administração Limpa e Enxuta (ALE) como estratégia de competitividade. Considerando que as atividades agroindustriais são atividades de produção, e que também necessitam ser competitivas, a ALE é uma ferramenta que pode e deve ser aplicada nos sistemas de produção agrícola e agroindustrial, como diferencial para obtenção de uma maior produtividade (TOMAZELA et al, 2002).

PORTER (1993) afirma que poluição é fundamentalmente uma manifestação do desperdício econômico. É o uso incompleto e sem proveito de recursos ou a queima de alguma coisa. Então, a ocasião própria para diminuir os custos com a eliminação da poluição pode parecer tudo, exceto rara.

ROMM (1996) cita que Henry Ford, com sua obsessão em eliminar os desperdícios de tempo e de recursos, criou as linhas de montagem e as partes intercambiáveis que garantiram a produção em série. A preocupação de FORD em aproveitar melhor os recursos, com a utilização de toda a matéria prima, redução de tempos de operação e outras implementações em suas fábricas, mostra-nos que já naquela época eram aplicados os conceitos de produção enxuta e de produção limpa.

ROMM (1996) cita ainda que Ford, no seu livro *Today and tomorrow* de 1926, tem um capítulo sobre o tratamento dado às árvores como sendo madeira, onde sugere a menor utilização de tábuas para confecção de caixotes, e que as caixas utilizadas, em vez de se tornarem lixo ou fogo, fossem reaproveitadas. Com as técnicas utilizadas, Ford foi capaz de reduzir a utilização de madeira em dois terços, mesmo dobrando a produção.

Para ANDRADE (2004), o objetivo do desenvolvimento sustentável é a obtenção de processos de produção, ciclos de produtos e padrões de consumo que permitam o desenvolvimento se processar. Se aceitar que a gestão ambiental objetiva o desenvolvimento sustentável, precisa-se sistematizar tal fato criando conceitos que permitam a viabilização do processo. Máquinas podem fazer movimentos mais precisos e mais rápidos que os animais, mas, certamente, não podem entender conceitos, mesmo os tão caros à vida, como o desenvolvimento sustentável e a responsabilidade social.

TOMAZELA et al (2002) enfatizam que os sistemas de produção agrícola são importantes e se inserem como um elemento chave na perspectiva de vida das organizações para desenvolver a economia, preservar o ecossistema e defender a distribuição equitativa propiciada por suas atividades. A busca contínua pela competitividade, como garantia de

sobrevivência num mercado globalizado, deve estar atrelada a uma garantia de melhoria na qualidade de vida da sociedade. Surge daí a necessidade de soluções sistêmicas voltadas para o bem-estar do homem. Afirmam ainda que estratégias de melhoria nos sistemas de manutenção de máquinas agrícolas e conseqüentemente na gestão da produção agroindustrial, é possível a preservação dos recursos naturais atrelada à exigência de produtos agropecuários que propiciem bem-estar à humanidade preservando os ecossistemas sem se descuidar da responsabilidade social. A Administração Limpa e Enxuta (ALE) no âmbito do agronegócio fazem parte dos requisitos necessários para que se possam alcançar tais propósitos.

Para FURTADO (1998), o desenvolvimento da produção baseada nos conceitos de produção limpa, acima de tudo, será preciso contar com pessoal qualificado em centros acadêmicos, institutos de pesquisas, empresas, organizações governamentais e não-governamentais. As previsões apontam para oportunidade em desenvolvimento de capacitação para serviços, abrangendo: engenharia técnica, avaliação "in situ", design de processos, especificação de controles, gerência de projeto, consultoria ambiental para avaliação de impacto, auditoria e monitoramento ambiental e gestão de riscos; gestão empresarial baseada no uso de sistemas especializados para estimativas de custos, avaliação de impactos, estimativas de impactos ecológicos por processos agroindustriais, análises financeiras e gestão de bases de dados sobre o sistema de produção.

Será dada maior atenção para tecnologias limpas, menor ênfase aos métodos clássicos de controle de poluição e maior demanda em manejo de resíduos perigosos e tóxicos. A Administração Limpa e Enxuta (ALE), é a conscientização e a maneira de produção sugerida.

Não é somente enquadrar-se nas Normas ISO-9000 (Qualidade) e ISO-14000 (Gestão Ambiental) e com isso adquirir vantagem competitiva, mas sim para melhorar as condições do ambiente e com isso a qualidade de vida e obter a satisfação do cliente pela prevenção de não conformidades em todos os estágios da produção, desde o projeto até os serviços associados. Entretanto, outros aspectos não contemplados na ISO-9000 levaram a edição da ISO-14000, as quais propõem que as empresas tomem consciência em reduzir custos provenientes do desperdício de recursos e seus funcionários tornem-se especialistas nesse modelo de gestão – a base da Administração Limpa e Enxuta (ALE) – para ajudar na preservação de seus empregos e do meio ambiente.

As empresas modernas estão ficando cada vez mais limpas, organizadas, silenciosas, seguras e confortáveis, o que tem levado instituições internacionais de normalização propor Normas para Sistemas de Gestão Integrada "SGI" para segurança de trabalho, saúde ocupacional, meio ambiente e qualidade (SSMAQ). A gestão ambiental das empresas desfruta hoje o mesmo prestígio da gestão da produtividade e da qualidade, financeira, tecnológica e mercadológica. Investimentos em qualidade ambiental, do "berço à cova", incrementam os ganhos de produtividade e de competitividade dos processos de produção. O sistema educacional em qualquer nível deverá capacitar seu corpo docente para a transferência de conhecimentos para a prevenção da poluição e para a administração enxuta e limpa.

3.6 - Operações de Mecanização Agrícola

Em conformidade com a ABNT (1971), operação agrícola é "toda atividade direta e permanentemente relacionada com a execução do trabalho de produção agropecuária". O trabalho de produção agrícola, em sua maior parte, é realizado por etapas cronologicamente distintas, uma vez que está sujeita à periodicidade, tanto das condições climáticas como das fases de desenvolvimento da produção agropecuária.

Segundo MIALHE (1974), mecanizar racionalmente as operações agrícolas constitui o objetivo básico do estudo da mecanização agrícola. Entende-se por mecanização racional o emprego de um conjunto ou sistema de máquinas operadas de forma técnica e economicamente organizadas, na execução das tarefas exigidas pela produção agrícola, visando obter o máximo de rendimento útil com o mínimo de dispêndio de energia tempo e dinheiro. O estudo das operações visa racionalizar o emprego das máquinas, implementos e ferramentas na execução das mesmas. Para isso, é necessário não apenas o estudo analítico das operações, a fim de determinar "o que fazer" e "quando fazer", mas também a criteriosa seleção de métodos e a escolha de espécimes mais adequados a cada situação.

Segundo STRICKLAND et al. (2001), no passado os estudos de desempenho de máquinas a campo eram realizados com cronômetros, pranchetas e mecanismos de gravação, consumindo muito tempo e necessitando de uma pessoa ou uma equipe de campo para apontamentos.

O advento dos monitores de colheita para fins de obtenção de mapas de produtividade tornou a coleta de dados mais fácil (GRISSO et al., 2002).

Os dados adquiridos durante a colheita fornecem informações relativas a características operacionais da colhedora como velocidade, modelos de tráfego, produtividade e tempo de descarga, bem como influências do relevo e características do operador sobre a capacidade de campo da colhedora (STRICKLAND et al., 2001; GRISSO et al., 2002).

3.6.1 - Mecanização Agrícola e sua Relação Sócio Ambiental.

MANTOVANI et al (1998), cita que a indústria brasileira tem respondido positivamente, melhorando a eficiência de utilização de seus equipamentos agrícolas, principalmente daqueles providos de mecanismos eletro-eletrônicos para controle de operação e com facilidade de uso. Tal fato demanda operadores treinados para uma melhor utilização desse potencial tecnológico, não obstante o predomínio de mão de obra sem qualificação, pouco treinada e de baixa escolaridade, além de condições de trabalho desfavoráveis. Cita ainda uma intensa modificação no meio rural pelo uso intensivo de tecnologia de ponta, visando à racionalização do uso de recursos naturais e redução do efeito nocivo no meio ambiente.

BORSHCHOV et al (1988) recomendam que durante as instruções introdutórias aos operadores de máquinas agrícolas, estas devam ser feitas inteiramente na forma de discussão inteirando-os do processo de trabalho e com instruções operacionais diretamente nas máquinas, onde os métodos seguros de prevenção de acidentes devem ser incorporados a um registro especial.

Segundo DANIEL et al. (2001), a capacitação e treinamento de recursos humanos em mecanização agrícola no Brasil estão muito aquém das necessidades, tanto quantitativa como qualitativamente. Os autores citam que a frota brasileira de tratores agrícolas em operação era de cerca de 600 mil unidades, e apenas 30% de seus operadores (tratoristas) receberam uma capacitação formal; os restantes "aprenderam a manejar" esse tipo de máquina, de forma intuitiva, na propriedade rural onde trabalhavam em outras atividades, em sua maioria oriunda do trabalho braçal.

DANIEL (1999) cita a mecanização conservacionista como o conjunto de decisões e ações sobre o planejamento do balanço e da utilização energética em mecanização agrícola visando à preservação e melhoramento das características do solo, com o objetivo de tornar a produção agrossilvopastoril competitiva no processo de globalização dos negócios. Tem por objetivo difundir a utilização racionalizada de máquinas agrícolas e manejo de solo, visando aumentar a produtividade agropecuária e diminuir os processos de erosão.

Na escolha de uma máquina agrícola não se deve avaliar somente a potência, o consumo, o torque e outros aspectos ligados ao desempenho do equipamento, mas também a segurança e o bem estar do operador, pois o rendimento de um trabalho depende das condições em que ele é realizado (SILVEIRA, 1987).

BONILLA (1994) afirma que a produção agropecuária define que a natureza dos processos envolvidos é, em grande parte, diferente daquela correspondente à indústria. Os processos industriais são mecanizados e padronizáveis em toda sua extensão, tendo sido criados pelo homem; portanto, sua natureza é artificial. Na agricultura há uma mistura de processos, alguns criados pelo homem (plantio, irrigação, adubação, colheita, etc.), mas outros que são naturais, independentes da criatividade humana e inerente à matéria viva (germinação, crescimento vegetativo, florescimento, frutificação, morte). A variabilidade ambiental é mínima na indústria, mas importantíssima no setor agropecuário, onde os processos produtivos estão afetados por chuvas, temperaturas, ventos, agressividade biótica, heterogeneidade de solos dentre outros fatores, assim como pelas exigências específicas inerentes a cada espécie, variedade ou raça vegetal ou animal.

BRAGAGNOLO et al (1997) afirmam que para uma agricultura mais racional, equilibrada e sustentada no longo prazo, as ações de manejo e conservação do solo e água deverão interferir nas causas da erosão, das seguintes maneiras:

- Reduzir a energia do impacto das gotas contra a superfície com conseqüente redução da desagregação da estrutura do solo;
- Romper as barreiras à infiltração da água no solo visando seu aumento;
- Reduzir o escorrimento superficial;
- Reduzir a poluição agrícola principalmente pelo uso de agroquímicos.

A combinação de tecnologias que possibilitem maior cobertura do solo, por si só, já reduz a desagregação do solo, aumenta a infiltração de água e diminui o escoamento

superficial, promovendo maior disponibilidade de água para as culturas, reduzindo riscos e permitindo o aumento da produção vegetal. A Figura 3 mostra a integração entre a conservação de solo e água com a agricultura, de acordo com BRAGAGNOLO et al (1997).

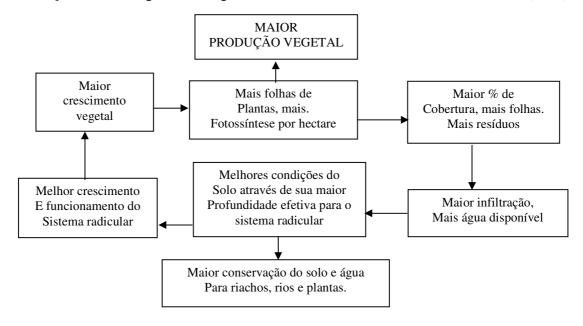


Figura 3 – Integração: conservação de solo/água/agricultura (BRAGAGNOLO et al, 1997).

Ainda segundo BRAGAGNOLO et al (1997), uma agricultura em mudança exige uma alteração drástica em relação à qualificação da mão-de-obra. A sustentabilidade das unidades produtivas, o poder de competição e o desenvolvimento de um complexo agroalimentar ocorrem a partir do acúmulo de pequenos avanços. A diferença estará nos detalhes, no somatório de pequenos ganhos ou na eliminação de perdas até então não consideradas mais do que num subsídio do governo ou no monopólio de uma tecnologia. Daí a necessidade de investimentos nas pessoas para que possam tratar a produção técnica e processos dentro da agricultura de forma competente e inovadora. Uma nova agricultura irá necessitar que as pessoas envolvidas tenham formação global, mais do que apenas adestramento. A intervenção de cada trabalhador no processo produtivo deverá ocorrer a partir da compreensão do todo e das implicações de cada etapa, interagindo com outros trabalhadores no resultado da unidade produtiva (BRAGAGNOLO et al, 1997).

No comércio internacional, competitividade significa ter a capacidade de romper barreiras, não apenas as quantitativas e alfandegárias, mas também oferecer produtos que atendam às exigências de natureza ambiental, sanitária e das relações de trabalho. A

modernização da agricultura deve considerar as novas e as futuras regras do mercado, fruto das exigências dos consumidores e do balanço de forças entre os competidores.

As vias para essa modernização parecem estar bem delineadas. Dentro do cenário predominante, o movimento por uma Agricultura Sustentável tem tido avanços significativos nas questões relativas ao meio ambiente, não se podendo dizer o mesmo com relação ao sentido mais amplo do desenvolvimento sustentado. Por outro lado, a biotecnologia pode possibilitar diminuir ao mínimo as intervenções de ordem biofísica danosas ao meio ambiente devido à produção agrícola. As vias tecnológicas serão uma resultante de um balanço equilibrado de tecnologias de manejo sustentado dos recursos naturais e de técnicas desenvolvidas a partir da biotecnologia e da informática (BRAGAGNOLO et al, 1997).

Finalizando, nas discussões do autor sobre o futuro da agricultura num ambiente de competição, em que a competência, ou a escala de produção são fundamentais, tem se enfatizado o papel da grande empresa agrícola. Por sua vez, a unidade produtiva familiar, ou a empresa familiar, freqüentemente é tratada já de antemão como não competitiva. Entretanto, as limitações que elas apresentam contêm mecanismos de superação, alguns ainda não conhecidos. Investimentos em estudos, pesquisas e em educação poderão, em curto prazo, dar respostas às demandas ainda não atendidas. Por outro lado, toda a discussão tem sido feita no contexto de uma agricultura comercial, inserida no processo de competição e que prevalece nos cenários para o futuro. Entretanto, ao lado dessa dinâmica há a questão dos já excluídos da agricultura e a questão dos muitos que ainda sairão da atividade agrícola. Os números sobre a pobreza no País expressam uma situação grave. O analfabetismo, a fome, a pobreza podem vir a constituir a principal barreira ao desenvolvimento nacional, mais do que qualquer cláusula de acordos internacionais (BRAGAGNOLO et al, 1997).

Dentro do modelo de desenvolvimento adotado, tem sido proposta a implantação de uma política de "Segurança Alimentar" que, entre vários aspectos, contemple o crescimento econômico, a geração de empregos, salários e a produção de alimentos. O tratamento do problema da pobreza, da exclusão social nos níveis de política econômica e desenvolvimento econômico é de fundamental importância para o desenvolvimento do País (BRAGAGNOLO et al, 1997).

Segundo DANIEL et al. (2001), sob o ponto de vista ambiental, quando da ocorrência de uma relação entre os equipamentos agrícolas (máquinas e implementos) e o corpo do solo,

geralmente se produzirá uma causa de alteração em sua constituição pedológica natural que induzira um efeito – positivo ou negativo – de natureza física, química e/ou biológica. Dentre esses efeitos e, absolutamente não desconsiderando os impactos ambientais de natureza bioquímica, ressaltam-se os problemas causados pelo uso indiscriminado da maquinaria agrícola, provocando a compactação e/ou adensamento do solo.

COPETTI (2002) enfatiza que no sistema de produção da cana-de-açúcar, o plantio direto é utilizado por ocasião da renovação dos canaviais, com o objetivo de gerar receitas e proporcionar os benefícios da rotação de culturas. Afirma que o plantio direto auxilia os produtores que estão sendo obrigados a deixar de lado a queima dos canaviais, em função das novas leis ambientais. Salienta que as vantagens do plantio direto vão além das questões ecológicas. Destaca o controle da erosão, a diminuição dos custos de produção das culturas de soja e cana, melhoria da produtividade, melhor aproveitamento da água e do solo, maior resistência aos veranicos, além de evitar todos os problemas decorrentes da monocultura.

STIPP et al. (2001), avaliam que as operações agrícolas moto mecanizadas demandam grande consumo de energia e têm importante efeito econômico no sistema de produção, gerando a necessidade de realizá-las com melhor eficácia operacional. Alguns métodos de preparo do solo permitem a economia de combustível pelo menor uso das máquinas agrícolas.

MOLIN et al. (2003), preconizam que a eficiência de campo durante a operação de colheita é um importante parâmetro para determinar a capacidade de campo efetiva e, consequentemente, auxiliar na tomada de decisões a respeito do gerenciamento do sistema mecanizado, os quais por meio do mapa de produtividade possibilitam a obtenção de mapas de eficiência, capacidade de campo efetiva e capacidade de processamento. Desta forma será possível calcular as eficiências de campo, gerencial e global da operação.

QUEIROZ et al. (2000), indicam que a agricultura de precisão não implica uma técnica de manejo específica. Ela possibilita ao profissional responsável pelo manejo um melhor entendimento e maior controle sobre os sistemas de tratamento dos campos de produção. A agricultura de precisão está sendo desenvolvida como um sistema integrado, envolvendo técnicas de manejo que podem ser planejadas e incorporadas a programas computacionais, a fim de tornar as práticas consistentes, especialmente quando se considera o impacto ambiental.

3.6.2 - Manutenção de Máquinas Agrícolas

A manutenção de máquinas agrícolas segundo SILVEIRA (1987), é o conjunto de serviços destinados a conservar o trator e demais implementos agrícolas em condições ótimas de operação. Tratando-se de um investimento valioso para aumentar a produção agrícola, a manutenção do trator deve ser criteriosa, a fim de que possa ter um rendimento compatível com o material aplicado.

Para SILVEIRA (1987) a experiência mostra que a manutenção bem feita é o meio, mais eficaz, para se obter o máximo rendimento e durabilidade do trator. Os custos de manutenção, incluindo mão-de-obra e peças de reposição, são consideravelmente baixos se comparados com os benefícios alcançados, que se expressam pelos custos operacionais menores.

Para MIALHE (1996), o abastecimento e a manutenção periódica de conjuntos moto mecanizados que operam no campo podem ser organizados segundo dois critérios básicos, de acordo com a forma de sua execução, a saber:

- Pelo próprio operador ou tratorista;
- Por comboio de manutenção.

Para MACHADO (2001), o uso de máquinas pressupõe a tomada de certos cuidados, principalmente com relação à sua correta manutenção e conservação, fatores estes determinantes no melhor rendimento da máquina e que podem levar ao sucesso ou fracasso da safra. Define ainda manutenção como as ações necessárias para que um determinado item seja conservado ou restaurado de modo a poder permanecer em uma condição específica (ABNT, 1971). Esta pode ainda ser dividida em manutenção preventiva e manutenção corretiva.

Segundo ASHBURNER e SIMS (1984), a análise dos custos de operação é uma tarefa que depende muito das circunstâncias em que se encontra trabalhando a maquinaria. A situação nos países em via de desenvolvimento mostra tipicamente taxas altas de juros, um serviço de peças de reposição e manutenção deficiente, e pouco treinamento e experiência por parte do operador. Os custos fixos em um sistema de mecanização agrícola podem incluir uns ou todos dos seguintes fatores: depreciação, juros sobre o investimento, armazenagem, seguro

e impostos. Como custos variáveis incluem-se reparações e manutenção, combustíveis e lubrificantes e mão de obra.

Segundo DANIEL et al (2001), atualmente já existem sistemas informatizados para planejamento do uso de maquinarias agrícolas, dentre os quais o sistema computacional PUMA (Planejamento do Uso de Máquinas Agrícolas), desenvolvido pela empresa Assiste. Este sistema permite selecionar e quantificar as máquinas motoras e implementos e programar o uso com base no parque pertencente à empresa agrícola, obtendo o plano de trabalho que acarrete o custo mínimo.

Ainda segundo aqueles autores, o gerenciamento de sistemas agrícolas moto mecanizados é uma tarefa complexa, e até certo ponto, difícil de ser executada, uma vez que os fatores envolvidos são muito heterogêneos (humanos, técnicos, climáticos, equipamentos etc.), havendo necessidade da aplicação de um método gerencial eficaz de boa interface.

O programa "Ferramentas para Gerenciamento Agrícola", composto por uma série de subprogramas produzidos pela empresa Assiste, o qual tem por finalidade realizar todo gerenciamento e controle operacional do sistema moto mecanizado é outro exemplo de sistema gerencial agrícola.

Existem outras atividades praticadas na manutenção em máquinas e equipamentos agrícolas e que são inseridas nas atividades de produção e controle tais como: manutenção básica, estoque de combustíveis e lubrificantes, implementos, gerenciamento de oficina mecânica, manutenção preventiva, manutenção preditiva, manutenção detectiva, custos e orçamentos, desgaste e recauchutagem de pneus, laboratório para análise de óleos, gerenciamento de agregados, gerenciamento da moto mecanização, custo de mecanização, custo agrícola, armazenamento adequado nos períodos de inatividade, gerenciamento de resíduos sólidos. Consumo de energia, reutilização das águas servidas, reciclagem em toda planta, reuso e recondicionamento, prevenção da poluição, controle dos contaminantes do solo, controle das emissões, análise de tempos e métodos, controle de utilização de matéria-prima, do consumo de óleos e combustíveis, estoque mínimo, planejamento e controle da produção, entre outros também são atividades praticadas na manutenção em máquinas e equipamentos agrícolas. Este é um aspecto que muda, ou ganha maior importância dependendo da gestão da manutenção que se queira analisar.

3.6.3 - Definição da Colhedora de Cana

No Sistema Tratorizado Agrícola (STA) aplicado à exploração canavieira, a unidade de processamento da colheita, denominada por TOMINORI et al (1991) como colhedora autopropelida de cana-de-açúcar, pode comumente receber os nomes de: colheitadeira de cana, colhedeira de cana automotriz, colheitadeira de cana picada.

A inclusão dessa máquina nos sistemas de colheita tradicionais é onerosa e exigem o uso de carretas especiais, além de pessoal mais especializado e sincronizado com o transporte.

Função - A colhedora de cana realiza o corte basal, eliminação do ponteiro, limpeza dos colmos por gravidade e ventilação e picamento destes em rebolos de cerca de 400 mm, descarregando-os numa unidade de transporte. Dessa forma, eliminam-se o uso de carregadoras, sendo que a matéria-prima é mais limpa, mas exige que um outro veículo com uma carreta acompanhe toda a operação da colheita. Há um maior aproveitamento dos veículos de transporte, pois a densidade de carga é maior. No entanto, a matéria-prima colhida por essa máquina não pode ser armazenada, pois é mais sujeita à deterioração (NEVES, 2003).

A maioria das colhedoras autopropelida de cana-de-açúcar em operação no País, é das marcas Case (CNH-New Holland) e Cameco (John Deere), além das colhedoras fabricadas pela Santal, que trabalham no campo segundo o mesmo princípio de operação, utilizam-se dos mesmos componentes e sistemas de processamento de cana, conforme descritos na Figura 4, adaptado do manual de serviço das colhedoras A7000/A7700-Catálogo n° 872.423.27, pág. 6 da seção 1 da empresa Austoft/Austrália (NEVES, 2003).

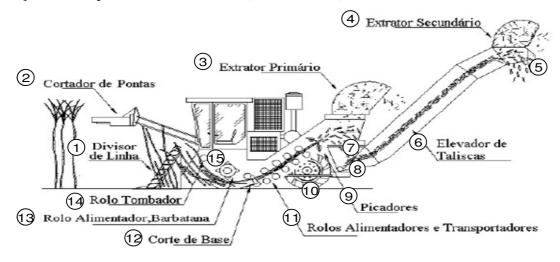


Figura 4 - Componentes da colhedora de cana. Extraído e adaptado de NEVES (2003)

Descrição técnica da colhedora - Essas máquinas são estruturalmente concebidas com dispositivos, para executar a tarefa de colheita, relacionados a seguir conforme o caminho seguido pela cana-de-açúcar, a partir dos divisores de linha até o extrator secundário, por onde os rebolos são expelidos para as carretas de transbordo e são denominados de: DIVISORES **DE LINHA** (1) que têm a função de levantar e separar a linha de cana que esta sendo colhida das linhas adjacentes, sem arrancar a soqueira. Cada divisor de linha é composto por dois cones inclinados, com o ápice voltado para baixo e com flanges helicoidais, dispostos, um de cada lado da linha de cana a ser colhida, que giram em sentidos opostos, o que resulta na separação das linhas, conduzindo para o corte os colmos eretos, acamados e deitados. Um pouco acima desses cones localiza-se o sistema de corte do ponteiro ou **DESPONTADOR** (2) que separa a palha da ponta e o palmito da cana, espalhando-os uniformemente sobre o solo. De altura regulável, constituído por um ou dois discos com garras que prendem o colmo e os conduzem para um disco de corte que fica logo abaixo deles, ou por um único disco com facas que corta o ponteiro contra uma placa de apoio. Em ambos os casos pode haver, acima do disco de corte, um tambor com pratos dotados de lâminas, também com uma placa de apoio, que promovem um picamento das folhas do ponteiro, das palhas e do palmito em pedaços de 100 mm. CORTE DE BASE (12) que corta a cana ao nível do solo, conduzindo sua extremidade inferior ao conjunto de rolos alimentadores. O sistema de corte basal é montado no mesmo conjunto dos cones, que possui um sistema de flutuação para acompanhar as irregularidades do terreno. Consta de um ou dois discos com facas, que podem ser inclinados ou não, e que conduzem à cana cortada para o transportador. ROLO TOMBADOR (14) que orienta e inclina o feixe de cana a ser cortado, facilitando a operação de corte e a alimentação da máquina. Esse rolo é ajustado hidraulicamente de dentro da cabine. ROLO **LEVANTADOR** (13) que suspende o feixe de cana cortado pelo corte de base, orientando o feixe para o interior da máquina. Esse rolo tem aletas vazadas, o que possibilita a retirada de grande parte da terra presa à cana cortada. ROLOS ALIMENTADORES (11) que transportam e distribuem horizontalmente o feixe de cana até os rolos picadores. São fundamentais na limpeza da terra do feixe de cana. O transportador é composto por cilindros dispostos na horizontal com barras denteadas, colocados um após o outro, em duas camadas. Cada cilindro tem um motor hidráulico próprio para seu acionamento. A cana cortada pelos discos é elevada e apreendida entre os dentes das barras dos cilindros inferiores e superiores, e

estes giram para trás, passando o colmo para os outros cilindros até chegar ao picador de colmos. ROLOS PICADORES (9) ou picador de colmos que cortam a cana e lança os toletes na câmara do extrator primário. Fica no final do transportador, e é formado por um ou dois volantes com facas espaçadas regularmente (rolos com 3 ou 4 facas). Os colmos de cana que vão saindo do transportador são cortados, caindo num transportador de correia com taliscas inclinado, que conduz os rebolos para um sistema de descarga. Durante esse transporte, a palha vai sendo retirada dos rebolos por atrito com a correia ou entre os rebolos. Na descarga existem ventiladores para exaustão da palha, e pode haver um próximo ao picador, para pré-limpeza, denominados EXTRATOR PRIMÁRIO (3), que faz a limpeza dos toletes, retirando a palha e outras impurezas. Possuem uma hélice com novo design revolucionário Antivortex, e EXTRATOR SECUNDÁRIO (4) para fazer uma segunda limpeza dos toletes, retirando a sujeira remanescente, assegurando uma cana mais limpa. **DISCOS DE CORTE LATERAL** (15) que cortam as pontas das canas emaranhadas e presas que não foram separadas pelos divisores de linha, evitando que as soqueiras sejam arrancadas do solo. Esse equipamento opcional auxilia na colheita da cana verde e queimada. FLAP (5) que direciona a descarga dos pedaços de cana (toletes). BOJO (7) que recebe os pedaços de cana (toletes). ELEVADOR GIRATÓRIO (6) que conduz os toletes através da esteira até o extrator secundário. MESA DO ELEVADOR (8) que faz o giro do elevador para a descarga numa amplitude de até 85° para cada lado. O cilindro da mesa é do tipo Back Hoe (Extraído do manual CASE série 7700 atualizado em 02/2007).

Conta ainda com uma unidade motora que, assim como o restante da máquina, é suportada por um chassi com rodado. É formada pela cabine, motor de combustão interna e sistema de **TRANSMISSÃO** (10) hidrostática de esteira do tipo Heavy Duty dotada de sapatas com design agrícola ou com pneus de alta flutuação para deslocamento. Todos os órgãos móveis da máquina são acionados por motores hidráulicos, sendo o acionamento da bomba hidráulica realizado pelo motor da máquina (TOMIMORI et al, 1991).

3.7 - Manutenção

3.7.1 - Mantenabilidade

Ao se considerar mantenabilidade, apresentam-se os fatores mais significativos que a manutenção deve coletar durante a execução de suas atividades, de forma a suprir o projetista ou fabricante com informações para o desenvolvimento de melhores sistemas quanto à mantenabilidade; assim, pode se afirmar que as medidas de mantenabilidade são as mesmas utilizadas para avaliação do desempenho de uma manutenção. Há apenas um diferencial quanto ao momento da análise no ciclo de vida dos sistemas:

- A avaliação da mantenabilidade está relacionada ao projeto;
- A avaliação de manutenção ao ciclo de operação/manutenção.

A congruência de medidas estabelece o ciclo de operação/manutenção como a melhor demonstração de que um sistema de engenharia pode sofrer. Em contradição, a aplicação prática dessa congruência não é ainda empregada em grande parte dos sistemas de engenharia e processos, o que leva à escassez de dados de desempenho de diversos tipos de maquinários (BLANCHARD et al., 1995; DIAS, 1996).

Apresenta-se a seguir uma definição de mantenabilidade baseada em alguns autores que tratam de mantenabilidade e do projeto para mantenabilidade - BLANCHARD et al. (1995) - finalizando pela apresentação das medidas mais relevantes para avaliação da mantenabilidade de um sistema.

3.7.1.1 – Definição de mantenabilidade

Mantenabilidade é a capacidade de um item ser mantido ou recolocado em condições de executar suas funções requeridas, sob condições de uso especificadas, quando a manutenção é executada sob condições determinadas e mediante procedimentos e meios prescritos (DIAS, 1997). Utilizando a definição de MATOS (1997), pode se dizer que a mantenabilidade é uma característica de projeto dos sistemas e relaciona-se à facilidade, precisão, rapidez e economia das ações de manutenção, ou seja, pode ser entendida como o conjunto de parâmetros de projeto que proporcionam a habilidade de um item ser mantido. A manutenção é realizada num sistema ou componente sob um evento de falha esperada ou não.

Sendo uma característica multidimensional, pode ser expressa em termos de inúmeros fatores como: tempos de manutenção, fatores de carga de trabalho, custos de manutenção entre outros fatores. Estas medidas facilitam a avaliação quantitativa e qualitativa da mantenabilidade do sistema, influenciando o projeto e a manufatura/produção de sistemas que sejam efetivamente e eficientemente manuteníveis.

BLANCHARD et al. (1995) apresenta outras definições de mantenabilidade como:

- MIL-STD-721C "uma característica de projeto e instalação que é expressa como a
 probabilidade que um item irá ser mantido ou restaurado a uma condição especifica
 num dado período de tempo, quando a manutenção for realizada de acordo com os
 procedimentos e recursos prescritos";
- "uma característica do projeto da instalação que é expressa como a probabilidade que a manutenção não irá ser requerida por mais que x vezes num dado período, quando o sistema é operado de acordo com os procedimentos prescrito por pessoal devidamente qualificado. Pode ser análogo à confiabilidade enquanto a mantenabilidade lida com a freqüência, em geral, de manutenção"; e,
- "uma característica do projeto e da instalação que é expressa como a probabilidade que o custo de manutenção, para um sistema ou produto, não irá exceder y dólares por um período de tempo projetado, quando o sistema é operado e mantido de acordo com os procedimentos prescritos. O custo precisa estar relacionado a fatores de consumo de recursos logísticos e humanos como também sofre reflexos ambientais, com os seus valores em dólar".

Segundo a ABNT (1994), mantenabilidade é definida como "a capacidade de um item ser mantido ou recolocado em condições de executar suas funções requeridas, sob condições de uso especificadas, quando a manutenção é executada sob condições determinadas e mediante procedimentos e meios prescritos".

A mantenabilidade foi definida por DIAS (1996) como "a probabilidade de restabelecimento das condições necessárias para o bom funcionamento de um sistema, dentro de certo período previamente estabelecido".

Já CASCONE, citado por DIAS (1996), define também como "a probabilidade de recolocar em serviço o elemento (componente, equipamentos, sistema, etc.) em um dado tempo (t), ou seja, do elemento retornar ao estado de bom funcionamento (em operação)".

Pode se concluir do conceito de mantenabilidade que a capacidade de manutenção de um sistema de engenharia está condicionada às decisões tomadas quando do seu projeto. Para tal, a vertente da atividade de projeto que se dedica à inserção de características de mantenabilidade num sistema é o projeto para mantenabilidade.

Num projeto para mantenabilidade as principais características consideradas são: padronização, modularização, montagem funcional, intercambiabilidade, acessibilidade e isolamento da falha (PRADHAN, 1996).

Estas características de mantenabilidade, incorporadas no projeto dos sistemas, reduzem, em geral, o custo do ciclo de vida e gera vantagens competitivas. Contudo, é mais freqüente somente identificar os custos iniciais do ciclo de vida dos sistemas, associados com o projeto, desenvolvimento e manufatura, dado que são bem conhecidos e possuem bancos de dados históricos para previsão. BLANCHARD & FABRICKY (1990) e BLANCHARD et al. (1995), mostram que os custos de longo prazo, associados com a distribuição, operação, suporte e descarte, são freqüentemente ocultos.

A não identificação dos custos de longo prazo decorre da falta de critérios quando da análise e seleção para compra de novos equipamentos. Neste instante, os aspectos financeiros imediatos (preço, condições de pagamento e financiamento) são, na grande maioria das vezes, priorizados. Os custos de longo prazo são, até, muitas vezes ignorados, ou mesmo somente considerados quando da ocorrência da primeira falha (PRADHAN, 1996). Como para compor o preço de venda são necessários, basicamente, os custos de projeto, desenvolvimento e manufatura, perdem-se o interesse em trabalhar os custos posteriores. Quando muito, em alguns casos, há acompanhamento dos sistemas durante a fase de garantia.

Da experiência, BLANCHARD et al. (1995) acredita que a implementação de requisitos de mantenabilidade, particularmente, com respeito a muitas indústrias já em operação, pode fornecer significativos benefícios aos seus sistemas, de forma a promover uma melhor eficácia e produtividade em geral. Tendo em vista saltos de evolução tecnológica, é muito necessária, em todos os momentos, a criteriosa análise dos aspectos de operação, manutenção e suporte do sistema/produto durante a etapa de utilização. Contudo, ainda cita que embora esta abordagem de projeto não seja nova, práticas passadas evidenciam uma forma mais seqüencial: projeto do sistema considerando somente as características funcionais mais importantes para então construir um protótipo e determinar como deve ser produzido e,

finalmente, assistido. Essa abordagem fixa de projeto durante o ciclo de vida do sistema costuma resultar em muitos sistemas que não vão ao encontro nem com os requisitos básicos pretendidos, nem com os requisitos de custo-eficiência, em termos de operação e suporte. Adicionalmente destaca que:

- o desempenho apresentado por um sistema de engenharia é conseqüência das decisões tomadas em todos os estágios do seu ciclo de vida – lista de especificação, projeto, manufatura, montagem, controle de qualidade, distribuição e transporte, operação / manutenção; e,
- o custo total do ciclo de vida dos sistemas é muito influenciado pelas decisões tomadas fases iniciais do projeto, isto é, as decisões tomadas que retratam a utilização de novas tecnologias, a seleção de componentes e materiais, a identificação do esquema de montagem, rotinas de diagnóstico, seleção de processo de manufatura e políticas de suporte e manutenção.

Assim, projeto e desenvolvimento de sistema de engenharia devem considerar os seus elementos de uma forma integrada. Deve visualizar o sistema em longo prazo, dentro das perspectivas de todas as etapas do ciclo de vida do sistema, pois quando a confiabilidade e a mantenabilidade não é considerada, risco de altos custos de manutenção e suportes são passíveis, o que gera um definitivo comprometimento da eficácia ou produtividade.

Para aqueles sistemas já em operação / manutenção, uma avaliação interativa pode ser iniciada para determinar os itens relevantes de geração de altos custos. Para tal, BLANCHARD et al. (1995) indicam a utilização de uma análise de custo de ciclo de vida. Muitas vezes, em se determinando os relacionamentos causa e efeito, encontra-se o causador dos altos custos que, geralmente, é resultado de algum componente não confiável ou um item não manutenível. Nestes casos, a incorporação de melhorias de confiabilidade e mantenabilidade no projeto podem levar ao aumento da eficácia do sistema e à redução do custo de vida. Aqui, a utilização de ferramentas mantenabilísticas, tais como modelos de análise e de predição, pode ajudar à execução deste objetivo.

Necessário se faz à implementação de um mecanismo de informação que retorne ao projetista, dados de desempenho da operação e manutenção dos equipamentos possibilitando o concatenamento de questionamentos, possibilitando a identificação dos pontos passíveis de melhoria dos índices de confiabilidade e mantenabilidade ao longo de seu ciclo de vida que

refletirão nos resultados de disponibilidade, segurança e custos operacionais – "feedback" do ciclo de uso (BLANCHARD et al., 1995; DIAS, 1996; KELLY, 1989).

O projeto para mantenabilidade é uma das especialidades envolvidas no desenvolvimento de um projeto que objetivam melhorar certas habilidades específicas do sistema de engenharia, tais como: projeto para o meio ambiente; projeto para a manufatura e montagem projeto para modularidade; projeto para fabricabilidade; projeto para confiabilidade dentre outros, preceitos estes, enxutos e limpos. Embora estas especialidades trabalhem distantes uma das outras, deve perceber-se que o projeto ideal é aquele que promove o equilíbrio apropriado entre os diversos atributos em prol da eficácia e eficiência global do produto. Portanto, encontrar o melhor equilíbrio entre todos os parâmetros é difícil, pois muitas vezes um objetivo vai ao encontro de outro; enquanto algumas características proporcionam eficácia, também causam custo ou prejuízo em relação a outro objetivo. Em essência, devem ser incorporadas somente as características necessárias e suficientes para alcançar as especificações. Os atributos de projeto e os elementos de suporte logístico devem estar equilibrados para dar o ponto ótimo de eficácia a um custo de ciclo de vida balanceado, não apenas procurando a satisfação do desempenho (BLANCHARD & FABRICKY, 1990).

3.7.1.2 – Medidas de mantenabilidade

A avaliação deve ser feita a partir de uma série de predições, estimativas, análises e demonstrações de medidas que se relacionam à habilidade do equipamento ser mantido: as "Medidas de Mantenabilidade" (BLANCHARD et al. 1995).

Desde o inicio do projeto de um sistema de engenharia os requisitos de mantenabilidade precisam ser delineados em termos quantitativos e qualitativos, para que em cada fase do ciclo de vida seja avaliado para que medidas corretivas possam ser implementadas. Portanto, as medidas de mantenabilidade são medidas quantitativas e qualitativas apropriadas que precisam ser identificadas e definidas de forma a representarem e modelarem as características de mantenabilidade de um sistema. São medidas que, colhidas junto à manutenção dos sistemas já em operação, formam um importante conjunto de informações que podem ser usadas para avaliação da capacidade do sistema em ser mantido,

indicando os requisitos, especificações e atribuições que necessitam de melhoria em reprojeto ou mesmo projetos futuros de sistema similares.

3.7.1.2.1 - Fatores de confiabilidade

Confiabilidade é a capacidade de um item desempenhar uma função requerida sob condições especificadas, durante um dado intervalo de tempo (DIAS, 1997).

A confiabilidade é uma medida relacionada à mantenabilidade, pois a frequência de manutenção é influenciada pela confiabilidade do sistema. É definida como "a capacidade de item desempenhar uma função requerida, sob condições especificadas, durante um intervalo de tempo" (ABNT, 1994) e envolve o relacionamento de 04 entidades principais: probabilidade, comportamento adequado, período de uso (ou de vida) e condições de uso (DIAS 1996), ou seja, a intenção de mensurar a confiabilidade deve relacionar medidas estocásticas de tempo associados às padronizações de fabricação e uso, objetivando a avaliação da probabilidade do sistema não falhar. Segundo DIAS (2006), confiabilidade enquanto área de conhecimento é multidisciplinar e envolve especialidades e especialistas em engenharia, estatística, matemática, computação, física, química e biologia. A aplicação nos sistemas técnicos por parte das diversas áreas da engenharia, normalmente, denominada de Engenharia de Confiabilidade tem sido feita a partir de ferramentas como: Análise da árvore de falha (FTA); Análise do modo e do efeito da falha (FMEA); Análise do modo, do efeito da falha e da criticidade (FMECA); Análise da causa raiz; Análise de risco; Análise da causa da falha de modo comum; e técnicas associadas ao atributo da qualidade e outras estruturas de análise para a fase de projeto, fabricação ou operação (SAKURADA, 2001; NUNES, 2001).

3.7.1.2.2 - Medidas de frequência de falha

As principais medidas de freqüência de falhas são: a taxa de falha e a MTBF (esperança matemática do tempo entre falhas de um item), sendo a MTBF uma medida para itens reparáveis. A taxa de falhas (λ) é o número de falhas por tempo de operação. No caso de λ constante, a MTBF é a medida inversa da taxa de falha, tempo médio de operação por falha, ou seja, $1.\lambda^{-1}$ (válido para distribuição exponencial).

Outras medidas também utilizadas para referir a freqüência em que as falhas ocorrem são o MTTF (tempo médio até falha) e o MTFF (tempo médio até a primeira falha). O MTTF pode ser medido pelo número total de horas de operação para uma dada população de sistemas divididos pelo número total de falhas da população em um dado tempo de referência e é uma medida para itens não reparáveis. De forma similar, o MTFF pode ser medido observando apenas que é aplicada para avaliação do tempo da primeira falha em componentes reparáveis.

Para análise destes fatores de frequência algumas observações são importantes:

- definição da falha e do tempo de operação: para determinação da freqüência que uma falha ocorre, deve-se definir a falha que será analisada juntamente com o período de tempo de coleta dos eventos;
- relacionamentos série/paralelo: a taxa de falha total em um sistema é a combinação das taxas de falha de cada item do sistema. Para seu cálculo, é necessário identificar como as combinações das falhas de cada item contribuem para a falha do sistema total. Para o cálculo da taxa de falha total do sistema, calculam-se as relações em paralelo e em seguida as relações em série (BILLINTON & ALLAN, 1983); e,
- redundâncias passivas ou ativas: em redundâncias ativa cada item redundante está em operação durante a operação do sistema. Pode também ser classificados em completo, parcial ou condicional. No caso de redundância passiva, ou redundância de prontidão (ABNT, 1994), os itens redundantes são ativados apenas sob a falha de um item operacional. O item redundante pode ser similar ou diferente do item operante.

3.7.1.3 - Distribuição de frequência (histogramas) e frequência acumulada

A validade da análise de confiabilidade está na validade do conjunto de amostras em representar a realidade do comportamento das falhas (DIAS, 1996). A base para a estimativa de confiabilidade é a investigação amostral de falhas do item para qualificar a natureza e o grau de incerteza. Em não se coletando e registrando corretamente os dados de falha no tempo, todo o trabalho restante de apropriação de valores de confiabilidade estará comprometido.

Há muitos métodos de organização, apresentação e redução dos dados observados que facilitam a observação e a avaliação (BENJAMIN & CORNELL, 1970). Neste universo,

na representação gráfica dos dados de falha coletadas no tempo, duas distribuições são utilizadas: as distribuições de freqüência e as distribuições de freqüência acumulada de falha.

3.7.1.4 - Modelos de distribuição probabilísticos

Os modelos de distribuição probabilísticos são modelos matemáticos que buscam descrever o comportamento de problemas físicos regidos por variáveis aleatórias. Em estudos de confiabilidade buscam descrever matematicamente o comportamento da falha no tempo por meio de modelos matemáticos similares às distribuições de freqüência e freqüência acumulada – as funções densidade e densidade acumulada. Mesmo em casos onde não haja um modelo matemático similar a uma distribuição de freqüência particular, é conveniente ter uma função matemática simples para descrição do comportamento da falha (BENJAMIN & CORNELL, 1970).

Os modelos de distribuição são definidos a partir de parâmetros representativos da amostra como; média, desvio padrão, variância e taxas de falha. Dois modelos bastante utilizados para representar as distribuições amostrais dos momentos de falha são:

- Exponencial: empregada nos casos em que à taxa de falha (λ) é essencialmente
 constante durante a vida útil de operação do sistema. A vida média neste caso referese ao tempo de vida médio de todos os itens sob consideração e é igual ao MTBF para
 função densidade exponencial; e,
- Weibull: a distribuição de Weibull caracteriza-se por não possuir um formato característico. A partir de determinação de três parâmetros, ela pode flexibilizar-se da melhor forma possível aos resultados experimentais e operacionais. Os parâmetros são: β = parâmetro de forma; γ = parâmetro de vida inicial ou de localização; e a α = parâmetro de escala ou vida característica. A função densidade de falha geral da distribuição de Weibull é apresentada por DIAS (1996).

3.7.1.5 - Fatores de mantenabilidade

3.7.1.5.1 - Medidas de tempo de manutenção

A mantenabilidade é frequentemente medida em termos dos tempos requeridos para realizar uma manutenção, ou seja, quanto mais rápido o sistema sofre manutenção, melhor é sob a ótica da mantenabilidade (MATOS, 1999). A seguir serão comentados os principais fatores de tempo de manutenção:

• Tempo médio de manutenção corretiva efetiva (Mct): é o tempo de restabelecimento médio – MTTR – e ocorre em resposta à interrupção da operação causada por uma falha inesperada. Como há quase uma necessidade para restauração num tempo mínimo, máxima ênfase é dada na redução do tempo de manutenção corretiva, a nível geral, do sistema. Um rápido diagnóstico; localização e isolamento da falha (com o uso de sensores e alertas, bons procedimentos de manutenção e pessoal bem treinado) junto com uma concepção das medidas antropométricas da peça, pode reduzir o tempo do sistema fora de operação. Reparos mais longos podem ser mais bem tolerados quando o componente estiver fora do sistema.

O modelo de distribuição probabilísticas dos tempos de manutenção corretiva efetiva geralmente cai numa das seguintes formas:

- Normal: aplicada a muitos componentes mecânicos e eletromecânicos, geralmente com uma concepção de manutenção "remova e troque" e onde a maioria das tarefas individuais tem pouca variação em relação ao tempo de duração médio. A função densidade de falha da distribuição normal é dada por (ANG & TANG, 1975; O' CONNOR, 1985);
- Exponencial: algumas vezes assumidas para equipamentos eletrônicos com uma boa capacidade de teste embutido e uma rápida remoção e troca particularmente quando aplicado para propósitos de modelos confiabilísticos. É caracterizado por taxa de falha constante, manifesta no período de vida útil;
- Log-normal: aplicada a muitos equipamentos eletrônicos sem a capacidade de teste
 embutida e, consequentemente, com muitas tarefas possuindo uma duração
 considerável. Pode ser aplicada a equipamentos eletromecânicos com larga variação
 de tempos individuais de reparo. A função densidade de falha da distribuição lognormal é dada por (ANG & TANG, 1975; O'CONNOR, 1985);
- Tempo médio de manutenção preventiva efetiva (Mpt): São consideradas manutenções preventivas baseadas no tempo: inspeções, calibrações, trocas

- periódicas, revisões e ajustes. O cálculo da Mpt é similar ao cálculo da Mct, somente observando a substituição da taxa de falha pela freqüência da pretendida na equação;
- Tempo mediano de manutenção corretiva (Mct): corresponde à mediana, ou seja, 50% dos maiores e menores tempos de reparo corretivos (baseada na condição);
- Tempo mediano de manutenção preventiva (Mpt): similar à Mtc;
- Tempo máximo de manutenção corretiva (Mmáx): representa uma porcentagem na qual é realizada uma porcentagem específica de todos os tempos de manutenção corretiva. Ou seja, especifica o limite de tarefas que são permitidas excederem a um dado tempo de reparo;
- Atraso administrativo (ADT): tempo acumulado durante o qual uma ação de manutenção corretiva não é efetuada por razões administrativas (ABNT, 1994), ou seja, alguma prioridade administrativa, restritiva, ou qualquer outra causa não considerada e incluída na prioridade administrativa ou restritiva, ou qualquer outra causa não considerada e incluída na LDT.
- Atraso logístico (LDT): tempo acumulado durante o qual uma ação de manutenção não pode ser executada devido à falta de recursos necessários, excluindo-se qualquer atraso administrativo (ABNT, 1994), ou seja, falta de sobressalente, teste, equipamentos de suporte, uma instalação, um serviço ou procedimento, recurso humano e outros;
- Tempo médio de manutenção Maintenance Downtime (MDT): É a soma dos tempos totais requeridos para reparo e restauração, manual ou automática. MDT é geralmente expresso em valores médios e é função dos tempos médios de manutenção corretiva ou preventiva, suas freqüências relativas e atrasos administrativos e logísticos;
- Tempo de inatividade do equipamento devido à manutenção (TD): é a previsão do tempo necessário para executar todas as corretivas num certo período. TD é uma função das freqüências de manutenção corretiva dos diversos modos de falha, do tempo de realizar as tarefas e do período de interesse;
- **Probabilidade de estar apto (Pu):** a probabilidade que o sistema estará parado (PD) durante um determinado período;

- **Tempo requerido:** intervalo de tempo durante o qual o usuário exige que o item esteja em condições de desempenhar uma função requerida (ABNT, 1994);
- **Tempo não requerido:** intervalo de tempo durante o qual o usuário exige que o item esteja em condições de desempenhar uma função requerida (ABNT, 1994); e,
- **Tempo de prontidão:** intervalo de tempo durante o qual o item está de prontidão.

3.7.1.5.2 - Medidas de freqüência de manutenção

A freqüência de manutenção corretiva é função de sua correspondente taxa de falha. Já a freqüência da preventiva depende, dentre outros fatores, da previsão de desgaste e tendência do comportamento do sistema. Dois fatores de freqüência de manutenção comumente adotados são:

• Tempo Médio Entre Manutenção (MTBM): é a função da frequência de ações de manutenção programada ou não.

Observa-se que MTBMu é, aproximadamente, igual à MTBF pois se refere a todas as falhas que ocorrem no sistema. Também é salutar destacar que a MTBM se aproxima de MTBF na ausência de manutenções preventivas.

• tempo médio entre substituições (MTBR) ou tempo médio entre demanda (MTBD): estão fortemente relacionados com as substituições e são fatores significativos de MTBM pois, aplicado tanto a manutenções corretivas quanto a preventivas, refletem o impacto sobre a capacidade de suporte logístico do sistema. A gerência de manutenção deve objetivar sempre estender o MTBR de um item, contudo preservando as vantagens sobre os custos indiretos relacionados a uma falha como, por exemplo, a não produção.

3.7.1.5.3 - Medidas de custo de manutenção

Os custos diretos de manutenção são obtidos com base nas ações de manutenção, tanto as planejadas como as não planejadas, e são mensurados com base no consumo de recursos utilizados na realização das manutenções e nos custos do suporte logístico necessário.

Já os custos indiretos referem-se a custos relacionados com a conseqüência de falha; não produção, indenizações, perda de contratos, acidentes de trabalho e outros.

Alguns exemplos de fatores de custo de manutenção são:

- Custos de manutenção/ hora de operação do sistema (\$/OH);
- Custos de manutenção/ ação de reparo;
- Custos de manutenção / mês (\$/mês);
- Custos de manutenção / missão ou fase da missão;
- Taxa de custo de manutenção para custo de ciclo de vida total do sistema; e,
- Custos de manutenção à limpeza do meio ambiente.

3.7.1.5.4 - Medidas de utilização de mão de obra de manutenção

Freqüentemente é possível reduzir tempos de manutenção pelo aumento de pessoal. Contudo esta opção deve ser bem analisada em relação ao custo-eficiência. Para um sistema ser altamente manutenível, deve haver equilíbrio entre período de tempo, horas de trabalho, qualificação de pessoal, equipamentos de suporte e instalação apropriados. Exemplos de alguns fatores relacionados à utilização da mão de obra de manutenção são:

- Custos de manutenção relacionados à limpeza do meio ambiente;
- Tempo de manutenção em homens hora por ação de manutenção (MMH/OS);
- Tempo de manutenção em homens hora por mês (MMH/mês);
- Tempo de manutenção em homens hora por hora de operação (MMH/OH); e,
- Tempo de manutenção em homens hora / missão ou fase de missão (MMH/missão).

3.7.1.5.5 - Fatores humanos

A preocupação com os fatores humanos visa maximizar a eficácia dos esforços em se considerando: fatores antropométricos (dimensão e características físicas do corpo humano); fatores sensoriais (consideração da capacidade de percepção através dos sentidos humanos), fatores fisiológicos (impacto do stress do ambiente, como temperatura e umidade, na eficiência do homem); fatores psicológicos (características da mente humana, como emoção, atitudes de resposta, comportamento e iniciativa, que possam ser afetados, por exemplo, por

políticas e procedimentos de manutenção que sejam difíceis ou complexas, ou um gerenciamento ou estilo de supervisão que podem levar a frustração e a atitudes negativas).

3.8 - ACV - Avaliação de Ciclo de Vida

O uso do *software* SAP R/3 para avaliação do ciclo de vida já está aprovado na literatura específica (HENDRICKSON, 2001).

QUEIROZ (2005) propõe o uso do SAP r/3 como ferramenta para implantação de ecossistemas industriais.

MORETON (2004) mostra que estudos brasileiros sobre o ciclo de vida da cana-de-açúcar mostraram que "145,3 toneladas de CO₂/hectare/ciclo são seqüestradas no cultivo da cana-de-açúcar e 111,5 toneladas de CO₂/hectare/ciclo são emitidas na co-geração de eletricidade excedente, resultando no saldo favorável de seqüestro de CO₂ de 33,8 toneladas/hectare/ciclo de vida de eletricidade excedente, quantia que é fornecida às empresas de distribuição de energia." E que "ao se comparar com outras formas de geração de eletricidade, a energia produzida em usinas de álcool e açúcar apresenta os mais baixos valores de emissão de CO₂". Assim, torna-se relevante o transporte da matéria-prima até o ponto de consumo, para que não se crie emissão significativa de CO₂.

MATTOS (2001) apresenta estudos brasileiros sobre emissões por transporte de carga que mostram uma emissão de 2.10⁵; 1.10⁵ e 1.10⁴ g CO₂/tonelada-quilômetro quando se utiliza caminhão, trem ou navegação marítima, respectivamente. Portanto, o sistema de controle deve considerar bastante relevante a distância entre dois produtores primários: bagaço de cana/silício.

Em empresas que utilizam um sistema ERP, normalmente dispõem de um módulo denominado LSI (*Logistical System Information*), que considera todos os parâmetros previamente configurados e propõe o caminho ótimo para o transporte, incluindo via e roteiro. No caso deste módulo não estar configurado, necessitam-se, para a geração das condições envolvidas no transporte, todos os parâmetros relevantes, como custos de fretes e seguros. Para a consideração da emissão de CO₂, basta a inclusão de uma nova condição dependente da

distância e que calcule a emissão de acordo com os parâmetros inseridos. A avaliação das condições do transporte viabiliza ou não a comercialização do co-produto.

O bagaço de cana pode ser aproveitado como co-produto em todas as indústrias selecionadas para a geração de energia e o silício para a formação de liga metálica, que corresponde a dois ecossistemas industriais externos. O uso do bagaço de cana como ração animal é comum quando o empreendimento encontra-se próximo ao local de fabricação de açúcar ou álcool, formando um ecossistema aparentemente interno.

Conhecendo a localização da empresa e os custos do transporte, incluído o custo ambiental, o sistema fornece o cálculo do custo total do transporte; assim, pode se comparar este com o custo do descarte, comprovando os ganhos econômicos ambientais, e desta maneira, se o ecossistema industrial pode ser viabilizado.

O principal fator limitante para a comercialização dos co-produtos é à distância. Portanto, é necessário calcular a máxima distância que o bagaço de cana pode ser transportado antes de ocorrer emissão de CO₂. Sabendo-se que a produtividade da cana de açúcar é de 60 ton.hectare⁻¹. (estimativa da FAO – *Food and Agriculture Organization* - para 1999), o ecossistema pode ser ambientalmente eficiente, ou neutro, quanto ao seqüestro de carbono, apenas se a distância máxima for 3 km. Por outro lado, considerando a distância do carvão mineral atualmente importado, o sistema continua mais eficiente em termos de seqüestro de carbono para qualquer configuração. Os valores econômicos, avaliados pelo valor médio, demonstraram também vantagens econômicas.

Muito embora a indústria de açúcar e álcool utilizar o bagaço de cana em suas caldeiras, ainda é possível propor ecossistemas industriais. Como escórias da indústria do silício (KORNDORFER, 1995) e da siderúrgica (PRADO, 2002) podem ser usadas para a adubação do solo para produção de cana, uma hipótese interessante para se avaliar é a formação de um ecossistema ao lado da região produtora de silício pela adição da cadeia de açúcar e álcool. Neste aspecto, o local mais provável de estabelecer o ecossistema é próximo ao estado de São Paulo, onde as empresas possuem representantes. O ecossistema pode ser definido como indústria de processamento de silício, metalúrgica e produção de cana-deaçúcar, se possível acoplada à produção de açúcar e álcool (QUEIROZ, 2007).

3.9 - O Aspecto Social

Este item discute genericamente o aspecto social, uma vez que a sustentabilidade presume considerar o tripé aspectos ambientais / econômicos / sociais.

Há diferentes abordagens para os aspectos sociais, ou mesmo para a definição de responsabilidade social (BOVO, 2003). Algumas são atendidas pelas normas internacionais de segurança e saúde no trabalho, como as da OSHA (*Occupational Safety and Health Administration*), que possui as suas contrapartidas nas normas brasileiras; porém, tais normas têm como característica uma grande preocupação com o controle de indicadores pósocorrência de algum fato ou de alguma não conformidade, tais como acidentes. Por outro lado, a idéia da responsabilidade social é uma questão mais ampla, pois fornece também indicadores de caráter preventivo que visam em última análise uma melhor qualidade de vida, para atingirse a sustentabilidade de acordo com a Agenda 21. Melhor qualidade de vida e responsabilidade social estão atreladas à saúde do trabalhador.

DEL MASTRO (2001) afirma que a implementação de novas tecnologias traz, implicitamente, ao menos dois perigos para a saúde do trabalhador. Em primeiro lugar ela intensifica o trabalho porque é um processo de maior produtividade que o anterior, em segundo, ela aumenta a carga emocional devido à introdução do novo, aumentando consequentemente a carga de trabalho.

3.10 - Aspectos teóricos da Metodologia.

De acordo com SILVA (2001) dentre os possíveis métodos de pesquisa científica o método fenomenológico, que não é dedutivo nem indutivo, preocupa-se com a descrição direta da experiência tal como ela é e pode ter como ferramenta o estudo de caso. O estudo de caso, considerando que foi realizado na forma de auditoria, foi escolhido como ferramenta metodológica para esse trabalho pelos motivos expostos a seguir. A *auditoria* tornou-se o principal instrumento operacional sistêmico, analítico, de natureza pericial, para avaliar o estágio de atendimento à legislação (conformidade) e gerar informações para tomada de decisões em gestão e negócios da organização. Envolvem procedimentos para diferentes tipos de atividades, para que a organização possa alcançar suas metas e objetivos perante

consumidores, clientes, empregados, investidores e seguradoras, organizações governamentais e não governamentais e outros grupos de interesse específicos. Auditoria envolve a organização e tabulação das informações geradas, tomando o cuidado para sistematização e registros de códigos de identificação e arquivar tais informações de maneira a facilitar sua referência e recuperação.

O estudo de caso é muito utilizado na área da Engenharia de Produção e, segundo Silva, "Engenharia de Produção caracteriza-se como uma engenharia de métodos e de procedimentos. Seus objetivos são o estudo, o projeto e a gerência de sistemas integrados de pessoas, materiais, equipamentos e ambientes. Procura melhorar a produtividade do trabalho, a qualidade do produto e a saúde das pessoas (no que se refere às atividades de trabalho)... A área de Engenharia de Produção tem uma abordagem interdisciplinar como suporte da sua construção cognitiva. Nesse sentido está envolvida com diversas Ciências Humanas, em particular com a Economia e as ciências da organização (que envolvem temas ligados à Administração, à Sociologia, às Ciências Ambientais, à Psicologia e à Matemática Aplicada)".

Segundo DANTON (2002) o estudo de caso apresenta algumas premissas a serem preenchidas, pois "o caso é tomado como unidade significativa do todo" e apresenta três fases:

- 1 Seleção e delimitação do caso;
- 2 Trabalho de campo;
- 3 Organização e redação do relatório.

"O estudo de caso pode incluir várias outras técnicas: entrevista (diretiva e não diretiva), análise de conteúdo, observação (sistemática ou participante), questionário...". De forma resumida, pode-se dizer que nos estudos de caso é utilizada uma abordagem semelhante à usada em auditorias da série ISO, uma vez que há interesse em levantamento de indicadores.

4 - MATERIAIS E MÉTODOS

4.1 - Materiais

Na estruturação deste trabalho procurou-se mostrar e evidenciar a importância e a necessidade da aplicação de métodos que busquem com objetividade a aplicação de estratégias de manutenção de equipamentos agrícolas baseados no Programa de Melhoria da Manutenção Produtiva Total aplicada na Usina São Martinho (PMMPT) e na Administração Limpa e Enxuta (ALE).

Modelos de gerenciamento de produção denominados produção enxuta já atingiram um grau elevado de implementação nos diversos setores de produção, sejam em empresas de grande, médio e até de pequeno porte, onde a MPT é uma dessas ferramentas para produção enxuta. Esses modelos elevaram a produção a um nível satisfatório de produtividade com qualidade, porém poucos têm contemplado o sistema de gestão baseado em produção limpa.

Este estudo apresenta uma metodologia similar ao FMEA, onde foi efetuado levantamento das falhas e suas causas que ocorrem em sistemas hidráulicos de colhedoras de cana-de-açúcar, na operação de colheita, por meio de auditoria. Através do acompanhamento durante 3 safras, e de um controle pormenorizado na safra 2005/2006 em 5 unidades da frota de 42 colhedoras CASE - série 7700, de uma empresa sucroalcoleira, foi possível elaborar uma metodologia, identificando onde ocorrem os modos de falhas e suas causas. Com esses dados, foi possível alimentar um sistema de banco de dados, de maneira a estabelecer base para análise de confiabilidade e mantenabilidade em sistemas hidráulicos de colhedoras de cana-de-açúcar.

A otimização do Programa de Melhoria da Manutenção Produtiva Total aplicada na Usina São Martinho, tendo como base aplicações parciais dos pilares de sustentação da MPT, recorre ao levantamento de parâmetros baseados na produção limpa e enxuta, nesta empresa sucroalcoleira, para a determinação de aspectos que visaram:

- Aumento da vida útil de máquinas e equipamentos agrícolas;
- Prolongamento nos intervalos de paradas para troca de óleos e lubrificantes;
- Menor intervenção em máquinas e equipamentos para troca de componentes;
- Menor quantidade de resíduos gerados;

- Maior economia pela menor geração de resíduos, menor quantidade de trocas, aumento da vida útil de máquinas, equipamentos e componentes, menor uso de insumos, menor utilização de recursos naturais;
- Benefícios ambientais e financeiros pelo recondicionamento e reciclagem;
- Preservação do solo e, conseqüentemente, dos lençóis freáticos pelo não derramamento ou desperdício de óleo hidráulico no campo; e,
- Motivação e satisfação dos operários pelo "enriquecimento das funções", pela qualificação, capacitação e valorização do ser humano como elemento imprescindível no processo de desenvolvimento sustentável e preservação do ecossistema.

A busca de soluções tecnológicas que ofereçam as melhores práticas e ainda a possibilidade da profissionalização na indústria de açúcar e álcool é uma realidade para o mercado de agronegócios. A metodologia foi elaborada numa investigação do sistema hidráulico das colhedoras de cana-de-açúcar da Usina São Martinho (USM), por meio dos seguintes **objetivos específicos**:

- Identificar e analisar os modos de falhas (aspectos antrópicos, mecânicos, técnico/tecnológico);
- Estabelecer indicadores para avaliar a significância dos modos de falha no desperdício de óleo hidráulico;
- Elaborar fichas de controle de modos de falha do sistema hidráulico das colhedoras de cana-de-açúcar;
- Aplicações da Administração limpa e Enxuta para quantificar os benefícios oriundos da otimização da PMMPT;
- Procedimentos para a inclusão dos modos de falhas no sistema ERP;
- Elaboração da metodologia que minimize e evite as falhas no sistema hidráulico das colhedoras de cana-de-açúcar;
- Elaboração de um software específico para estabelecer à significância das falhas através de um organograma denominado "OFCE" (Organograma de Falhas Componente Elemento).

A geração de relatórios é necessária para atender vários *stakeholders*, em auditorias freqüentes. O principal *stakeholders*, neste caso, é os maiores custos com peças ou manutenção. O estudo de caso mostrou que o software de ERP fornece os dados de toda a

movimentação dos insumos usados na produção, cujo banco de dados forneceu a base de informações para o estabelecimento da metodologia desenvolvida neste trabalho.

4.1.1 - Caracterização da área de estudo

A USM explora cerca de 100.000 hectares de cana-de-açúcar, sendo 80.000 hectares de área própria e 20.000 hectares de fornecedores. De toda essa área cultivada, 80% da colheita são processadas no sistema de cana "crua" totalmente motomecanizado por uma frota de 42 colhedoras automotrizes em 5 frentes de trabalho de colheita compostas cada uma delas por um conjunto de 7 a 8 unidades colhedoras.

No período de safra as colhedoras, geralmente, são agrupadas em 5 frentes de trabalho. Essas frentes de trabalham contam com 7 ou 8 colhedoras, 12 carretas de transbordo rebocadas por tratores, 1 caminhão pipa, 1 caminhão de abastecimento, 1 caminhão de manutenção, 1 líder de frente, 3 operadores para cada unidade de colheita em três turnos de 8 horas, inspetores de qualidade, catadores e indicadores de localização das frentes para os rodotrens e treminhões. Quanto à quantidade de colhedoras em cada frente de trabalho, foram feitas as seguintes distribuições: Nas frentes de trabalho F1 e F2 foram agrupadas 8 colhedoras AUSTOFT A-7700 fabricadas em 1997 para cada frente. Na frente de trabalho F3 foram agrupadas 8 colhedoras BRASTOFT A-7700 fabricadas em 1997. Na frente de trabalho F4 foram agrupadas 7 colhedoras CASE IH A-7700 fabricadas no ano de 2000, sendo que para frente de trabalho F5 foram alocadas 7 colhedoras CASE IH-7700 fabricadas no ano de 2002.

Na safra 2004/2005 o agrupamento das máquinas deu-se da mesma forma, com exceção de uma colhedora BRASTOF A-7700 de 1977, número de identificação 61, que foi deslocada da frente F3 para frente F4. Na safra 2005/2006 o agrupamento acompanhou a distribuição descrita anteriormente.

Para a safra 2006/2007 foram adquiridas novas colhedoras de cana modelos CASE-IH A-7700, que substituíram a frota de uma das frentes de trabalho.

Desse cenário produtivo concentrou-se como o campo experimental do presente trabalho 5 colhedoras automotrizes em uma única frente de trabalho, tal procedimento teve como princípio que este trabalho exige uma administração de elevado nível de competência pelas diversas variáveis possíveis na logística da colheita de cana de açúcar.

Na cadeia de manuseio do óleo hidráulico, o recebimento é feito pela Usina em seu posto de armazenamento, para onde é transportado por caminhões tanque dos fornecedores. Após análise das características e especificações quanti-qualitativas, o óleo é transferido para tanques de armazenamento a granel. A partir dos tanques o óleo hidráulico é acondicionado em tambores para abastecimento na oficina, e em unidades móveis de manutenção (unidade combóio) para abastecimento e/ou remonta em campo.

Conforme mostra a Figura 5, foi desenvolvido um equipamento cujas bombas e filtros de descontaminação são aplicados para as operações de retirada e abastecimento do tanque de óleo hidráulico das colhedoras. Este equipamento tem como objetivo minimizar o derramamento de óleo, no manuseio do mesmo nas operações de abastecimento, remonta e retirada do óleo hidráulico das máquinas nos casos de contaminação e em manutenção. Além das funções de colocação e retirada dos óleos, o equipamento tem também filtros para fazer a limpeza do óleo para que os mesmos possam ser reutilizados e reaproveitados.

Figura 5 - Equipamento para retirada e abastecimento de óleo hidráulico

A Figura 6 ilustra o armazenamento do óleo em tambores colocados em estantes que encontram se alocadas estrategicamente próxima às oficinas de manutenção. Este sistema de armazenamento é para garantir os abastecimentos e remontas nas dependências das oficinas de forma a melhorar a logística de abastecimentos e evitar o derramamento de óleo nestas operações. São utilizados tambores com capacidade para 200 litros (52,82 galões) onde é acondicionado óleo hidráulico, graxas e óleo lubrificante.

Figura 6 - Óleo em tambores para abastecimento nas oficinas de manutenção.

A Figura 7 ilustra uma Unidade móvel responsável por abastecimento em campo a qual consiste em um caminhão, cuja carroceria é fechada em aço, dentro da qual estão localizados os tanques de óleo hidráulico, óleo lubrificante, graxas e combustíveis. São dotados de bombas para alimentar as unidades motorizadas das frentes de trabalho. Possuem também medidores de galonagem para controle da quantidade de abastecimento das unidades motomecanizadas utilizadas no processo de colheita. O detalhe ilustra os medidores e o sistema de abastecimento. Este método foi adotado em substituição aos modelos anteriores, dotados de tambores de 200 litros (52,82 galões), que eram transportados em cima dos caminhões "comboio" e estavam sujeitos a furos ocasionados pelos solavancos em campo, provocando diversos vazamentos enquanto estes tambores contivessem algum óleo. Estes vazamentos ocasionavam grande desperdício de óleo em campo.

Figura 7 – Comboio de abastecimento e detalhe do sistema de abastecimento em campo.

Durante o período de entressafra todas as colhedoras passam por uma revisão detalhada, onde toda a unidade de colheita é desmontada e cada elemento de máquina é avaliado para verificação de seu desgaste. As oficinas de manutenção são dotadas de toda infraestrutura necessária para estas revisões. Contam com os setores de soldagem, tornearia, fresamento, retificação, brunimento, recondicionamento de motores hidráulicos, prensagem de mangueiras hidráulicas, máquinas de ensaio para teste de bombas e motores hidráulicos, pintura, borracharia, lavagem, almoxarifado de peças de reposição e todas as ferramentas necessárias para desmontagem e montagem das colhedoras e das outras unidades motomecanizadas que compõem a frota da Usina São Martinho.

Alguns serviços de manutenção mais específicos são terceirizados como, por exemplo, a retificação de motores de combustão interna.

Na oficina de manutenção, as colhedoras são desmontadas e todos os componentes são revisados, reparados ou trocados para remontagem da unidade de colheita. Este processo é executado em duas etapas, sendo que na primeira etapa são revisadas 20 colhedoras e na segunda etapa as outras 20 do total de 40 colhedoras. Toda parte hidráulica é desmontada, bem como todos os demais conjuntos que compõem uma colhedora autopropelida de cana-deaçúcar. Os componentes metálicos que possam ser recuperados passam por processos de soldagem, usinagem, retificação, brunimento e outras operações de manutenção que possam garantir a reutilização destes componentes na unidade de colheita. Os motores e bombas hidráulicas são submetidos a testes de galonagem, em um equipamento especial desenvolvido para este fim, para decisão sobre sua utilização no estado em que se encontra ou sua utilização após uma completa revisão na oficina de motores e bombas hidráulicas. As mangueiras são inspecionadas uma a uma para análise de suas características quanto a desgaste nas tramas por abrasão, ressecamento, possíveis furos, prensagem dos conectores e condições gerais. Os niples das conexões são analisados quanto à espanamento, trincas, vedações, aperto e outras características que possam provocar falhas. A operação de manutenção é realizada com bandejas de contenção para que todo o óleo que é coletado possa ser enviado para reciclagem e posteriormente reutilizado. Na manutenção realizada em 2003/2004, foram coletados 12.000 litros de óleo hidráulico com o emprego de tais bandejas coletoras.

As mangueiras e conexões são tamponadas como forma de evitar o derramamento de óleo na manutenção. Este processo é realizado para que as mangueiras não fiquem gotejando óleo hidráulico durante o processo de revisão. Quatro bombas hidráulicas são responsáveis pelo bombeamento do óleo para os 41 motores hidráulicos que executam as tarefas de despontamento, movimentação dos pirulitos, movimentação do rolo tombador, corte basal, transporte e corte da cana em rebolos, exaustão das palhas, transmissão do conjunto motomecanizado e descarga dos rebolos na carreta de transbordo.

A Figura 8 mostra uma máquina de ensaio desenvolvida para teste estático de motores, bombas, mangueiras e conexões. O conjunto hidráulico da máquina de ensaio é acionado por um motor diesel Scania DS11 de 332 HP, semelhante ao utilizado nas colhedoras. Simula os esforços e pressões a que são submetidos os componentes hidráulicos na unidade de colheita, o que possibilita uma análise de desempenho, propiciando decisões sobre a continuidade de utilização de um determinado componente hidráulico na máquina ou

sua substituição e seu recondicionamento. Estas decisões estão pautadas em valores mínimos de vazão, em galões, para determinação da continuidade de um determinado motor, bomba ou mangueira hidráulica na colhedora sem necessidade de reparos, ou de seu descarte ou encaminhamento para a oficina de recondicionamento de motores e bombas hidráulicas, para posterior reutilização.

Figura 8 - Equipamento desenvolvido para ensaios nos componentes do sistema hidráulico.

A preocupação nas oficinas de manutenção com as questões ambientais, mais especificamente com o impacto provocado pelo derramamento de óleo é uma constante na USM, onde grelhas de contenção, valas de escoamento e tanques de decantação foram construídos com os objetivos de separação, retenção, reciclagem e destinação adequada dos resíduos oriundos de lavagens de máquinas e componentes em manutenção. Os óleos são reciclados, a água é reaproveitada e o lodo oriundo do processo de decantação é encaminhado a um aterro, atendendo as normas de destinação adequada.

A lavagem de máquinas e equipamentos é água não potável, retirada do rio Mogi Guaçu, acondicionada em tanques, e reutilizada novamente para lavagens. Atualmente esta em desenvolvimento um projeto para reutilização das águas das chuvas também, para este fim.

4.1.2 - Processo de Colheita

Na USM são colhidas, em média, 450 hectares de cana por dia e processadas 40.000 toneladas de cana moída. Este valor diário esta sujeito à alteração uma vez que, continuamente, a Usina São Martinho bate o recorde mundial, e seu próprio recorde, em toneladas de cana esmagada diariamente, cujos dados foram obtidos na presente safra 2007/2008, ainda em andamento.

Para melhor entendimento da complexidade logística da colheita de cana-de-açúcar no complexo agroindustrial e os diversos fatores que envolvem o problema de derramamento de óleo hidráulico é importante descrever como se processa a colheita durante as safras. O processo de colheita na Usina São Martinho é feito com colhedoras de esteira modelo 7700, que são acompanhadas pelas carretas de transbordo dotadas de pneus de alta flutuação e baixa pressão, rebocadas por tratores com bitolas alargadas para adequação a largura entre fileiras de plantas. As esteiras, os pneus de baixa pressão e os tratores rebocadores de bitola alongada objetivam a não compactação do solo e não "pisotear" as soqueiras.

As Figuras 9 e 10 ilustram o processo de colheita, o carregamento das carretas de transbordo sendo efetuado pela colhedora, o transbordo da cana picada para as gaiolas dos treminhões e rodotrens.

Figura 9 – Colhedora em processo de colheita. Detalhe da retirada dos ponteiros.

Figura 10 – Transbordo efetuado em espaço reservado para manobras de veículos.

Todo cuidado é tomado para não ocorrer o "pisoteamento" das soqueiras. As bitolas dos tratores, carretas, caminhões de apoio e outros veículos, foram alargados para as dimensões dos espaçamentos das ruas, para evitar "pisoteamento". Pneus de baixa pressão e alta flutuação são utilizados para minimizar a compactação dos solos (Figura 11).

Figura 11 – Ilustra a colheita onde as soqueiras são preservadas durante o tráfego das colhedoras e das carretas de transbordo.

O desenvolvimento deste trabalho foi focado na cadeia de manuseio de óleo hidráulico, desde sua entrada na Usina até o abastecimento de rotina e das remontas ocorridas em campo, para elaboração de uma metodologia de prevenção das falhas especificamente no sistema hidráulico das colhedoras.

4.1.3 – Frota de colheita mecanizada

As unidades de colheita da USM são colhedoras CASE - série 7700, modelos de 1997 a 2003, com um sistema hidráulico composto basicamente de 20 cilindros, 41 motores, 04 bombas, 01 divisor de fluxo e 22 válvulas. São 13 tipos diferentes de cilindros que compreendem 241 itens. Os 41 motores compreendem 16 tipos que totalizam 640 itens. As bombas hidráulicas e o controle de transmissão somam 363 itens. O divisor de fluxo é composto por 59 itens. Os blocos, válvulas, linhas e circuitos hidráulicos respondem por mais 2132 itens, ou 60% de todo o sistema, que totaliza 3435 componentes entre mangueiras, conexões, anéis de vedação, carcaças, parafusos e outros componentes de máquinas.

A Figura 12 ilustra o tombamento da cabina para facilitar o acesso aos componentes do sistema hidráulico e mecânico da máquina Case série 7700.

Figura 12 – Sistema de tombamento da cabine para acesso aos componentes hidráulicos e mecânicos da colhedora CASE série 7700.

Estas colhedoras são dotadas de esteiras objetivando distribuir o peso das colhedoras em uma área maior como forma de minimizar a compactação do solo e também oferecer maior estabilidade e uniformidade operacional ao sistema de corte.

Figura 13 - Colhedora CASE IH – modelo 7700, ano 2003.

4.2 - Métodos

4.2.1 - Critério para escolha das unidades de colheita (colhedoras) para estudo.

Em virtude das necessidades e da logística no acompanhamento das 42 colhedoras nas frentes de trabalho (colheita), bem como outros aspectos tais como: tráfego de veículos muito intenso durante o período de colheita, o que torna a circulação de veículos de pequeno porte pelos canaviais um risco a mais para a logística de movimentação das colhedoras, treminhões, rodotrens, comboios de manutenção, de abastecimento, caminhões pipas para combate a incêndios, carretas de transbordo e pessoal de apoio entre outras formas de transito;

sentidos de direção pelos carreadores são alterados frequentemente objetivando percursos mais eficazes na logística de transportes; frentes de trabalhos diferentes costumam trabalhar em pontos extremos nos 100.000 hectares de canaviais.

Considerando toda complexidade neste tipo de movimentação optou-se por atuar em uma única frente de trabalho. Pela análise do desempenho operacional de cada uma das colhedoras, foram selecionadas três colhedoras da frente de trabalho F1: Como critério de escolha das unidades colhedoras a serem monitoradas, elegeu-se uma que apresentou maior vazamento de óleo hidráulico, uma segunda que apresentou menor vazamento, e uma outra que apresentou vazamento médio em relação às demais colhedoras, nas safras anteriores (2002/2003, 2003/2004 e 2004/2005), pois geralmente as frentes de trabalho apresentam características de desempenho operacional e vazamentos semelhantes.

Analisando as planilhas de desempenho operacional das colhedoras dessas safras anteriores, para os estudos propostos neste trabalho, foram selecionadas conforme o critério acima mencionado as colhedoras identificadas pelos números de frota 15, 17 e 19, pertencentes à frente de trabalho F1, cujo monitoramento para efeito de controle desta pesquisa iniciou-se em 15/04/2005 e encerrou se em 12/11/2005, correspondendo, portanto ao período da safra 2005/2006.

A partir de 01/08/2005, foram incluídas no grupo de colhedoras monitoradas as máquinas de números de frota 14 e 16, uma vez que o simples sistema de controle das falhas implantado já apresentava certo grau de controle que resultava, operacionalmente, em uma relativa redução da quantidade de desperdício de óleo pelo sistema hidráulico das colhedoras que estavam sendo monitoradas.

Por motivos estratégicos de produção (não fornecer quantidade de cana picada além da capacidade de moagem da usina) somado ao fato da necessidade de interferência no motor diesel da colhedora 15, a mesma foi retirada da frente de trabalho F1 em 09/05/2005 retornando em 05/08/2006.

4.2.2 - Determinação de Modos de Falha no sistema hidráulico de colhedoras

Os modos de falha que ocorrem no sistema hidráulico das colhedoras de cana foram subdivididos em Antrópicos e Mecânicos.

Quanto aos possíveis modos de falhas antrópicas e que dizem respeito aos fatores culturais, treinamento, capacitação e qualificação do operador da colhedora de cana, cujos fatores e indicadores foram estabelecidos pela quantidade de treinamentos, cursos, capacitação efetuados no período da entressafra na Usina São Martinho e também por outros dados disponibilizados pelo setor de recursos humanos da empresa.

Observou-se durante o período de realização deste trabalho ser cultura e tradição do Grupo São Martinho a preocupação com seus colaboradores e a realização de investimentos junto a seus recursos humanos. Nos últimos anos, esta política recebeu uma melhor gestão, o que trouxe ganhos efetivos para toda a organização. Com o objetivo de capacitar e motivar suas equipes, cada colaborador recebe, em média, cerca de 30 horas de treinamento por ano, entre capacitação técnica e aspectos comportamentais.

Os colaboradores participam de um programa anual de qualidade de vida, com palestras voltadas principalmente para a saúde e segurança do trabalhador e suas famílias, realizam ginástica laboral e recebem isotônicos diariamente.

Além disso, o PPR (Programa de Participação nos Resultados) do Grupo incorporou a preocupação com a saúde e segurança do colaborador, valorizando a efetiva participação do empregado nos resultados e a redução dos acidentes. Todos recebem uma remuneração extra de acordo com as metas atingidas e isso ajudou a disseminar e fixar os conceitos e a preocupação com a saúde, segurança e meio ambiente.

Quanto aos possíveis modos de falhas mecânicas e que dizem respeito ao tipo de rompimento de mangueiras, defeitos de manuseio de conexões e fatos acidentais, os quais foram obtidos por meio do banco de dados (ERP) disponibilizado pela Usina São Martinho referente à safra 2002/2003, 2003/2004, 2004/2005 e 2005/2006, incorporado ao Programa de Melhoria da Manutenção Produtiva Total aplicada na Usina São Martinho (PMMPT).

No sentido de aprimoramento do PMMPT com base no ERP, para estabelecimento da metodologia de otimização aliada a Administração Limpa e Enxuta, foi realizado também um levantamento de informações por meio de uma "Ficha de controle de falhas do Sistema Hidráulico" utilizado nas colhedoras monitoradas, conforme mostra a Tabela 7. Foi desenvolvido e aplicado aos mecânicos e operadores das colhedoras como objeto de monitoramento e base de dados para estudo deste trabalho.

O monitoramento por meio da aplicação da "Ficha de Controle de Falhas do Sistema Hidráulico", foi realizado para cada uma das colhedoras, objeto deste estudo, o que diariamente foi preenchida pelos operadores de máquinas, nos três turnos de trabalho, gerando novos dados para elaboração da metodologia, objeto da proposta deste trabalho.

As falhas que ocorreram foram identificadas de acordo com os modos de falha do sistema hidráulico das colhedoras sendo anotadas em fichas conforme mostra a Tabela 2.

O item "Horímetro" diz respeito à quantidade de horas trabalhadas pela colhedora e é medido pela rotação nominal do motor de combustão interna da máquina. Os operadores são orientados a trabalhar em uma determinada rotação em que se obtém uma melhor produtividade de maneira a não ultrapassar a capacidade de carga de cada um dos elementos de máquina das colhedoras. No caso das colhedoras da USM existe um sistema de alarme sonoro que informa quando a rotação ultrapassa um valor determinado. Todas as colhedoras trabalharam nesta faixa de rotação indicada.

Os itens "Quebra", "Início do Reparo" e "Fim do Reparo" foram fracionados em "Data" e "Hora", e foram assim elaborados para permitir levantamento de tempo de máquina parada por falha e tempo de reparo em separado.

O item "Peça Trocada" foi desta forma apresentado para identificação da peça trocada para levantamento de custos, estoque, histórico de trocas.

O item "Defeito/Compartimento" foi montado desta forma para identificação da falha e em que parte do sistema hidráulico ela ocorreu.

No item "Descrição da causa do defeito" o operador da colhedora procurou descrever de que forma uma falha ocorreu.

O item "Óleo hidráulico" foi elaborado para identificar separadamente o derramamento de óleo hidráulico em virtude das falhas que ocorreram e da quantidade remontada.

As informações de "área de colheita" e "operador" foram colocadas com o objetivo de se estabelecer indicadores sociais e de condições de campo.

Tabela 2 - Ficha de controle de falhas do Sistema Hidráulico utilizado nas colhedoras monitoradas preenchidas pelos operadores.

	☐ DATA	l	☐ N° COLHEDORA	FRENTE]
CONTROLE DE FALHAS NO SISTEMA HIDRÁULICO				
SAFRA 05/06				

HORÍM.	HORÍM. QUEBRA		INÍCIO REPARO		I FIM REPARO		IM REPARO PEÇA TROCADA			DESCRIÇÃO DA CAUSA DO	ÓLEO HII	ÓLEO HIDRÁULICO (LTS)			RMAÇÕES A COLHEI	N ^O CONTROLE	
COLHED.	DATA	HORA		HORA	DATA	HORA		QTDE		DEFEITO -Ex. Rompeu anel	TO -Ex. REMONTA TROCA À SER		À SER RECUP.	MAPA	Υ	N [©] CORTE	DO OPERADOR
							MA1.		Exc vauoi)	Kompeu anei			RECUP.			CORTE	OLEKADOK

4.2.3 - Critérios para análise e avaliação de causas e efeitos das falhas

Foram anotadas nas fichas (Tabela 2) cada componente que apresentou falha na safra 2005/2006 em cada uma das colhedoras selecionadas e monitoradas, dados estes coletados em campo e inseridos em planilha eletrônica Excell (Tabelas A.6, A.7, A.8, A.9 e A.10) para o banco de dados da Usina São Martinho. Nestas tabelas estão apresentados os modos de falhas/defeitos; em que conjunto, subconjunto e componente ocorreu a falha/defeito; qual a causa da falha textualizada; hora de início da falha; hora de início da manutenção; término da operação de manutenção; tempo de parada para manutenção; tempos de parada total; quantidade de óleo desperdiçado medido através da quantidade remontada; número da máquina; frente de trabalho; mapa de localização do talhão; gleba; número de corte; código do operador e horímetro da colhedora.

O estudo das falhas seguiu a ordem do gráfico de Ishikawa, (vide glossário) apresentado e reproduzido no nível mais elementar das causas na Figura 14, que descreve os fatores como materiais, métodos, mão de obra, máquinas, meio ambiente e medidas como as 6 (seis) principais causas para a cadeia de falhas do sistema hidráulico das colhedoras de cana, tendo como saída seus efeitos.

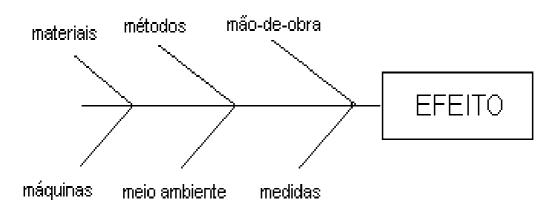


Figura 14 - Gráfico das causas e efeito na cadeia de falhas em sistema hidráulico de colhedoras de cana-de-açúcar.

5 - RESULTADOS E DISCUSSÃO

5.1 – Apresentação dos resultados a partir do banco de dados do ERP.

A proposta deste trabalho foi estabelecer uma metodologia para análise dos modos de falhas e suas causas como o objetivo de identificar as ocorrências, severidade e outras variáveis. Reconhecer e avaliar a falha potencial de um produto. (mangueiras, anéis, niples, motores hidráulicos e outros elementos de máquina), e identificar ações capazes de eliminar ou reduzir a chance de uma falha potencial ocorrer (protetor nas mangueiras, troca de mangueira na fase de desgaste na revisão semanal, torque adequado nas conexões, para evitar continuidade de trabalho com vazamentos).

No Apêndice mostram tabelas completas denominadas "Desempenho Operacional", fornecidos pelo *software ERP* da Empresa, com informações operacionais das colhedoras.

O conceito de Administração Limpa e Enxuta e o uso dos softwares baseados em planilhas eletrônicas, aplicados pelo Departamento de Manutenção de Máquinas Agrícolas da USM, puderam demonstrar a necessidade de garantir a sustentabilidade dos empreendimentos humanos, bem como adequar essa nova forma de gestão.

O uso de *software* para a aplicação do conceito de ALE não significou necessariamente o uso de um *software* de alto custo.

A geração destes relatórios simples apresentou uma série de vantagens, os quais refletiram dados customizados e atualizados e ajudaram os gestores a tomar rápidas decisões de fornecimento e compra; isto é o gerenciamento de materiais. Além disso, os dados coletados puderam detectar falhas ou sazonalidade nos processos, podendo evitar prejuízos econômicos, ambientais e sociais propagassem.

Para um sistema de grande porte, como no caso do SAP utilizado na USM, a maior vantagem foi à possibilidade de geração de relatórios em tempo real e com uma interface visual gráfica de simples compreensão e veiculação pela web.

Em função de uma necessidade para dar apoio a soluções de mercado a USM disponibilizou para realização deste trabalho um novo software da empresa SAP denominado "mySAP ERP", dando assim possibilidades de maior visibilidade e gerenciamento das informações utilizadas para o desenvolvimento da metodologia sugerida.

Com base nos dados do "Desempenho Operacional", foram levantados os indicadores de desempenho operacional das colhedoras, onde constou desperdício de óleo hidráulico, óleo diesel, toneladas colhidas.

Além dos dados do "Desempenho Operacional", foram elaboradas planilhas para coletar os dados referentes às falhas no sistema hidráulico em um grupo de colhedoras de cana-de-açúcar, para identificar as falhas mais críticas, e apresentar uma metodologia capaz de assegurar um grau de confiabilidade do sistema e menor derramamento de óleo dessas colhedoras e, conseqüentemente, no campo ou regiões de plantio.

A Tabela 3 mostra a produção em toneladas, os dias trabalhados, o número de horas trabalhadas considerando as informações dos horímetros das máquinas; consumo de óleo diesel e desperdício de óleo hidráulico, para estabelecer indicadores de produtividade e de consumo/desperdício específico para as 05 colhedoras de cana selecionadas e que foram objeto de estudo, por meio da "Ficha de Controle de Falhas no sistema hidráulico" implantado, que subsidiaram a coleta dos dados referente às falhas no sistema, base para apresentação de uma metodologia capaz de assegurar um grau de confiabilidade e menor derramamento de óleo dessas colhedoras e, conseqüentemente, no campo ou regiões de plantio.

Analisando os dados obtidos e apresentados na Tabela 3 observa-se que das colhedoras pertencentes à frente de trabalho F1, as colhedoras 16 e 17 foram as que mais produziram em toneladas. No entanto verifica-se que a máquina 16 consumiu mais óleo diesel e óleo hidráulico, desta maneira considerando-se esse nível de consumo de óleo diesel e desperdício de óleo hidráulico, em relação à produção apresentada pelas duas máquinas à máquina 17, relativamente, foi mais econômica no que diz a esses indicadores.

Observando também os dados referentes ao consumo específico, confirmamos a afirmação acima ao constatar-se que a colhedora 17 foi a que menos consumiu óleo hidráulico e óleo diesel pelos indicadores específicos de diesel/hora, diesel/tonelada colhida, óleo hidráulico/hora, óleo hidráulico/dia e óleo hidráulico/tonelada colhida, só não tendo um menor desperdício em relação à máquina 15, pelo indicador específico de litros de óleo diesel/dia.

A partir da constatação que a máquina 17 foi a de melhor desempenho, o que foi constatado adiante por meio do diagrama da Figura 17 e da Tabela 4, onde a máquina 7 apresentou o maio MDOM, esta passou a ser a referencia em nosso estudo.

Tabela 3 - Valores totalizados da safra 2005/2006 obtidos a partir do banco de dados do SAP-USM para obtenção de: Produção (ton), produtividade (ton.dia⁻¹ e ton.h⁻¹) e consumo específico/desperdício (l.h⁻¹, l.dia⁻¹ e l.ton⁻¹) das colhedoras de cana-de-açúcar 14, 15, 16, 17 e 19. Base de validade (Número de dias – Horas horímetro).

Nº. Má	Horas de Trabalho	Número trab.		Produção em	Produtividade Consum de Óleo			Desperd . de Óleo	Consumo Específico de Óleo Diesel			Desperdício Específico de Óleo Hidráulico		
q.	horímetro (hh)	Trabalho	dia h.dia ⁻¹	toneladas (ton.)	ton.dia ⁻¹	ton.h ⁻¹	Diesel (litros) (I)	Hidráulic (litros) (l)	(l.h ⁻¹⁾	(I.dia ⁻¹⁾	(I.ton ⁻¹⁾	(l.h ⁻¹⁾	(I.dia ⁻¹⁾	(l.ton ⁻¹⁾
14	3.653	200	18,27	159.758,85	798,79	43,73	154.516	3.734	42,30	772,58	0,967	1,02	18,67	0,0234
15	2.464	136	18,12	93.554,01	687,90	37,97	99.795	1.437	40,50	733,79	1,066	0,58	10,57	0,0154
16	3.728	201	18,55	175.463,80	872,95	47,07	164.255	2.680	44,06	817,19	0,936	0,72	13,33	0,0153
17	3.793	197	19,25	175.931,76	893,05	46,38	153.577	1.992	40,49	779,58	0,872	0,53	10,11	0,0113
19	3.526	202	17,46	154.678,25	765,73	43,87	157.104	2.072	44,56	777,74	1,015	0,59	10,26	0,0134

Desta forma, foi possível utilizar um critério de seleção para definir a melhor máquina entre as 05 monitoradas para estabelecer uma análise completa dos resultados coletados pelos controles. Os critérios foram baseados nas seguintes variáveis: Produção, Consumo de óleo diesel e Desperdício de óleo hidráulico. Estas variáveis devem obedecer as seguintes condições:

- a) Maior produção (P) da safra;
- b) Menor consumo de óleo diesel (CC); e,
- c) Menor desperdício de óleo hidráulico (DO).

Representando estas condições em um diagrama das variáveis, resultado da equação **MDOM = P. (CC x DO)**⁻¹, sendo: **P** = toneladas colhidas por hora; **CC** = Consumo de óleo Diesel em litros por hora; **DO** = Desperdício de óleo hidráulico em litros hora, extraídos da Tabela 4, tem-se na intersecção deste conjunto de 03 variáveis, obedecendo às condições acima definidas para escolha, o Melhor Desempenho Operacional de Máquina (MDOM), conforme mostrado na Tabela 4 e representado na Figura 15.

A Tabela 4 apresenta os resultados obtidos pela equação MDOM=P. (CC x DO)⁻¹, para as máquinas estudadas durante a safra 2005/2006.

Nº. MÁQ	P – ton. h ⁻¹	CC – l.h ⁻¹	DO – l.h ⁻¹	MDOM
14	43,73	42,3	1,02	1,01
15	37,97	40,5	0,58	1,62
16	47,07	44,06	0,72	1,48
17	46,38	40,49	0,53	2,16
19	43,87	44,56	0,59	1,67

Tabela 4 - Resultados obtidos em função da equação de determinação de maior MDOM

A Figura 15 estabelece uma relação entre as colhedoras da frente F1 que foram analisadas identificando a máquina 17 àquela com o melhor MDOM.

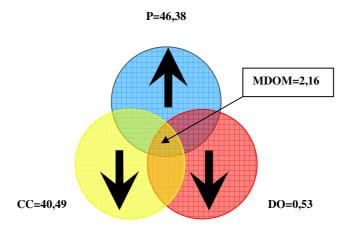


Figura 15 - Diagrama de representação das variáveis que determinam o melhor desempenho operacional de máquina (MDOM) para uma colhedora.

Na Figura 16 é apresentado um gráfico, extraído da Tabela 4, com os resultados da produção em toneladas por dia, obtida durante a safra em função do desempenho das máquinas onde aparece a máquina 17 como a mais produtiva.

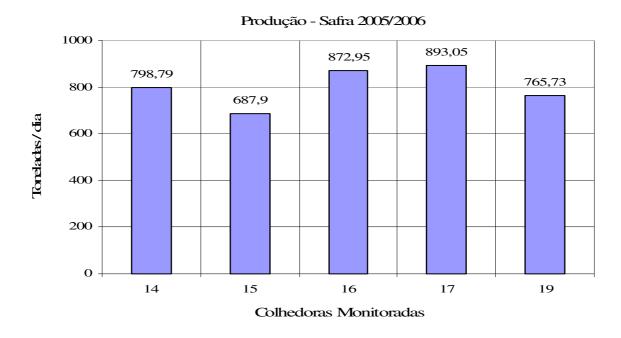


Figura 16 - Gráfico comparativo de produção durante a safra de 2005, em toneladas / dia.

Na Figura 17 apresenta-se o desempenho operacional das máquinas em função do consumo específico de óleo diesel, por tonelada colhida, sendo a17 a de menor consumo.

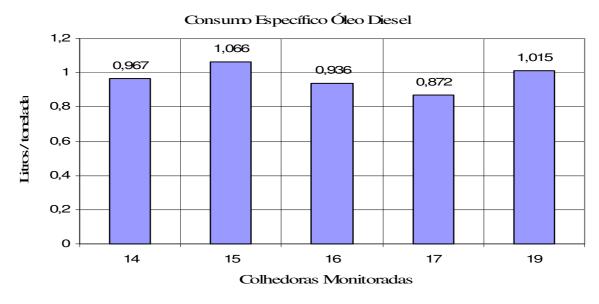


Figura 17 - Consumo específico de óleo diesel (l.ton⁻¹) durante a safra 2005/2006.

Na Figura 18 apresenta-se o desempenho operacional das máquinas em função do desperdício de óleo hidráulico, por tonelada colhida, sendo a 17 a que menos desperdiça.

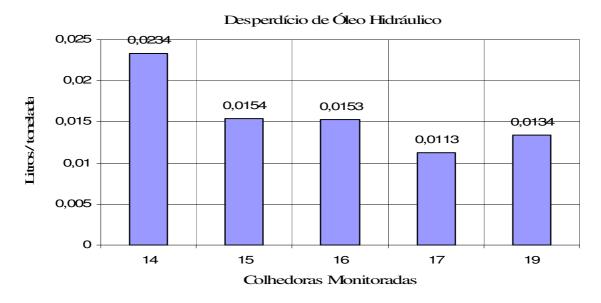


Figura 18 - Desperdício específico de óleo hidráulico (l.ton⁻¹) durante a safra 2005/2006.

5.2 - Proposta de Metodologia para a implantação de controle de falhas

O fluxograma de decisão da Figura 19 descreve as etapas adotadas para a elaboração deste trabalho. Procede-se, como descrito nos aspectos teóricos, a um levantamento bibliográfico das ferramentas usadas para implantação da Ecologia Industrial e da Produção limpa principalmente e, também, de indicadores e índices de sustentabilidade de acordo com os vários atores (*stakeholders*) envolvidos na questão ambiental. A partir da comparação das ferramentas propostas e os indicadores levantados, cria-se uma matriz, que corresponde ao mínimo necessário para implantar-se o conceito e garantir que esta implantação está de acordo com as propostas de sustentabilidade. A partir dessa matriz define-se como utilizar o *software* já existente, ou propõe-se uma alternativa. Os estudos de caso validam a matriz e ao mesmo tempo permitem verificar possíveis melhorias de processo. Portanto, a metodologia assemelha-se à proposta de melhoria contínua (*plan-do-check-act*) da norma ISO 14001.

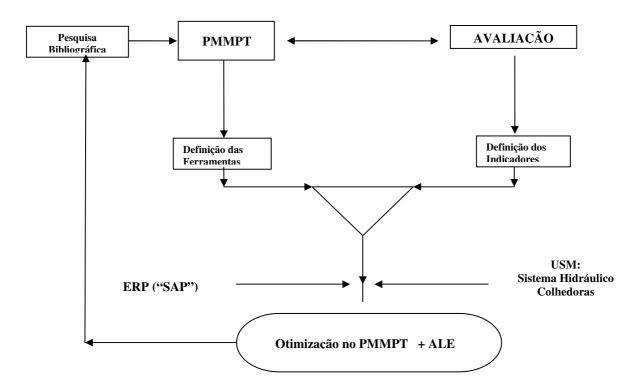


Figura 19 - Fluxograma de decisão para definição de metodologia para aplicação dos conceitos de Administração Limpa e Enxuta a uma colhedora de cana-de-açúcar de uma usina sucroalcoleira.

5.3 - Apresentação dos resultados obtidos a partir da "Ficha de Controle de Falhas".

Conforme citado, durante a colheita de 2005, num total de 212 dias, foi implantado um controle de falhas em 05 das máquinas de uma frota de 42 máquinas para realizar um controle das causas do derramamento de óleo hidráulico registrado pelo sistema ERP ("SAP"), indicando grande quantidade de óleo desperdiçado em campo o que pode representar um significativo impacto ambiental. Considerando que, mesmo que este óleo esteja incorporado à palha, ele será incinerado posteriormente e isto representa uma emissão de CO₂. Considerando ainda que foram desperdiçados mais de 100.000 litros de óleo hidráulico em campo por colheita, o impacto ambiental causado por este derramamento é bastante significativo, porém nenhum mecanismo para mensurar e avaliar este impacto foi elaborado ou foi objetivo durante este trabalho. O derramamento de óleo durante as cinco últimas nas safras tem sido o segundo maior custo de manutenção. Buscou-se, então, uma análise mais detalhada da causa deste derramamento e da manutenção preventiva no sistema hidráulico das colhedoras de cana de açúcar, estabelecendo-se a relação das falhas e suas principais causas mediante um controle manual. Como citado, foi inicialmente montada uma "Ficha de Controle de Falhas" (vide Tabela 2). Nestas fichas, foram registradas pelos operadores das colhedoras, todas as ocorrências onde estão apresentados os modos de falhas/defeitos; em que conjunto, subconjunto e componente ocorreu a falha/defeito; qual a causa da falha textualizada; hora de início da falha; hora de início da manutenção; término da operação de manutenção; tempo de parada para manutenção; tempos de parada total; quantidade de óleo desperdiçado medido através da quantidade remontada; número da máquina; frente de trabalho; mapa de localização do talhão; gleba; número de corte; código do operador e horímetro da colhedora.

Estes dados compõem uma base de dados específicos de cada máquina monitorada durante o processo de colheita e serviram também como fonte de dados para desenvolvimento de uma metodologia da otimização da PMMPT nas colhedoras de cana-de-açúcar, utilizando como padrão o melhor desempenho operacional de uma das máquinas.

Analisando-se o "CONTROLE DE FALHAS NO SISTEMA HIDRÁULICO DAS COLHEDORAS DE CANA", de acordo com o modelo estabelecido na Tabela 2 e transformado em um arquivo de dados (planilha Excel) contendo dados coletados em campo, pode-se observar a relação entre as falhas e suas principais causas, incluindo a parte do objeto que falhou.

No Apêndice a, Figura A, apresenta-se o arquivo de desempenho operacional obtido do sistema *ERP* (*SAP*) de todas as máquinas envolvidas no processo de colheita que utilizaram o controle de falhas e o arquivo contendo os dados extraídos do controle manual e transformados em planilha para cada uma das máquinas, juntamente com os respectivos gráficos de falhas para cada uma delas.

No Apêndice B, Tabela B.1 tem-se a análise das falhas mais críticas e suas respectivas causas, evidenciando as mais significativas e classificando-as em três tipos principais com as respectivas quantidades de óleo desperdiçado em percentuais.

A análise dos dados obtidos no controle de falhas permitiu inferir algumas conclusões. Além dos critérios estabelecidos (produção, consumo de óleo diesel e desperdício de óleo hidráulico) observou-se também, entre as máquinas monitoradas por controle de falhas, qual delas registrou o maior número de registro de falhas, destacando também a máquina 17 como a que registrou o maior número de falhas no sistema hidráulico dessa colhedora. Isto não significou que ela danificou mais, trocou maior quantidade de componentes ou parou um maior número de vezes para manutenção, mas sim que os operadores desta máquina tiveram um cuidado maior no registro das falhas, fato comprovado durante o acompanhamento efetuado para realização deste trabalho.

Apesar de a Usina São Martinho utilizar uma ferramenta como o sistema ERP da *SAP* para a análise em questão, é necessário uma alimentação mais detalhada onde sejam informados quais componentes falharam, como falharam, motivo das falhas, compartimento de localização, códigos de peças trocadas, tempo de parada em manutenção, tempo de parada aguardando manutenção, quantidade de óleo desperdiçado (em litros), custo das peças, custo da operação de manutenção, número de vezes que o mesmo tipo de falha ocorreu, para que se possam explorar todos os recursos de informações que os softwares *ERP* podem fornecer.

5.4 - Metodologia para implantação da ALE (Administração Limpa e Enxuta)

A metodologia para a implantação da ALE foi estabelecida a partir de uma análise da PMMPT sob os aspectos dos conceitos da produção limpa e enxuta.

O fluxograma da Figura 20 apresenta a PMMPT como a metodologia atual utilizada para evitar os desperdícios de óleo por derramamento ou sob a forma de vazamentos, embora

haja outros problemas que ainda não foram identificados como responsáveis pela existência destes desperdícios.

A otimização da PMMPT tornou-se uma proposta metodológica de aplicar o conceito de ALE estabelecendo-se um *check-list* ou lista de verificação para o sistema hidráulico das colhedoras a partir do qual poderia ser elaborado um controle de falhas que posteriormente seria transformado num banco de dados contendo as principais falhas do sistema hidráulico.

Uma análise cuidadosa destas falhas permite concluir qual a taxa de ocorrência e criticidade destas e viabiliza a implantação deste controle de forma definitiva e a complementação ou alimentação do sistema *ERP* da usina.

Logo, pode-se estabelecer alguns passos para a proposta desta metodologia a ser testada e comprovada no campo de colheita.

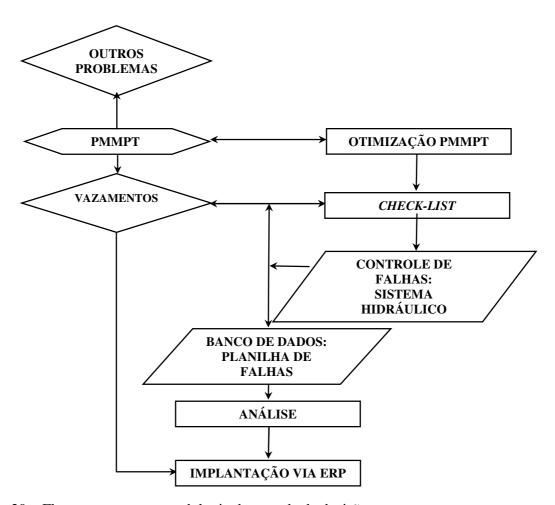


Figura 20 – Fluxograma para metodologia de tomada de decisão.

Os passos descritos a seguir definem a metodologia para implantar a ALE no sistema hidráulico das colhedoras de cana-de-açúcar em uma usina sucroalcoleira:

- Passo 01: Comprometimento da direção da empresa;
- Passo 02: Sensibilização dos funcionários;
- Passo 03: Informação do corpo de operadores;
- Passo 04: Aplicação do *check-list*;
- Passo 05: Elaboração dos fluxogramas de falhas;
- Passo 06: Tabelas quantitativas;
- Passo 07: Pré-avaliação;
- Passo 08: Definição de indicadores;
- Passo 09: Avaliação dos dados coletados;
- Passo 10: Seleção do foco de avaliação e priorização;
- Passo 11: Implementação; e,
- Passo 12: Plano de monitoramento e continuidade.

Definindo-se os 12 passos da metodologia tem-se:

Passo 01 – Comprometimento da direção da empresa: o primeiro passo para o início do trabalho é obter um nível mínimo de convencimento e comprometimento para que o programa seja implementado na Empresa e incentivar seus funcionários para que esse objetivo seja atingido. O comprometimento explícito da alta direção gerencial é fundamental para a realização do trabalho. Este passo foi desenvolvido na USM através de uma reunião do coordenador de manutenção, coordenador de campo, líderes da frente F1, enfatizando os propósitos da direção da empresa em apoiar e incentivar a realização desse trabalho.

Passo 02 – Sensibilização dos funcionários: a comunicação a todos os funcionários sobre a realização do programa na Empresa, dizendo-lhes que esse trabalho terá total apoio da direção. Então: Devem-se reunir todos os funcionários; Informar sobre o programa que será desenvolvido na Empresa; Expressar claramente sua vontade de que todos participem, colaborando sempre que solicitados; Antecipar que, em alguns momentos, poderá ser necessário haver um especial empenho dos funcionários, mas que isso é fundamental para a saúde financeira da Empresa e para a manutenção dos postos de trabalho; Estabelecer os prazos para que as tarefas sejam realizadas e dizer-lhes que haverá um responsável para cada uma; e, Por fim, pensar em como retribuir, de alguma forma, o esforço extra que será

necessário para a realização do trabalho, inscrevendo a Empresa em prêmios ambientais, distribuindo camisetas que abordem o assunto e outros recursos, lembrando-se sempre que os funcionários estão junto com você nesse barco que é a sua Empresa.

Os líderes de frente realizaram as etapas acima com os operadores das colhedoras e demais colaboradores envolvidos na operação de colheita que envolve o sistema hidráulico das colhedoras de cana no firme propósito de que os objetivos desse trabalho sejam atendidos.

A retribuição do esforço extra foi realizado na USM através de seus programas de valorização de seus recursos humanos. Com o objetivo de capacitar e motivar suas equipes, cada colaborador passa, em média, por mais de 30 horas de treinamento por ano, entre técnicos e comportamentais, participam de programas de qualidade de vida, com palestras voltadas para a saúde, segurança do trabalhador e sua família e ginástica laboral.

Além disso, o PPR (Programa de Participação nos Resultados) do Grupo incorporou a preocupação com a saúde e segurança do colaborador, valorizando a efetiva participação do empregado nos resultados e a redução dos acidentes. Todos recebem uma remuneração extra de acordo com as metas atingidas e isso ajudou a disseminar e fixar os conceitos e a preocupação com a saúde e segurança.

Passo 03 – Informação do corpo de funcionários: o terceiro passo é a identificação dos operadores: são os funcionários que conhecem a máquina (colhedora) mais profundamente e/ou que são responsáveis por manutenção, eles são os funcionários-"chave" do treinamento a ser aplicado. Essas pessoas serão responsáveis por repassar a metodologia aos demais colegas e fazer acontecer sua implementação no setor da Empresa. Identifique um coordenador, o qual terá a responsabilidade de mantê-lo informado sobre o desenvolvimento das atividades;

Nesta etapa foram selecionados os operadores das colhedoras em estudo e os líderes de frente para aplicar e repassar a metodologia.

Passo 04 – Aplicação do *check-list*: o quarto passo é a realização de um check-list em cada uma das unidades colhedoras para a identificação das condições do sistema hidráulico antes de iniciar cada período de colheita como parte da execução do treinamento aplicado.

O *check-list* é umas das etapas mais importantes no processo, pois garante a verificação da manutenção preventiva em cada unidade colhedora;

A Tabela 5 foi elaborada com o objetivo de permitir uma rápida verificação (*check-list*) em todo o sistema hidráulico das colhedoras, no intuito de identificar possíveis falhas que

possam ocorrer vindo a provocar derramamento de óleo hidráulico em campo. Esta verificação pode ser feita enquanto estiver aguardando a chegada de outra carreta de transbordo ou em outras paradas por necessidade logística.

Tabela 5 - *Check-List* - Lista de verificação do sistema hidráulico das colhedoras para potenciais causas de falhas nas unidades de colheita monitoradas.

Check-List: Lista de verificação do sistema hidráulico

- 1. <u>Verificar visualmente quanto a eventuais vazamentos e fazer a correção:</u>
 - a) Motores e Bombas (verificar vazamentos);
 - **b)** Mangueiras (verificar furos e vazamentos);
 - c) Conexões (verificar vazamentos e conexões mal feitas);
 - **d**) Verificar nível do óleo hidráulico.
- 2. Verificar quanto a falhas que possam acontecer e corrigir antes que ocorram:
 - a) Mangueiras esticadas;
 - **b)** Conexões soltas;
 - c) Abrasão exagerada em mangueiras;
 - d) Dar atenção especial ao estado das mangueiras.
- **3.** Durante a operação de colheita:
 - a) Evitar embuchamentos;
 - **b**) Evitar golpes nas manoplas de controle;
 - c) "Sentir" o desempenho de cada operação (se diminuir a eficiência parar e verificar);
 - d) Se ocorrer algum vazamento durante a operação de colheita parar imediatamente.
- **4.** Quanto às anotações na ficha em anexo "CONTROLE DE FALHAS NO SISTEMA HIDRÁULICO DAS COLHEDORAS DE CANA":
 - a) Anotar toda intervenção que ocorre no sistema hidráulico;
 - **b)** Anotar toda remonta que ocorrer (local, data, hora, quantidade);
 - c) Anotar outros dados que considerar relevante.

Passo 05 – Pré-avaliação: o quinto passo consiste de uma pré-avaliação após um curto período (uma semana, por exemplo) de colheita para averiguar o nível de eficiência da

metodologia em fase de implantação na unidade em processo. Nesta etapa foram efetuados acompanhamentos semanais com o objetivo de averiguar o nível de eficiência dos apontamentos indicados na "Ficha de Controle de Falhas" conforme Tabela 2.

Passo 06 – Elaboração do organograma de falhas: a elaboração de um organograma de falhas consiste no processo de avaliação da criticidade das ocorrências das falhas durante a pré-avaliação das unidades colhedoras. O organograma deve conter basicamente o local, o componente danificado e/ou com defeito, a peça substituída ou corrigida e o tipo de falha;

Esta etapa refere-se ao primeiro modelo de controle de falhas implantado para o controle de falhas do sistema hidráulico (Tabela 2), como foi comentado no item 5.3, e por meio do fluxograma da Figura 20 elabora se um organograma hierárquico, baseado nos dados obtidos pela "arvore de decisão" (vide apêndice) onde se classifica as falhas significativas. Na Figura 21 apresenta-se o organograma representando as falhas. Este Organograma, denominado "Organograma de Falhas Componente Elemento (**OFCE**)", é um organograma hierarquizado das falhas, conforme seus diversos níveis.

Os níveis de falhas são assim hierarquizados:

- Nível 1: (A1) Condutores Hidráulicos; (B1) Motores Hidráulicos; e (C1) Pistões Hidráulicos;
- Nível 2: (A2) Mangueiras e Conexões; (B2) Anéis e Vedações e Desapertos; (C2)
 Trincas e Anéis e Vedações;
- Nível 3: (A3) Ressecamento, Abrasão, Desapertos e Trincas; (B3) Ressecamento,
 Rompimento, Fixação e Quebra de Elemento; (C3) Fadiga, Quebra acidental,
 Ressecamento e Rompimento.

Como aplicação do **OFCE** à colhedora **17**, escolhida para análise, apresentou desperdício de **1.242** litros de óleo hidráulico o que representa **100**% de todos os vazamentos ocorridos. No nível 1 do **OFCE** foram priorizados três modos de falhas principais e onde eles ocorrem. Neste nível os condutores de óleo hidráulico foram responsáveis por **71,73**% do desperdício de óleo, enquanto os motores hidráulicos responderam por **11,27**% e os pistões hidráulicos por **16,98**%. No nível 2 do **OFCE** foram detalhados os elementos que podem compor um condutor de óleo hidráulico sendo que as mangueiras foram as responsáveis por **74,97**% das falhas que dizem respeito aos condutores e as conexões hidráulicas responderam

por 25,03%. Em relação ao total de desperdício referente à Colhedora 17, as mangueiras foram as responsáveis por aproximadamente 44% do total das falhas e as conexões hidráulicas por 28% do total. No nível 3 do OFCE relatam-se as causas das falhas e seu impacto em relação às falhas. Os ressecamentos, incluindo a perda de resistência das tramas e fadiga por tempo de uso, foram os responsáveis por 72,91% das falhas em mangueiras e responderam por 39% do total, enquanto que a abrasão que provocaram rompimentos em mangueiras representou 27,99% das falhas no item "mangueiras" e 5% no item "Desperdício na Colhedora 17".

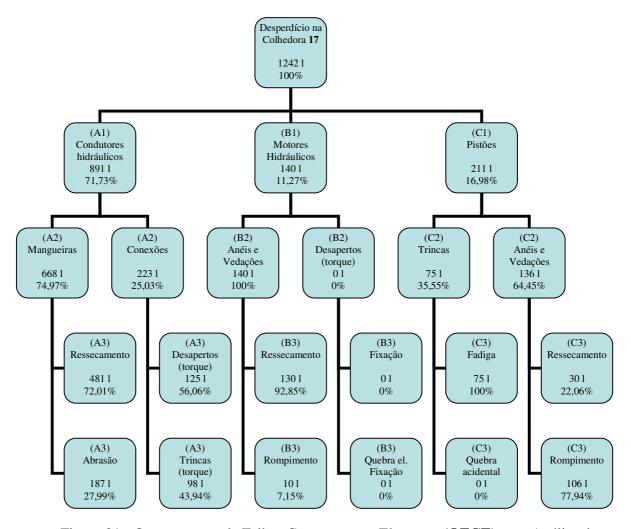


Figura 21 - Organograma de Falhas Componente - Elemento (**OFCE**) para Análise do Nível de Importância das Falhas e respectivos indicadores em Sistemas Hidráulicos de Colhedoras de Cana-de-Açúcar.

Passo 07 – Tabelas quantitativas: a elaboração de tabelas quantitativas, a partir do organograma de falhas, serão indicadores instantâneos do desempenho operacional de cada unidade colhedora. As tabelas consistem do código do operador, do número da unidade colhedora e das ocorrências e valores de remonta do óleo hidráulico conforme Figura 22.

	N <u>o</u> controle do operador	Problemae IParte (Ibieto (macro) I		Óleo Hid. Qtde. (Its)
17	5960	Atualizar	Filtro	15
17	7052	Danificado	Mangueiras Hidráulicas	21
14	6428	Desapertou/Soltou	Motores Hidráulicos	40
15	5384	Desapertou/Soltou	Mangueiras Hidráulicas	0
17	7052	Desapertou/Soltou	Mangueiras Hidráulicas	30
19	5893	Desapertou/Soltou	Mangueiras Hidráulicas	10
19	5893	Desapertou/Soltou	Mangueiras Hidráulicas	69
19	5893	Desapertou/Soltou	Elevador	10
19	6675	Desapertou/Soltou	Mangueiras Hidráulicas	40
15	5384	Desgaste Normal	Mangueiras Hidráulicas	15

Figura 22 - Exemplo de tabela quantitativa: representação parcial da tabela.

Passo 08 – Definição de indicadores: a tabela quantitativa de cada unidade colhedora fornecerá os indicadores de desempenho humano (social) e operacional (econômico) no controle de falhas do sistema hidráulico, não esquecendo que sua base de dados pode ser diária, semanal, mensal ou anual (por/safra) (vide Figura 23).

Máquina	Categoria de Falhas	Quantidade óleo (litros)
	Danificado	21
	Desapertou/Soltou	30
	Desgaste Normal	35
	Enroscando	10
	Rompeu	90
17	Furou	108
1.	Nível do Óleo Baixo	92
	Revisão	13
	Sujeira	35
	Trincou	50
	Vazamentos	758
	Total	1242

Figura 23 - Exemplo de definição de indicador econômico – quantidade de óleo / categoria de falha baseado no controle de falhas para a máquina 17.

Passo 09 – Avaliação dos dados coletados: ao final de um período maior (três meses ou mais) já é possível dimensionar os dados coletados e avaliar se as intervenções preventivas no sistema hidráulico estão satisfatórias ou se devem adotar medidas cautelares mais efetivas no controle de falhas:

Passo 10 – Seleção do foco de avaliação e priorização: a seleção de um foco a ser atacado com maior atenção feita após o período de meia safra (05 meses) e ser dada uma prioridade para redução deste item;

Nos passos 09 a 10 foram implementadas algumas ações mais efetivas no controle das falhas considerando que a "Ficha de Controle de Falhas" inicialmente elaborada não apresentava os resultados esperados, o que foi corrigido com a adoção de novo modelo apresentado na Tabela 2.

Passo 11 – Implementação: a implementação do controle de falhas no processo de análise e avaliação dos problemas encontrados no desempenho operacional das unidades colhedoras e de um foco a ser atacado com maior atenção deve ser feita após o período de meia safra (05 meses) e ser dada uma prioridade para redução deste item;

Após o período de 05 meses foi dada maior atenção ao sistema de anotações (controle manual) devido à eficiência observada pela redução do desperdício de óleo hidráulico nas unidades colhedoras monitoradas. Esta observação motivou a incorporação de mais duas unidades colhedoras para avaliação do sistema hidráulico.

Passo 12 – Plano de monitoramento e continuidade: o último e mais importante passo consiste no Plano de Monitoramento e continuidade do controle de falhas das colhedoras num processo de melhoria contínua.

Para a implementação das opções, estabeleceu-se um Plano de Monitoramento para a avaliação do seu desempenho operacional. Esse Plano consta de análises e avaliações contínuas para acompanhamento do Programa de Otimização. Destina-se a manter, acompanhar e dar continuidade ao Programa.

Os indicadores estabelecidos no início do trabalho e medidos na realização dos balanços serão as ferramentas para o acompanhamento e monitoramento das falhas.

Atualmente a USM implantou o "Contrato para redução do desperdício" de óleo hidráulico e óleo diesel, e aumento do TCH (tonelada colhida por hectare), resultado dos benefícios observados durante a elaboração deste trabalho conforme Apêndice C.

Como resultado houve uma redução significativa do desperdício de óleo hidráulico na safra de 2007/08 em relação à safra anterior conforme mostra a Tabela 6.

Tabela 6 - Tabela comparativo desperdício óleo hidráulico - safras 2006/2007 e 2007/2008

Nº.	Óleo d	iesel (l)	Hidráu	ılico (l)	Horí	netro	Produção (ton)		Hidráulico (l.ton ⁻¹)	
Máq.	2006	2007	2006	2007	2006	2007	2006	2007	2006	2007
17	61.886	54.851	1.491	385	1.455	1.313	59.351,98	56.094,53	0,025	0,007

5.5 - Análise de Dados e Resultados

Com as informações coletadas durante o processo de colheita foram estabelecidos os principais indicadores, mostrados nas diversas tabelas a seguir. Os dados demonstram os diversos indicadores encontrados no presente estudo e que estão relacionados com o tripé do desenvolvimento sustentável, ou seja, indicadores econômicos, indicadores sociais e indicadores ambientais:

Indicadores:

Custo de óleo.hh⁻¹.

A Tabela 7 aponta o desperdício de óleo hidráulico por colhedora analisada e o custo do insumo, considerando o valor de R\$ 3,06 por litro. O custo apresentado refere-se ao custo do óleo hidráulico por hora durante a safra 2005/2006.

Tabela 7 - Desperdício de óleo hidráulico por h/horímetro e custo (safra 2005/2006).

Máq.	Hidráulico (l.h ⁻¹)	Custo (R \$.h ⁻¹)
	FRENTE: 01 – R\$ 3,06 /	litro (valor época)
14	1,02	3,13
15	0,58	1,78
16	0,72	2,20
17	0,53	1,62
19	0,59	1,80

• Custo de óleo/produção

A Tabela 8 aponta o desperdício de óleo hidráulico por colhedora, por tonelada colhida e seu respectivo custo ao valor de R\$ 5,00 por litro durante a safra 2005/2006.

Tabela 8 – Desperdício óleo hidráulico por tonelada colhida custo (safra 2005/2006).

Nº. Máq.	Óleo / produção (l.ton ⁻¹)	Custo (R\$.ton ⁻¹).
	FRENTE: 01 – R\$	5,00 / litro
14	0,023	R\$ 0,115
15	0,006	R\$ 0,03
16	0,015	R\$ 0,075
17	0,011	R\$ 0,055
19	0,013	R\$ 0,065

• Custo hora parada/falha (Máquina 17)

A Tabela 9 aponta o tempo de parada por falha na máquina 17 e o custo relativo desta parada por categoria de falhas durante a safra 2005/2006.

Tabela 9 – Custo tempo de parada por falha (máquina 17 – safra 2005/2006)

Categoria de Falhas	Tempo de Parada / Categoria (h)	Custo hora parada / categoria (R\$ / falha)		
Danificado	0,92	230,00		
Desaperto/Soltou	2,17	542,50		
Desgaste Normal	0,93	232,50		
Enrosc. no Pirulito.	0,75	187,50		
Rompeu	3,45	862,50		
Furou	5,50	1.375,00		
Nível do Óleo Baixo	0,27	67,50		
Revisão	0,25	62,50		
Sujeira	0,00	0,00		
Trincou	1,50	375,00		
Vazamento	72,97	18.242,50		
Total - hora	88,71	22.177,50		

Custo horário/hh

A Tabela 10 aponta o custo hora máquina por hora/horímetro considerando o valor hora/máquina de R\$ 250,00 durante a safra 2005/2006.

Tabela 10 – Custo/máquina (hora/horímetro trabalhada – safra 2005/2006)

Máq.	hh	Custo (R\$.hh ⁻¹)
	FRENTE: 01 - R\$ 250,00 (custo hora/máquina)
14	3.653	R\$ 913.250,00
15	2.464	R\$ 616.000,00
16	3.728	R\$ 932.000,00
17	3.793	R\$ 948.250,00
19	3.526	R\$ 881.500,00

• Quantidade de óleo Desperdício/colhedora:

A Tabela 11 aponta o desperdício de óleo hidráulico por colhedora. Fica demonstrado que ocorreram falhas no preenchimento da ficha de controle pelos operadores, haja vista, a discrepância entre os valores anotados pela CALP (departamento de controle de entrada e saída de óleos e combustíveis) e disponibilizados pelo sistema SAP na da tabela de desempenho operacional e os valores anotados nas fichas de controle. Este resultado ficou em média 36,25% discrepante. A máquina 15 não foi analisada por ter atendido durante 2 meses a frente de trabalho F3 e por ter ficado durante 1 mês recolhida na oficina de manutenção.

Tabela 11 – Desperdício de óleo hidráulico por colhedora (safra 2005/06).

Máq.	Hidráulico (l) - (a)	Hidráulico (l) - (b)	Percentual de erro relativo (%)
14	3.734	1.633	56
15	-	-	-
16	2.680	816	69
17	1.992	1.665	16
19	2.072	1.984	4

- (a) Valores obtidos do desempenho operacional 2005/06 das colhedoras fornecidas pelo sistema *SAP*;
- **(b)** Valores obtidos pelo registro dos operadores através de controle de falhas do sistema hidráulico no acompanhamento da safra 2005/06.

A Tabela 12 aponta a relação de disponibilidade das colhedoras. A disponibilidade total se refere aos dias disponíveis para trabalho durante toda a safra 2005/2006. A disponibilidade efetiva refere-se aos dias em que a colhedora pode trabalhar descontando se os tempos indisponíveis por fatores de eventos climáticos e outros de logística. As horas trabalhadas no período se referem ao tempo da colhedora em processo de colheita, descontando-se todos os tempos improdutivos. Na penúltima coluna temos o tempo parado por problemas no sistema hidráulico e o percentual relativo na última.

Tabela 12 – Disponibilidade em função dos tempos improdutivos por parada de máquinas

RESUMO DISPONIBILIDADE DE COLHEDORAS PERÍODO 15/04/2005 À 12/11/2005 (SAFRA 05/06)

Horas Trabalhadas x Horas Disponíveis/Indisponíveis

Equipamento Nº	NIO	NIO	NIO	H. Trab.	Horas	Horas	Utiliz.	Efic.	Disp.	Indisp. Geral	Ind. S. Hidr.	Sist. Hidr.
	IN	Períod.	Dispon.	Efet.	%	Utiliz.	%	[h]	[h]	%		
AUSTOFT	14	3.653	5.088	4.430	71,80	82,46	87,07	777,13	26,05	3,35		
AUSTOFT	15	2.923	5.088	4.430	57,45	65,98	87,07	1.507,13	62,33	4,14		
AUSTOFT	16	3.728	5.088	4.430	73,27	84,15	87,07	702,13	14,60	2,08		
AUSTOFT	17	3.793	5.088	4.430	74,55	85,62	87,07	637,13	90,00	14,13		
AUSTOFT	19	3.526	5.088	4.430	69,30	79,59	87,07	904,13	73,48	8,13		
Média	•	3.525	5.088	4.430	69,27	79,56	87,07	905,53	53,29	6,36		

Modos de falha/funcionário

Estes modos estão indicados na Tabela 13 relacionando tipo de falha por operador.

Tabela 13 – Modos de falha por operador, extraídos do controle de falhas do sistema hidráulico.

Falhas	operador
Vazamento	1095
Estourou	1761
Estourou	
Vazamento	5352
Desaperto/Bambo	
Desgaste Normal	
Nível do Óleo Baixo	
Teste	
Vazamento	5384
Vazamento	
Nível do Óleo Baixo	5391
Vazamento	
Quebrou	
Furou	5710
Vazamento	
Nível do Óleo Baixo	
Furou	
Estourou	
Enrroscando	5863
Vazamento	
Estourou	5897
vazamento	5910
Nível do Óleo Baixo	5931
Vazamento	5960
Nível do Óleo Baixo	5960
Furou	5960
Estourou	6261
Vazamento	6261
Vazamento	6336
Vazamento	
Desaperto/Bambeou	_
Nível do Óleo Baixo	6428
Vazamento	0720
Estourou	
Nível do Óleo Baixo	
Sujeira	6452
Vazamento	0432
Desgaste Normal	-
Sujeira	-
Desaperto/Bambeou	-
Estourou	-
Nível do Óleo Baixo	6675
Nível do Óleo Baixo	6675
	-
Vazamento	=
Nível do Óleo Baixo	- 6745
Revisão	6745

Revisão	6745
Nível do Óleo Baixo	0743
Vazamento	6748
Vazamento	07.10
Danificado	1
Desaperto/Bambeou	1
Nível do Óleo Baixo	1
Furou	1
Estourou	1
Revisão	1
Desgaste Normal	1
Sujeira	1
Trincou	7052
Nível do Óleo Baixo	
Furou	1
Estourou	1
Desgaste Normal	1
Nível do Óleo Baixo	1
Sujeira	1
Vazamento	7088
Vazamento	7092
Vazamento	7116
Vazamento	7123
Furou	7213
Furou	7213
Vazamento	7334
Vazamento	7335
Vazamento	
Estourou	
Nível do Óleo Baixo	7339
Vazamento	7363
Vazamento	8733
Quebrou	
Vazamento	8754
Vazamento	8775
Furou	
Vazamento	j
Nível do Óleo Baixo	10063
Nível do Óleo Baixo	
Vazamento	10956

• Tempo de parada de máquinas

Na Tabela 14 estão apontados os tempos de parada de máquina, extraídos a partir do controle de falhas do sistema hidráulico das máquinas monitoradas, onde são apontados os tempos de efetiva manutenção, aguardando a chegada do comboio e os atrasos logísticos

provocados por falta de peças, tempo de remanufatura nas oficinas entre outros tempos improdutivos.

Tabela 14 – Tempos de máquinas paradas e/ou aguardando comboio. Dados Extraídos da Tabela de controle de falhas do sistema hidráulico das colhedoras

Nº.	Tempo total de	Tempo de máquina	Tempo de máquina	
	máquina parada	parada consertando	aguardando comboio	Atrasos logísticos
Máq.	(h)	(h)	(h)	(h)
14	88,34	47,63	17,92	22,79
15	140,77	55,23	37,22	48,32
16	44,00	20,33	8,47	15,20
17	132,99	72,12	45,07	15,80
19	101,48	48,19	36,77	16,52

5.6 - Apresentação do Software baseado no organograma OFCE para análise e tomada de decisões.

A necessidade identificada para determinação das falhas em potencial que provocam desperdício de óleo conforme a significância conduziu a elaboração de um software que, ao ser alimentado com os dados coletados pela "Ficha de Controle" serviu como ferramenta para tomada de decisões quanto às ações a serem tomadas, objetivando a eliminação do derramamento de óleo proposto pela metodologia.

O software foi desenvolvido com base no organograma "OFCE", estabelecendo os 3 níveis de falhas principais que ocorreram no sistema hidráulico. A tela apresentada na Figura 24 mostra a "Barra de Ferramentas" composta de "Sistema", "Cadastro" e "utilitários".

Ao clicar em "Sistema" abre a opção "Pesquisar", que ao ser acionada abre a tela demonstrada na Figura 25. Ao clicar em "Cadastro" abre as diversas opções de "Nível" para cadastrar as ocorrências. Ao clicar em "Utilitários" abre os diversos itens de "Manutenção" para possibilitar ao software criar outros níveis (até 99) além dos três criados para este trabalho. Os resultados obtidos com o software são imediatos proporcionando identificar a

quantidade de ocorrências de uma determinada falha, quais incidências por máquina, por operador, quantidade de óleo desperdiçado em função de cada modo de falha, porcentagem imediata em função da quantidade desperdiçada entre outros indicadores significativos para tomada de decisões. Identificação da cadeia de falhas nos sistemas partindo dos conjuntos para os subconjuntos, respeitando-se os diversos níveis hierárquicos.

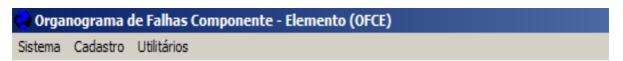


Figura 24 - Tela principal do software "OFCE" com a barra de Ferramentas.

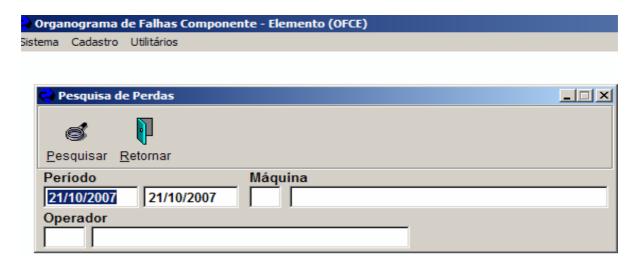


Figura 25 - Tela de pesquisa para gerar relatórios de desperdício, por máquina, por operador, por falha, por componente ou por nível, considerando um período selecionado.

A Figura 26 apresenta os três componentes principais definidos para nível 1. Como mostrado no Organograma "OFCE", o desperdício correspondente aos condutores hidráulicos respondem por **71,73**% do desperdício total, enquanto os Pistões por **16,98**% e os Motores Hidráulicos por **11,27**%. Na barra de ferramentas o item "Exportar" gera os diversos relatórios em Excell.

Figura 26 - Tela de pesquisa de desperdícios para nível 1.

A Figura 27 apresenta as porcentagens de desperdícios de para o Nível 2, considerando que para o Nível 1, denominado condutores hidráulicos, as mangueiras respondem por **53,78**% de desperdícios que correspondem a **668 litros**, enquanto as conexões respondem por **17,95**% dos desperdícios que correspondem a **223 litros** de óleo hidráulico.

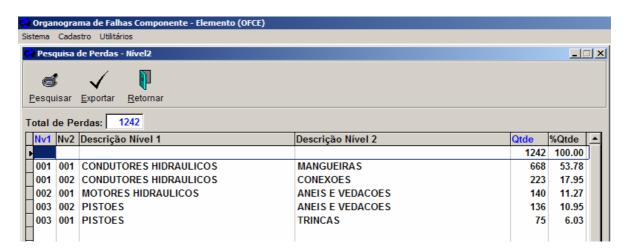


Figura 27 - Tela de pesquisa de desperdícios para nível 2.

A Figura 28 apresenta as porcentagens de Desperdícios para nível 3. EX. O Nv1=001 significa "Condutores Hidráulicos", o Nv2=001 significa "Mangueiras" e Nv3=001 significa "Ressecamento" e responde por **38,72**% dos desperdícios de óleo hidráulico.

Figura 28 - Tela de pesquisa de desperdícios para nível 3.

As Figuras 29, 30, 31 apresentam as porcentagens de desperdícios por "Texto da Causa". O primeiro item na Figura 31 diz respeito a Nv1=001 (Condutores Hidráulicos), Nv2=002 (Conexões), Nv3=002 (Trincas por Torque), Texto da Causa (Niple Bomba Transmissão) que responde por **7,08**% dos desperdícios correspondente a 88 litros de óleo hidráulico.

			e Falhas Componente Utilitários	- Elemento (OFCE)					
Peso	juisa :	de Pe	rdas - Nível4					_	
	/								
~		•	_						
<u>E</u> xpor	rtar	Reto	rnar						
			4040						
otal o									
			Descrição Nível 1		Descrição Nível 3			%Qtde	
001	002		CONDUTORES HID		TRINCAS(TORQUE)	NIPLE BOMBA TRANSMISSÃO	88		
001	001	002	CONDUTORES HID	MANGUEIRAS	ABRASAO	DESGASTE	70	5.63	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	ESTEIRA RODANTE	60	4.83	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	RESSECOU	60	4.83	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	RESSECOU	60	4.83	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	RESSECADA	55	4.42	
003	001	002	PISTOES	TRINCAS	QUEBRA ACIDENTA	PISTÃO DO TRUCK	50	4.02	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	ACERADOR	43	3.46	ļ
003	002	002	PISTOES	ANEIS E VEDACOE	ROMPIMENTO	PISTÃO SUSPENSÃO	40	3.22	
002	001	002	MOTORES HIDRAU	ANEIS E VEDACOE	ROMPIMENTO	MOTOR 5° ROLO INFERIOR	40	3.22	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	RESSECOU	40	3.22	
001	002	001	CONDUTORES HID	CONEXOES	DESAPERTOS(TOR	DESAPERTOU	35	2.81	
001	001	002	CONDUTORES HID	MANGUEIRAS	ABRASAO	HID. M51 AO DIV. LINHA	33	2.65	
003	002	002	PISTOES	ANEIS E VEDACOE	ROMPIMENTO	SUSPENSÃO	30	2.41	
001	002	003	CONDUTORES HID	CONEXOES	VEDACOES	MOTOR EXAUSTOR PRIMÁRIO	30	2.41	
001	002	001	CONDUTORES HID	CONEXOES	DESAPERTOS(TOR	ELEVADOR	30	2.41	
001	001	001	CONDUTORES HID	MANGUEIRAS	RESSECAMENTO	RESSECADA	30	2.41	
003	002	001	PISTOES	ANEIS E VEDACOE	RESSECAMENTO	PISTÃO SUSPENSÃO	30	2.41	
1									e C

Figura 29 - Tela de pesquisa de desperdícios para "Texto da Causa".

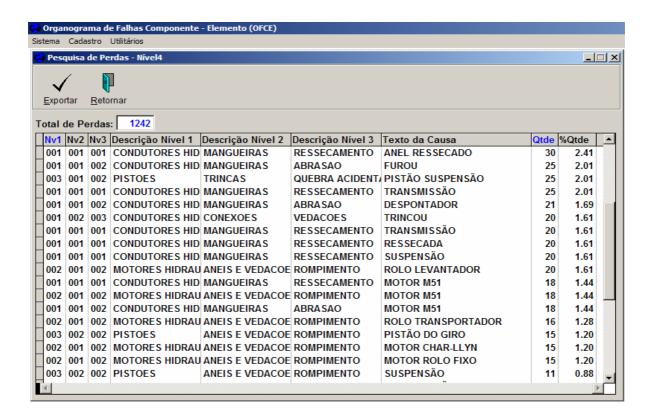


Figura 30 - Continuação tela de pesquisa de desperdícios para "Texto da Causa".

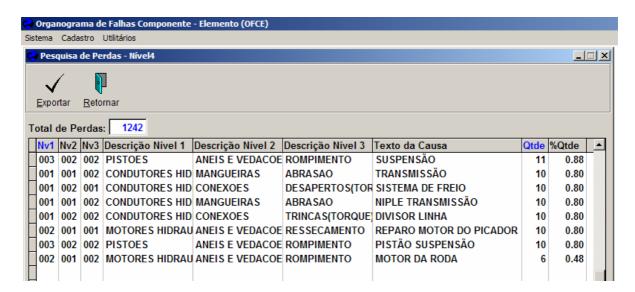


Figura 31 - Continuação tela de pesquisa de desperdícios para "Texto da Causa".

Na Figura 32 apresenta-se a tela para geração de um novo dado referente a condutores hidráulicos em nível 1.

Figura 32 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar dados nível 1.

Na Figura 33 aparece a tela para geração de um novo dado referente a condutores hidráulicos em nível 1 e Mangueiras hidráulicas em nível 2.

Figura 33 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar dados nível 2.

Na Figura 34 aparece a tela para geração de um novo dado referente a condutores hidráulicos em nível 1, mangueiras hidráulicas em nível 2 e ressecamento em nível 3.



Figura 34 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar dados nível 3.

Na Figura 35 aparece a tela para geração de um novo dado referente a condutores hidráulicos em nível 1, conexões em nível 2, vedações em nível 3 e texto da causa.

Figura 35 - Tela barra de ferramentas para criar, alterar, excluir, pesquisar todos os dados.

Na figura 36 aparece uma pesquisa de desperdícios para a máquina 17 com todos os dados anotados na "Ficha de Controle" e inseridos no software "OFCE".

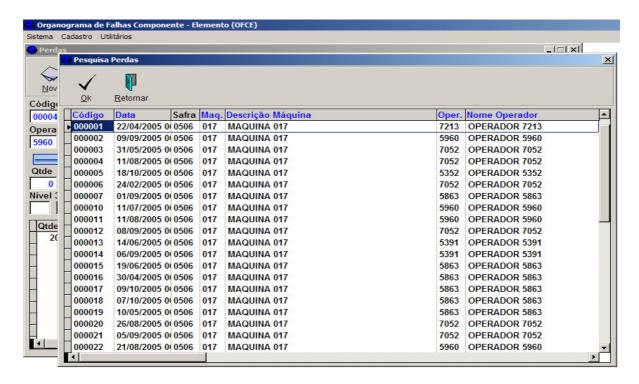


Figura 36 – Tela de relatório de todas as ocorrências referentes a máquina 17.

Ações visando à conscientização do pessoal envolvido com a cadeia de manuseio de óleo hidráulico quanto à Administração Limpa e Enxuta foram realizadas por meio palestras, cursos rápidos, dias de campo e simulações de ocorrências de acidentes e/ou falhas, de ações que objetivaram a conscientização e oferecimento de conhecimentos básicos para todos os funcionários (operadores de máquinas e equipamentos, mecânicos, abastecedores/frentistas, auxiliares de serviços) da empresa envolvidos na cadeia de manuseio de óleo hidráulico, através dos quais foi possível fazer a identificação das falhas potenciais em fichas de controle visando o entendimento dos princípios da Administração Limpa e Enxuta.

Os atuais modelos de gerenciamento de produção, mais especificamente nos setores de produção industrial, denominados produção enxuta, já atingiram um grau elevado de implementação nos seus diversos setores, sejam em empresas de grande, médio e até de pequeno porte. O Programa de Melhoria da Manutenção Produtiva Total aplicada na Usina São Martinho (PMMPT) é uma das ferramentas da produção enxuta aplicada integralmente nestes setores. Esses modelos elevaram a produção a níveis satisfatórios de produtividade com qualidade, porém, pouco tem contemplado o sistema de gestão, baseado em produção limpa.

A prevenção da poluição tanto por empresas manufatureiras como por prestadoras de serviços, além de resultar em economia financeira e em um aumento de produtividade, conseqüentemente reduz os desperdícios de todos os recursos, com a diminuição nos custos e maximização nos lucros.

A economia baseada na venda de serviços, em vez de venda de produtos, é proposta como um fator de vantagens ambientais e econômicas sob diversos aspectos. Implica uma considerável mudança em toda a sociedade que, em grande escala, passaria a pagar pelos benefícios que obtém dos produtos, por exemplo, com o seu aluguel e não pelo produto em si.

O uso de softwares ERP implica alto custo, mas também é de alto custo o desenvolvimento completo da ACV. Por outro lado, um ACV simplificado pode ser obtido facilmente pelo uso de tais softwares. Assim, uma provável tendência é a utilização desses ACV simplificados para tomada de decisões, especialmente entre empresas, quanto à compra de produtos intermediários da produção. Outra provável tendência é o uso da tecnologia de identificação por radio freqüência (RFID), que hoje se encontra em fase de implantação e testes em diferentes empresas. Com o avanço desta técnica, as informações de, destinação, localização e funcionamento, podem ser enviados por sinais de rádio a um servidor que

atualizará os relatórios. Até o momento a RFID está sendo usada apenas para equipamentos montados, cada qual com seu código específico, no entanto pode-se esperar que em futuro próximo a codificação seja feita para cada componente do equipamento.

Além disso, o uso de tais *softwares* parece indicar as vantagens da economia baseada no serviço. Estudiosos da evolução da produção defendem que em um mundo globalizado, onde todas as empresas têm acesso a uma tecnologia parecida, o diferencial na concorrência será o serviço e não mais o bem material. Todo o serviço que envolve o atendimento ao consumidor tende a englobar o bem material, assim empresas antevendo esta evolução começaram a montar a sua gestão na economia baseada na venda de serviços.

O sistema utilizado pela USM para controle de processos e materiais foi o *Enterprise Resource Planning* da SAP. Resumidamente, pode-se dizer que este sistema é utilizado por cerca de 70% das grandes empresas de tecnologia e também pelas de produção agrícola. Possui recursos de geração de relatórios para suporte a decisão, listas de componentes de cada produto, controle de estoque, acompanhamento do processo de fabricação e das etapas de compra e venda, além de um sistema de informação logística que pode ser usado para administração de transportes, reduzindo a emissão de gás carbônico em viagens desnecessárias. É importante salientar que, como este *software* não é comum em pequenas e médias empresas, para estas, sempre que possível, opta-se pelo uso de planilhas.

Por fim, como a formação de ecossistemas industriais em geral promove uma melhora ambiental e econômica é útil o desenvolvimento de softwares mais simples, como proposto neste trabalho, para várias áreas produtivas.

6 - CONCLUSÕES

- 1) A auditoria realizada por meio do MDOM, revelou que a máquina 17 foi a que apresentou melhores resultados quanto à otimização do Programa de Melhoria baseado na MPT aplicado na USM (PMMPT) pela aplicação da metodologia OFCE.
- 2) O bom desempenho da máquina 17 indica que a metodologia de controle pode reduzir os tempos improdutivos, quando aplicada a Administração Limpa e Enxuta.
- 3) O software desenvolvido utilizando o banco de dados gerado para validação da metodologia estabelece perfeita relação entre falhas, quantidades de óleo desperdiçado, local de ocorrência da falha definição do elemento danificado, e causa da falha.
- 4) O desenvolvimento de uma "Ficha de controle" mostrou ser uma importante ferramenta para alimentar o banco de dados e gerar dados para alimentação do software OFCE permitindo a implementação da ALE + PMMPT.
- 5) O organograma denominado "OFCE" mostrou ser uma ferramenta eficaz para elaboração da metodologia da ALE + PMMPT.
- 6) A metodologia de ALE incorporada a PMMPT para sistemas hidráulicos de colhedora de cana-de-açúcar conduz a uma melhoria contínua e minimização das causas que oneram a operação de colheita motomecanizada.
- 7) Recomenda-se que para que a "Metodologia ALE + PMMPT" seja eficiente, o banco de dados gerado seja continuamente alimentado, de forma a contemporizar toda a variedade de falhas que ocorrem no sistema hidráulico de colhedoras de cana-deacúcar.
- 8) Com a implantação da "Ficha de Controle de Falhas", desenvolvida e aplicada para controle de causas de desperdício de óleo mostrou por si só reduzir falhas que provocam desperdício de óleo hidráulico.
- 9) Os as três principais modos de falha que afetam o sistema hidráulico das colhedoras de cana-de-açúcar são: Condutores hidráulicos, motores hidráulicos e pistões hidráulicos.

7 - RECOMENDAÇÕES PARA TRABALHOS FUTUROS

- 1) O sistema de preenchimento das fichas por parte dos operadores é um processo artesanal de baixa eficiência, sujeito a variação em função dos efeitos antrópicos, que deve ser substituído pela instalação de sensores que transmitam em tempo real, sem interferência do operador, as condições efetivas dos componentes hidráulicos a um sistema de controle remoto. O estado da arte em automação permite um estudo de viabilidade de implementação de um sistema totalmente automatizado de coleta de dados por sensoriamento. A metodologia apresentada neste trabalho e viabilizada por meio do software desenvolvido identifica os modos de falhas significativos passiveis da instalação pontual de sistemas de sensoriamento sugerido.
- 2) Aspectos ambientais e um aprofundamento nos estudos de desenvolvimento social e avaliação econômica podem enriquecer a consistência de resultados esperados para a linha desenvolvida neste trabalho.
- 3) Um estudo de viabilidade econômica mensurando os custos de implantação de um sistema de monitoramento remoto e os benefícios econômicos gerados pela eliminação dos desperdícios e valoração de aspectos ambientais pode indicar o tempo de retorno de amortização do referido investimento.
- 4) O software desenvolvido pode ser validado para outras aplicações tais como: Controle de maior incidência de manutenção em concessionárias de máquinas agrícolas; em diferentes sistemas de outros tipos de veículos; elementos de maior significância em projetos de máquinas, entre outros.

8 - REFERÊNCIAS BIBLIOGRÁFICAS

ABBOTT, C.; PORTE, C.A.de la; BARRINGTON, R.; BERTRAND, N.; CAREY, C.; FRY, A.; PRAG, A; VORHIES, F. **As Empresas e a Biodiversidade – Um Manual de Orientação para Ações Corporativas,** Earthwatch Institute (Europe), International Union for conservation of Nature and Natural Resources, World Business Council for Sustainable Development, 2002. 59p;

ABNT; Associação Brasileira de Normas Técnicas; NBR 5462: Confiabilidade e Mantenabilidade – Terminologia. Rio de Janeiro, 1994;

ABNT; Associação Brasileira de Normas Técnicas, **Terminologia de Máquinas Agrícolas**, P-TB-66 São Paulo, 1971. 12p;

AGENDA 21; Documento, **Conferência Das Nações Unidas Sobre Meio Ambiente E Desenvolvimento,** Rio De Janeiro, (1992). Disponível no Site: http://www.mma.gov.br/Estruturas/Agenda21. Acessado em Janeiro de 2007;

ANDRADE, J.C.S.; **Gestão Ambiental e Competitividade Sustentável,** Internet http://www.mct.gov.br em 14/04/2004;

ANG, A.H.S.; TANG, W.H.; **Probability Concepts in Engineering Planning and Design,** Vol. I – Basic Principles; John Wiley & Sons, 1975;

ARAUJO, N.B.; WEDEKIN, I.; PINAZZA, L.A.; Complexo Agroindustrial – o "Agribusiness Brasileiro", Agroceres, São Paulo, 1990, 238 p;

ASHBURNER, J.; SIMS, B.; Elementos de Diseño Del Tractor y Herramientas De Labranza San José, Costa Rica: IICA, 1984, 474 p;

BALASTREIRE, L.A.; **Máquinas Agrícolas**. Editora Manole Ltda. São Paulo, 1987. 307 p;

BENJAMIN, J. R.; CORNELL, C. A.; Probability, Statistic, and Decision for Civil Engineers; MacGraw-Hill Book Company; 1970;

BIASOTTO, Eduardo; Aplicação do BSC na Gestão da TPM. Estudo de caso em industria de processo. Dissertação de Mestrado. Universidade federal de Santa Catarina, Florianópolis, setembro de 2006;

JIPM; **Autonomous maintenance for operators.** Oregon: Productivity Press, 1997, 129p;

JIPM; **TPM frequently asked questions.** 2006. Disponível em www.jipm.or.jp/enlhome > Acesso em março 2007;

BILLINTON, R.N.; ALLAN, R.; Reliability Evaluation of Engineering Systems. Plenum Press. New York. (Chinese translation); 1983;

BLANCHARD, B.S.; FABRICKY, W.J.; **Systems Engineering and Analysis**; Prentice-Hall, 1990;

BLANCHARD, B. S.; VERMA, D.; PETERSON, E. L.; Maintainability, A Key to Effective Serviceability and Maintenance Management; John Wiley & Sons; New; 1995;

BOVO, V. G.; Responsabilidade Social: Estudo De Caso Do Núcleo De Ação Comunitária Da Associação Franciscana De Ensino Senhor Bom Jesus, Universidade Federal de Santa Catarina, dissertação de mestrado, 123 Págs., (2003);

BONILLA, J.A.; Qualidade Total na Agricultura – Fundamentos e Aplicações, Belo Horizonte: Centro de Estudos de Qualidade total na Agricultura, 1994;

BORSHCHOV, R.; MANSUROV, R.; SERGEEV, V.; Land Reclamation Machinery. Union of Soviet Socialist Republics, Mir Publishers Moscow, 1988, 288p;

BRAGAGNOLO, N.; PAN, W.; THOMAS, J.C.; **Solo: uma experiência em manejo e conservação.** Curitiba: Ed. do autor, 1997. xiv + 102 p: il;

BRYMAN, C.; Research Methods and organizations Studies. Routledge, 1995;

CAMPOS, F. C.; BELHOT, R.V.; Um Sistema Baseado em Conhecimento para a Gerência Integrada de Manutenção de Frotas de Veículos; 1999;

CAMPOS, Vicente Falconi, **TQC: Controle de Qualidade Total (no estilo japonês)**, Fundação Christiano Ottoni, Escola de Engenharia da UFMG, 1992;

COPETTI, E.; **Direto na Palhada.** <u>In</u> Ver. Cultivar Maquinas. ano II n.14 Set/ Out. 2002: 22-24;

DANIEL, L. A. (Org.); LUCARELLI, J. R. F. (Org.). MÓDULO 8 – **Mecanização Agrícola e Plantio Direto.** BRASÍLIA: ABEAS, 1999. v. 8. 126 p;

DANIEL, L.A.; VOLPATO, C.E.S.; LUCARELLI, J.R.F.; Mecanização Agrícola: Máquinas e Equipamentos para o Sistema Plantio Direto, Curso de Especialização da Universidade de Brasília/Associação Brasileira de Educação Agrícola Superior, ABEAS, Brasília/DF, 2001, 126 p;

DANTON, G.; **Metodologia Científica**, Virtual Book Formato: e - book/ PDF Código: VBO metodologia 879 São Paulo, 2002;

DAVIS, J. H. & GOLDBERG, R.A.; A concept of Agribusiness. Harvard University, 1957;

DEL MASTRO, E.; Características do trabalho atual e riscos à saúde e à segurança do trabalhador: estudo de caso de uma marcenaria, Dissertação de Mestrado Escola Politécnica da USP – Departamento de Engenharia de Produção – SP – EPUSP, 2001;

DIAS, A.; Metodologia para Análise da Confiabilidade em Freios Pneumáticos Automotivos; Tese de Doutorado, UNICAMP, Campinas/SP; 1996;

DIAS, A.; **Projeto para Confiabilidade: Conceitos e Fundamentos,** Capitulo 16 – Instituto Fábrica do Milênio, Florianópolis, SC, 2002. 16 p;

FAPESP, Agência de Noticias, Matéria disponível no Site: http://www.fapesp.br/agencia/boletim_print.php?data[id_materia_boletim]=6871.

Acessado em Março de 2007;

FRANÇA, S.R.R.O.; Aplicação Conjunta da Metodologia de TPM e MCC na Indústria de Processos; Dissertação de Mestrado; Universidade Federal da Bahia, 1999;

FRANCISCHINI, P.G.; **Técnicas de Avaliação da Produtividade e Indicadores da Qualidade e Produtividade na Indústria Brasileira.** Apostila Fundação Vanzolini. São Paulo, 1994. 76 p;

FLEMING, P.V.; FRANÇA, S.R.R.O.; Considerações Sobre a implementação Conjunta de TPM e MCC na Indústria de Processos; ABRAMAN; 1997;

FURTADO, J.S.; **Comunicação ambiental** (Produção limpa). Boletim Fundação Vanzolini. São Paulo, v.5, n.30, p.18, jul. /ago. 1997;

; FURTADO, M.C.; Produção Limpa In - CONTADOR, J.C., Gestão
de Operações - cap.23, Edgard Blucker, 1997;
Indicadores ambientais (Produção limpa). Boletim Fundação Vanzolini
v.6, n. 32, p.12, nov. /dez. 1997;
Limites e mal entendidos (Produção limpa). Boletim Fundação Vanzolini
v.6, n.34, p.14-15, mar. /abr. 1998;
, coord. Manual de auditoria para prevenção de resíduos (PR)
economia de água e energia na fábrica. São Paulo: Departamento de Engenharia d
Produção, Fundação Vanzolini, [1998] 73p;

GEE, D.; Clean production: from industrial dinosaur to ecoefficiency. Londres: Manufacturing Science Finance Research, 1994. 88p;

GERAGHETY, T.; Obtendo Efetividade do Custo de Manutenção através da Integração das Técnicas de Monitoramento de Condição, RCM e TPM; Maintenance Magazine; Inglaterra: 1996; Tradução Kleber de Toledo Siqueira;

GIANNETTI, B.F.C.; ALMEIDA, M.V.B.; **Ecologia Industrial Conceitos, Ferramentas e Aplicações**, Ed. Edgard Blucher, S. Paulo: 2006;

GRISSO, R.D.; JASA, P.J.; ROLOFSON, D.; **Field efficiency determination from spatial data**. ASAE Annual International Meeting, Milwaukee, 2002;

HAMMET, P., "Failure Modes and Effects Analysis", Michigan, USA, 2000, 9p.

HENDRICKSON, B. P.; Communication support for adaptive computation, in: Proc. 10th SIAM Conf. Parallel Processing for Scientific Computing, Portsmouth, VA, 2001.

KELLY, A.; Maintenance Planning and Control; Butterworth's, 1989;

KEYNES, J.M.; **A teoria geral do emprego, do juro e da moeda**. Coleção "Os Economistas". São Paulo: Abril Cultural, 1983.

KORNDORFER, G.H.; **Processos naturais que afetam a adubação nitrogenada da cana-de-açúcar.** I Seminário Sobre Tecnologia de Manejo de Solos, RIBEIRAO PRETO, SP, p. 0-0, 1995;

LEHMANN, Wolga Betina Schossig. **Sistema de registro e análise com base na falha humana.** Dissertação de Mestrado, UFSC, Florianópolis, 2001. 116f.

LEONTIEF, W.; A economia do insumo-produto. Coleção "Os Economistas", São Paulo: Abril Cultural, 1983.

MACHADO, A. L. T.; **Prevenção Custa Menos** <u>In</u> Ver. Cultivar Máquinas ano I n.04 Jul. / Ago. 2001: 12-14;

MAGALHÃES, P.S.G; BRAUNBECK, O.A.; Colheita de cana-de-açúcar – atualidades e perspectivas. Organizado por R H Balbuena; Sérgio Hugo Benez; Daniel Jorajuíra. *Ingeniería Rural y Mecanización Agraria en el Ámbito Latinoamericano*. La Plata: Editora de la Universidad Nacional de La Plata, 1998. v.1, p.262-73;

MAIMON, D.; **Passaporte verde**: gestão ambiental e competitividade. São Paulo: Qualitmark, 1996;

MANTOVANI, E.C.; QUEIROZ, D.M.; DIAS, G.P.; **Máquinas e Operações Utilizadas na Agricultura de Precisão.** <u>In</u> : Mecanização e Agricultura de Precisão. Lavras: UFRA/SBEA 1998, 244 p;

MATOS, F.F.C.; Metodologia para Análise e Estruturação de Sistemas de Manutenção de Frota Automotiva, Dissertação de Mestrado; UFSC, 1999;

MATOS, F.; LUZ, L.C.R.; VANDRESEN, M.; SOUZA, P.P.P.; FIALKOWSKI, R.J.; **Trabalho apresentado na cadeira Projeto Conceitual** – Mestrado Engenharia Mecânica, Universidade Federal de Santa Catarina; 1997;

MATTOS, L., A importância do Setor de transportes na emissão de gases do efeito estufa - O caso do município do R.J., UFRJ, 222 Págs., 2001;

MATTAR, F. N.; Aquino, P., 1997, **A produção Enxuta no Brasil, O Caso Ford**, [On Line] Disponível na Internet via www.fauze.com.br/artigos04.htm, Acesso em Outubro de 2006;

MIALHE, L.G. **Manual de Mecanização Agrícola.** São Paulo, Ed. Agronômica Ceres, 1974. 301 p;

<u>Máquinas Agrícolas: Ensaios e certificações</u>. CNPq – PADCT/TIB – FEALQ. Piracicaba, 1996. 722 p;

MIYAKE, D.I.; Programas de melhoria de qualidade: um estudo comparativo dos modelos "just-in-time" (JIT), "Total Quality Control" (TQC) e "Total Productive Maintenance" (TPM). São Paulo, 1993. 163p. Dissertação (Mestrado em Engenharia) – Escola Politécnica da Universidade de São Paulo;

MOLIN, J.P.; MILAN, M.; NESRALLAH, M.G.T.; CASTRO, C.N.; GIMENEZ, L.M.; **Determinação de parâmetros de desempenho de colheita mecanizada utilizando dados do monitor de produtividade**. In: XXXII Congresso Brasileiro de Engenharia Agrícola, Goiânia-GO, SBEA, 2003;

MORETON, F.C.; "Balanço, análise de emissão e seqüestro de CO2 na geração de eletricidade excedente no setor sucroalcooleiro". Junho de 2004.

MOUBRAY, J.; **Reliability Centered Maintenance**; 2a ed.; Industrial Press Inc.; N.Y.; 1997;

NAKAJIMA, 5., **TMP Development Program. Implementing Total Productive Maintenance,** Cambridge Productivity Press, New York, NY., 1989.

NEVES, M.; PALMEIRA FILHO, P., **Balanced Scorecard como catalisador da gestão estratégica: remédio ou placebo?** In: ENCONTRO NACIONAL DE ENGENHARIA DE PRODUÇÃO, 22°, Anais do XXII ENEGEP. Curitiba: ENEGEP, 2002.

NEVES, J.L.M.; Avaliação de perdas invisíveis em colhedoras de cana-de-açúcar picada e alternativas para sua redução, Tese de Doutorado, UNICAMP, Campinas/SP; 2003;

NUNES, E.L., Manutenção centrada em confiabilidade (MCC): análise da implantação em uma sistemática de manutenção preventiva consolidada. Fiorianópolis, SC. Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal de Santa Catarina, Dissertação de mestrado, 2001.

O'CONNOR, P.D.T.; **Practical Reliability Engineering**, 2a ed.; John Wiley & Sons Ltd., 1985;

PALMEIRA, J. N.; TENÓRIO, **F. G. Flexibilização organizacional: aplicação de um modelo de produtividade total.** Rio de Janeiro: FGV Eletronorte, 2002. 2'76p

PMBOK, Guide (A Guide to the Project Management Body of Knowledge) Project Management Institute, 2004;

POUDEL, M. P., Assessment Of Sustainability Of Community Forestry Through Combined Analysis Of Field And Remotely Sensed Indicators (A Case Study In Siraha And Saptari Districts, Nepal), Master Of Science, International Institute For Geo-Information Science And Earth Observation Enschede, The Netherlands, (2002);

PRADHAN, S.; New Maintenance Methods: Are They for You?; Process Plant Reliability Conference, Amsterdam, 1996

PRADHAN, S.; (Tradução: Rafael Tram); Estratégias de Manutenção para Uma Maior Disponibilidade; Hydrocarbon Processing; Janeiro, 1994;

PRADO, M.R.; Calcário e Escória de Siderurgia Avaliados por Análise Foliar, Acúmulo e Exportação de Macronutrientes em Cana-de-Açúcar, Scientia Agrícola, v.59, n.1, pág.129-135, (2002);

PORTER, R.H; & Hendricks, K.; "Determinants of the Timing and Incidence of Exploratory Drilling on off short Wildcat Tracts," NBER Working Papers 4605, National Bureau of Economic Research, Inc, 1993;

QUEIROZ, E. F.; SILVA, M.L.P.; **Proposta de uso do SAP r/3 como ferramenta para implantação de ecossistemas industriais**. In: VIII ENGEMA, Rio de Janeiro, 2005;

QUEIROZ, E.F.; Melhoria de Processos pelo Levantamento de Indicadores Ambientais via Software, Dissertação (Mestrado em Engenharia) - Programa de Pósgraduação em Engenharia Eletrônica, USP, São Paulo, 2007; 167 p;

QUEIROZ, D. M.; DIAS, G.P.; MANTOVANI, E.C.; **Agricultura de Precisão na Produção de Grãos** In Agricultura de Precisão, UFG Visoça, 2000, 467 p;

RIIS, J.O.; LUXHOJ, J.T.; THORSTEINSSON, U; A Situational Maintenance; International Journal of Quality & Reliability Manager, vol. 4, 1997;

ROMM, J. J.; Um passo além da qualidade: como aumentar seus lucros e produtividade através de uma administração ecológica. Trad. Caetano Manuel Filgueira Pimentel. São Paulo: Futura, 1996. 245p;

SAKURADA, E. Y. As **técnicas de análise dos modos de falhas** e seus **efeitos e análise da árvore de falhas no** desenvolvimento e **na avaliação de produtos.** Florianópolis. Universidade Federal de Santa Catarina. 2001. Dissertação de Mestrado, 124 p.

SALVATERRA; Conversando sobre ISO 14001 e a BS 8800, Internet http://www.salvaterra.com.br em 14/04/2004;

SANDERS, J. W.; MORAY, N. P.; **Human error, cause, prediction and reduction.** Lawrence Erlbaum Associates, publishers, 1991;

SLACK, N.; CHAMBERS, S.; HARLAND, C., 1997, Administração da Produção, Editora Atlas S. A., São Paulo, Brasil, 1997;

SILVA, A.C.R.; Metodologia da Pesquisa Aplicada. São Paulo, Atlas, 2001;

SILVEIRA, G.; **Os Cuidados com o Trator** Rio de Janeiro: Ed. Globo – Coleção do Agricultor, 1987, 245 p;

SMITH, A.M.; Reliability-centered maintenance; McGraw Hill; 1993;

STIPP, O.J.; KOLLING, E.M.; GRIGOLETO, M.W.; PEREIRA, J.O.; Consumo de Combustível em um sistema de semeadura direta e cultivo mínimo em um Latossolo Bruno Distrófico de textura argilosa da Região de Cascavel. In: XXX Congresso Brasileiro de Engenharia Agrícola, Foz de Iguaçu, SBEA/UNIOESTE, 2001;

STRICKLAND, R.M.; ESS, D.R.; PARSONS, S.D.; CRISLER, M.T.; Extracting machine performance information from site-specific yield data to enhance crop production management practices. Net, Jul. 2001. 3 p. 2001. Disponível no site: http://mollisol.agry.purde.edu/ssmc/newsletters/july2001f.htm. Acesso em: 15 abr. de 2002;

SUTTON, I.S.; Fluor Daniel Inc., Houston, Texas, **Hydrocarbon Processing**, jan/1995;

TOMAZELA, M.; Produção Enxuta e Produção Limpa – Uma combinação para a competitividade. Dissertação de Mestrado 1999. 136p;

TOMAZELA, M.; DANIEL, L.A.; VENDRAMETO, O.; FERREIRA, J.C.; **Produção Enxuta e Produção Limpa – Uma combinação para a competitividade.** In: XXXI Congresso Brasileiro de Engenharia Agrícola, Salvador-BA, SBEA, 2002;

TOMINORI, S.M.A.W.; GADANHA JÚNIOR, C.D.; MOLIN, J.P.; COELHO, J.L.D; YAHN, C.H.; **Máquinas e implementos Agrícolas do Brasil.** IPT – Instituto de Pesquisas Tecnológicas do Estado de São Paulo – São Paulo, 1991. 468p;

YOUNG, T.; RIGBY, D.; WOODHOUSE, P.; BURTON, M.; Constructing a Farm Level Indicator of Sustainable Agricultural Practice, Ecological Economics, v.39, p.463-478, 2001;

UNEP/SUSTAINABILITY; Company Environmental Reporting, A Measure of the Progress of Business and Industry towards Sustainable Development. Paris: Unep/Sustainability. Technical Report N. 24, 1992;

UNEP. Cleaner production worldwide. Paris: Industry and Environment, 1993. 36p;

______. Government strategies and policies for cleaner production. Paris: Industry Environment, 1994. 32p;

____. Cleaner production worldwide II. Paris: Industry and Environment, 1995. 47p;

UNICA, **Produção Brasil cana-de-açúcar**. Disponível no site: http://www.portalunica.com.br/portalunica/files/referencia_estatisticas_producaobrasil-7-Tabela.xls. Acesso em: mar. de 2007;

USM, **Tecnologia como Suporte ao Agronegócio.** Disponível no site http://www.usinasaomartinho.ind.br Acesso em Agosto de 2007;

WOMACK, J.; JONES, D.; ROSS, D.; The machine that changed the world. New York, Harper Collins, USA, 1991;

WOMACK, J.; A mentalidade enxuta nas empresas: elimine o desperdício e crie riqueza. Trad. de Ana Beatriz Rodrigues e Priscilla Martins Celeste. Rio de Janeiro: Campus, 1998. 427p;

A Usina São Martinho (Figura 37) localiza-se no município de Pradópolis, pertencente à 6ª região administrativa de Ribeirão Preto, SP, próximo às cidades de Guariba e Jaboticabal. Com superfície aproximada de 162 Km2, altitude próxima de 517 metros de e clima temperado, Pradópolis possui, segundo o último censo, 10.198 habitantes, sendo 25% na zona rural e 75% na zona urbana. São cadastrados cerca de 2.000 imóveis residenciais e mais de 200 comerciais e industriais, tendo como principal atividade Econômica o cultivo de Canade-Açúcar.

Figura 37 – Foto parcial da Usina São Martinho. Em primeiro plano as áreas de cultivo e as áreas de preservação ambiental. Ao fundo as instalações industriais da USM.

O Grupo São Martinho além dos seus principais produtos, o açúcar e o álcool, que são comercializados pela Copersucar, produzem ainda o seguinte:

- Açúcar: produzem vários tipos de açúcar bruto. Nos últimos anos, o principal
 produto tem sido o VHP, um tipo de açúcar padrão negociado no mercado
 internacional. A maior parte da produção é exportada pela Copersucar,
 principalmente para refinarias de açúcar localizadas em países da Ásia e da África.
- Álcoois: também produz álcool hidratado, utilizado nos motores dos carros movidos
 a etanol; álcool anidro, que é misturado à gasolina como aditivo antidetonante para
 abastecer os tanques dos veículos movidos à gasolina; e álcool industrial, usado
 principalmente na produção de tintas, cosméticos e bebidas alcoólicas.

- RNA: produto fabricado pelo Grupo através de sua subsidiária Omtek, localizada em Iracemápolis, é o RNA – Sal Sódico do Ácido Ribonucléico, exportado e utilizado na indústria farmacêutica e alimentícia como matéria-prima e ressaltador de sabor.
- Subprodutos: Como subprodutos do processo de produção de açúcar e álcool, o
 Grupo fabrica e comercializa levedura, usada para ração animal; óleo fúsel, utilizado
 como solvente e na fabricação de explosivos e álcool amílico puro; e bagaço de cana,
 utilizado para a geração de eletricidade e vapor.

Dentre as maiores produtoras de açúcar e álcool do Brasil, o Grupo São Martinho S/A, cultiva, colhe e processa cana-de-açúcar em 4 usinas, na Unidade Iracema, na Unidade São Martinho e na usina Boa Vista. Recentemente adquiriu 42% do capital social da Usina Santa Luiza, passando a ter uma capacidade de moagem na ordem de 10,3 milhões de toneladas por ano. Na figura 38 esta o organograma da estrutura societária da São Martinho S.A.

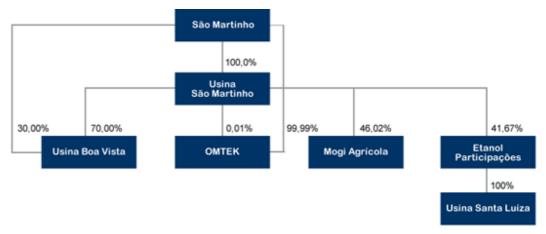


Figura 38 – Estrutura societária do Grupo São Martinho (Fonte USM, 2007).

São produzidas anualmente 425.000 toneladas de açúcar e 260.000 m³ de álcool, além de 200.000 toneladas de bagaço de cana, que geram a produção de 1.900.000 kWh de energia elétrica, cujo excedente das necessidades da Usina é comercializado.

Com relação à infra-estrutura viária, a Usina conta com 500 km de estradas asfaltadas e 6.500 km de carreadores. Seu complexo agroindustrial abrange 16 municípios, sendo que a maior distância de transporte da cana até a indústria é de 100 km.

O Grupo São Martinho desenvolve outras séries de atividades voltadas para o desenvolvimento das comunidades onde atua. Desde 2002, as suas usinas publicam balanço social e utilizam selos de responsabilidade social atestando a seriedade na atuação no terceiro

setor. Vários projetos nas regiões de Iracemápolis e Pradópolis, e agora em Quirinópolis, contam com o apoio ou promoção do Grupo São Martinho.

A organização acredita que sua atividade produtiva deve ocorrer em harmonia com o meio ambiente. Por isso, o Grupo investe em uma série de atividades e ações de preservação e educação ambiental. Entre elas, vale destacar o Centro de Educação Ambiental (CEA) da Usina São Martinho, uma estrutura montada para atender estudantes e disponibilizar informações sobre o uso da água, reciclagem de lixo e plantio de mudas.

Já o viveiro de mudas do Grupo produz cerca de 200 mil mudas de árvores nativas por ano para reflorestar matas ciliares, áreas de recomposição e da comunidade. São mais de 100 espécies nativas, que são cultivadas e depois disponibilizadas com planejamento e um manejo cuidadoso.

O Grupo São Martinho também vem investindo em projetos para diminuir o uso da água em seus processos de produção de açúcar e álcool, bem como para reaproveitar em seus processos diversos resíduos. O bagaço da cana-de-açúcar é processado nas caldeiras para gerar energia elétrica. Fruto de pesquisas internas, atualmente a São Martinho reaproveita todos os seus resíduos industriais e agrícolas, analisando e desenvolvendo alternativas que substituem ou complementam fertilizantes minerais ou herbicidas comerciais para aprimorar o cultivo da cana-de-açúcar e controlar as suas pragas.

A palha, resultante da colheita mecanizada, permanece na lavoura como cobertura natural para o controle de ervas daninhas: a torta de filtro e a fuligem são transformadas em composto orgânico para adubação de cana-de-açúcar e a vinhaça, rica em potássio, é aspergida sobre a cultura como fertilizante orgânico.

Os resíduos são analisados e controlados em suas potencialidades para o melhor aproveitamento e aplicação. A aplicação destes resíduos é realizada através de análises químicas de fertilidade do solo, onde são identificadas as necessidades de correção e também sua análise física, importante para o preparo do solo e tratos culturais. Os laboratórios de solos da Companhia, cuja performance é avaliada pelo Instituto Agronômico de Campinas – IAC, são os responsáveis pelas análises.

A Companhia está constantemente buscando implementar inovações tecnológicas em seus processos de cultivo, colheita e produção, o que, nos últimos anos, tem se traduzido em uma melhora substancial de sua produtividade, de sua capacidade de extração e de seus custos

operacionais. A Companhia é a maior produtora de açúcar e álcool com maior índice de mecanização no Brasil e a primeira grande empresa do setor Sucroalcooleiro a desenvolver e usar o plantio mecanizado. A Usina São Martinho desenvolve e implementa inúmeros avanços tecnológicos em seus equipamentos de plantio e colheita, o que aumentou de forma significativa os níveis de produtividade.

As terras de propriedade da Companhia ou arrendadas apresentam a vantagem de estarem localizadas na região centro-sul do Brasil, cujas condições são naturalmente favoráveis ao plantio da cana-de-açúcar, e de onde advém a maior parte da produção brasileira. As terras estão localizadas estrategicamente a uma distância média de 24 km das usinas da Companhia. Esta proximidade, combinada com o alto nível de mecanização: implica menores custos de transporte e permite iniciar o processamento da cana-de-açúcar em média nove horas após sua colheita (contra uma média estimada de 36 a 48 horas na região centrosul), maximizando, assim, o potencial de extração de açúcar da cana-de-açúcar colhida (já que o teor de açúcar da cana colhida se perde com o tempo) e aumentando a produtividade.

APÊNDICE A

Neste Apêndice foram colocados os dados operacionais obtidos a partir do sistema SAP das safras 2004/2005 e 2005/2006, os gráficos de cada máquina monitorada, a relação das ocorrências anotadas, fichas de controle preenchidas e tempos de paradas por falha.

Apêndice A-1 - Desempenho operacional descritivo das máquinas monitoradas durante a safra de 2005/2006.

Apêndice A-2 - Exemplo de uma das 324 ocorrências anotadas na "Ficha de controle das Falhas" pelos operadores das colhedoras.

Apêndice A-3 - Resumo Disponibilidade de colhedoras (SAFRA 03/04)

Apêndice A. 4 - Desempenho Operacional de todas as colhedoras das USM nas safras 2004/2005.

Apêndice A-5 - Desempenho Operacional de todas as colhedoras das USM nas safras 2005/2006

Apêndice A-6, A-7, A-8, A-9, A-10 - Controle de falhas das máquinas 14, 15, 16, 17 e 19 contendo a descrição do operador para as principais falhas, locais de ocorrência e causa da falha com seus respectivos códigos de materiais e seus respectivos Diagramas de falhas.

Apêndice A. 11 - Tempos de parada, por todas as falhas ocorridas com a Máquina 17 durante a safra 2003/2004.

Apêndice A.1: Desempenho operacional descritivo das máquinas monitoradas durante a safra de 2005/2006.

				DESEMPEN	NHO OPERA	CIONAL				
		COLH	EDORAS MODE	ELOS: AUSTO	FT / BRASTO	FT 7.700 /CAS	SE 7.700 SAFR	A 05/06		
Dias Disponíveis o	de Safra				Dias Efetivos	de Safra				
Período Semanal		7/11/2005	12/11/2005	6	Período Sema	nal	7/11/2005	12/11/2005	5,	9579
Período Acumula		15/4/2005	12/11/2005	212	Período Acun		15/4/2005	12/11/2005		-,5888
•	Óleo	o diesel (l)	Hidrá	ulico (l)	Horí	netro	Produ	ção (t)	Hidrául	ico (l.t ⁻¹)
Máq.	Sem.	Acum	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.
FRENTE: 01			·							
14	5.38	83 154.5	16 79	3.734	128	3.653	5.007,04	159.758,85	0,016	0,023
15	5.3	75 118.8	43 38	1.546	122	2.923	3.768,14	112.345,46	0,010	0,006
16	6.42	25 164.2	55 32	2.680	132	3.728	6.885,72	175.463,80	0,005	0,015
17	5.89	95 153.5	77 62	1.992	136	3.793	6.694,43	175.931,76	0,009	0,011
19	5.22	20 157.1	04 50	2.072	124	3.526	4.005,63	154.678,25	0,012	0,013
Total	28.29	98 748.2	95 261	12.024	642	17.623	26.360,96	954.109,88	0,05	0,080
N°.	Dies	sel (l.ton ⁻¹)	Diese	l (l.hh ⁻¹)	ton / máq. / d	ia disp. Safra	ton / máq. / d	ia efet. Safra	Hidráulio	eo (l.hh ⁻¹)
Máq.	Sem.	Acum	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.
14	1,	08 0	97 42,05	42,30	834,51	753,58	840,41	865,48	0,617	1,022
15	1,	43 1	07 44,06	41,50	628,02	695,98	632,47	770,76	0,311	0,237
16	0,	93 0	94 48,67	44,06	1147,62	827,66	1155,74	950,57	0,242	0,719
17	0,	88 0	87 43,35	40,49	1115,74	829,87	1123,63	953,10	0,456	0,525
19	1,	30 1	02 42,10	44,56	667,61	729,61	672,33	837,96	0,403	0,588
Total	5,	62 5	73 220,23	252,61	4393,49	4666,57	4424,57	5330,97	2,030	3,617

Apêndice **A.2:** Exemplo de uma das 324 ocorrências anotadas na "Ficha de controle das Falhas", e preenchidas pelos operadores das colhedoras na USM.

IOR!MET	QUEE	DA.	INIC	10	FIN	AFRA	-			T	27]	N° C		CAREA	FRENTE 1
RO OLHED.	DATA	HORA	REPA	HORA	REPA	ARO	PEÇA TRO		DEFEITO / COMPARTIMENTO (EX. VAZAMENTO / BLOCO ELEVADOR)	DESCRIÇÃO DA CAUSA DO DEFEITO (EX. ESTOUROU ANEL VEDAÇÃO NIPLE)		HIDRÁ			COLHE	S AREA	
OLINED.	DATA	HORA	DATA	HORA	DATA	HORA	C.M.	QTDE.		(and a second of the second o	REMON- TA	TROCA	À RECUP.	MAPA	GLEBA	N° CORTE	OPERADO
109.1	ada	010	0.40	00	05.40	00				1101	-		1			03	5960
7101	21/01	212	2769	2100	27/01	22/10	1		Carponto No	Sofolo Person	22	2		0484	1206	03	F05
						-		-	Soldo do Pertas	do Juro					. 1		With Co.
						-			do Jiro					1			
												-		0484	7206	03	5863
	â																3
		- ;															
																•	
											-						
									4 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2								
		1.	*				100									;	
		10000		- 1						A A A A A A A A A A A A A A A A A A A			-				
																	1
						7									i		1
		- 2											1				
					1				Aliana		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1		1
								+	A Garage	1							
								+		 	-						
			*														

Apêndice A.3: Resumo Disponibilidade de colhedoras (SAFRA 03/04).

	KESU	MO D	SPUN	 	E DE COLH				22/10/2004 (SAF		
						Horas Tra	balhadas x	Horas Dispo	níveis/Indisponívo	eis	
Equipamento	Nº.	ANO	F	H.Trab.	Horas	Utiliz.	Efic.	Disp.	Indisp.Geral	Ind.S.Hidr.	Sist.Hidr
				Período.	Total	%	Utiliz.	%	[h]	[h]	%
AUSTOFT	13	1997	F1	3229	4.512	71,56	77,64	92,18	353,04		
AUSTOFT	14	1997	F1	3342	4.512	74,07	79,46	93,22	306,03		
AUSTOFT	15	1997	F1	1538	4.512	34,09	34,81	97,91	94,33		
AUSTOFT	16	1997	F1	3206	4.512	71,05	76,20	93,25	304,57		
AUSTOFT	17	1997	F1	3269	4.512	72,45	78,53	92,25	349,49		
AUSTOFT	18	1997	F1	3209	4.512	71,12	75,54	94,15	264,07		
AUSTOFT	19	1997	F1	3213	4.512	71,21	76,61	92,95	318,01		
AUSTOFT	20	1997	F1	3219	4.512	71,34	76,25	93,57	290,26		
AUSTOFT	21	1997	F2	2945	4.512	65,27	69,50	93,92	274,47		
AUSTOFT	22	1997	F2	2040	4.512	45,21	47,48	95,23	215,21		
AUSTOFT	23	1997	F2	3032	4.512	67,20	72,87	92,22	351,11		
AUSTOFT	25	1997	F2	2917	4.512	64,65	70,46	91,75	372,31		
AUSTOFT	26	1997	F2	2857	4.512	63,32	69,15	91,57	380,41		
AUSTOFT	27	1997	F2	2894	4.512	64,14	68,78	93,25	304,49		
AUSTOFT	28	1997	F2	2774	4.512	61,48	66,81	92,02	360,00		
AUSTOFT	29	1997	F2	3042	4.512	67,42	71,74	93,98	271,46		
CASE	51	2002	F3	2586	4.512	57,31	67,73	84,62	694,08		
CASE	52	2002	F3	3360	4.512	74,47	80,66	92,32	346,33		
CASE	53	2002	F3	3043	4.512	67,44	76,59	88,05	539,00		
CASE	54	2002	F3	2988	4.512	66,22	77,33	85,64	648,02		
CASE	55	2002	F3	3162	4.512	70,08	78,69	89,06	493,56		
CASE	56	2002	F3	3161	4.512	70,06	77,25	90,68	420,33		
CASE	57	2002	F3	3270	4.512	72,47	78,46	92,37	344,26		
BRASTOFT	62	1997	F4	2858	4.512	63,34	69,30	91,40	388,08		
BRASTOFT	63	1997	F4	2690	4.512	59,62	64,19	92,88	321,22		
BRASTOFT	64	1997	F4	2674	4.512	59,26	66,69	88,87	502,16		
BRASTOFT	65	1997	F4	1415	4.512	31,36	32,79	95,65	196,14		
BRASTOFT	66	1997	F4	1814	4.512	40,20	43,38	92,68	330,15		
BRASTOFT	67	1997	F4	2707	4.512	60,00	66,07	90,81	414,54		
BRASTOFT	68	1997	F4	2731	4.512	60,53	67,53	89,63	468,10		
BRASTOFT	61	1997	F5	2704	4.512	59,93	66,72	89,82	459,27		
CASE	42	2000	F5	3244	4.512	71,90	85,06	84,52	698,37		
CASE	43	2000	F5	3010	4.512	66,71	80,36	83,01	766,39		
CASE	44	2000	F5	3090	4.512	68,48	81,84	83,68	736,18		
CASE	45	2000	F5	3501	4.512	77,59	85,85	90,38	434,18		
CASE	46	2000	F5	2750	4.512	60,95	79,07	77,08	1.034,21		
CASE	47	2000	F5	2183	4.512	48,38	58,10	83,27	755,00		
CASE	48	2000	F5	3388	4.512	75,09	85,28	88,05	539,21		
	Total			109.055	171.456	63,61	70,30	90,47	16.338,04		
	Média			2.870	4.512	63,61	70,55	90,47	429,95		

Apêndice A.4: Desempenho Operacional das colhedoras das USM nas safras 2004/2005

Máq. Sem. Acum. Sem. <th< th=""><th>5,7294 180,5217</th></th<>	5,7294 180,5217
Período Acumulado 3/5/2004 07/12/2004 219 Período Acumulado 3/5/2004 7/12/2004 Nº. Óleo diesel (I) Hidráulico (I) Horímetro Produção (t) Hidráulico (I) Máq. Sem. Acum. Sem.	180,5217
N°. Óleo diesel (I) Hidráulico (I) Horímetro Produção (t) Hidráulico (I) Máq. Sem. Acum. Sem. <td></td>	
Máq. Sem. Acum. Sem. <th< td=""><td></td></th<>	
Máq. Sem. Acum. Sem. <th< td=""><td>ráulico (lt⁻¹)</td></th<>	ráulico (lt ⁻¹)
FRENTE: 01 13	m. Acum.
14 4.660 158.863 15 2.262 110 3.626 6.500,05 151.209,44 0,0 15 4.487 135.616 30 2.946 114 3.361 4.305,16 112.505,66 0,0 16 5.322 155.538 168 2.257 122 3.657 5.330,94 154.735,30 0,0 17 5.252 156.075 117 1.592 123 3.758 5.374,11 154.998,58 0,0 18 4.549 141.586 138 2.161 113 3.538 4.937,21 141.149,27 0,0 19 4.727 149.126 60 1.652 112 3.605 5.593,43 148.467,41 0,0	
15 4.487 135.616 30 2.946 114 3.361 4.305,16 112.505,66 0,0 16 5.322 155.538 168 2.257 122 3.657 5.330,94 154.735,30 0,0 17 5.252 156.075 117 1.592 123 3.758 5.374,11 154.998,58 0,0 18 4.549 141.586 138 2.161 113 3.538 4.937,21 141.149,27 0,0 19 4.727 149.126 60 1.652 112 3.605 5.593,43 148.467,41 0,0	18 0,014
16 5.322 155.538 168 2.257 122 3.657 5.330,94 154.735,30 0,0 17 5.252 156.075 117 1.592 123 3.758 5.374,11 154.998,58 0,0 18 4.549 141.586 138 2.161 113 3.538 4.937,21 141.149,27 0,0 19 4.727 149.126 60 1.652 112 3.605 5.593,43 148.467,41 0,0	02 0,015
17 5.252 156.075 117 1.592 123 3.758 5.374,11 154.998,58 0,0 18 4.549 141.586 138 2.161 113 3.538 4.937,21 141.149,27 0,0 19 4.727 149.126 60 1.652 112 3.605 5.593,43 148.467,41 0,0	
18 4.549 141.586 138 2.161 113 3.538 4.937,21 141.149,27 0,0 19 4.727 149.126 60 1.652 112 3.605 5.593,43 148.467,41 0,0	
19 4.727 149.126 60 1.652 112 3.605 5.593,43 148.467,41 0,0	
Total 33.379 1.041.691 626 14.836 801 25.115 37.423,65 1.008.406,27 0,0	11 0,011 17 0,015
FRENTE : 02	17 0,013
	14 0,011
	18 0,012
	07 0,014
	10 0,015
26 3.460 139.795 73 1.918 93 3.407 2.856,39 130.061,79 0,0	26 0,015
	22 0,031
	28 0,013
	0,008
	16 0,015
FRENTE: 03	20 0.042
	29 0,042 30 0,025
	47 0,034
	31 0,024
	26 0,040
	26 0,021
57 2.887 135.007 24 3.231 73 3.517 4.059,05 157.830,65 0,0	06 0,020
	27 0,029
FRENTE: 04	
	0,016
63 - 137.706 - 3.994 - 3.162 - 119.102,66	0,034
	25 0,028
	03 0,027 45 0,030
	32 0,030
	14 0,021
	48 0,024
FRENTE: 05	0,027
	20 0.000
	29 0,029
44 4.196 141.515 289 4.849 73 2.933 4.659,54 135.659,62 0,0	62 0,036
45 4.472 139.817 29 2.955 117 3.552 4.560,03 139.819,27 0,0	06 0,021
46 4.168 142.945 138 2.462 98 3.332 3.514,42 130.350,72 0,0	39 0,019
	05 0,030
	25 0,035
	19 0,047
	27 0,030
Geral 142.409 5.082.612 3.481 109.078 3.517 124.020 136.204,79 4.910.497,48 0,0	26 0,022

Continuação - safras 2004/2005.

		D	ESEMPEN	HO OPER	ACIO	NAL D	AS COLHED	ORAS			
		AU	STOFT / B	RASTOF	7.700	0/CASE	E 7.700 SAFR	RA 04/05			
Dias Disponíveis de	Safra					Dias	Efetivos de	Safra			
Período		29/11/2004	07/12/20	004 9		Po	eríodo Seman	nal	29/11/2004	7/12/2004	5,7294
Período Acumula	ndo	3/5/2004	07/12/20				ríodo Acumul		3/5/2004	7/12/2004	180,5217
T Criodo / Icamaic	ido	3/3/2001	07712720	9				uuo	3/3/2001	771272001	100,5217
N°.	D:	iesel (l.t ⁻¹)	Diese	l (l.hh ⁻¹)			/ dia disp. afra	t / máq	. / dia efet. Safi	a Hidrául	lico (lhh ⁻¹)
Máq.	Sem.	Acum.	Sem.	Acum.		Sem.	Acum.	Sem	. Acum	. Sem.	Acum.
FRENTE: 01											
13	0,81	1,00	40,95	40,58	4	598,08	663,66	939,5	805,11	0,916	0,551
14	0,72	1,05	42,36	43,81	7	722,23	690,45	1134,	51 837,62	0,136	0,624
15	1,04	1,21	39,36	40,35	4	478,35	513,72	751,4	623,23	0,263	0,877
16	1,00	1,01	43,62	42,53	4	592,33	706,55	930,4		1,377	0,617
17	0,98		42,70	41,53		597,12	707,76	937,9			0,424
18	0,92		40,26	40,02		548,58	644,52	861,7			0,611
19	0,85		42,21	41,37	(521,49	677,93	976,2			0,458
Total	0,89	1,03	41,67	41,48	5	594,03	657,80	933,1	2 798,01	0,782	0,591
FRENTE: 02											
21	1,82		41,88	43,41		289,09	623,38	454,1			0,429
22	1,87		43,06	43,74	2	276,26	621,09	433,9	96 753,48		0,445
23	1,30		40,46	42,78		401,82	733,07	631,2			0,600
25	1,17		40,14	41,23		320,74	573,58	503,8			0,536
26	1,21		37,20	41,03		317,38	593,89	498,5			0,563
27	0,81		40,57	40,71		416,02	558,87	653,5			1,167
28	1,12		39,96	43,42		264,59	558,87	415,6			0,494
29	1,11		37,00	38,48		358,60	644,88	563,3			0,321
Total	1,27	1,08	40,13	41,84	3	330,56	613,45	519,2	26 744,21	0,494	0,563
FRENTE: 03	1 25	1.07	40.00	12.16	,	260.10	5 00.00	550.5			1.670
51	1,25		42,33	42,46		368,10	500,08	578,2			1,670
52	0,95		34,35	36,31		478,08	693,99	750,9			1,059
53 54	1,64 0,86		40,81 33,11	40,41 35,59		313,11 504,31	659,82 736,29	491,8 792,2			1,398 1,061
55	0,80		39,06	40,04		412,85	614,33	648,5			1,701
56	0,37		33,93	37,36		515,82	749,98	810,2			0,909
57	0,71		39,55	38,39		451,01	720,69	708,4			0,919
Total	0,97		37,30	38,48		134,75	667,88	682,9			1,222
FRENTE: 04	-,	-,, -	,	,			,		,-	-,	-,===
62	1,56	1,16	43,77	42,90	3	364,61	608,38	572,7	75 738,06	1,838	0,585
63	-	1,16	-	43,55		0,00	543,85	0,00			1,263
64	1,13		43,79	43,36		475,01	617,98	746,1			1,065
65	1,19	1,12	40,25	38,56	4	417,07	552,52	655,1	670,29	3,495	0,931
66	1,24		41,67	42,26		410,94	574,75	645,5			1,157
67	1,26		42,29	43,58		418,50	644,52	657,4			0,693
68	0,78		40,24	40,90		339,75	621,51	533,6			0,816
Total	1,20	1,12	42,17	42,14	3	346,55	594,79	544,3	38 721,57	1,680	0,922
FRENTE: 05											
42	1,41	1,08	38,75	38,79		324,45	577,74	509,6			1,049
44	0,90		57,48	48,25		517,73	619,45	813,2			1,653
45	0,98		38,22	39,36		506,67	638,44	795,9			0,832
46	1,19		42,53	42,90		390,49	595,21	613,4			0,739
47	0,46		36,17	38,31		411,70	547,87	646,7			1,101
48	1,07		41,68	40,23		375,19	607,58	589,3			1,377
61	1,27		37,37	38,61		335,80	485,16	527,5			1,573
Total	1,01		41,39	40,79		408,86	581,64	642,2			1,174
Geral	1,05	1,04	40,49	40,98	2	120,39	622,84	660,3	36 755,60	0,990	0,880

Apêndice A.5: Desempenho Operacional das colhedoras da USM nas safras 2005/2006

DE.	SEMPENI	HO OPER	ACION/	AL CO	LHEDOR.	AS AUST	OFT / BRA	STOFT 7.700	/CASE 7.700 SA	FRA 05/06	
Período Seman	al 7	/11/2005	12/11/2	2005	6	Período	Semanal	7/11/2005	12/11/2005		5,95
eríodo Acumula	ado 1	5/4/2005	12/11/2	2005	212	Período A	Acumulado	15/4/2005	12/11/2005	1	84,98
N°.	Óle	o diesel (l)		Hidrá	ulico (l)	Hori	metro	Produ	ıção (t)	Hidráuli	co (l.t ⁻¹)
Máq.	-Sem.	Acui	m. S	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.
						FRENTE	: 01				
13	4.734	140.2	237	80	2.509	113	3.532	4.561,82	151.392,68	0,018	0,017
14	5.383	154.5	516	79	3.734	128	3.653	5.007,04	159.758,85	0,016	0,023
16	6.425	164.2	255	32	2.680	132	3.728	6.885,72	175.463,80	0,005	0,015
17	5.895	153.5	577	62	1.992	136	3.793	6.694,43	175.931,76	0,009	0,011
18	5.585	153.4	105	175	2.125	135	3.649	4.908,25	162.483,29	0,036	0,013
19	5.220	157.1		50	2.072	124	3.526	4.005,63	154.678,25	0,012	0,013
20	5.300	159.7		130	3.046	130	3.583	4.266,81	150.867,49	0,030	0,020
Total	38.542	1.082.	862	608	18.158	898	25.464	36.329,70	1.130.576,12	0,017	0,016
						FRENTE					
21	5.505	161.0)29	56	919	121	3.614	6.523,79	169.577,20	0,009	0,005
22	6.957	174.8	373	55	1.207	136	3.729	5.855,48	172.255,78	0,009	0,007
23	6.373	167.7		232	2.705	138	3.772	6.703,15	173.379,66	0,035	0,016
25	5.717	165.7	63	51	2.048	114	3.536	5.096,94	144.540,77	0,010	0,014
26	-	142.5		-	2.010	-	3.521	-	143.256,47	-	0,014
27	5.789	158.5		42	2.363	130	3.716	5.111,08	148.652,88	0,008	0,016
29	5.760	150.5		46	978	140	3.838	5.644,80	159.307,15	0,008	0,006
Total	36.101	1.121.	064	482	12.230	779	25.726	34.935,24	1.110.969,91	0,014	0,011
						FRENTE					
51	4.789	142.1		489	5.925	107	3.090	3.905,60	128.172,00	0,125	0,046
52	5.205	157.6		190	5.135	122	3.559	5.013,87	150.638,79	0,038	0,034
53	5.324	162.5		453	7.046	111	3.383	4.307,13	139.110,65	0,105	0,051
54	5.849	154.7		157	4.290	122	3.419	5.430,95	144.758,56	0,029 0,026	0,030
55 56	4.108 5.368	134.0 158.5		120 115	3.954 4.429	111 119	3.380 3.576	4.582,71 5.287,23	139.694,05 152.712,04	0,020	0,028 0,029
57	4.964	145.2		139	2.452	98	3.265	5.135,36	139.147,27	0,022	0,029
Total	35.607	1.054.		1.663	33.231	790	23.672	33.662,85	994.233,36	0,049	0,018
FRENTE 04	33.007	1.034.	922 1	1.003	33.231	790	23.072	33.002,83	994.233,30	0,049	0,033
62	4.528	153.9	001	127	3.497	110	3.715	3.642,43	153.914,17	0,035	0,023
63	4.893	148.7		214	4.263	107	3.509	4.196,31	141.472,87	0,051	0,023
64	4.355	154.3		316	5.210	104	3.395	3.606,81	138.063,24	0,088	0,038
65	5.773	161.6		104	3.004	127	3.722	4.560,20	149.322,17	0,023	0,020
66	5.782	158.8		63	3.620	120	3.455	4.074,78	143.161,83	0,015	0,025
67	3.993	150.5		23	3.174	104	3.593	3.885,50	147.575,71	0,006	0,022
68	5.027	159.3		40	3.413	126	3.707	5.122,46	155.001,17	0,008	0,022
Total	34.351	1.087.		887	26.181	798	25.096	29.088,49	1.028.511,16	0,030	0,025
FRENTE: 05											
42	5.031	136.8	865	281	4.088	121	3.438	4.042,87	129.603,92	0,070	0,032
44	3.798	150.8	312	138	4.868	97	3.628	3.220,72	145.911,12	0,043	0,033
45	4.486	145.6	599	159	2.625	120	3.657	3.955,10	147.359,07	0,040	0,018
46	5.483	160.5	502	67	2.848	109	3.205	4.437,83	143.494,72	0,015	0,020
47	5.121	145.9	933	85	4.179	126	3.575	4.515,31	144.513,81	0,019	0,029
48	5.325	148.1	.05	450	3.624	108	3.175	5.073,47	152.161,91	0,089	0,024
61	4.984	137.0)72	206	5.283	122	3.541	4.675,77	140.301,64	0,044	0,038
Total	34.228	1.024.	988 1	1.386	27.515	803	24.219	29.921,07	1.003.346,19	0,046	0,027
GERAL	178.829	5.371.	205 5	5.026	117.315	4.068	124.177	163.937,35	5.267.636,74	0,031	0,022

Continuação - safras 2005/2006.

	DESEMPL	ENHO OPE	RACIONAL CO	DLHED	ORAS AUST	OFT / BRAST	OFT 7.700 /CA	SE 7.700 SA	FRA 05/	06
Período Semanal	7/11	/2005	12/11/2005	6	Período	Semanal	7/11/2005	12/11/2005	5	5,95
Período Acumulado	15/4	/2005	12/11/2005	212	Período A	cumulado	15/4/2005	12/11/2005	5	184,98
N°.	Diesel	(l.ton ⁻¹)	Diesel (l.hh	-1)	ton / máq. / d	ia disp. Safra	ton / máq. / di	a efet. Safra	Hidr	áulico (l.hh ⁻¹)
Máq.	Sem.	Acum.		Acum.	Sem.	Acum.	Sem.	Acum.	Sem.	Acum.
FRENTE: 01										
13	1,04	0,93	41,89	39,70	760,30	714,12	765,68	820,16	0,708	0,710
14	1,08	0,97		42,30	834,51	753,58	840,41	865,48	0,617	1,022
16	0,93	0,94		44,06	1147,62	827,66	1155,74	950,57	0,242	0,719
17	0,88	0,87	43,35	40,49	1115,74	829,87	1123,63	953,10	0,456	0,525
18	1,14	0,94	41,37	42,04	818,04	766,43	823,83	880,24	1,296	0,582
19	1,30	1,02	42,10	44,56	667,61	729,61	672,33	837,96	0,403	0,588
20	1,24	1,06	40,77	44,59	711,14	711,64	716,16	817,32	1,000	0,850
Total	1,06	0.96	42,92	42,53	864,99	761,84	871,11	874,98	0,677	0,713
FRENTE: 02	,	<i>,</i>	**	,	7	,-	•	¥5 5		, -
21	0,84	0,95	45,50	44,56	1087,30	799,89	1094,99	918,68	0,463	0,254
22	1,19	1,02		46,90	975,91	812,53	982,82	933,19	0,404	0,324
23	0,95	0,97		44,48	1117,19	817,83	1125,09	939,27	1,681	0,717
25	1,12	1,15		46,88	849,49	681,80	855,50	783,04	0,447	0,579
26	-	0,99		40,48	0,00	675,74	0,00	776,08	_	0,571
27	1,13	1,07		42,67	851,85	701,19	857,87	805,32	0,323	0,636
29	1,02	0,95		39,23	940,80	751,45	947,45	863,04	0,329	0,255
Total	1,03	1,01	46,34	43,58	831,79	748.63	837,67	859.80	0,619	0,475
FRENTE: 03	,	,-		- ,	,,,,	,	,	,	-,	,
51	1,23	1,11	44,76	46,01	650,93	604,58	655,54	694,36	4,570	1,917
52	1,04	1,05		44,29	835,65	710,56	841,56	816,08	1,557	1,443
53	1,24	1,17		48,04	717,86	656,18	722,93	753,62	4,081	2,083
54	1,08	1,07		45,26	905,16	682,82	911,56	784,22	1,287	1,255
55	0,90	0,96		39,67	763,79	658,93	769,19	756,78	1,081	1,170
56	1,02	1,04		44,34	881,21	720,34	887,44	827,31	0,966	1,239
57	0,97	1,04		44,48	855,89	656,36	861,95	753,82	1,418	0,751
Total	1,06	1,06	45,07	44,56	801,50	669,97	807,17	769,46	2,105	1,404
FRENTE: 04										
62	1,24	1,00	41,16	41,43	607,07	726,01	611,37	833,82	1,155	0,941
63	1,17	1,05		42,40	699,39	667,32	704,33	766,42	2,000	1,215
64	1,21	1,12		45,47	601,14	651,24	605,39	747,95	3,038	1,535
65	1,27	1,08	45,46	43,42	760,03	704,35	765,41	808,94	0,819	0,807
66	1,42	1,11	48,18	45,96	679,13	675,29	683,93	775,57	0,525	1,048
67	1,03	1,02	38,39	41,89	647,58	696,11	652,16	799,48	0,221	0,883
68	0,98	1,03	39,90	43,00	853,74	731,14	859,78	839,71	0,317	0,921
Total	1,18	1,06	43,05	43,33	692,58	693,07	697,48	795,99	1,112	1,043
FRENTE: 05										
42	1,24	1,06	41,58	39,81	673,81	611,34	678,58	702,12	2,322	1,189
44	1,18	1,03		41,57	536,79	688,26	540,58	790,47	1,423	1,342
45	1,13	0,99		39,84	659,18	695,09	663,85	798,31	1,325	0,718
46	1,24	1,12		50,08	739,64	676,86	744,87	777,37	0,615	0,889
47	1,13	1,01		40,82	752,55	681,67	757,87	782,90	0,675	1,169
48	1,05	0,97		46,65	845,58	717,74	851,56	824,33	4,167	1,141
61	1,07	0,98		38,71	779,30	661,80	784,81	760,08	1,689	1,492
Total	1,14	1,02		42,32	712,41	676,11	717,45	776,51	1,726	1,136
GERAL	1,09	1,02		43,25	780,65	709,92	786,18	815,35	1,235	0,945
	-,07	-,02	,,,	-,	,	,- =	,	,	-,200	-,

Apêndice A.6: Controle de falhas da máquina 14 contendo as anotações do operador para as principais falhas, locais de ocorrência e causa da falha com seus respectivos código de materiais quando existe o caso de troca ou substituição. Na coluna problemas, estão os modos de falhas.

Máquina 14: Controle de falhas do sistema hidráulico

Máq.	Problemas	Parte Objeto (macro)	Parte Objeto (Detalhe)	Texto da causa
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	RESSECADA
14	Desaperto/Bambeou		MOTOR HIDRAULICO EXAUSTOR	CAIU MOTOR HIDRAULICO
14	vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	ESTOUROU
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA PV 365	VAZAMENTO NA BOMBA
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA M51	SOLTOU
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	ESTOUROU
14	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO RODA	ESTOUROU ANEL
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVATORIO HIDRAULICO	BAIXOU NIVEL DE OLEO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA ROLO LEVANTADOR	RESSECADA
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA ACERADOR	Ressecado
14	Vazamento	Reservatório Hidráulico	Vazamento Pistão da Suspenção	BAIXOU NÍVEL DO ÓLEO
14	Vazamento	Pistão Hidráulico	PISTÃO HIDRAULICO SUSPENSÃO	TROCADO PISTÃO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA DO AERADOR	RESSECADA
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NIVEL DO OLEO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	ESTOUROU
14	Nível do Óleo Baixo		RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA	PEGOU A MOLA
14	vazamento		MANGUEIRA HIDRÁULICA	ESTOUROU
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Vazamento	Pistão Hidráulico	PISTÃO HIDRAULICO DO LEVANTE	TROCOU PISTÃO - VAZAMENTO NIPLE
14	Revisão	Bombas Hidráulicas	BOMBA HIDRAULICA	RETIROU PARA TESTAR
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	NIPLE SOLTO (REAPERTADO)
14	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO PV 54	VAZAMENTO NO SELO
14	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO PV 54	VAZAMENTO NO SELO
14	Vazamento		MANGUEIRA ROLO LEVANTADOR	SOLTOU MANGUEIRA
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA DO ELEVADOR	ESTOUROU
14	Vazamento	Motores Hidráulicos	MOTOR EXAUSTOR	TROCOU MOTOR
14	Vazamento	Sistema Hidráulico	CAIXA DE OLEO HIDRAULICO	VAZAMENTO NA TAMPA (TROCOU JUNTA)
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA BRAÇO LEVANTADOR	VAZAMENTO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA DA TRANSMISSÃO	ESTOUROU
14	Estourou		MANGUEIRA PISTÃO ACERADOR	ESTOUROU
14	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA PV 365	VAZAMENTO NO NIPLE
14	Vazamento		MANGUEIRA HIDRÁULICA ELEVADOR	ESTOUROU
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA TRANSMISSÃO	ESTOUROU
14	Vazamento		MANGUEIRA HIDRAULICA ROLO TRANSPORTADOR	ESTOUROU PANYOLINIVEL DE OLEO
14 14	Nível do Óleo Baixo		RESERVATORIO HIDRAULICO	BAIXOU NIVEL DE OLEO
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVATORIO HIDRAULICO	BAIXOU NIVEL DE OLEO BAIXOU NIVEL DE OLEO
14 14	Nível do Óleo Baixo Vazamento	Reservatório Hidráulico	RESERVATORIO HIDRAULICO	ESTOUROU MANGUEIRA
14		Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA ROLO LEVANTADOR	
14	Vazamento Vazamento	Pistão Hidráulico Mangueiras Hidráulicas	PISTÃO HIDRAULICO DO GIRO MANGUEIRA PISTÃO SUSPENSÃO	VAZAMENTO NO NIPLE DO PISTÃO DO GIRO NIPLE RACHOU EXCESSO DE CARGA
14	Nível do Óleo Baixo	Reservatório Hidráulicas		BAIXOU NÍVEL DO ÓLEO
14	Nível do Óleo Baixo	Reservatorio Hidraulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Nível do Óleo Baixo	Reservatorio Hidráulico	RESERVATORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Vazamento		MANGUEIRA HIDRÁULICA TRANSMISSÃO	ESTOUROU ESTOUROU
14	Vazamento	Bombas Hidráulicas	ANÉL DO BIPARTIDO	Motor Transmissão
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA PISTÃO ESTEIRA	FUROU
14	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO
14	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA ESTEIRA	VAZAMENTO
14	vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA ESTEIRA MANGUEIRA HIDRÁULICA PIST.SUSPENSÃO	SOLTOU MANGUEIRA
	vazdilielilu		RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO

Continuação Apêndice A.6: Anotações que se referem a tempos de início e término das manutenções, tempos parados, quantidade de derramamento de óleo, mapas, talhões, glebas, numero de corte, código do operador e horímetro da colhedora.

								1-Remonta		INFORMAÇ	ÕES ÁREA D	ACOLHETA	1	Horimetro
							Oleo Hid.			MAPA	GLEBA	N <u>o</u>	Nº control	EDO OPERADOR
	Hquebra	HinícDis	Fim avaria		DuraçParad	_		3- Recup.	Frente			CORTE		
10.08.2005	06:00:00	06:05:00		06:10:00	0,17	H	33	1	1	139	2266	3	6428	3359
27.08.2005	02:00:00	02:20:00		02:50:00	0,83	H	40	1	1	371	3753	3	6428	3738
26.08.2005	17:40:00	18:00:00		18:30:00	0,83	H	40	1	1	371	3756	3	6428	3706
22.08.2005	10:00:00	10:30:00		10:40:00	0,67	H	30	1	1	420	4031	2	6428	3613
23.08.2005	07:40:00	07:50:00		08:10:00	0,50	H	50	1	1	420	4031	2	6428	3622
17.10.2005 25.10.2005	07:15:00 10:00:00		17.10.2005 25.10.2005	08:30:00 11:15:00	1,25 0,00	H H	20 20	1	1	426 435	4103 4216	<u>2</u> 5	6428 6428	4532 4718
03.10.2005	19:40:00	19:55:00		20:00:00	0,00	Н	17	1	1	210	4245	5	6428	4351
04.10.2005	14:20:00		04.10.2005	15:25:00	0,00	Н	30	1	1	210	4245	5	6428	4392
26.10.2005	13:30:00	14:00:00		14:25:00	0,92	H	25	1	1	489	4456	7	6428	4732
28.09.2005	05:00:00	05:30:00		06:35:00	1,58	H	30	1	1	494	7204	3	6428	4190
29.09.2005	01:30:00	01:35:00		01:45:00	0,25	H	60	1	1	494	7204	3	6428	4200
04.09.2005	08:00:00	08:15:00		00:00:00	16,00	H	10	1	1	2217	9022	1	6428	3781
05.09.2005	15:00:00	15:00:00		17:00:00	2,00	H	65	1	1	2317	9022	3	6428	3818
02.10.2005	01:45:00	02:50:00		03:00:00	1,25	Н	70	1	1	2134	9084	2	6428	4280
29.08.2005	10:20:00	10:33:00		10:40:00	0,33	Н	20	1	1	2621	9313	3	6428	3828
16.08.2005	18:00:00	18:15:00		18:25:00	0,42	Н	15	1	1	2058	9624	4	6428	3477
20.08.2005	19:00:00	19:20:00	20.08.2005	19:45:00	4,75	Н	35	1	1	2058	9624	4	6428	3576
11.09.2005	18:00:00	18:10:00	11.09.2005	18:20:00	0,33	Н	25	1	1	2649	9928	3	6428	3999
01.09.2005	10:20:00	10:33:00	01.09.2005	10:40:00	0,33	Н	10	1	1	9	1338	1	6745	3761
04.08.2005	20:00:00	20:10:00	04.08.2005	20:35:00	0,58	Н	0	1	1	115	2192	4	6745	3244
26.08.2005	18:40:00	19:00:00	26.08.2005	19:30:00	0,83	Н	25	1	1	371	3753	3	6745	3707
21.08.2005	10:00:00	10:30:00	21.08.2005	10:40:00	0,67	Н	10	1	1	420	4031	2	6745	3598
13.10.2005	10:02:06	10:02:06	13.10.2005	11:00:00	0,97	Н	65	1	1	421	4047	4	6745	4502
11.10.2005	10:00:00	10:30:00	11.10.2005	11:00:00	1,00	Н	90	1	1	210	4245	5	6745	4487
08.10.2005	12:00:00	12:10:00		12:30:00	0,50	Н	10	1	1	210	4245	5	6745	4405
22.10.2005	00:22:00	00:26:00		00:40:00	0,30	Н	40	1	1	457	4259	4	6745	4671
23.10.2005	00:22:00	00:26:00		00:40:00	0,00	Н	30	1	1	462	4321	2	6745	4694
24.08.2005	10:30:00	10:35:00		10:50:00	0,33	Н	15	1	1	420	4031	2	7334	3661
12.08.2005	13:00:00	13:05:00		13:30:00	0,50	<u>H</u>	15	1	1	252	2455	2	7335	3406
05.08.2005	08:00:00	08:10:00		00:00:00	16,00	<u>H</u>	34	1	1	1392	266	3	7339	24745
02.09.2005	13:18:00	13:25:00		14:00:00	0,70	H	34	1	1	9	1338	1	7339	3823
09.09.2005	13:00:00 13:30:00	13:15:00 13:45:00		13:30:00	0,50 0,67	H H	15 40	1	1	139	1338 2265	1 5	7339 7339	3958 3340
09.08.2005 10.08.2005	09:00:00	09:05:00		14:10:00 09:25:00	0,67	Н	30	1	1	139	2266	3	7339	3359
29.08.2005	20:00:00	20:20:00		20:40:00	0,42	Н	10	1	1	371	3753	3	7339	3751
19.10.2005	09:00:00	09:30:00		10:00:00	1,00	H	0	1	1	420	4066	4	7339	4630
20.10.2005	07:00:00	07:15:00		08:00:00	1,00	H	25	1	1	420	4066	4	7339	4645
21.10.2005	07:15:00	07:30:00		08:30:00	1,25	H	35	1	1	420	4066	4	7339	4663
10.11.2005	00:22:00	00:26:00		11:15:00	10,88	H	10	1	1	460	4296	4	7339	4921
02.11.2005	16:00:00	16:10:00		18:30:00	2,50	H	25	1	1	494	4524	4	7339	4796
04.11.2005	16:00:00	16:10:00		18:30:00	2,50	H	25	1	1	494	4524	4	7339	4832
28.10.2005	10:00:00	10:30:00		00:30:00	14,50	Н	35	1	1	494	4524	4	7339	4759
08.11.2005	10:00:00	10:30:00		18:30:00	8,50	Н	40	1	1	457	4753	3	7339	4891
03.08.2005	16:00:00	16:30:00	03.08.2005	17:00:00	1,00	Н	10	1	1	2236	9168	4	7339	3225
29.08.2005	10:50:00	10:50:00	29.08.2005	11:17:00	0,45	Н	10	1	1	2621	9313	2	7339	3830
15.08.2005	02:00:00	02:15:00	15.08.2005	02:20:00	0,33	Н	10	1	1	2064	9332	5	7339	3457
14.09.2005	11:30:00	11:45:00	14.09.2005	12:00:00		Н	25	1	1	2686	9586	3	7339	4040
15.09.2005	08:45:00	08:50:00	15.09.2005	09:15:00	0,50	Н	35	1	1	2686	9586	3	7339	4083
20.09.2005	05:30:00		21.09.2005	04:30:00	23,00	Н	38	1	1	2648	9926	2	7339	4140
21.09.2005	15:00:00	17:10:00	21.09.2005	18:00:00	3,00	Н	60	1	1	2648	9926	2	7339	4160
13.09.2005	02:00:00	02:10:00	13.09.2005	03:00:00	1,00	Н	40	1	1	2649	9928	3	7339	4028
12.10.2005	16:00:00	4	12.10.2005	18:15:00	_	Н	36	1	6	421	4044	5	7363	4499
06.09.2005	11:00:00		06.09.2005	11:30:00	_	Н	40	1	1	2479	9022	1	7363	3881
25.08.2005	10:00:00	10:30:00	25.08.2005	10:40:00	0,67	Н	26	1	6	2625	9515	3	10956	3690

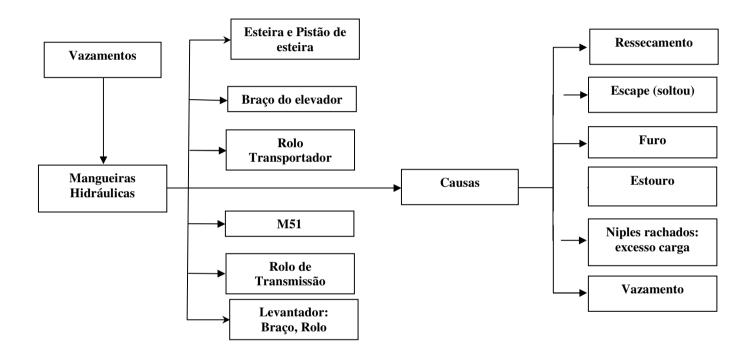


Figura A. 1 - Diagrama de falhas do problema de vazamento da máquina 14

Apêndice A.7: Controle de falhas da máquina 15 - descrição do operador para as principais falhas, locais de ocorrência e causa da falha com seus respectivos código de materiais quando existe o caso de troca ou substituição.

Máquina 15: Controle de falhas do sistema hidráulico

Máq.	Problemas	Parte Objeto (macro)	Parte Objeto (Detalhe)	Texto da causa
15	Vazamento	Motor	MOTOR 4º ROLO SUPERIOR	TROCOU
15	Vazamento	Motores Hidráulicos	NPLE MOTOR HIDRÁULICO M51	ESTOUROU ANEL VEDAÇÃO NIPLE
15	Desaperto/Bambeou		MANGUERA BLOCO ELEVADOR	SOLTOU
15	Vazamento	Divisor de Fluxo	DIVISOR DE FLUXO	VAZAMENTO NO DIVISOR DE FLUXO
15	Vazamento	Motores Hidráulicos	MOTOR HIDRÁULICO TRW	DESGASTE ANÉIS
15	Vazamento	Mangueiras Horáulicas	MANGUERA HDRAULICA TRANSMISSÃO	ESTOUROU - FALTA DE APERTO
15	Vazamento	Pistão Hidráulico	PISTÃO HDRAULICO DO ELEVADOR	ESTOUROU REPARO PISTÃO
15	Vazamento	Pistão Hidráulico	PISTÃO HDRAULICO SUSPENSÃO	DESGASTE NO REPARO
15	Vazamento		MANGUEIRA HDRAULICA BA66	FUROU/BRAÇADEIRA FOLGADA
15	Nível do Óleo Baixo		RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOUNÍVEL DO ÓLEO
15	Vazamento	Bombas Hidráulicas	BOMBA PV39	Bomba trocada
15	Teste	Bombas Hidráulicas	BOMBA HIDRAULICA	RETIROU BOMBA CONJUGADA PARA TESTE
15	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO DESPONTADOR	VAZAMENTO
15	Vazamento		MANGUEIRA HIDRAULICA ROLO LEVANTADOR	VAZAMENTO
15	Vazamento	Bomba de Carga	Trocada a Bomba	Mangate frouxo
15	Vazamento		MOTOR DO DESPONTADOR	RESSECADA
15	Vazamento	Bombas Hidráulicas	BOVBA HDRAULICA BA 66	VAZAVENTONOMANGOTE
15	Vazamento		MANGUEIRA RADIADOR DE OLEO	VAZAVENTO NA PRENSA
15	vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA BA 66	FUROU PROXIMO AO SUPORTE
15	Vazamento		MANGUEIRA HDRÁULICA PIST. SUSPENSÃO	VAZAVENTO
15	Desgaste Normal		MANGUEIRA HDRÁULICA	DESGASTE
15	Vazamento		MANGUEIRA PISTÃO ACERADOR	DESGASTE
15	Vazamento		MANGUEIRA HDRÁULICA	5200 0.2
15	Desgaste Normal		MANGUEIRA HDRÁULICA ACERADOR	VAZAMENTONONIPLE
15	Vazamento	Radiador do Intercooler		VAZAVENTO
15	Vazamento	Sistema de Rolos	ROLOTOVBADOR	ROLOTOMBADOR
15	Vazamento		MANGUERA HDRÁULICA	DESAPERTOU
15	Vazamento	Pistão Hidráulico	PISTÃO DIVISOR DE LINHA	VAZAVENTONIPLE
15	Quebrou	Sistema Hidráulico	CAIXA HIDRÁULICA ROLO PICADOR	QUEBROU FLANGE DO ROLO PICADOR
15	Furou		MANGUERA HDRÁULICA	FUROU
15	Vazamento	Divisor de Fluxo	DIMSORDEFLUXO	VAZAVENTO NO DIVISOR DE FLUXO
15	Furou	Sistema Hidráulico	MANGUEIRA CORTADOR PONTAS	RUROU
15	Quebrou	Cortador de Pontas	SOLENIDE DESPONTADOR	NÃO DISPONTA
15	Vazamento	Divisor de Fluxo	REPARO VÁLVULA DIVISOR FILIXO	ESTEIRALENTA
15	Vazamento	Bevador	ANÉS INTERNO CARTUCHO ELEVADOR	
15	Vazamento		MANGUEIRA VÁLVULA HIV BOY	VAZAMENTO NA PRENSA
15		Motores Hidráulicos	MOTOR EXAUSTOR PRIMÁRIO	
15	Vazamento	Sistema Hidráulico	REPAROMOTOR	REPARO DANIFICADO
15	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA BA 66	FUROU
15	Estourou	Motores Hidráulicos	MOTOR HIDRÁULICO TRW	ESTOUROU
15	Vazamento	Sistema de Rolos	ROLOTOMBADOR	ROLOTOMBADOR
15	Vazamento	Transmissão	CANOTRANSMISSÃO	
15	Vazamento	Sistema de Rolos	ROLOTOMBADOR	INUTILIZOU
15	Quebrou		MOTOR HIDRÁULICO DO PIRULITO LE	TROCOUMOTOR
15	Vazamento		MANGUEIRA HDRÁULICA	MANUTENÇÃO BLOCO DO ELEVADOR
15	Vazamento		MANGUEIRA HDRÁULICA	REVISÃO
15	Vazamento		MANGUEIRA PISTÃO ELEV.DESPONTADOR	SOLTOU NIPLE DA MANGUEIRA
15			MANGUEIRA HIDRÁULICA	FUROU
15	Vazamento		MANGUERA HDRÁULICA ROLO LEVANTADOR	VAZAVENTO
15	Vazamento		MANGUERA HDRAULCA ACERADOR	FUROU
15	vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA BA 66	VAZAMENTONOTRINCO
15	Vazamento		MANGUERA HDRÁULICA ELEVADOR	ESTOUROU
15	Vazamento	Transmissão Horáulica		AREA IRREGULAR
15	Nível do Óleo Baixo		RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAXOUNÍVELDOÓLEO
		Válvulas Hidráulicas	VALVULA HDRAULICA MA66K	FUROUCANO
15	vazamento	Valvulas murai iicas		IFURGUCANO

\$\sqrt{97.552.05} \text{10.1500} \text{10.4000} \(\sqrt{77.552.05} \text{10.552.00} \qu									1-Remonta		INFORMAÇ	DESÁREAD	ACOLHETA	1	Horimetro
			l							_	MAPA	GLEBA		N° control	EDOOPERADOR
\$\text{Tissue} \text{Tissue} Tissu						3	_		3-Recup						
2004205 01:1500 01:1500 2004205 10:3000 0.25 H 0 1 1 421 40/8 1 5384 239 19.04205 15:3000 15:3000 19.04205 16:0000 0.67 H 15 1 1 421 40/8 1 5384 239 230						,-	_		1						24133
1901.0205 152001 152001 153001 1901.0205 190000 200 H 0 0 1 1 421 4043 1 5384 239 230 230 230 100000 1600000 160000 182000 033 H 20 1 1 421 4043 1 5384 239 230 230 1 1 200 2495 5 5384 230 230 1 1 200 2495 5 5384 230	-					,	_								24148
2004206 070000 080000 2004206 080000 200 H 0 0 1 1 426 4043 1 5384 238 25102005 100000 22000012102005 010000 6300 H 50 1 1 20 4045 5 5384 257 08102005 070000 073000 08102005 150000 8800 H 50 1 1 1 210 4045 5 5384 257 08102005 070000 073000 08102005 150000 8800 H 50 1 1 1 210 4045 5 5384 257 08102005 070000 073000 08102005 150000 8800 H 50 1 1 1 457 4046 5 5 5384 257 25102005 233000 25000 2010205 150000 8800 H 50 1 1 1 457 4048 5 5 5384 257 25102005 233000 25000 2010205 150000 1000 H 20 1 1 1 457 4049 5 5 5384 259 2208205 082000 17000 U 10000 10000 20102005 192000 1000 H 20 1 1 1 457 4048 5 5 5384 259 2208205 082000 17000 U 10000 21002005 192000 540 H 0 0 1 1 1 150 4269 3 5 5384 259 2208205 140000 170000 21002005 192000 540 H 0 0 1 1 1 1 150 4269 3 5 5384 259 100205 110000 120000 2200205 192000 540 H 0 0 1 1 1 1 494 44694 4 5384 260 1011205 133000 140000 0111205 142500 092 H 50 1 1 1 494 44694 4 5384 260 1011205 133000 140000 0111205 142500 092 H 50 1 1 1 494 44694 4 5384 260 1011205 170000 07000 07000 070000 070000 070000 070000 070000 070000 070000 070000 070000 0700000 070000 070000 070000 070000 070000 070000 070000 070000 0700000 070000 070000 070000 070000 070000 070000 070000 070000 0700000 070000 070000 070000 070000 070000 070000 070000 070000 0700000 070000 070000 070000 070000 070000 070000 070000 070000 0700000 07000 070							_								23972
Es 100.005 100.000 180.000 25 100.005 01.11.02.005 190.000 200.000 12 10.0005 01.0000 60.00 H 50 1 1 25 4246 5 5384 257 E0 10.005 07.0000 07.0000 07.0000 07.0000 60.00 H 50 1 1 210 4248 5 5384 257 20 10.005 07.0000 07.0000 23.0000 22.0000 02.0000 23.0000 22.0000 02.0000 23.0000 22.0000 02.0000 23.0000 22.0000 1 1 1.67 4248 4 5384 25.000 22.000 23.0000 22.0000 1 1 1.50 4248 4 5384 25.000 22.0000 23.0000 22.0000 20.0000 1 1 1.50 4289 3 3384 254 25.0000 25.0000 1 1 1.40 4.22 4.40 3384 256 26.0000 26.0000 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>-,-</td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						-,-		_							
11.102.005 19.00.00 22.00.00 12.00.005 15.00.00 8.00 H 50 1 1 210 4245 5 5384 257							_							1	
Description							_								
22 (1) (2000) 23:5000 23:5000 23:5000 20:00 H 0 1 1 457 42:89 4 5334 259 22 (08) 2005 140:000 17:000 12:0000 10:0000 10:00 H 0 1 1 150 42:89 3 5384 254 28 (10,000) 11:0000 12:0000 28:0000 13:0000 20:00 H 0 1 1 19:0 48:89 3 5384 254 28 (10,000) 11:0000 12:0000 28:0000 10:0000 12:0000 28:0000 10:000 11:000 1 1 484 48:24 4 5384 260 0 (11,12005) 13:0000 14:0000 17:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 12:0000 10:0000 10:0000 12:0000							_							-	25739
200,0005 120,000 120,000 220,000 130,000 1,00 H 20 1 1 150 4289 3 5384 254	-						_								25973
210.92005 14:0000 17:0000 21:09.2005 19:3000 5,40 H 0 0 1 1 1 150 4289 3 5384 254 281 02:000 11:0000 11:0000 12:0000 20:00 H 0 0 1 1 1 484 4284 4 5384 280 04 11:005 07:0000 07:3000 04:11:2005 12:0000 5:00 H 0 0 1 1 1 484 4544 4 5384 280 04 11:005 07:0000 07:0000 07:3000 04:11:2005 12:0000 5:00 H 0 0 1 1 487 4733 3 5384 26:1 27:09.2005 08:0000 08:0000 27:09.2005 08:3000 65:00 H 0 0 1 1 484 77:00 3 3 5384 26:1 27:09.2005 08:0000 08:0000 27:09.2005 08:3000 65:00 H 0 0 1 1 484 72:00 3 3 5384 25:1 04:09.2005 15:4000 16:0000 04:09.2005 17:2500 17:5 H 0 0 1 1 23:17 9022 1 5384 25:1 05:09.2005 15:4000 16:0000 04:09.2005 17:2500 17:5 H 0 0 1 1 23:17 9022 1 53:34 25:1 05:09.2005 14:0000 15:0000 05:09.2005 15:2000 13:0000 05:09.2005 15:2000 13:0000 05:09.2005 15:2000 15:0000 05:09.2005 15:2000 13:0000 05:09.2005 15:2000 13:09.2005 05:09.2005 15:0000 15:0000 05:09.2005 15:0000 15:0000 05:09.2005 15:0000 15:0000 05:09.2005 15:0000 15:0000 05:09.2005 15:0000 15:0000 05:09.2005 15:0000 15:0000 05:09.2005 15:0000 15:0000 05:09.2005 05:09.2005 15:0000 05:09.2005 05:09							_								25472
28.10.2005							_								25463
01.11.2005						,	_								26059
0.11.2005 07.0000 07.2000 04.11.2005 12.0000 5.00 H 35 1 1 457 4753 3 5384 251	-						_		1				4	-	26098
26.09.2005	-					,			1	1	457		3		26102
0.00.2005 15.4000 16.0000 0.40.2005 17.2500 1,75 H 40 1 1 2317 9022 1 5384 251	27.09.2005	03:00:00	09:00:00	27.09.2005	09:30:00	6,50	Н	15	1	1	494	7203	3	5384	25555
CEOQ-2005	26.09.2005	12:00:00	12:10:00	26.09.2005	12:30:00	0,50	Н	0	1	1	494	7204	3	5384	25543
CEOR-2005	04.09.2005	15:40:00	16:00:00	04.09.2005	17:25:00	1,75	Н	40	1	1	2317	9022	1	5384	25196
\$\begin{array}{c c c c c c c c c c c c c c c c c c c	05.09.2005	14:00:00	15:00:00	05.09.2005	15:20:00	1,33	Н	0	1	1	2317	9022	1	5384	25208
1208.2005	05.09.2005	14:00:00	15:30:00	05.09.2005	16:00:00	1,00	Н	0	1	1	2317	9022	4	5384	25208
10.08.2005 06.5000 10.08.2005 07.00.00 3,50 H 22 1 1 2079 9059 5 5384 248 30.08.2005 16.00.00 16.15.00 30.08.2005 16.36.00 0,58 H 60 1 1 2614 9513 2 5384 251 240.8.2005 12.0000 13.0000 24.08.2005 14.00.00 2,00 H 26 1 1 265 9668 4 5384 251 27.04.2005 10.10.00 11.09.2005 19.00.00 2,50 H 29 1 1 2649 9928 3 5384 233 27.04.2005 01.15.00 01.15.00 27.04.2005 01.30.00 0,25 H 10 1 6 420 4061 1 5391 240 150.4.2005 07.00.00 07.00.00 15.04.2005 07.10.00 0,17 H 0 1 6 426 4215 5 5391 238 07.09.2005 15.30.00 16.30.00 07.09.2005 18.00.00 2,50 H 15 1 1 9 1338 1 5710 228 16.08.2005 22.30.00 22.30.00 17.08.2005 06.00.00 7,50 H 0 1 1 252 2.054 2 5710 249 20.04.2005 01.15.00 01.15.00 20.04.2005 16.00.00 0,67 H 36 1 1 421 4043 1 5710 239 28.04.2005 01.15.00 01.15.00 20.04.2005 01.30.00 0,25 H 0 1 1 421 4043 1 5710 239 28.04.2005 07.00.00 07.00.00 20.04.2005 01.30.00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07.00.00 07.00.00 20.04.2005 01.30.00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07.00.00 07.00.00 26.04.2005 07.30.00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07.30.00 07.30.00 26.04.2005 07.30.00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07.30.00 07.30.00 26.04.2005 07.30.00 0,25 H 0 1 1 420 4061 1 5710 24	07.09.2005	06:30:00	06:30:00	07.09.2005	06:40:00	0,17	Н	30	1	1	2317	9022	4	5384	25237
\$\frac{3008,2005}{2008,000} \$\frac{160000}{160000} \$\frac{161500}{2008,2005} \$\frac{163500}{140000} \$\frac{0}{2},500 \$\text{H}\$ \$\frac{60}{60}\$ \$1\$ \$1\$ \$2614 \$9513 \$2\$ \$5384 \$251 \$11.09,2005 \$163000 \$181000 \$190000 \$250 \$\text{H}\$ \$25 \$1\$ \$1\$ \$2649 \$9528 \$3\$ \$5384 \$251 \$11.09,2005 \$01:1500 \$01:1500 \$27.04,2005 \$01:3000 \$0,250 \$\text{H}\$ \$10 \$1\$ \$649 \$9528 \$3\$ \$5384 \$251 \$1504,2005 \$01:1500 \$07:004,2005 \$01:3000 \$0,250 \$\text{H}\$ \$10 \$1\$ \$6\$ \$420 \$4061 \$1\$ \$5391 \$240 \$1504,2005 \$07:0000 \$07:000	1208.2005	14:50:00	15:30:00	1208.2005	15:50:00	1,00	Н	15	1	1	2075	9059	3	5384	24894
24.08.2005 12.00.00 13.00.00 24.08.2005 14.00.00 2.00 H 26 1 1 265 9668 4 5384 251 11.09.2005 16:30:00 18:10:00 11:10:92:005 19:00:00 25:00 H 29 1 1 2649 9928 3 5384 233 27.04.2005 01:15:00 01:15:00 27:04:2005 07:00:00 0.25 H 10 1 6 420 4061 1 5391 240 15:04:2005 07:00:00 07:00:00 07:00:00 07:00:00 0.017 H 0 1 6 425 4215 5 5391 230 16:08:2005 15:30:00 16:30:00 07:09:200 18:00:00 2,50 H 15 1 1 9 1338 1 5710 249 20:04:2005 15:30:00 15:30:00 10:30:00 0,25 H 0 1 1 421 4033	10.08.2005	03:30:00	06:50:00	10.08.2005	07:00:00	3,50	Н	22	1	1	2079	9059	5	5384	24840
11.09.2005	30.08.2005	16:00:00	16:15:00	30.08.2005	16:35:00	0,58	Н	60	1	1	2614	9513	2	5384	25153
27.04.2005 01:15:00 01:15:00 07:00:0	24.08.2005	12:00:00	13:00:00	24.08.2005	14:00:00	2,00	Н	26	1	1	265	9668	4	5384	25119
15.04.2005		16:30:00	18:10:00	11.09.2005	19:00:00		_		1					5384	25321
07.09.2005					01:30:00		_	_							24028
16.08.2005 22:30:00 22:30:00 17.08.2005 06:00:00 7,50 H 0 1 1 252 20.64 2 57:10 249 20.04.2005 15:20:00 15:30:00 20.04.2005 16:00:00 0,67 H 36 1 1 421 4043 1 57:10 239 19.04.2005 01:15:00 01:15:00 19:04.2005 01:30:00 0,25 H 0 1 1 421 4043 1 57:10 239 28.04.2005 01:15:00 01:15:00 28:04.2005 01:30:00 0,25 H 25 1 1 420 4061 1 57:10 240 28.04.2005 07:00:00 07:00:00 28:04.2005 08:00:00 1,00 H 0 1 1 420 4061 1 57:10 240 28.04.2005 07:30:00 07:15:00 28:04.2005 07:30:00 0,25 H 0 1 1 420							_							5391	23850
20.04.2005	-						_								25242
19.04.2005 01:1500 01:1500 19.04.2005 01:30:00 0.25 H 0 1 1 421 4043 1 5710 239 28.04.2005 01:15:00 01:15:00 28.04.2005 01:30:00 0.25 H 25 1 1 420 4061 1 5710 240 26.04.2005 07:00:00 07:00:00 26.04.2005 08:00:00 1,00 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:15:00 07:15:00 26.04.2005 07:30:00 0.25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:30:00 07:30:00 0.25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:30:00 07:30:00 07:30:00 0.25 H 0 1 1 420 4061 1 5710 240 240 26.04.2005 19:40:00 19:40:00 19:40:00 04:05.2005 19:55:00 0.25 H 0 1 1 420 4071 1 5710 241 240 26.04.2005 20:00:00							_								24977
28.04.2005 01:1500 01:1500 01:1500 02:04:2005 01:30:00 0,25 H 25 1 1 420 4061 1 5710 240 26.04.2005 07:00:00 07:00:00 08:00:00 1,00 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:15:00 07:15:00 08:00:00 07:30:00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:30:00 07:30:00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:30:00 07:30:00 0,25 H 0 1 1 420 4061 1 5710 240 04.05.2005 19:40:00 19:40:00 04:05:2005 19:50:00 0,25 H 0 1 1 420 4071 1 5710 241 0						,	_								23929
26.04.2005 07:00:00 07:00:00 07:00:00 26.04.2005 08:00:00 1,00 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:15:00 07:15:00 26.04.2005 07:30:00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:30:00 07:30:00 07:45:00 0,25 H 0 1 1 420 4061 1 5710 240 04.05.2005 19:40:00 19:40:00 19:40:00 19:40:00 19:55:00 0,25 H 0 1 1 420 4061 1 5710 241 06:05.2005 19:40:00 19:40:00 19:40:00 06:00:00 0,25 H 0 1 1 420 4071 1 5710 241 06:05.2005 20:00:00 20:00:00 05:00:00 05:00:00 6:00:00 0 H 15 1	_						_							1	23916
26.04.2005 07:15:00 07:15:00 26:04.2005 07:30:00 0,25 H 0 1 1 420 4061 1 5710 240 26.04.2005 07:30:00 07:30:00 07:30:00 02:00:00 02:5 H 0 1 1 420 4061 1 5710 240 04:05:2005 19:40:00 19:40:00 19:40:00 19:55:00 0,25 H 0 1 1 420 4061 1 5710 241 06:05:2005 20:00:00 20:00:00 06:05:2005 20:30:00 0,50 H 0 1 1 420 4071 1 5710 241 06:05:2005 20:00:00 05:00:00 05:00:00 6:00:00 6:00 H 15 1 1 2376 9208 3 5710 247 17:09:2005 05:00:00 05:10:00 17:09:2005 06:00:00 0,00 H 25 1 1 2886						,	_							1	24041
26.04.2005 07:30:00 07:30:00 07:30:00 07:45:00 0,25 H 0 1 1 420 4061 1 5710 240 04.05.2005 19:40:00 19:40:00 19:40:00 19:40:00 04:05:2005 19:55:00 0,25 H 0 1 1 420 4071 1 5710 241 05:05:2005 20:00:00 20:00:00 05:05:2005 20:30:00 0,50 H 0 1 1 420 4071 1 5710 241 05:08:2005 10:00:00 13:00:00 05:00:200 6:00:00 6:00 H 15 1 1 2376 9208 3 5710 247 17:09:2005 05:00:00 05:10:00 17:09:2005 06:00:00 0,00 H 25 1 1 2886 9886 5 5710 254 21:04:2005 08:20:00 08:25:00 21:04:2005 08:30:00 0,30 H 10	-						_								24012
04.05.2005 19.4000 19.4000 04.05.2005 19.55:00 0,25 H 0 1 1 420 4071 1 5710 241. 05.05.2005 20:00:00 20:00:00 20:00:00 05:05:2005 20:30:00 0,50 H 0 1 1 420 4071 1 5710 241. 05:08:2005 10:00:00 13:00:00 05:08:2005 16:00:00 6,00 H 15 1 1 2376 9208 3 5710 247. 17:09:2005 05:00:00 05:10:00 17:09:2005 06:00:00 0,00 H 25 1 1 2886 9886 5 5710 254 21:04:2005 08:20:00 08:25:00 21:04:2005 08:30:00 0,30 H 10 1 6 421 4043 1 6261 239 27:04:2005 19:10:00 19:15:00 27:04:2005 19:28:00 0,30 H 10 1 <						-, -	_								24012
05.05.2005 20:00:00 20:00:00 20:00:00 05.05.2005 20:00:00 05.05.2005 H 0 1 1 420 4071 1 5710 241. 05.08.2005 10:00:00 13:00:00 05:08.2005 16:00:00 6:00 H 15 1 1 2376 9208 3 5710 247. 17:09.2005 05:00:00 05:10:00 17:09.2005 06:00:00 0,00 H 25 1 1 2886 9886 5 5710 254 21:04.2005 08:20:00 08:25:00 21:04:2005 08:30:00 0,17 H 0 1 6 421 4043 1 6261 239 27:04.2005 19:10:00 19:15:00 27:04:2005 19:28:00 0,30 H 10 1 6 420 4061 1 6261 240 03:05.2006 17:50:00 17:50:00 03:05:2006 21:00:00 3,17 H 34 1	-						_								
05.08.2005 10:00:00 13:00:00 05:08:2005 16:00:00 6,00 H 15 1 1 2376 9208 3 5710 247 17:09:2005 05:00:00 05:10:00 17:09:2005 06:00:00 0,00 H 25 1 1 2886 9886 5 5710 254 21:04:2005 08:20:00 08:25:00 21:04:2005 08:30:00 0,17 H 0 1 6 421 4043 1 6261 239 27:04:2005 19:10:00 19:15:00 27:04:2005 19:28:00 0,30 H 10 1 6 420 4061 1 6261 240 03:05:2005 17:50:00 17:50:00 03:05:2005 21:00:00 3,17 H 34 1 6 420 4061 1 6261 241 27:04:2005 01:00:00 01:00:00 27:04:2005 01:30:00 0,50 H 0 1 6 420 </td <td>-</td> <td></td> <td></td> <td></td> <td></td> <td>-, -</td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>	-					-, -	_							1	
17.09.2005 05:00:00 05:10:00 17.09.2005 06:00:00 0,00 H 25 1 1 2686 9686 5 5710 254 21.04.2005 08:20:00 08:25:00 21.04:2005 08:30:00 0,17 H 0 1 6 421 4043 1 6261 239 27.04:2005 19:10:00 19:15:00 27.04:2005 19:28:00 0,30 H 10 1 6 420 4061 1 6261 240 03:05:2005 17:50:00 17:50:00 03:05:2005 21:00:00 3,17 H 34 1 6 420 4061 1 6261 241 27:04:2005 01:00:00 01:00:00 27:04:2005 01:30:00 0,50 H 0 1 6 420 4061 1 8733 242 20:04:2005 19:10:00 19:15:00 30:04:2005 19:28:00 0,30 H 0 1 1 420 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-,</td> <td>_</td> <td></td> <td><u> </u></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td>						-,	_		<u> </u>					1	
21.04.2005 08:20:00 08:25:00 21.04:2005 08:30:00 0,17 H 0 1 6 421 4043 1 6261 239 27.04:2005 19:10:00 19:15:00 27.04:2005 19:28:00 0,30 H 10 1 6 420 4061 1 6261 240 03:05:2005 17:50:00 17:50:00 03:05:2005 21:00:00 3,17 H 34 1 6 420 4061 1 26261 241 27:04:2005 01:00:00 01:00:00 07:04:2005 01:30:00 0,50 H 0 1 6 420 4061 1 8733 242 30:04:2005 19:10:00 19:15:00 30:04:2005 19:28:00 0,30 H 0 1 1 420 4061 1 8754 240 26:04:2005 07:45:00 07:45:00 07:45:00 06:00:00 0,25 H 15 1 1 420	-						_							-	
27.04.2005 19:10:00 19:15:00 27.04.2005 19:28:00 0,30 H 10 1 6 420 4061 1 6261 240 03:05:2005 17:50:00 17:50:00 03:05:2005 21:00:00 3,17 H 34 1 6 420 4071 2 6261 241 27:04:2005 01:00:00 01:00:00 27:04:2005 01:30:00 0,50 H 0 1 6 420 4061 1 8733 242 30:04:2005 19:10:00 19:15:00 30:04:2005 19:28:00 0,30 H 0 1 1 420 4061 1 8754 240 26:04:2005 07:45:00 07:45:00 26:04:2005 08:00:00 0,25 H 15 1 1 420 4061 1 8754 240 28:04:2005 01:25:00 01:35:00 28:04:2005 01:50:00 0,42 H 30 1 1 420 <td></td> <td></td> <td></td> <td></td> <td></td> <td>-,</td> <td>_</td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>23949</td>						-,	_			_					23949
03.05.2005 17:50:00 17:50:00 03:05:2005 21:00:00 3,17 H 34 1 6 420 4071 2 6261 241 27.04.2005 01:00:00 01:00:00 01:00:00 27.04:2005 01:30:00 0,50 H 0 1 6 420 4061 1 8733 242 30.04:2005 19:10:00 19:15:00 30.04:2005 19:28:00 0,30 H 0 1 1 420 4061 1 8754 240 26:04:2005 07:45:00 07:45:00 06:04:2005 08:00:00 0,25 H 15 1 1 420 4061 1 8754 240 28:04:2005 01:25:00 01:35:00 28:04:2005 01:50:00 0,42 H 30 1 1 420 4061 1 8754 240							_								24034
27.04.2005 01:00:00 01:00:00 27.04.2005 01:30:00 0,50 H 0 1 6 420 4061 1 8733 242 30.04.2005 19:10:00 19:15:00 30:04.2005 19:28:00 0,30 H 0 1 1 420 4061 1 8754 240 26:04.2005 07:45:00 07:45:00 26:04.2005 08:00:00 0,25 H 15 1 1 420 4061 1 8754 240 28:04.2005 01:25:00 01:35:00 28:04.2005 01:50:00 0,42 H 30 1 1 420 4061 1 8754 240							_								24106
30.04.2005 19:10:00 19:15:00 30.04.2005 19:28:00 0,30 H 0 1 1 420 4061 1 8754 240 26:04.2005 07:45:00 07:45:00 26:04.2005 08:00:00 0,25 H 15 1 1 420 4061 1 8754 240 28:04.2005 01:25:00 01:35:00 28:04.2005 01:50:00 0,42 H 30 1 1 420 4061 1 8754 240								_		_					2425
26.04.2005 07:45:00 07:45:00 26.04.2005 08:00:00 0,25 H 15 1 1 420 4061 1 8754 240 28.04.2005 01:25:00 01:35:00 28.04.2005 01:50:00 0,42 H 30 1 1 420 4061 1 8754 240	-					,	_						•		24062
28.04.2005 01:25:00 01:35:00 28.04.2005 01:50:00 0.42 H 30 1 1 420 4061 1 8754 240															24013
	-						_								24039
						,	_								24049
	-						_							_	24960
	-						_								25754
						,	_								25972
							_							1	25187
							_								25658
							_							1	24812
															25055
	22.08.2005	04:10:00			04:50:00	0,67	Н	20	1	1	2676	9949	4	10063	25080

Continuação Apêndice A.7: Anotações que se referem a tempos de início e término das manutenções, tempos parados, quantidade de derramamento de óleo, mapas, talhões, glebas, numero de corte, código do operador e horímetro da colhedora.

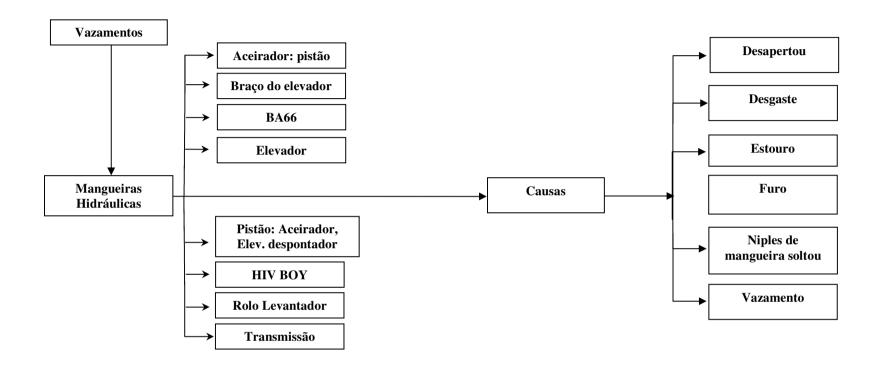


Figura A. 2 - Diagrama de falhas do problema de vazamento da máquina 15.

Apêndice A.8: Controle de falhas da máquina 16 - descrição do operador para as principais falhas, locais de ocorrência e causa da falha com seus respectivos código de materiais quando existe o caso de troca ou substituição.

Máquina 16: Controle de falhas do sistema hidráulico

	roblemas	Parte Objeto		Parte Objeto (Detal				exto da causa			Cód. Ma			
	azamento	Mangueiras H		MANGUEIRA HIDRA		R		STOURO ANEL (I					DIGO DO MATER	
	azamento	Sistema Hidra		SISTEMA TRANSMI				AZAMENTO NO (RANSMISSAO			DIGO DO MATER	RIAL)
	azamento	Motores Hidra		MOTOR HIDRAULIC		ADOR		AZAMENTO NO N			MOTOR		NOO DO MATE	NAL)
	azamento	Bombas Hidra Sistema Hidra		BOMBA HIDRAULIC		100		RINCO NO CANO			(NAO FC	RNECEU COL	DIGO DO MATER	RIAL)
	ível do Óleo Baixo ível do Óleo Baixo	Reservatório		RESERVÁTORIO DI RESERVÁTORIO DI				AIXOU NIVEL DO AIXOU NÍVEL DO						
	azamento	Pistão Hidráu		NESERVATORIO DI	E OLEO HIDHAULI	100		UEBROU SOLDA						
	azamento	Motores Hidra		MOTOR HIDRÁULIO	0			STOUROU REPA		Motor)	01-70092	3 MOTOR HIE	18.7 POL3 (55)	MM)
		Reservatório		RESERVÁTORIO DI		ICO		AIXOU NÍVEL DO		inotor)			DIGO DO MATER	
	stourou	Mangueiras H		MANGUEIRA DO DI				STOUROU					A 1/4X950MM 82	
	azamento	Sistema Hidrá	áulico	CAIXA HIDRÁULICA	1		V.	AZAMENTO NA C	CAIXA					
	azamento	Reservatório	Hidráulico	CAIXA HIDRÁULICA	1		V	AZAMENTO NA C	AXIA					
16 Va	azamento	Mangueiras H		MANGUEIRA DO RO				ESSECADA					A 1/2X500MM 86	313520
	stourou	Mangueiras H		MANGUEIRA HIDRA				STOUROU					A 3/4X1960MM	
	azamento	Mangueiras H		MANGUEIRA HIDRA				STOUROU			01-70360	9-MANGUEIR	A 1/2X620MM 86	310712
	azamento	Motores Hidra		MOTOR HIDRAULIC				AZAMENTO	ÁLEO					
	ível do Óleo Baixo	Reservatório Mangueiras F		RESERVÁTORIO DI MANGUEIRA HIDRA				<u>AIXOU NÍVEL DO</u> STOUROU	OLEO		01 70267	H MANGLIEID	A HID 3/4X2700I	ANA
	azamento azamento	Mangueiras F		MANGUEIRA HIDRA				AZAMENTO			01-70302	1-WANGUEIN	A 11D 3/4A27001	VIIVI
	azamento	Motores Hidra		MOTOR HIDRAULIC				AZAMENTO NO (CLIBO					-
		Reservatório		RESERVATORIO HI				AIXOU NIVEL DE						
	azamento	Mangueiras H		MANGUEIRA HIDRA		ICADO		STOUROU			C.M.7035	595-MANGUEI	RA 1X500MM 86	305944
16 Va	azamento	Mangueiras H	lidráulicas	Anél do Niple			R	essecado						
16 Su	ujeira	Filtro		FILTRO HIDRAULIC	:0		S	UJEIRA			04-40684	0 FILTRO OLI	O HID TECFIL I	PSH-766
	azamento	Mangueiras H		Desapertou niple				OLTOU	,					
	azamento	Pistão Hidráu		PISTÃO HIDRAULIO				AIXOU NÍVEL DO						
		Reservatório		RESERVATORIO DI		ICO		AIXOU NÍVEL DO	OLEO		a		4 LUB 0/11/22	****
	zamento	Mangueiras F		MANGUEIRA HIDRA		ICC		STOUROU	ÓLEC		01-70367	1 MANGUEIR	A HID 3/4X32001	MM 2 RET
	ível do Óleo Baixo	Reservatório		RESERVÁTORIO DI		IUU		AIXOU NÍVEL DO	ULEU					
	zamento zamento	Mangueiras F Mangueiras F		MANGUEIRA PISTĀ MANGUEIRA HIDRĀ		ADOD		STOUROU STOUROU			01.70967	MANGHED	A 1X720MM 827	36400
	azamento	Mangueiras F		MANGUEIRA HIDRA				AZAMENTO					DIGO DO MATER	
	azamento	Motores Hidra		MOTOR HIDRAULIC				AZAMENTO NO F	REPARO				24 POL3 00404	
	azamento			MANGUEIRA HIDRA				AZAMENTO	ILI 71110				DIGO DO MATER	
								1-Remonta		INFORMAÇÕ				Horimetro
							Oleo Hid.							
1	1 1.	/ 5:	-						l	MAPA	GLEBA	N <u>o</u>	Nº CONTROLE	DO OPERADOR
InícioAvar	Hquebra I			ria HFimAvar	DuraçParad	UNI	Qtde.lts	3- Recup.	Frente			CORTE	_	
10.09.2005	01:30:00	01:35:00	10.09.20	05 01:50:00	0,33	Н	15	1	1	9	1180	1	6452	641
05.09.2005	08:00:00	08:10:00	05.09.20	05 08:40:00	0.33	Н	15	1	1	12	1231	6	6452	540
01.09.2005		22:40:00			1,80	Н	20	1	1	9	1338	1	6452	479
						_			_	9				
08.09.2005		15:10:00		_	3,33	Н	45	1	1		1338	1	5897	610
18.08.2005	10:00:00	10:30:00	18.08.20	05 10:40:00	0,67	Н	20	1	1	110	2124	4	6748	192
25.09.2005	08:00:00	08:10:00	25.09.20	05 09:20:00	1,33	Н	15	1	1	2274	2198	2	6748	931
24.9.2005	00:10:00	00:15:00	24 9 200	5 00:43:00	0,55	Н	0	1	6	2274	2198	2	6336	927
08.08.2005		16:40:00			0,75	Н	10	1	1	139	2265	5	6452	28731
						_								
19.09.2005		08:50:00		_	0,50	Н	15	1	1	140	2277	5	6748	805
16.08.2005	01:00:00	01:10:00	16.08.20	05 01:30:00	0,50	Н	15	1	1	252	2452	2	6452	144
16.08.2005	09:30:00	09:34:00	16.08.20	05 09:40:00	0,17	Н	10	1	1	252	2452	2	6452	146
17.08.2005		10:30:00	17.08.20	05 15:00:00	5,00	Н	20	1	1	252	2454	2	6748	169
13.08.2005		03:16:00			0,33	H	51	1	6	252	2455	2	6748	75
22.08.2005		20:05:00			0,50	Н	16	1	1	420	4031	2	5897	286
18.10.2005	10:00:00	10:15:00	18.10.20	05 10:45:00	0,75	Н	58	1	6	420	4068	4	7092	1202
19.10.2005	00:22:00	00:26:00	19.10.20	05 00:40:00	0,30	Н	22	1	1	420	4068	4	6748	1350
04.10.2005		11:11:00			0,00	Н	15	1	1	210	4248	3	6748	1076
_		14:40:00			1,08	H	45	1	1	210	4248	2	5897	1060
03.10.2005				_	,	_								
09.10.2005		12:30:00			0,67	Н	10	1	1	210	4249	5	6452	1167
18.09.2005	08:45:00	08:50:00	18.09.20	05 09:15:00	0,50	Н	37	2	6	250	4269	3	6336	802
08.11.2005	16:00:00	16:10:00	09.11.20	05 00:40:00	8,67	Н	10	1	1	460	4296	4	6452	1602
31.10.2005		01:05:00			0,33	Н	50	1	1	457	4753	3	6452	1550
		01:35:00			0.25	Н	10	1	+	494	7204	3	6452	969
29.09.2005					-, -		_	-	-		, =0 .	_		
11.08.2005		11:45:00			0,33	Н	25	3	1	2075	9059	5	6452	28
10.08.2005	17:00:00	17:05:00	10.08.20	05 17:20:00	0,33	Н	10	1	1	2075	9059	3	6452	21
23.09.2005	08:00:00	08:10:00	23.09.20	05 09:20:00	1,33	Н	15	1	1	2271	9196	2	6452	889
29.08.2005		05:00:00			0,17	H	40	1	1	2621	9312	2	6748	412
						_			_					
29.08.2005		04:00:00			1,52	Н	76	1	1	2621	9312	2	6748	411
28.08.2005	10:20:00	10:33:00	28.08.20	05 10:40:00	0,33	Н	16	1	1	971	9515	3	6748	390
26.08.2005	06:00:00	06:05:00	26.08.20	05 06:10:00	0,17	Н	10	1	1	2625	9515	3	5910	348
26.08.2005		10:30:00			0,67	Н	25	1	1	2625	9515	3	5897	352
10.09.2005		08:35:00			0,33	H	25	1	1	642	9928	3	6748	644
						_								
13.09.2005		10:10:00			1,00	Н	50	1	1	2649	9928	3	5897	710
09.09.2005	01:00:00	01:30:00	09.09.20	05 01:50:00	0,83	Н	0	1	6					
	. — —		. —			_			. —					

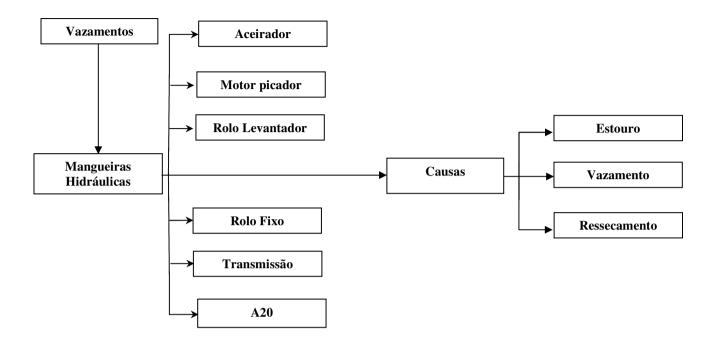


Figura A.3 - Diagrama de falhas do problema de vazamento da máquina 16.

Apêndice A.9: Controle de falhas da máquina 17 - descrição do operador para as principais falhas, locais de ocorrência e causa da falha com seus respectivos código de materiais quando existe o caso de troca ou substituição.

Máquina 17: Controle de falhas do sistema hidráulico

Mág.	Ducklassa	Darta Obiata (mana)	Danta Obiata (Batalla)	T	Cód. Material
маq. 17	Problemas Vazamento	Parte Objeto (macro) Mangueiras Hidráulicas	Parte Objeto (Detalhe) MANGUFIRA HIDBÁULICA	Texto da causa RESSECADA	01-703587 MANGUEIRA 1X670MM 87217254
17	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO ROLO LEVANTADOR		01-700922-MOTOR HID 24 POL3 (70MM)
17	Vazamento Vazamento	Pistão Hidráulico Pistão Hidráulico	PISTAO HIDRAULICO SUSPENSAO PISTÃO HIDRAULICO SUSPENSÃO	VAZAMENTO NO JG DE REPARO VAZAMENTO NO REPARO	(NAO FORNECEU CODIGO DO MATERIAL) (NAO FORNECEU CODIGO DO MATERIAL)
17	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO M 54	BAIXA PRESSÃO	01-703432-MOTOR HID EXAUST PRIM 00407180
17 17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA TRANSMISSÃO	VAZAMENTO NA PRENSA	01-703584-MANGUEIRA 1X2310MM 82761300
17	Vazamento Vazamento	Pistão Hidráulico Pistão Hidráulico	PISTÃO HIDRAULICO SUSPENSÃO PISTÃO HIDRAULICO SUSPENSÃO	VAZAMENTO ANEL RESSECADO	(NAO FORNECEU CODIGO DO MATERIAL) (NAO FORNECEU CODIGO DO MATERIAL)
17	Estourou	Mangueiras Hidráulicas	MANGUEIRA 3º ROLO ALIMENTADOR	ESTOUROU	01-703619 MANGUEIRA 3/4X4000MM 88105216
17	Vazamento Vazamento	Transmissão Hidráulica Mangueiras Hidráulicas	NIPLE BOMBA TRANSMISSÃO MANGUEIRA HIDRAULICA ROLO LEVANTADOR	ESTOUROU NIPLE ESTOUROU NIPLE	NÃO TEM C.M. 01-703610-MANGUEIRA 1/4X670MM 87204100
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	RESSECADA	01-703612-MANGUEIRA 1/4X770MM 86310227
17 17	Furou Vazamento	Mangueiras Hidráulicas Motor	MANGUEIRA HIDRÁULICA	RESSECADA troca do Motor (desbaste reparo)	01-403045 MANGUEIRA IND PRE AUS 00408921
17	Vazamento	Mangueiras Hidráulicas	reparo Terminal	VAZAMENTO NIPLE	
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA MANÔMETRO PICADOR	SOLTOU NIPLE MANGUEIRA	
17 17	Furou Nível do Óleo Baixo	Mangueiras Hidráulicas Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA MANGUEIRA 3º ROLO ALIMENTADOR	RESSECADA REFERENTE AO VAZAMENTO DO DIA 19/08	01-703612 MANGUEIRA 1/4X770MM 86310227 01-703619 MANGUEIRA 3/4X4000MM 88105216
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA MOTOR EXAUSTOR PRIMARIO	VAZAMENTO NA PRENSA	01-703619 MANGUEIRA 3/4X4000MM 88105216
17 17	Nível do Óleo Baixo Vazamento	Reservatório Hidráulico Mangueiras Hidráulicas	RESERVÁTORIO DE ÓLEO HIDRÁULICO MANGUEIRA HIDRÁULICA DO DESPONTADOR	BAIXOU NÍVEL DO ÓLEO VAZAMENTO NA PRENSA	(Mangueira trocada no dia 15 - Máquina 17) 01-703575 MANGUEIRA 1X800MM 82741700
17	Vazamento	Bombas Hidráulicas	BOMBA HIDRÁULICA TRANSMISSÃO	ESTOUROU JUNTA	01-440976 JUNTA BBA HID CARGA 00407458
17 17	Danificado	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA TRANSMISSÃO	RESSECADA	01-703522 (CÓD.MATERIAL ERRADO) 01-703584 MANGUEIRA 1X2310MM82761300
17	Desaperto/Bambeou Furou	Mangueiras Hidráulicas Mangueiras Hidráulicas	NIPLE DA MANGUEIRA DE TRANSMISSÃO MANGUEIRA HIDRAULICA	SOLTOU NIPLE MANGUEIRA TRANSMISSÃO RESSECOU	01-703612 MANGUEIRA 1/4X770MM86310227
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA VALVULA SELETORA	RESSECOU	01-703521EIXO TRANS TRAS 912MB3844100002
17 17	Vazamento Vazamento	Mangueiras Hidráulicas Mangueiras Hidráulicas	AGUARDANDO CHUIM MANGUEIRA HIDRÁULICA DA TRANSMISSÃO	FOI TROCADO MANGUEIRA A 2 DIAS ATRÁS VAZAMENTO NO NIPLE	AGUARDANDO CHUIM 01-703587 MANGUEIRA 1X670MM 87217254
17	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVATÓRIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO	
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	RESSECADA	01-703585 MANGUEIRA 1X2050MM 87165200
17 17	Nível do Óleo Baixo Furou	Reservatório Hidráulico Mangueiras Hidráulicas	RESERVATÓRIO DE ÓLEO HIDRÁULICO MANGUEIRA 5º ROLO SUPERIOR	NÍVEL DE ÓLEO BAIXO RESSECOU	01-703609MANGUEIRA 1/2X620MM 86310712
17	Furou	Mangueiras Hidráulicas	NIPLE DA MANGUEIRA DE TRANSMISSÃO	AGUARDANDO CHUIM	01-703620 MANGUEIRA 3/4X2500MM 88105212
17 17	Vazamento Vazamento	Pistão Hidráulico Sistema Hidráulico	PISTÃO DO GIRO REPARO DO RETENTOR	SOLTOU NIPLE ESTOUROU	01-700922 MOTOR HID 24 POL3 (70MM)
17	Vazamento	Sistema Hidráulico	ANEL VEDAÇÃO NIPLE CORTE BASE(AG.CHUIM)	RESSECOU	02-403298ANEL MJOR-12 23,47X2,95MM
17	Estourou Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA MOTOR HIDRÁULICO DO DESPONTADOR	SOLTOU O NIPLE RETENTOR	01-703580 MANGUEIRA 1/2X1020MM 87172700 01- (FALTA CÓD.MATERIAL)
17	Vazamento Vazamento	Motores Hidráulicos Sistema Hidráulico	CANO DE TRANSMISSÃO	QUEBROU SOLDA	TO THE POPULATION OF THE POPUL
17 17	Nível do Óleo Baixo	Reservatório Hidráulico Sistema de Rolos	RESERVATÓRIO DE ÓLEO HIDRÁULICO	LOCAL PENSO	01-700922 MOTOR HID 24 POL3 (70MM)
17	Vazamento Vazamento	Transmissão Hidráulica	REPARO MOTOR ROLO LEVANTADOR NIPLE MANGUEIRA TRANSMISSAO	VAZAMENTO NO REPARO (AG.CHUIM) BAMBEOU	01-700922 MOTOR HID 24 POL3 (70MM)
17	Vazamento	Motores Hidráulicos	MOTOR M-30 DO DISPONTADOR	VAZAMENTO NO RETENTOR	01-701101 MOTOR HID M30A 00407535
17 17	vazamento Vazamento	Mangueiras Hidráulicas Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA TRANSMISSAO Niple Mangueira do Elevador	DESGASTE NO PASSA-MURO Bloco do elevador	Reapertado
17	vazamento	Radiador	RADIADOR DE OLEO	FUROU	01-701097 R - RADIADOR OLEO AUSTOFT 7700
17 17	Vazamento Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO ROLO LEVANTADOR MANGUEIRA HIDRÁULICA FREIO	VAZAMENTO NO REPARO ANEL COM DESGASTE E RESSECADO	01-700922 MOTOR HID 24 POL3 (70MM)
17	Estourou	Mangueiras Hidráulicas Mangueiras Hidráulicas	MANGUEIRA DO DIVISOR LINHA	DESGASTE DESGASTE E RESSECADO	(NAO FORNECEU CODIGO DO MATERIAL) 01-413399 (CÓD.MAT.ERRADO)
17	Furou	Mangueiras Hidráulicas	MANGUEIRA DO PISTÃO DESPONTADOR	RESSECADA	01-703612 MANGUEIRA 1/4X770MM 86310227
17	Vazamento Vazamento	Motores Hidráulicos Motores Hidráulicos	MOTOR 5º ROLO INFERIOR MOTOR HIDRÁULICO DA TRANSMISSÃO	VAZAMENTO RETENTOR VAZAMENTO	01-700923 MOTOR HID 18.7 POL3 55MM 4128471
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA MOTOR HID.M51 AO DIV.LINHA	ESTOROU NA TRAMA	01-703620 MANGUEIRA 3/4X2500MM 88105212
17 17	Vazamento	Mangueiras Hidráulicas Motores Hidráulicos	MANGUEIRA DO DIVISOR FLUXO MOTOR HIDRAULICO PICADOR	COLOCOU MANGUEIRA ORIGINAL VAZAMENTO NO SELO	01-412847MANGUEIRA 3/4X600MM88104435
17	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO	
17	Vazamento	Pistão Hidráulico	PISTAO HIDRAULICO DO ELEVADOR	FUROU PERAPO (PESSECAPO)	04 704400 MOTOR LIID DICADOR 004000FC
17 17	Estourou Estourou	Motores Hidráulicos Mangueiras Hidráulicas	REPARO MOTOR HIDRÁLUCO DO PICADOR MANGUEIRA DO DIVISOR FLUXO	ESTOUROU REPARO (RESSECADO) RESSECADA	01-701109 MOTOR HID PICADOR 00409356
17	Vazamento	Divisor de Fluxo	DIVISOR FLUXO CORTE DE BASE	SOLTOU NIPLE DA MANGUEIRA	
17 17	Vazamento Vazamento	Sistema de Rolos Mangueiras Hidráulicas	ROLO TOMBADOR MANGUEIRA HIDRÁULICA SUSPENSÃO	ESTOUROU ANEL VEDAÇÃO NIPLE SOLTOU MANGUEIRA PISTÃO	
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA MANÖMETRO PICADOR	SOLTOU NIPLE MANGUEIRA	
17	Vazamento Furou	Mangueiras Hidráulicas Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA BA 66 MANGUEIRA HIDRÁULICA	MANGUEIRA RESSECADA	01-703592-MANGUEIRA 1X3100MM 87247905 01-703606 MANGUEIRA 1/2X1410MM 87225804
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDIAUCICA MANGUEIRA HID.DIVISOR DE LINHA	TROCAR MANGUEIRA RESSECADA	01-103606 MANGUEIRA 1/2X1410MM 87225804 01-412902(CÓD.MATERIAL ERRADO)
17 17	Vazamento		AGUARDANDO CHUIM	REPARO DANIFICADO	01-700923 MOTOR HID 18.7 POL3 55MM
17	Enrroscando	Mangueiras Hidráulicas Motores Hidráulicos	MANGUEIRA HID. DA BOMBA 365 MOTOR HIDRAULICO DIVISOR LINHA	SOLTOU NIPLE	
17	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO M51	VAZAMENTO	
17 17	Vazamento Revisão	Motores Hidráulicos Sistema Hidráulico	MOTOR HIDRAULICO M51 SISTEMA HIDRAULICO	VAZAMENTO NO NIPLE TROCA DE FILTRO	
17	Revisão Vazamento	Sistema Hidráulico Mangueiras Hidráulicas	SISTEMA DE FREIO	VAZAMENTO NIPLE DO FREIO	
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA PISTÃO SUSPENSÃO	RESSECADA	
17	Vazamento Vazamento	Mangueiras Hidráulicas Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA DESPONTADOR MANGUEIRA HIDRAULICA TRANSMISSAO) ESTOUROU NIPLE	01-703584-MANGUEIRA 1X2310MM 82761300
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA MOTOR M51	ESTOUROU NA TRAMA - RESSECOU	
17 17	Vazamento Vazamento	Pistão Hidráulico Motores Hidráulicos	PISTÃO HIDRAULICO SUSPENSÃO MOTOR HIDRAULICO ROLO FIXO	VAZAMENTO NO REPARO VAZAMENTO NO REPARO	
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA TRANSMISSAO	01-703585-MANGUEIRA 1X2050MM 87165200	
17 17	Vazamento Vazamento	Pistão Hidráulico Pistão Hidráulico	PISTAO HIDRAULICO SUSPENSAO PISTÃO HIDRAULICO SUSPENSÃO	ANEL ESTOUROU VAZAMENTO NO REPARO	
17	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO ROLO TRANSPORTADOR	VAZAMENTO NO REPARO VAZAMENTO	<u> </u>
17	Vazamento	Motores Hidráulicos	MOTOR DO ROLO TOMBADOR	ANÉL RESSECADO	
17	Vazamento Desgaste Normal	Pistão Hidráulico Filtro	PISTÃO HIDRAULICO DO GIRO FILTRO HIDRAULICO	PERIODO DE TROCA	4-(NAO FORNECEU CODIGO DO MATERIAL)
17	Furou	Mangueiras Hidráulicas	MANGUEIRA FREIO	RESSECOU	01-703614 MANGUEIRA 1/4X1720MM87222429
17 17	Vazamento Vazamento	Motores Hidráulicos Manqueiras Hidráulicas	MOTOR HIDRÁULICO RODA MOTRIZ MANGUEIRA ACERADOR	DEFEITO NAS PLACAS RESSECOU	02-442448 EIXO MOTOR HID 105056 (0040713 01-703610 MANGUEIRA 1/4X670M87204100
17	Estourou	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	RESSECADA	01-703987 (CÓD.MATERIAL ERRADO)
17	Atualizar	Filtro	FILTRO RETORNO HIDRÁULICO	VENCIMENTO PERÍODO DE TROCA	03-408454 (CÓDIGO ERRADO)
17 17	Vazamento Vazamento	Mangueiras Hidráulicas Mangueiras Hidráulicas	AGUARDANDO CHUIM MANGUEIRA PISTÃO ELEVADOR	FOI TROCADO MANGUEIRA A 2 DIAS ATRÁS ESTOUROU	01-(FALTA CÓD.MATERIAL)
17	Vazamento	Transmissão Hidráulica	ANEL E JUNTA DA VALVULA DE RETENÇÃO	RESSECOU	004072 (2péças) 004072 (1 peça)
17 17	Vazamento Vazamento	Divisor de Fluxo Motores Hidráulicos	REGISTRO CAIXA SUPERIOR MOTOR HIDRAULICO ELEVADOR	REAPERTOU PORCA DO REGISTRO VAZAMENTO NO REPARO	01-700922 MOTOR HID 24 POL3 (70MM)
17	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA ELEVADOR	DESAPERTO NO TERMINAL	
17	Furou	Mangueiras Hidráulicas	MANGUEIRA HID. PISTÃO ESTEIRA RODANTE	SUJEIRA	(02)703610 / (01)703612 04-406840-FILTRO OLEO HID TECFIL PSH-766
17	Sujeira Vazamento	Filtro Motores Hidráulicos	FILTRO HIDRAULCO MOTOR HIDRAULICO DA RODA	SUJEIRA	04-400640-FILTRO OLEO HID TECHIL PSH-766
17	Vazamento	Radiador do Intercooler	RADIADOR DE OLEO	FUROU	(NAO FORNECEU CODIGO DO MATERIAL)
17	Vazamento Vazamento	Mangueiras Hidráulicas Sistema de Rolos	MANGUEIRA HIDRÁULICA REPARO MOTOR ROLO SEPARADOR	VAZAMENTO NA PRENSA VAZAMENTO NO REPARO (AG.CHUIM)	01-703620-MANGUEIRA 3/4X2500MM 88105212 01-700924MOTOR HID 14.9 POL3 (46MM)
17	Vazamento	Mangueiras Hidráulicas	NIPLE DA MANGUEIRA (quebrou porca)	SOLTOU NIPLE	01-703580 MANGUEIRA 1/2X1020MM 87172700
17 17 17	Vazamento Trincou	Pistão Hidráulico	PISTÃO DO TRUCK	TROCOU PISTÃO - CAMISA TRINCADA	(NAO FORNECEU CODIGO DO MATERIAL)
17	Vazamento	Pistão Hidráulico Motores Hidráulicos Mangueiras Hidráulicas	NIPLE DA MANGUEIRA (quebrou porca) PISTÃO DO TRUCK MOTOR HIDRAULICO CHAR-LLYN MANGUEIRA HIDRAULICA MANGUEIRA HIDRAULICA		IO1-703580 MANGUEIRA 172X1020MM 87772/00 [INAO FORNECEU CODIGO DO MATERIAL] [INAO FORNECEU CODIGO DO MATERIAL] 101- (FALTA CÓD.MATERIAL)

									1-Remonta	1	INFORMAÇ	OES AREA D	A COLHEITA	1	Horimetro
10.00 10.0	IlnicioAvar	Hauebra	IHlnicDis	IFim avaria	HFimAvar	DuracParad	Uni			Frente	MAPA	GLEBA		Nº CONTROLE	DO OPERADOR
100 100	19.06.2005	17:00:00	17:05:00	19.06.2005	18:00:00	1,00	Н	10	1	1			2		
1.00 1.00															
1.00 1.00															
100 100	04.09.2005	10:00:00	10:50:00	04.09.2005	11:20:00	1,33	Н	60	1	1	9	1338	1	5960	29495
19.06.2005	08.09.2005	06:00:00	07:00:00	08.09.2005	08:00:00	2,00	Н	30	1	1	9	1338	1	7052	29574
1000,000 1000														1761	
10.00	19.09.2005		08:30:00	19.09.2005	10:30:00	2,50		0	1		140		5		
Table Tabl															
Text Text										1 1			_		
20.00.0001 2	16.04.2005	13:20:00	13:25:00	16.04.2005	13:40:00	0,33	Н	0	1		154	2371	8	5960	27056
10.00.005															
1.66															
15.46	15.08.2005	21:30:00	21:50	15.08.2005	22:00:00	0,50	Н	0	1		252	2454	2	7052	29126
10.7 pp	24.04.2005				08:40:00					1					
10.07 10.00 12.45 10.00 11.00 10.00 13.00 10.0															
10.00.0000 16.40.000 16.00.000 00.00000 1715 000 0.480 11 0 1 1 1 110 3134 1 77888 27799 1705 000 00.00000 00.00000 00.00000 00.00000 00.0000	11.07.2005	12:45:00	13:00:00	11.07.2005	13:10:00	0,42		35			203	3047		5863	28505
15.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 16.00 17.0														7088	
1														5863 5960	
10.04 10.05 10.0	21.06.2005	07:25:00	08:05:00	21.06.2005	08:20:00	0,92	Η	37	1	1	212	3162	3	7052	28093
10.07 10.0					18:10:00										
17.07.0005										1 1					
10.06.2005 08.300.00 08.550.00 10.2005 09.100.00 0.50 H 0 1 1 542 3355. 4 7052 27788 40.2005 19.200.00 1	07.07.2005	16:40:00	16:50:00	07.07.2005	18:10:00	0,50	Н	0	1		212	3176	4	5863	28427
14.07.2005			08:55:00	01.06.2005						1	242				27768
15.07 200.5 0.90 200.0 0.91 100 15.07 200.5 0.94 200.0 0.67 H 0 1 1 242 3366 4 5960 28982 28765 28															
18.07.2005	15.07.2005	09:00:00	09:10:00	15.07.2005	09:40:00	0,67	Н	0	1	1	242	3366	4	5960	28582
186.82.005										1					
17.08.2005 20.39.00 20.39.00 27.08.2005 22.10.00 16.7 H 16										1 1					
10.15.2005	27.08.2005	20:30:00	20:35:00	27.08.2005	22:10:00	1,67	Н	16	1		371	3753	3	7052	29358
16.05.2005 2215.00 22 20.00 16.05.2005 2225.00 0.17 H 0 1 1 420 4028 2 7052 27561	01.09.2005			01.09.2005	11:00:00										
16.05.2005 07.59.00						0,25							2		
12.05.2005 12.2000 12.4000 12.6005 13.00.00 0.67 H 18	06.05.2005	07:50:00	08:00:00	06.05.2005	08:50:00	1,00	Н	40	1	1	420	4030	1	5960	27388
22.88.2005 10.22.000 10.49.000 22.08.2005 11.40.00 1,33 H 0 1 6 420 4031 2 5960 29265 12.10.000 50.10.00 50		12:20:00	12:40:00	12.05.2005						1			2		27489
12,10,2005										1			_		
1904.2005	12.10.2005	09:10:00	09:10:00	12.10.2005	09:20:00	0,17	Н	12	1	6	421	4047	4	5391	30190
28.04.2005 19:10.00 19:15.00 28.04.2005 19:28.00 0.30 H 0 1 1 420 4060 1 5863 27262 27.04.2005 12:30.00 27.04.2005 12:30.00 27.04.2005 12:30.00 27.04.2005 12:30.00 27.04.2005 12:30.00 27.04.2005 12:30.00 27.04.2005 12:30.00 17:10.00 18:10.2005 18:10.00 1.17 H 21 1 6 420 4061 1 8775 27241 18:10.2005 17:00.00 17:10.00 18:10.2005 18:10.00 1.17 H 21 1 6 420 4068 4 5352 30321 18:10.2005 18:30.00 18:															
127.02005 123.00.00 123.00.00 72.04.2005 124.00.00 1.7 H 0 1 6 420 4068 1 8775 27241 18.04.2005 132.00.01 13.25.00 1															
18.04.2005	27.04.2005	12:30:00	12:30:00	27.04.2005	12:40:00	0,17	Н	0	1	6	420	4061	1	8775	27241
15.10.2005															
19.06.2005 00.40:00 00.45:00 19.06.2005 01.15:00 0.58 H 0 1 1 431 4163 2 7052 28076 28.06.2005 08.05:000 08.05:000 20.62.005 08.05:000							ΙI			1 1					
19.08.2005	19.06.2005	00:40:00	00:45:00	19.06.2005	01:15:00	0,58	Н	0	1	1	431	4163	2	7052	28076
06.10.2005										1	431		2	5960	
07.10.2005 10.2000 10.30.00 07.10.2005 11.00.00 1.00 H 10 1 1 210 4248 5 5 5863 3019 04.10.2005 10.2000 01.30.00 01.40.2005 05.30.00 1.17 H 60 1 1 1 210 4248 2 7952 30040 02.10.2005 08.30.00 08.40.00 0															
102.10.2005 04.20.00 04.30.00 02.10.2005 05.30.00 0.1,17 H 60 1 1 210 42.48 2 5960 30014	07.10.2005	10:00:00	10:30:00	07.10.2005	11:00:00	1,00	Н	10	1		210	4245		5863	3019
22.09.2005										1			2		
22:10.2005			08:40:00	03.10.2005						1			2	7052	
20.10.2005	22.10.2005	16:00:00	16:10:00	22.10.2005	18:30:00	2,50	H	0	1	1	460	4295	2	5863	30396
10.0005	20.10.2005	16:00:00	16:10:00	20.10.2005	18:15:00	2,25	Н	40	1	1	460	4309	4	5960	30368
15.10.2005										1					
11.11.2005	15.10.2005	08:00:00	08:05:00	15.10.2005	08:45:00	0,75	Н	25	1	1	461	4311	4	5960	30260
10.08.2005	11.11.2005	10:00:00	10:30:00	11.11.2005	18:20:00	8,33	Н	16	1		457	4753	3	5863	30818
10.08.2005			12:10:00 22:00:00	26.09.2005											
09.08.2005	10.08.2005	10:30:00	11:24:00	10.08.2005	11:35:00	1,08	H	20	3	1	2075	9059	5	7052	29012
08.06.2005 20:10:00 20:10:00 08.06.2005 20:10:00 0.00 H 60 1 6 21:44 9360 1 5352 27896 19.07.2005 20:30:00 21:10:00 19.07.2005 21:15:00 0.75 H 15 3 1 2537 9471 8 5960 28654 18.07.2005 10:00:00 10:05:00 18.07.2005 10:10:00 0.17 H 20 1 1 2537 9471 7 5960 28645 20.07.2005 20:00:00 20:10:00 20.07.2005 20:00:00 0.50 H 30 1 6 2537 9471 8 8775 28663 22:00.72005 20:00:00 20:00:00 20:00:00 20:00:00 20:00:00 20:00:00 20:00:00 20:00:00 18:00:00 1.00:00 18:00:00 10:00:00 18:0	09.08.2005	10:00:00	10:20:00	09.08.2005	11:00:00	1,00	Н	0	1	1	2075	9059	5	5863	28997
18.07.2005 20.30:00															
20.07.2005 20.00:00 20.17:00 20.07.2005 20.30:00 0.50 H 30 1 6 2537 9471 8 8775 28663 29.07.2005 17.40:00 17.50:00 29.07.2005 18.40:00 1.00 H 78 1 1 2568 9487 4 5960 28816 21.07.2005 09.20:00 09.30:00 21.07.2005 09.20:00 09.30:00 21.07.2005 09.20:00 09.30:00 21.07.2005 09.20:00 0.25 H 10 1 1 2537 9499 8 7052 28673 22.08.2005 16.03:00 20.08.2005 15.35:00 0.58 H 0 1 1 2537 9499 8 7052 28673 22.08.2005 10.00:00 20.08.2005 15.35:00 0.58 H 0 1 1 2537 9499 8 7052 28673 22.08.2005 09.00:00 09.10:00 20.08.2005 11.00:00 20.08 H 10 1 1 2625 9515 3 7052 29328 15.06.2005 07.25:00 08.05:00 16.06.2005 08.20:00 0.92 H 40 1 1 2120 9527 8 7052 28049 15.06.2005 13:15:00 13:30:00 15.06.2005 14.00:00 0.75 H 35 1 1 2120 9527 8 7052 28039 14.06.2005 05:00:00 05:10:00 16.09.2005 06.00:00 1,00 H 0 1 1 2686 9568 3 5960 29749 02.09.2005 05:00:00 05:10:00 16.09.2005 06.00:00 0.575 H 0 1 1 2698 9594 7 5960 29461 15.07.2005 09.40:00 09.50:00 09.20:05 10.45:00 3,75 H 0 1 1 2641 9918 2 5863 28590 29582 15.07.2005 22:45:00 22:55:00 17.07.2005 21:30:00 15.07.2005 21:30:00 10.09.2005 21:30:00 1.05 14.00:00 0.50 1.00 1.00:00	19.07.2005	20:30:00	21:10:00	19.07.2005	21:15:00	0,75	Н	15	3	1	2537	9471	8	5960	28654
21.07.2005 09.20:00 09:30:00 21.07:2005 09:35:00 0.25 H 10 1 1 2537 9499 8 7052 28673 29.08:2005 16:03:00 29.08:2005 16:03:00 29.08:2005 16:03:00 29.08:2005 16:03:00 20.08:2005 16:03:00 20.08:2005 16:03:00 20.08:2005 17.25 29.08:2005 29.09:2005 27.25 20.08:2005 09:00:00 20.09 10:00 20.08:2005 09:00:00 20.09 10:00 20.08:2005 10:00:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 10:00 20.09 20.09 10:00 20.09 2	20.07.2005	20:00:00	20:10:00	20.07.2005	20:30:00	0,50	Н	30	1	6	2537	9471	8	8775	28663
220.08.2005			17:50:00 09:30:00	29.07.2005											
16.06.2005 07.25:00 08:05:00 16.06.2005 08:20:00 0.92 H 40 1 1 2120 9527 8 7052 28049 15.06.2005 13:15:00 13:30:00 15.06.2005 14:00:000 0.75 H 35 1 1 2120 9527 8 7052 28039 14.06.2005 04:50:00 06:40:00 14.06.2005 07:00:00 2,17 H 6 1 6 2120 9527 8 5391 28029 16.09.2005 05:00:00 05:10:00 16:00:00 10:05:00 10:00 1	29.08.2005	16:00:00	16:15:00	29.08.2005	16:35:00	0,58	Н	0	1	6	2614	9513	2	5863	29391
14.06.2005 04:50:00 06:40:00 14.06.2005 07:00:00 2,17 H 6 1 6 2120 9527 8 5391 28029 16.09.2005 05:00:00 05:00:00 06:00:00 1,00 H 0 1 1 2686 9586 3 5960 29749 02.09.2005 07:00:00 10:15:00 02.09.2005 10:45:00 3,75 H 0 1 1 2692 9594 7 5960 29461 15.07.2005 09:40:00 09:50:00 15.07.2005 10:20:00 0,67 H 0 1 1 2641 9918 2 7052 28582 15.07.2005 22:45:00 22:55:00 0,17 H 0 1 1 2641 9918 2 7052 28582 10.92.2005 22:00:00 12:00:00 17.07:00 1 1 2641 9918 2 7052 28582 12:00:00 20:00:00	16.06.2005	07:25:00	08:05:00	16.06.2005	08:20:00	0,92	Н	40	1		2120	9527	8	7052	28049
16.09.2005 05:00:00 06:10:00 16.09.2005 06:00:00 1.00 H 0 1 1.2886 9586 3 5960 29749 02.09.2005 07:00:00 10:15:00 20.92:00 10:45:00 2.92:46:00 7 5960 29461 15.07:2005 09:40:00 09:50:00 15:07:2005 10:20:00 0,67 H 0 1 1 2641 9918 2 7052 28582 15.07:2005 22:45:00 22:55:00 17:07:2005 22:55:00 10:77:2005 22:35:00 11:500 10:09:2005 21:30:00 15:00 11:20:200 15:00 20:00:00 21:35:00 22:30:00 15:00 20:30:00 21:35:00 20:30:00 12:00:200 20:40:00 0,42 H 15 1 6 2649 9928 3 8775 29667 13.09:2005 12:00:00 11:35:00 10:30:00 12:00:00 0,50 H 0 1 1 2649 9928 3										1 6					
15.07.2005 09:40:00 09:50:00 15.07.2005 10:20:00 0.67 H 0 1 1 2641 9918 2 7052 28582 15.07.2005 22:45:00 22:50:00 17.07.2005 1 1 1 2641 9918 2 5863 28590 10.09.2005 20:00:00 21:15:00 10.09.2005 21:30:00 1 50 1 1 2649 9928 3 7052 299613 12.09.2005 20:03:000 12:03:000 10:09.2005 20:04:000 0,42 H 15 1 6 2649 9928 3 8775 29651 13.09.2005 20:000 0.15:00 11:30:00 11:45:00 13:09:2005 0.50:00 H 0 1 1 2649 9928 3 8775 29667	16.09.2005	05:00:00	05:10:00	16.09.2005	06:00:00	1,00	Н	0	1	1	2686	9586	3	5960	29749
15.07.2005 22:45:00 22:50:00 17.07.2005 22:55:00 0.17 H 0 1 1 2641 9918 2 5863 28590 10.09.2005 20:00:00 21:15:00 10.09.2005 21:30:00 1,50 H 50 1 1 2649 9928 3 7052 29613 12.09.2005 20:30:00 12:09.2005 20:30:00 10:40:00 0.42 H 15 1 6 2649 9928 3 8775 29651 13.09.2005 11:30:00 11:45:00 13.09.2005 12:00:00 0.50 H 0 1 1 2649 9928 3 7052 29867	15.07.2005	09:40:00	09:50:00	15.07.2005	10:20:00	0,67	Н	0	1		2641	9918	2	7052	28582
12.09.2005	15.07.2005	22:45:00	22:50:00	17.07.2005	22:55:00	0,17	Н	0	1		2641	9918		5863	28590
	12.09.2005	20:15:00	20:30:00	12.09.2005	20:40:00	0,42	Н	15	1		2649	9928	3	8775	29651
										1					

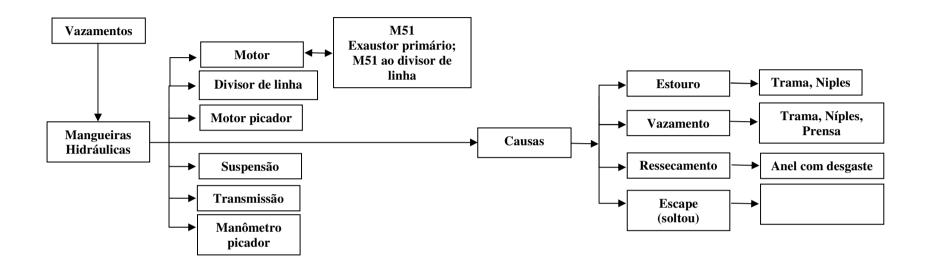


Figura A.4 - Diagrama de falhas do problema de vazamento da máquina 17.

Apêndice A.10: Controle de falhas da máquina 19 - descrição do operador para as principais falhas, locais de ocorrência e causa da falha com seus respectivos código de materiais quando existe o caso de troca ou substituição.

Máquina 19: Controle de falhas do sistema hidráulico

Mág.	Problemas	Parte Objeto (macro)	Parte Objeto (Detalhe)	Texto da causa	Cód. Material			
19	Nível do Oleo Baixo	Sistema Hidráulico	RESERVATORIO DE OLEO HIDRAULICO	ESTAVA BAIXO POREM SEM VAZAMENTO	Cod. material			
19	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA PV 350	VAZAMENTO	(NAO FORNECEU CODIGO DO MATERIAL)			
19	Vazamento	Sistema Hidráulico	SISTEMA TRANSMISSÃO HIDRAULICA	VAZAMENTO NO CANO DE TRANSMISSÃO	(NAO FORNECEU CODIGO DO MATERIAL)			
19	Furou	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	RESSECADA	(WIG FORMEDES GODIAG DO WITTERWE)			
19	Vazamento	Motores Hidráulicos	MOTOR HIDRÁULICA MF 54	ANEL RESSECADO				
19		Mangueiras Hidráulicas	MANGUEIRA ROLO	SOLTOU				
19		Mangueiras Hidráulicas	MANGUEIRA MOTOR TRUCK	SOLTOU MANGUEIRA				
19	Vazamento	Elevador	BLOCO DO ELEVADOR	VAZAMENTO				
19	Vazamento	Motores Hidráulicos	MOTOR DO EXAUSTOR	QUEBROU ANEL DO BI-PARTIDO	01 - FALTA CÓD.MATERIAL			
19	Furou	Bombas Hidráulicas	BOMBA HIDRÁULICA TRANSMISSÃO	FUROU BI-PARTIDA				
19	Vazamento	Bombas Hidráulicas	BOMBA HIDRÁULICA TRANSMISSÃO	ANEL RESSECADO				
19	Desgaste Normal	Pistão Hidráulico	PISTAO DO AÇERADOR	VAZAMENTO NO NIPLE	ESPANADO			
19	Sujeira	Filtro	FILTRO HIDRÁULICO	VENCEU PERIODO DE TROCA DOS FILTROS				
19	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA CARGA	JUNTA ESTOURADA	01-440976 JUNTA BBA HID CARGA 00407458			
19	Estourou	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	DESGASTE	01-703620 MANGUEIRA 3/4X2500MM 88105212			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICO 3º ROLO SUPERIOR	SOLTOU				
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA MOTOR HIDRÁULICO CHARLIN 24	SOLTOU				
19	Estourou	Mangueiras Hidráulicas	MANGUEIRA HID.DIV. FLUXO /FILTRO PRESSÃO	2017011	AL MANAGE AL O IAMENTO DOL LEMANTOTOMO			
19		Mangueiras Hidráulicas	MANGUEIRA ROLO LEVANTADOR	SOLTOU	01-413085 ALOJAMENTO ROL LEVANT87243134			
19	Desgaste Normal	Filtro	FILTRO HIDRAULICO	DESGASTE NORMAL	04-(NÃO FORNECEU COD. MATERIAL)			
19	Estourou	Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA	ESTOUROU PALYOU NIIVEL DO OLEO	01-703580 MANGUEIRA 1/2X1020MM 87172700			
19 19	Nível do Óleo Baixo Nível do Óleo Baixo	Reservatório Hidráulico	RESERVATÓRIO DE OLEO HIDRAULICO RESERVATÓRIO DE OLEO HIDRAULICO	BAIXOU NIVEL DO OLEO BAIXOU NIVEL DO OLEO				
19			MOTOR HIDRÁULICO DO ROLO LEVANTADOR	VAZAMENTO	01- (FALTA CÓD.MATERIAL)			
19	Vazamento Nível do Óleo Baixo	Motores Hidráulicos	AGUARDANDO CHUIM	VALAWILIVIO	AGUARDANDO CHUIM			
19	Estourou	Bombas Hidráulicas	BOMBA DE CARGA	ESTOUROU JUNTA	AGOAITDANDO CITOIWI			
19	Vazamento	Divisor de Fluxo	DIVISOR FLUXO	ESTOUROU ANEL RESSECADO				
19	Desgaste Normal	Filtro	FILTRO HIDRÁULICO	VENCIDO				
19	Nível do Óleo Baixo	Sistema Hidráulico	RESERVATÓRIO DE ÓLEO HIDRÁULICO	NIVEL DE ÓLEO BAIXO				
19	Vazamento	Motores Hidráulicos	MOTOR HIDRÁULICO TRW	DESGASTE DO RETENTOR	01-700722 (CÓD.MATERIAL ERRADO)			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA DO DRENO DE CARCAÇA	AGUARDANDO CHUIM	AGUARDANDO CHUIM			
19	Vazamento	Mangueiras Hidráulicas	NIPLE DA MANGUEIRA TRANSMISSÃO	SOLTOU NIPLE MANGUEIRA TRANSMISSÃO				
19	Vazamento	Bombas Hidráulicas	BOMBA DE CARGA	RESSECOU JUNTA	01- (FALTA CÓD.MATERIAL)			
19	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO M54 RODANTE	ANEL VALVULA DE RÉ	01- (FALTA CÓD.MATERIAL)			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA DA TRANSMISSÃO	VAZAMENTO NA PRENSA	01-413420MANG. 1X1000MM 1 RETO 1 CUVO 90			
19	Vazamento	Elevador	BLOCO DO ELEVADOR	VAZAMENTO				
19	Vazamento	Mangueiras Hidráulicas	BI PARTIDO DA MANGUEIRA HIDRÁULICA	QUEBROU	01-(NÃO FORNECEU COD. MATERIAL)			
19	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO 24	REPARO RESSECADO	01-700922-MOTOR HID 24 POL3 (70MM)			
19	Vazamento	Motores Hidráulicos	RESERVÁTORIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO				
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA M 51	ESTOUROU	01-703573-MANGUEIRA 1/2X1770MM 82701000			
19	Estourou	Cortador de Pontas	ANEL DO BLOCO DESPONTADOR	RESSECADO				
19	Nível do Óleo Baixo	Reservatório Hidráulico	RESERVATÓRIO DE ÓLEO HIDRÁULICO	BAIXOU NÍVEL DO ÓLEO				
19	Vazamento	Motores Hidráulicos	MOTOR HIDRAULICO DO EXTRATOR PRIMARIO	ANEL RESSECADO				
19	Sujeira	Filtro	FILTROS HIDRAULICOS	TROCOU FILTROS	ON TORROS MANIGUEDA MOVOMONIA OTROTARA			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRAULICA MOTOR M51	ESTOUROU MANGUEIRA	CM-703608-MANGUEIRA 1/2X2130MM 87067400			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA ROLO LEVANTADOR	Ressecada				
19 19	Vazamento	Pistão Hidráulico	PISTÃO HIDRAULICO DO GIRO PISTÃO HIDRAULICO	SOLTOU NIPLE - DESAPERTOU	(NAC ECRNECELL CODICO DO MATERIAL)			
19	Vazamento Vazamento	Pistão Hidráulico	MANGUEIRA HIDRÁULICA BOMBA PV-365	REPARO RESSECADO DESGASTE	(NAO FORNECEU CODIGO DO MATERIAL) 1-(NAO FORNECEU CODIGO DO MATERIAL)			
19	Vazamento Vazamento	Mangueiras Hidráulicas Motores Hidráulicos	MOTOR HIDRÁULICO TRW	RESSECOU REPARO	2-(NAO FORNECEU CODIGO DO MATERIAL)			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA PIRULITO	DESGASTE (RESSECADA)	MANGUEIRA A35			
19	Vazamento	Bomba de Carga	Trocada a Bomba	Vazamento no reparo	INDIAGOLITA A00			
19	Vazamento	Mangueiras Hidráulicas	NIPLE PISTÃO GIRO	QUEBROU				
19	Vazamento	Motores Hidráulicos	MOTOR CHARLIM 24	AGUARDANDO CHUIM	01-700922 MOTOR HID 24 POL3 (70MM)			
19	Vazamento	Pistão Hidráulico	PISTÃO HIDRAULICO DO GIRO	VAZAMENTO NA SOLDA DO PISTÃO	5 SSSEE MIOTOTTTIID E-71 OLO (TOWNWI)			
19	Vazamento	Sistema de Rolos	MANGUEIRA DRENO CARCAÇA 3º 4º ROLO FIXO	RESSECOU	01-(NÃO FORNECEU COD. MATERIAL)			
19	Vazamento	Motores Hidráulicos	MOTOR EXTRATOR SECUNDARIO	VAZAMENTO NO REPARO (AG.CHUIM)				
19	Vazamento	Bombas Hidráulicas	BOMBA DE CARGA PV 54	RESSECOU	01-440976 JUNTA BBA HID CARGA00407458			
19	Desgaste Normal	Filtro	FILTRO HIDRAULICO	PERIODO DE TROCA	04-406840 FILTRO OLEO HID TECFIL PSH-766			
19	Vazamento	Pistão Hidráulico	PISTÃO HIDRAULICO DO ACERADOR	VAZAMENTO NO NIPLE	ESPANADO			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA MOTOR M51	SOLTOU O TERMINAL	(NAO FORNECEU CODIGO DO MATERIAL)			
19	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA PV 39	VAZAMENTO NO REPARO	(NAO FORNECEU CODIGO DO MATERIAL)			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA	SOLTOU O TERMINAL	01-403593-MANGUEIRA MOD 165X186X306MM			
19	Vazamento	Mangueiras Hidráulicas	MANGUEIRA HIDRÁULICA TRANSMISSÃO	FUROU NIPLE	(NAO FORNECEU CODIGO DO MATERIAL)			
19	Vazamento	Pistão Hidráulico	PISTÃO HIDRAULICO DO GIRO	RACHOU NA SOLDA				
19	Desaperto/Bambeou	Elevador	ELEVADOR	ESTAVA CAINDO	TIROU PARA MANUTENÇÃO			
- 40	Vazamento	Bombas Hidráulicas	BOMBA HIDRAULICA PV 39	VAZAMENTO				
19 19	Vazamento	Motores Hidráulicos	MOTOR HIDR.CHARLIN № 24 ROLO LEVANTADOR		01-402457 MOTOR HID 24 POL3 00404335			

							İ	1-Remonta	i i	INFORMAC	DES AREA DA	A COLHEITA	1	Horimetro
InícioAvar	Hquebra	HlnícDis	Fim avaria	HFimAvar	DuraçParad	Uni	Oleo Hid.	2- Troca 3- Recup.	Frente	MAPA	GLEBA	N <u>o</u> CORTE		DO OPERADOR
02.05.2005	02:27:00		02.05.2005	02:37:00	0,17	Н	22	1	1	420	460	1	7088	26448
08.09.2005	17:00:00		08.09.2005	17:20:00	0,33	H	30	1	1	9	1179	1	6675	28686
07.09.2005 22.04.2005	07:00:00 12:40:00		07.09.2005 22.04.2005	07:55:00 12:50:00	0,92 0,17	H H	30 20	1	1	9 102	1338 1358	7	6675 7088	28665 26318
18.08.2005	16:00:00		18.08.2005	16:20:00	0,17	Н	23	1	1	110	2127	4	6675	28283
03.08.2005	02:20:00		03.08.2005	03:05:00	0,75	H	10	1	1	115	2192	4	5893	27972
05.08.2005	15:00:00	15:16:00	05.08.2005	15:24:00	0,40	Н	69	1	1	115	2192	4	5893	28023
14.04.2005	18:00:00		14.04.2005	18:15:00	0,25	Н	20	1	1	154	2371	8	6675	26197
15.04.2005	23:20:00	23:30:00		23:50:00	0,50	H	0	1	6	154	2373	8	7123	2620
16.08.2005 16.08.2005	10:00:00 20:50:00		16.08.2005 16.08.2005	10:35:00 21:00:00	0,58 0,17	H H	10 20	1	1	252 252	2449 2449	2	5893 6675	28245 28253
21.08.2005	10:20:00		21.08.2005	10:40:00	0,33	H	20	1	1	252	2452	2	6675	28340
21.08.2005	10:50:00		21.08.2005	11:17:00	0,45	Н	30	1	1	252	2452	2	6675	28341
23.08.2005	10:30:00		23.08.2005	10:50:00	0,33	Н	20	1	1	252	2452	2	7088	28382
07.06.2005	13:15:00		07.06.2005	14:00:00	0,75	Н	10	1	1	210	3135	1	5893	26659
06.06.2005 07.06.2005	16:40:00 22:00:00		06.06.2005 07.06.2005	18:10:00 22:10:00	1,50 0,17	H H	10 30	1	1	210 210	3135 3135	1	5893 7088	26878 26965
04.06.2005	06:50:00		04.06.2005	07:40:00	0,83	Н	50	3	1	212	3150	3	7088	26855
06.07.2005	03:10:00		06.07.2005	04:25:00	1,25	Н	40	1	1	212	3173	4	6675	27498
07.07.2005	09:50:00	09:56:00	07.07.2005	10:18:00	0,47	Н	20	1	1	212	3173	4	7088	27524
23.06.2005	13:20:00		23.06.2005	13:40:00	0,33	Н	15	1	1	242	3355	3	5893	27253
23.06.2005	16:40:00		23.06.2005	18:10:00	1,50	Н	30	1	1	242	3355	3	7088	26698
24.06.2005 31.05.2005	04:50:00 22:30:00		24.06.2005 31.05.2005	07:00:00 23:10:00	1,17 0,67	H H	19 15	1	1	242 242	3355 3355	3 4	7088 7088	27277 26834
13.07.2005	16:40:00		13.07.2005	18:10:00	1,50	H	20	1	1	242	3366	4	7088	27598
07.05.2005	09:25:00		07.05.2005	11:00:00	1,58	Н	35	1	1	297	3595	4	6675	26495
24.05.2005	13:10:00			01:15:00	12,08	Н	10	1	1	353	3658	3	5893	26765
25.07.2005	14:20:00			15:00:00	0,67	Н	301	3	1	247	3692	4	5893	
25.07.2005 29.05.2005	16:40:00 15:25:00		25.07.2005 29.05.2005	18:10:00 15:50:00	1,50 0,42	H H	40 0	1	1	247 353	3692 3698	4	6675 5893	26814
14.07.2005	01:50:00		14.07.2005	02:30:00	0,42	H	24	1	6	381	3827	4	7116	27669
08.05.2005	07:15:00		08.05.2005	09:10:00	1,92	Н	10	1	1	383	3847	3	6675	26510
05.05.2005	07:15:00		05.05.2005	09:10:00	1,92	Н	35	1	1	420	4030	2	6675	26480
01.05.2005	16:30:00		01.05.2005	16:50:00	0,33	Н	0	1	1	420	4060	1	6675	26429
01.05.2005 20.04.2005	13:30:00 11:30:00		01.05.2005 20.04.2005	14:00:00 11:40:00	0,50 0,17	H H	20	<u>3</u>	1	420 425	4061 4078	1	5893 6675	26426 26286
25.06.2005	11:00:00		25.06.2005	11:10:00	0,17	H	10	1	1	431	4162	2	5863	27284
08.10.2005	15:30:00		08.10.2005	17:00:00	1,50	Н	10	1	1	210	4245	5	6675	29150
03.10.2005	12:00:00		03.10.2005	17:00:00	5,00	Н	30	1	1	210	4248	2	5893	29092
05.10.2005	11:50:00		05.10.2005	12:20:00	0,48	Н	39	1	1	210	4248	1	6675	29127
25.04.2005 20.05.2005	03:00:00 12:20:00		25.04.2005 20.05.2005	05:30:00 13:30:00	2,50 1,17	H H	20 25	1	1	425 473	4280 4376	1	6675 7088	26360 26605
25.10.2005	00:22:00		25.10.2005	00:40:00	0,30	Н	45	1	1	489	4456	5	7088	28401
01.11.2005	08:30:00	08:40:00	01.11.2005	10:00:00	1,50	Н	20	1	1	494	4524	4	7088	28422
03.11.2005	13:30:00		03.11.2005	14:25:00	0,92	Н	35	1	1	494	4524	4	7088	28444
29.09.2005	18:03:00			18:15:00	0,20	Н	30	1	1	494	7203	3	6675	29015
25.09.2005 04.09.2005	07:00:00 07:00:00		25.09.2005 04.09.2005	09:15:00 09:00:00	2,25 2,00	H H	20 10	1	1	494 2317	7204 9022	2	6675 5893	28961 28617
11.08.2005	00:25:00		11.08.2005	03:45:00	3,33	Н	84	1	1	2075	9059	3	6675	28134
11.08.2005	13:00:00		11.08.2005	14:00:00	1,00	Н	30	1	1	2075	9059	3	7088	28138
02.10.2005	03:20:00		02.10.2005	03:40:00	0,33	Н	25	1	1	2134	9084	3	6675	29063
30:09:2005	22:15:00		30:09:2005	23:59:59 20:00:00		Н	58	1	6	2196	9116	2	1095	29036
08.08.2005 09.07.2005	19:30:00 14:30:00		08.08.2005 09.07.2005	15:00:00	0,50 0,50	H H	20 15	1	1	2246 2621	9170 9312	2	5893 5893	28088 27562
23.08.2005	02:10:00		23.08.2005	02:40:00	0,50	H	15	1	1	2259	9393	5	5893	28378
23.07.2005	01:30:00		23.07.2005	01:50:00	0,33	Н	50	1	1	2496	9455	8	6675	27779
17.07.2005	16:40:00		17.07.2005	18:10:00	1,50	Н	20	1	1	2688	9475	7	7088	
30.07.2005	13:50:00		30.07.2005	16:36:00	0,77	Н	60	1	1	2568	9487	4	5893	27900
30.08.2005 29.08.2005	10:50:00 05:50:00		30.08.2005 29.08.2005	11:17:00 06:00:00	0,45 0,17	H H	30 33	1	1	2614 2614	9513 9513	2	6675 6675	28528 28504
15.09.2005	11:56:00		15.09.2005	12:18:00	0,17	Н	35	1	1	2686	9585	3	6675	28808
19.09.2005	02:00:00		19.09.2005	03:00:00	1,00	Н	20	1	1	2686	9585	3	6675	28888
20.09.2005	06:35:00		20.09.2005	07:00:00	0,42	Н	10	1	1	2686	9586	4	7088	28868
20.09.2005	15:00:00		20.09.2005	18:00:00	3,00	Н	50	1	1	2686	9586	4	6675	28876
22.09.2005 27.07.2005	09:00:00 16:40:00		22.09.2005 27.07.2005	12:20:00 18:10:00	3,17 0,50	H H	20 10	1	1	2686 2609	9586 9897	4	6675 5893	28990
12.09.2005	02:00:00		12.09.2005	03:00:00	1,00	Н	30	1	1	2649	9928	3	5893	28746
10.05.2005	22:30:00		10.05.2005	23:10:00		Н	15	1	1	2663	9943	3	5893	26534

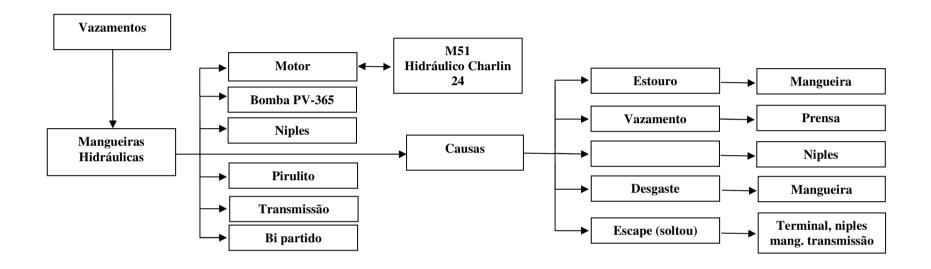
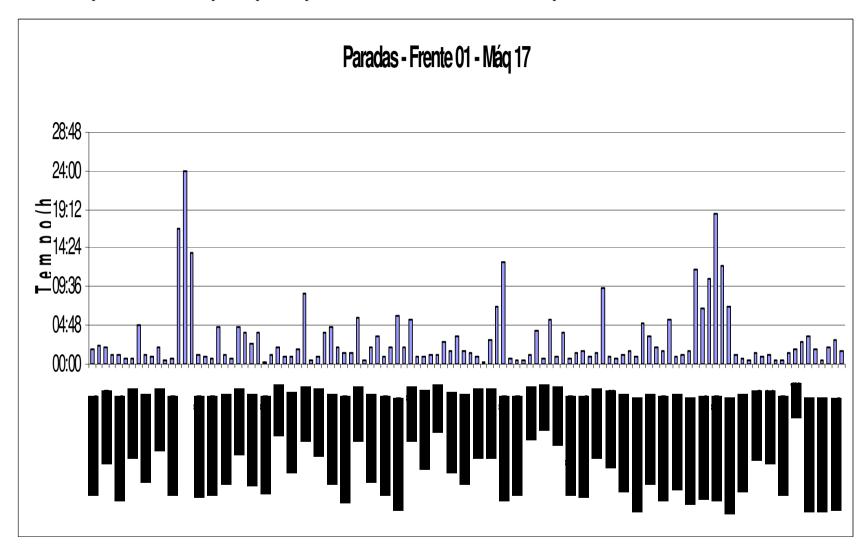



Figura A.5 - Diagrama de falhas do problema de vazamento da máquina 19.

Apêndice A.11: Tempos de parada, por todas as falhas ocorridas com a Máquina 17 durante a safra 2003/2004.

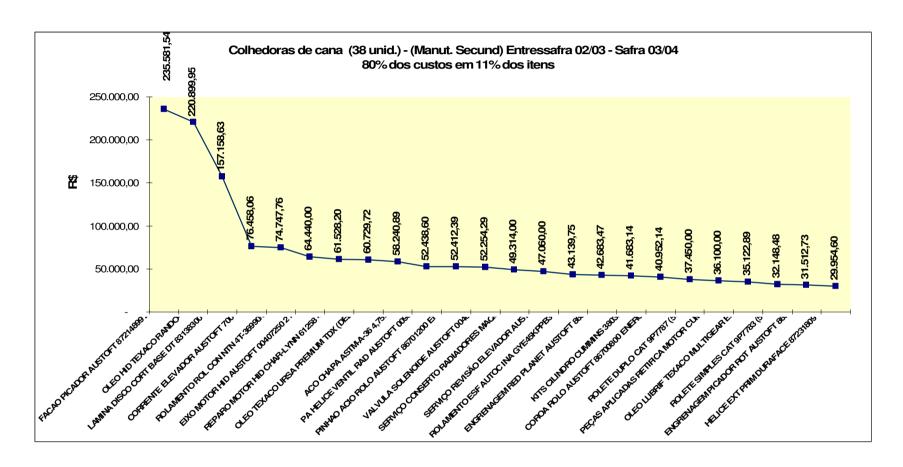
APÊNDICE B

Neste Apêndice são divididos os problemas do controle de falhas em três tipos principais de vazamentos e distribuídos entre os principias objetos de falhas e quantidade de óleo desperdiçado e também são apresentados os "contratos de redução" de óleo hidráulico e óleo diesel e aumento de TCH (toneladas colhidas por hectare) já sendo aplicado na USM como estratégia de melhoria da PMMPT pelos da ALE.

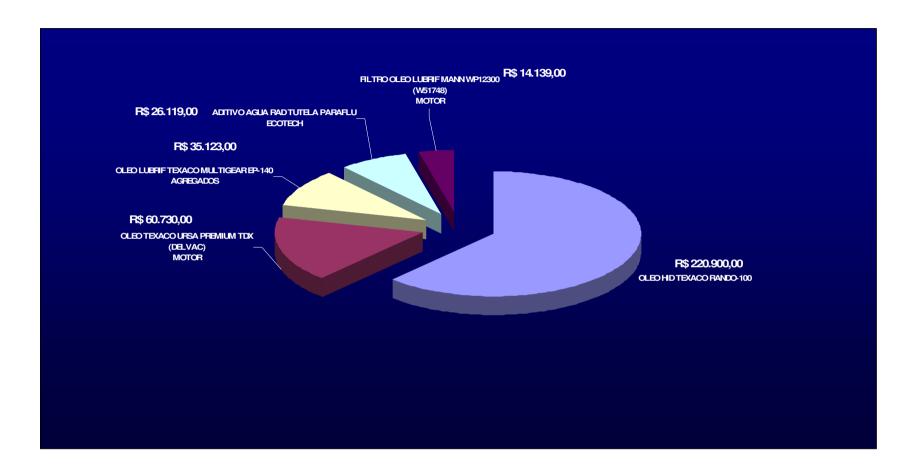
Apêndice B.1 mostra a classificação dos vazamentos em seus principais motivos e respectivas quantidades de litros de óleo hidráulico desperdiçados.

Apêndice B.2 Custo de Manutenção das colhedoras. Óleo hidráulico aparece como 2º maior custo.

Apêndice B.3: Custo de Manutenção das colhedoras (Óleos, aditivos e filtros). Óleo hidráulico aparece como 1º maior custo.


Apêndice B.4: Desperdício óleo extraído SAP Safra 2003/2004.

Apêndice B.5: "Contratos de redução" de óleo hidráulico e óleo diesel e aumento de TCH (toneladas colhidas por hectare) já sendo aplicado na USM como estratégia de melhoria da PMMPT pelos da ALE.


Apêndice B.1: Classificação dos problemas de vazamento e suas principais causas de falha.

1		Metodologia -	Máquina 17			
	2	3	4	5		
Problemas	Parte Objeto (macro)	Texto da causa	Parte Objeto (Detalhe)	Óleo Hidr. (Its)	Total Parcial (Its)	Porcentage
	, , , , , , , , , , , , , , , , , , , ,	VAZAMENTO NO NIPLE	M52	18		
		VAZAMENTO NIPLE DO FREIO	SISTEMA DE FREIO	10	-	
		VAZAMENTO NA TRAMA	DESPONTADOR	21		
		VATAMENTO NA PRENOA	MOTOR EXAUSTOR PRIMARIO	30		
		VAZAMENTO NA PRENSA	TRANSMISSÃO	25		
		TRAMA RUIM	PISTAO ACERADOR	43		
			MANGUEIRA DE TRANSMISSAO	78		
			MANGUEIRA HIDRAULICA	70		
		SOLTOU NIPLE	DIVISOR LINHA	10		
			PISTAO DO GIRO	15		
		SOLTOU MANGUEIRA PISTAO	SUSPENSAO	20		
			TRANSMISSAO	20		
			MANGUEIRA HIDRAULICA	60		
	Mangueiras Hidráulicas /		VALVULA SELETORA	60		
	Niples	RESSECADA	MANGUEIRA HIDRAULICA	55		
			MANGUEIRA HIDRAULICA	30		
			FREIO	40		
		ESTOUROU NIPLE	NIPLE BOMBA TRANSMISSÃO	10		
	1	ESTOUROU NA TRAMA - RESSECOU	MOTOR M51	18		
		ESTOUROU	PISTAO ELEVADOR	30		
		ESTOROU NA TRAMA	MOTOR HID. M51 AO DIV. LINHA	33		
		DESGASTE NO PASSA-MURO	TRANSMISSAO	10		
/AZAMENTOS		DESAPERTOU	MANGUEIRA HIDRAULICA	35		
		DESAPERTO NO TERMINAL	ELEVADOR	30		
		BAMBEOU	NIPLE MANGUEIRA TRANSMISSAO	10		
		ANEL COM DESGASTE E RESSECADO	FREIO	30		
		01-703585-MANGUEIRA 1X2050MM 87165200	TRANSMISSAO	20		
			PISTAO ESTEIRA RODANTE	60	891	
		ESTOUROU REPARO (RESSECADO)	REPARO MOTOR HIDRAULICO DO PICADOR	10		
			5º ROLO INFERIOR	40		
		VAZAMENTO RETENTOR	DA RODA	6		
	Motor Hidráulico		ROLO LEVANTADOR	20		
	Wotor maraunco	VAZAMENTO NO REPARO	ROLO FIXO	15		
			CHAR-LLYN	15		
		VAZAMENTO	M51	18		
			ROLO TRANSPORTADOR	16	140	C
		TROOPIL BICTAR CAMBOA TRINGARA	DICTAG DO TRUCK			
		TROCOU PISTAO - CAMISA TRINCADA ANEL ESTOUROU	PISTAO DO TRUCK	50		
	1	ANEL ESTOUROU ANEL RESSECADO	SUSPENSAO	25 20		
		FUROU	SUSPENSÃO DO ELEVADOR	20		
	Pistão Hidráulico	FUNUU	DO ELEVADOR	25 11		
	1			30		
		VAZAMENTO NO JG DE REPARO	SUSPENSÃO	10		
				40		
				40 1242	211 211	1

Apêndice B.2: Custo de Manutenção das colhedoras. Óleo hidráulico aparece como 2º maior custo.

Apêndice B.3: Custo de Manutenção das colhedoras (Óleos, aditivos e filtros). Óleo hidráulico aparece como 1º maior custo.

Apêndice B.4: Desperdício óleo extraído SAP Safra 2003/2004

	DESPERDÍCIO DE ÓLEO HIDRÁULICO - COLHEDORAS DE CANA PERÍODO ABRIL/03 À OUTUBRO/03											
SAP	Frota	Frente	Ano	Marca	km/h	Litros	Média	Reposição	Troca	Total		
792	13	F1	1997	AUSTOFT	3.236	141.001	43,57	1.760	-	1.760		
793	14	F1	1997	AUSTOFT	3.361	142.170	42,30	1.729	-	1.729		
794	15	F1	1997	AUSTOFT	1.548	67.043	43,31	687	-	687		
795	16	F1	1997	AUSTOFT	3.225	139.735	43,33	2.418	-	2.418		
796	17	F1	1997	AUSTOFT	3.651	136.830	37,48	1.442	500	1.942		
797	18	F1	1997	AUSTOFT	3.433	135.987	39,61	1.813	-	1.813		
798	19	F1	1997	AUSTOFT	3.622	129.835	35,85	1.880	-	1.880		
799	20	F1	1997	AUSTOFT	3.275	141.480	43,20	1.798	-	1.798		
						•		13.527	500	14.027		
800	21	F2	1997	AUSTOFT	2.948	129.494	43,93	1.687	-	1.687		
801	22	F2	1997	AUSTOFT	2.040	84.561	41,45	1.162	-	1.162		
802	23	F2	1997	AUSTOFT	3.262	127.010	38,94	1.730	-	1.730		
803	25	F2	1997	AUSTOFT	2.917	122.012	41,83	1.885	-	1.885		
804	26	F2	1997	AUSTOFT	3.955	123.554	31,24	1.683	-	1.683		
805	27	F2	1997	AUSTOFT	3.479	121.882	35,03	2.111	-	2.111		
806	28	F2	1997	AUSTOFT	3.838	110.629	28,82	1.869	-	1.869		
807	29	F2	1997	AUSTOFT	3.309	122.083	36,89	1.400	-	1.400		
								13.527	-	13.527		
2246	51	F3	2002	CASE	2.586	107.365	41,52	1.311	-	1.311		
2312	52	F3	2002	CASE	3.369	136.714	40,58	1.648	-	1.648		
2313	53	F3	2002	CASE	3.047	129.788	42,60	2.110	-	2.110		
2314	54	F3	2002	CASE	2.993	128.807	43,04	1.441	-	1.441		
2315	55	F3	2002	CASE	3.178	129.529	40,76	2.110	-	2.110		
2316	56	F3	2002	CASE	3.165	134.852	42,61	2.126	-	2.126		
2317	57	F3	2002	CASE	3.277	129.465	39,51	2.062	-	2.062		
								12.808	-	12.808		
818	62	F4	1997	BRASTOFT	2.869	114.580	39,94	1.757	-	1.757		
819	63	F4	1997	BRASTOFT	2.690	117.164	43,56	2.523	-	2.523		
820	64	F4	1997	BRASTOFT	1.194	114.105	95,57	2.776	-	2.776		
821	65	F4	1997	BRASTOFT	1.415	56.017	39,59	1.272	-	1.272		
822	66	F4	1997	BRASTOFT	1.718	76.162	44,33	1.164	-	1.164		
823	67	F4	1997	BRASTOFT	961	114.960	119,63	1.600	-	1.600		
824	68	F4	1997	BRASTOFT	737	116.495	158,07	1.895	-	1.895		
								12.987	-	12.987		
817	61	F5	1997	BRASTOFT	2.712	115.919	42,74	2.062	-	2.062		
1996	42	F5	2000	CASE	3.244	134.370	41,42	2.952	-	2.952		
1997	43	F5	2000	CASE	3.032	135.671	44,75	2.718	1.100	3.818		
1998	44	F5	2000	CASE	3.098	136.646	44,11	4.742	-	4.742		
1999	45	F5	2000	CASE	3.510	146.294	41,68	3.394	-	3.394		
2000	46	F5	2000	CASE	2.779	110.320	39,70	2.979	-	2.979		
2001	47	F5	2000	CASE	2.209	91.910	41,61	1.862	-	1.862		
2002	48	F5	2000	CASE	3.401	133.483	39,25	4.881	-	4.881		
			· <u> </u>					25.590	1.100	26.690		
								78.439	1.600	80.039		

CONTRATO PARA REDUÇÃO DO CONSUMO DE ÓLEO HIDRÁULICO

- Não desligar a bóia sem autorização.
- Sempre que possível, verificar layout das mangueiras.
- Nas revisões, verificar se a bóia esta funcionando.
- Sempre que for trocar uma mangueira usar tampões.
- Ter maior atenção na reposição de óleo hidráulico.

- Verificar vazamento de óleo hidráulico no nível da caixa de quatro furos.
- Conscientização de todos em evitar desperdícios.
- Manutenção preventiva.
- Operadores sempre alerta para evitar
 - Vazamentos, todos somos responsáveis.
 - Verificar trincas nos cilindros e caixas.
 - Verificar vazamentos em anéis e retentores.

^

- Procurar fazer soldas sempre que necessário mais rápido possível.
- Após constatar vazamento, desligar imediatamente e tomar as devidas providencias.
- Ao completar o nível do óleo, colocar só o necessário.
- Manter sempre as mangueiras nas posições corretas e devidamente com as proteções necessárias.

- Fazer aquecimento necessário antes do retorno ao serviço.
- Com atitude e habilidade de cada um vamos evitar desperdícios.
- Não esquecer de apertar bem as mangueiras após a troca da mesma.
- Verificar desgaste de mangueiras que geralmente oferecem risco de estourar.
- Verificar vazamento na caixa de bombas.
- Trocar mangueiras com vazamento.

.

- Verificar vazamentos nos comandos.
- Ao trocar os transbordos sempre tampar as ponteiras das mangueiras.
- Procurar sempre recuperar o óleo que cai da máquina na revisão no campo.
- Sempre reapertar niples e verificar as ponteiras e comandos.
- Ter sempre no estoque pistões, mangueiras, niples e ponteiras.

- Ter bom senso sobre vazamentos, entre lideres, operadores, mecânicos e tomar uma atitude rápida com os vazamentos.
- Sempre que a pressão do óleo for regulada, usar manômetro.
- Nunca deixar faltar tampão.
- Verificar sempre o sistema hidráulico para ver se não há nenhum vazamento.
- Ficar atento com o dispositivo adaptado na bóia, relacionado a vazamento no sistema.

_

- Conscientização de todos quanto às questões de redução do consumo do óleo hidráulico.
- Sempre reapertar os filtros hidráulicos.
- Verificar tubos e conexões hidráulicos.
- Verificar vazamento nos motores dos exaustores primários e secundários.
- Verificar vazamento embaixo da cabine.
- Só repor óleo hidráulico quando o vazamento for sanado.

CONTRATO PARA REDUÇÃO DO CONSUMO DE ÓLEO DIESEL

Ç

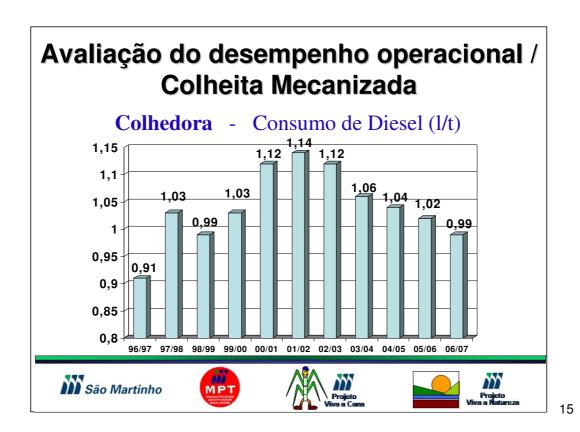
- Não deixar o motor em funcionamento quando não estiver trabalhando
- Não fazer manobra em alta rotação.
- Na mudança de quadras, deixar os comandos desligados
- Fazer um abastecimento evitando desperdícios
- Não trabalhar com vazamento no equipamento

- Colher com a velocidade adequada
- Ao fazer a limpeza da colhedora, desligar a mesma
- Incentivar seu colega de equipe para economizar diesel.
- Trabalhar com o equipamento sempre visando o menor consumo
- Quando a máquina estiver em colheita, aproveitar o tempo efetivo.

- Não deixar o motor em funcionamento em marcha lenta acima de 3 minutos
- Fazer drenagem nos tanques
- Direção econômica (verificar a possibilidade de curso)
- Na troca de turno, posicionar o parceiro a posição dos trajetos internos da frota
- Andar com a marcha compatível, evitando a alta aceleração

- Estratégia de pontos fixos na área
- Prestar sempre atenção em vazamentos
- Remontar a carga sempre em marcha lenta
- Operar corretamente o equipamento
- Manter a rotação correta do motor
- Desligar os exaustores quanto for se

- Manter a porta do equipamento fechada quando o ar condicionado estiver ligado
- Manter calibragem correta dos pneus
- Melhorar a revisão das bombas injetoras
- Manter a regulagem do motor sempre em dia



CONTRATO PARA

AUNISMAN DE Projeto
Were a Matureza

- Evitar pisoteios
- Fazer com consciência as manobras nos cantos das quadras.
- Fazer uma adubação correta
- Adequar o equipamento para fazer o serviço respeitando a entre linha
- Respeitar o "Projeto Viva Cana".
- Reduzir desperdícios em geral

- Plantar variedades mais produtivas e com menor desperdícios
- Respeitar a linha de cana
- Ser mais responsável com nosso canavial
- Fazer um melhor cultivo
- Estar sempre com os equipamentos da colheita em ordem.
- Respeitar a cana como se fosse uma pessoa da família.

- Fazer virador em lugares estratégicos
- Fazer reconhecimento da área antes de iniciar a colheita
- Sulcação de 3 linhas (ver possibilidade de plantar torta com 3 linhas)
- Conscientização de todos
- Melhorar o preparo de solo.

- Melhoramento das cargas no caminhão para que não aja desperdício nas estradas
- No plantio, manter o espaçamento ideal para que com o cultivo, o implemento não venha arrancar a soqueira.
- No plantio, há a necessidade de uma distribuição correta de gemas dentro dos sulcos.

- Respeitar todas as sinalizações
- Estar sempre atento nas comunicações
- Procurar orientar bem as visitas antes de adentrar as áreas de colheita
- Procurar orientação sobres as variedades que está trabalhando
- Melhorar o plantio mecanizado
- Procurar estar atento nas retomadas do serviço após a chuva

- Manter os canaviais limpos
- Controles de pragas e ervas daninhas
- Estar sempre atento ao desponte
- Colher a cana no período correto
- Dar um pouco mais de si.
- Uma maior atenção na aplicação de herbicida, pois a mesma pode influir na perda do TCH

- Administrador da seção, monitorar a área para que a mesma não sofra perdas com pragas.
- Compactar menos o solo
- Fazer colheita com qualidade
- Trabalhar em sintonia com o auditor de qualidade sobre perdas no campo
- Fazer carga adequada ao terreno

Nesta safra atingimos TCH = 89 toneladas por hectare, 2 (DOIS) a menos que o previsto no antigo planejamento!