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RESUMO 

Atualmente, a indústria de etanol celulósico ainda não gera tanta lignina quanto a indústria de 

polpa celulósica. No entanto, é esperado que grandes quantidades de lignina sejam geradas 

pela expansão da indústria de etanol celulósico. Sendo assim, alternativas para usar a lignina 

para outros propósitos, que não seja para a cogeração de energia, têm sido consideradas. Nesta 

pesquisa, Resíduo de Hidrólise Enzimática (EHR) de bagaço de cana-de-açúcar e lignina 

Kraft LignoBoost (LBL) de Eucalipto foram usados na síntese de resinas fenol-formaldeído. 

O EHR foi gerado em uma planta piloto de etanol celulósico sendo principalmente composto 

de lignina (47% m/m) e de fibras de celulose bem dispersas (40% m/m). Esta pesquisa 

objetivou inserir o EHR na produção de resinas sem qualquer prévio processo de purificação a 

fim de avaliar como as fibras do EHR influenciam nas propriedades destas resinas. Através da 

técnica de pirólise acoplada à cromatografia gasosa e à espectrometria de massas, foi possível 

analisar o EHR sendo observadas maiores quantidades de unidades de p-hidroxifenilas (H) 

(22%) do que a LBL (3%). Assim, o EHR parece ser mais promissor para a produção de 

resinas fenólicas do que a LBL, uma vez que o EHR possui maior quantidade de unidades H, 

ou seja, o EHR apresenta mais posições orto livres para a incorporação do formaldeído. 

Resinas fenólicas com LBL (5 - 60% m/m) e com EHR (5 - 45% m/m) foram obtidas e 

comparadas com uma resina padrão fenol-formaldeído (sem lignina). As resinas produzidas 

foram submetidas a um estudo cinético completo para obter os parâmetros de cura e 

caracterização físico-químico e termomecânica. Em geral, a inserção de EHR ou de LBL nas 

resinas fenólicas levaram a um decréscimo no tempo de gelificação (tempo de cura). Os teores 

de sólido e os valores de perda de massa (antes de 100 °C) indicaram que as resinas fenólicas 

com EHR exibiram maiores quantidades de água/formaldeído livre do que a resina padrão; 

isto pode devido a hidrofilicidade das fibras de celulose. Por outro lado, o estudo reológico 

indicou que EHR reduziu o tempo de gelificação das resinas. Todas as resinas fenólicas com 

EHR ou com LBL exibiram maiores módulos de armazenamento de energia mecânica (G') do 

que a resina padrão (77 MPa), indicando um melhoramento no grau de cura das resinas. As 

resinas fenólicas com LBL apresentaram módulos de G' de 107 a 159 MPa, enquanto os 

módulos de G' das resinas com EHR apresentaram uma faixa de 84 a 192 MPa. Portanto, o 

EHR e a LBL parecem ser adequadas para substituir parcialmente o fenol oriundo de petróleo 

na produção de resinas fenólicas.  

  



 
 

 
 

 

ABSTRACT 

The cellulosic ethanol industry does not produce as much lignin as the pulp and paper 

industry nowadays. However, it is expected that relatively large amounts of lignin will be 

generated by the cellulosic ethanol industry with its expansion. Hence, alternatives to use that 

lignin for other purposes than energy co-generation have to be considered. In this research, 

Enzymatic Hydrolysis Residue (EHR) of sugarcane bagasse and LignoBoost Kraft Lignin 

(LBL) of Eucalyptus were used for the synthesis of phenol-formaldehyde resins. The EHR 

was generated at pilot scale and is composed of lignin (47% w/w) and well dispersed cellulose 

fibers (40% w/w). This research aimed to insert the EHR in resins synthesis without any 

previous purification in order to assess how these fibers influence the properties of their 

resins. By means of pyrolysis-gas chromatography-mass spectrometry, EHR showed higher 

amount of p-hydroxyphenyl (H) units (22%) than in the LBL (3%). Thus, the EHR appears to 

be more promising for phenolic resins production than the LBL, since it has larger H-lignin 

units, i.e, the EHR has more free ortho-positions to formaldehyde incorporation. Phenolic 

resins using LBL (5 - 60% w/w) and using EHR (5 - 45% w/w) were obtained and compared 

with the standard resin (without lignin). The produced resins were submitted to a complete 

kinetic study to obtain the curing parameters and to physicochemical and thermomechanical 

characterization. In general, EHR or LBL addition on phenolic resins led to decrease on gel 

time values (curing time). The solids content and the weight loss values (until before 100 °C) 

showed that the phenolic resins with EHR exhibited more amount of water/free formaldehyde 

than the standard resin, which can be due to hydrophilicity of cellulose fibers. Conversely, the 

rheological study indicated that EHR reduces the gel time of the resins. All phenolic resins 

with EHR or LBL exhibited higher storage modulus (G') than the standard phenolic resin (77 

MPa), indicating an improvement on curing degree. Phenolic resins with LBL showed G' 

modulus between (107-159 MPa), while for resins with EHR ranged from 84 to 192 MPa. 

Therefore, the EHR and the LBL can be suitable to partially replace based-petroleum phenol 

in phenolic resins production.   
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Chapter 1 INTRODUCTION 

 

 

Polymeric materials, which are most derived from fossil fuels, have been widely used 

by society and are importance in global economy (Geyer et al., 2017). However, the 

widespread use of these materials has some consequences, such as environmental impacts 

caused by their slow degradation and release of toxins (Brandt and Unnasch 2010). Moreover, 

their prices are unstable as they depend on the international oil price and political decisions 

(Verbruggen and Marchohi, 2010). Thus, there is an interest and need to develop polymeric 

materials derived from renewable sources (Chung and Washburn, 2012).  

Several products of industrial relevance, including polymeric materials, can be obtained 

from lignocellulosic biomass, which in turn it is a renewable, abundant and potentially low 

cost source (Chung and Washburn, 2012; Isikgor and Becer, 2015). Examples of biomasses 

that have potential to be employed as feedstock to produce polymeric materials are lignins 

produced by cellulose pulp industry (Rinaldi et al., 2016) and by sugarcane industry (Tye et 

al., 2016). These biomasses are promising because of their wide availability and relatively 

low cost (Isikgor and Becer, 2015). The high amount of sugarcane bagasse generated from 

sugar-alcohol industry in the world (about 540 x 106 tonnes per year - wet basis) makes this 

industrial by-product an attractive lignocellulosic feedstock (Bezerra and Ragauskas, 2016). 

One of the major components of lignocellulosic biomass is lignin, a macromolecule 

containing several functional groups that can be used to obtain various types of polymers 

(Chung and Washburn 2012), such as polyurethanes, phenol-formaldehyde resins, epoxy-

phenol resins, polyesters, polyolefins and others (Calvo-Flores and Dobado, 2010; Chung and 

Washburn, 2012). 

Lignin is a complex aromatic macromolecule that is mainly composed of p-

hydroxyphenyl (H), guaiacyl (G), and syringyl (S) units, which differ in the degree of 

methoxylation of the aromatic ring. Grass lignins also contain p-hydroxycinnamic acids (p-

coumaric acid and ferulic acid). The lignin units are cross-linked between them with a variety 

of different chemical bonds (β–O–4ʹ, β–5ʹ, β–βʹ, 5–5ʹ and 5–O–4ʹ) (Rinaldi et al., 2016; del 

Río et al., 2015; Ralph et al., 2007).  Lignin is traditionally obtained from processes that use 

cellulose as feedstock and is generally considered as a by-product, or sometimes, as a waste 

(Rinaldi et al., 2016). However, there is a growing recognition of the fact that valorization of 

the lignin fraction is not just imperative for commercial success of future operations of the 
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cellulose industry, but also necessary for achieving economic and environmental 

sustainability (Rinaldi et al., 2016).  

An important industrial activity that generates lignocellulosic stream is the production 

of cellulosic ethanol from sugarcane bagasse (Bezerra and Ragauskas, 2016). Production of 

ethanol from lignocellulosic biomass consists of three major steps: (i) pretreatment; (ii) 

saccharification of cellulose (hydrolysis) and (iii) fermentation of released sugars (Singh et 

al., 2014). Among the major steps to produce cellulosic ethanol, the enzymatic hydrolysis of 

sugarcane bagasse generates a residual stream that is mainly composed of lignin, and thus 

here called ‘Enzymatic Hydrolysis Residue (EHR)’.  

Another important industrial activity that produces large amounts of lignin is the Kraft 

pulp industry (Hu et al., 2018). Brazil is the world's fourth largest producer of pulp, producing 

about 19 x 106 tonnes of cellulosic pulp in 2016 (Brazilian Tree Industry (Ibá), 2017). This 

lignin is mainly burnt to produce energy, which supplies the pulp mill and is sold to the grid. 

However, modern pulp industries aim to expand the use of lignin to value-added products 

(Benali et al., 2014; Menon and Rao, 2012; Ragauskas et al., 2014; Rinaldi et al., 2016). 

Some pulp mills that aim to transform lignin into products of major interest have employed 

the LignoBoost process (Tomani, 2010). This process allows for obtaining higher quantities 

of lignin with higher quality (Hu et al., 2018; Tomani, 2010).  

It is essential to seek other alternatives to better use the lignin obtained from industrial 

processes. For example, integrating biomass conversion processes to efficiently produce 

power,  fuels, and value-added products could reduce or even eliminate any waste (Plaza and 

Wandzich, 2016). The target product of this investigation is phenol-formaldehyde resin, as it 

is one of the most common polymers and has various applications, such as adhesives, 

coatings, wood composites and engineering plastics for the aerospace and for electronics 

industries.  

The lignocellulosic materials that were used in this research to produce phenolic resins 

came from two sources: the residual stream from enzymatic hydrolysis of sugarcane bagasse 

in a pilot plant of cellulosic ethanol (Brazilian Bioethanol Laboratory - CTBE) and from 

LignoBoost process of a Kraft pulp mill. This investigation can be mainly divided into four 

steps: (1) Obtainment and physicochemical characterization of the lignocellulosic materials; 

(2) Obtainment of the lignin-phenol resins; (3) Determination of curing parameters of lignin-

phenol resins; and (4) Physicochemical and thermomechanical characterization of the lignin-
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phenol resins. All references of papers produced from the results of this research are showed 

in Supplementary Material A. 

 

1.1 Thesis Organization 

 

This thesis will be divided into seven different chapters based on a traditional layout: 

Chapter 1 – Introduction;  

Chapter 2 – Review literature: it will approach important issues to this research;  

Chapter 3 – Objectives;  

Chapter 4 – Materials and methods: it will approach in details how each step (earlier 

described) was developed during this research; 

Chapter 5 – Results and discussion: in this chapter, all data from experimental analyses will 

be present and it will discuss the results about those steps;  

Chapter 6 – Conclusions: It will demonstrate if the proposed objectives in this research were 

achieved; 

Chapter 7 – References.    

 

1.2 Main results achieved in this research 

 

The Enzymatic Hydrolysis Residue (EHR) from sugarcane bagasse was obtained in a 

pilot plant of cellulosic ethanol. The EHR is composed of lignin (47% w/w) and cellulose 

fibers (40% w/w), while the LignoBoost Kraft Lignin (LBL) of Eucalyptus is virtually pure. 

The EHR has smaller amounts of methoxyl groups and higher amounts of p-hydroxyphenyl 

units than the LBL. The rheological study indicated that EHR reduces the curing time of the 

resins, despite of hydrophilicity of cellulose fibers. All phenolic resins with EHR or LBL 

exhibited higher storage modulus (G') than the standard phenolic resin, indicating an 

improvement on curing degree. The EHR 5% resin showed higher G’ modulus than the LBL 

5% resin. This fact can indicate that the cellulosic fibers at lower amount enhance this 

mechanical property. 
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Figure 2.5 - Conceptual biorefinery (adapted from FitzPatrick et al., 2010). 

2.3 Biorefinery    

 

The biorefinery concept makes reference to both the raw material (biomass) and the 

bioconversion processes, that are commonly applied in the treatment and processing of raw 

materials (Fernando et al., 2006). According to the National Renewable Energy Laboratory, a 

biorefinery is ‘an installation that integrates conversion processes and equipment to produce 

fuels, power and chemicals from biomass’ (Balagurumurthy et al., 2015). Different 

technologies from several areas, including polymer chemistry, bioengineering and agriculture, 

are applied in a biorefinery that aim replace the ‘waste’ term by ‘by-product’ at industrial 

level. Currently, most petrochemical products are produced in oil refineries, whereas it is 

expected that many of those products will be produced in biomass refineries (Figure 2.5) 

(Kamm and Kamm, 2004; Ohara, 2003). 

 

 

 

 

 

 

 

 

 

 

 

This investigation aimed to extend the application of the biorefinery concept to 

cellulosic ethanol production turning the residue generated in this process into feedstock to 

obtain lignin-phenol resins and to use the obtained lignin from Kraft Industry for other 

purpose than cogeneration. Thus, the residue stream from the enzymatic hydrolysis of 

sugarcane bagasse, which is mainly composed of lignin, some cellulose fibers, and 

LignoBoost lignin from the pulp and paper mill, will be used in the synthesis of lignin-
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phenol-formaldehyde resins that, in turn, have applications in the construction area and other 

commercial applications.  

The cellulosic ethanol, Kraft and LignoBoost processes are presented below in order to 

provide an overview of the process and explain where the lignocellulosic materials used in 

this research to produce phenolic resins were generated.  

 

2.4 Cellulosic ethanol production   

 

Sugarcane bagasse can be used as feedstock to cellulosic ethanol production in same 

countries, including Brazil, which it could lead to more than a two-fold increase in the current 

ethanol yield per hectare of sugarcane. Although most of the generated sugarcane bagasse is 

currently used as solid fuel for cogeneration, it has been demonstrated that the modernisation 

of the boilers and the rationalisation of the steam usage might permit satisfying the energy 

requirements of the plants with no more than 50% of the generated sugarcane bagasse, that it 

would create a surplus of bagasse (Cardona et al., 2010; Galbe and Zacchi, 2010; Mesa et al., 

2016).  

The main steps in producing bioethanol (Figure 2.6) are pretreatment, enzymatic 

hydrolysis and fermentation (Zhang and Lynd, 2004). The pretreatment step should precede 

the hydrolysis process in order to activate the cellulose, which is not well-accessible to the 

enzyme complex (mainly composed of cellulases) in its native state (Cardona et al., 2010). 

After sugarcane bagasse pretreatment step, it is necessary an enzymatic hydrolysis process to 

obtain fermentable sugars. The hydrolysis of sugarcane bagasse is a step used to obtain 

monosaccharides, mainly glucose and xylose, from carbohydrates (cellulose and 

hemicelluloses) contained in this raw material. Subsequently, the sugar-rich stream is routed 

to bioreactor, where the fermentation of sugars to ethanol by microorganisms occurs (Galbe 

and Zacchi, 2010). 

The enzymatic hydrolysis of sugarcane bagasse generates, when the pretreatment is 

hydrothermal or acid, a residual stream that is mainly composed of lignin and some non-

hydrolysed cellulose fibers. Besides optimizing the process parameters, fully utilizing the by-

products (mainly the residues produced in the enzymatic hydrolysis process) is a feasible 

method to reduce cost.  
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 2.5 LignoBoost Process in a Kraft Pulp mill    

   

The Kraft pulping process, also known as sulphate process, prevails in the pulp and 

paper industry. Approximately 34 x 106 tonnes of unbleached Kraft pulps were worldwide 

produced in 2012 (RISI, 2013). This process comprises adding chips and white liquor (NaOH 

and Na2S) in a digester with the purpose of removing the maximum possible amount of lignin. 

The cooking of the chips results in the degradation of lignin. The reaction products are 

dissolved in the liquor. When the cooking time is over, the liquor (black liquor) is sent to the 

recovery boiler while the solid part is directed to the decompression zone, leading to the 

individualization of the fibers (unbleached pulp) (Sjӧstrӧm, 1993).  

The Kraft pulping process produces the largest amount of lignin as a by-product in the 

paper industry. This lignin is mainly burned as fuel to generate energy to supply the pulp mill. 

Only about 2% of the lignin available from the pulp and paper industry is commercially used 

to produce value-added products, like the lignin sulfonate generated by sulphite or bisulphite 

pulping applied in the construction industry (Gosselink et al., 2004). 

One way to deal with the quantity of produced lignin could be using the dry lignin 

powder as a biofuel lime kiln to replace fossil fuel. Other alternative is using lignin in other 

burners or boilers where fossil fuel is normally used (Tomani, 2010). A further use of this 

lignin could be a feedstock in value-added products (Chung and Washburn, 2012; Ragauskas 

et al., 2014).  

Morden pulp and paper industries apply the concept of biorefineries in the recovery of 

lignin by the means of the LignoBoost process (Figure 2.7). This process aims to produce a 

solid biofuel with high energy density and low ash content from the Kraft lignin precipitated 

Figure 2.6 - Ethanol production from sugarcane bagasse (adapted from Menezes, 2013). 
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by the black liquor; i.e., this process consists in concentrating lignin from the black liquor 

(Tomani, 2010). 

 

  
 

 

 

 

 

 

 

 

 

 

 

 

In the LignoBoost process, a stream of black liquor is taken from the black liquor 

evaporation plant; then lignin is precipitated by acidification and filtered. The filter cake is re-

dispersed and acidified. The resulting slurry is then filtered and washed by means of 

displacement washing. The major advantages this process when compared to the traditional 

process are lower investment costs, lower operational costs, higher lignin yield, lower ashes 

and carbohydrate contents and a higher content of dry solids (Tomani, 2010). 

 

2.6 Characterization of lignocellulosic materials  

 
It is known that the suitability of lignin as feedstock for value-added products can vary 

widely according of its physicochemical characteristics. The chemical features of 

lignocellulosic biomass depends on various factors, such as type of biomass, plant species or 

part of plants, growth processes, growing conditions, age of the plants, fertilizer and pesticide 

doses used, harvesting time (Vassilev et al., 2010), the process by which lignin was stemmed 

(Menezes et al., 2016a; Menezes et al., 2016b) processing conditions, severity of the 

pretreatment (Menezes et al., 2017) and others. Table 2.1 gathers some papers that 

characterized lignins obtained from sugarcane bagasse by means of different techniques.  

Figure 2.7 - LignoBoost process (adapted from Tomani, 2010). 
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Table 2.1 - Characterization of lignins from sugarcane bagasse. 

 

In this investigation, it was performed a physicochemical characterization of the 

Enzymatic Hydrolysis Residue (EHR) and LignoBoost Lignin (LBL) in order to understand 

details about their chemical and structural characteristics, enabling future processes and 

Authors 
(year) 

Characterization techniques Lignins from sugarcane bagasse 

del Río et al. 
(2015) 

Chemical composition 
HSQC 
Py-GC/MS 
Heteronuclear Multiple Bond 
Correlation 

1. whole-cell-wall 
 

2. ‘milled-wood’ lignin 

Mousavioun 
and Doherty 

(2010) 

Chemical composition 
Elemental analysis 
Functional groups determination 
Molar mass 
TG 
Differential Scanning Calorimetry 

1. Alkaline pretreatment 
170 °C, 1.5 h, 40 g L-1 NaOH, 1:10 w/v 
 
2. Organosolv lignin 

Moghaddam et 
al. (2014) 

Chemical composition 
Elemental analysis 
Molar mass 
Mannich reactivity 
FTIR spectroscopy 
TG 
2D HSQC 
31P NMR 
 

2. Pretreatment using acidified ethylene glycol 
with HCl 
3. Pretreatment using acidified ethylene glycol 
with H2SO4 
4. Pretreatment process using ionic liquids with 
HCl 
5. Pretreatment process using ionic liquids 
without HCl 
5. Alkaline pretreatment (170 °C, 1.5 h, 40 g L-

1 NaOH and 1:10 w/v 

Nakanishi 
(2016) 

Menezes et al. 
(2017) 

Chemical composition 
Elemental analysis 
HHV determination 
Molar mass 
2D HSQC 
Py-GC/MS 

From alkaline pretreatment 
(1.5% w/v NaOH, 1:15 solid/liquid for 30 min) 
L1. At 130 °C 
L2. At 130 °C with anthraquinone (AQ) 
L3. At 170 °C 
L4. At 170 °C with AQ 

Tana et al. 
(2016) 

Chemical composition 
Elemental analysis 
13C NMR/ 2D HSQC /31P NMR 
FTIR 
Py-GC/MS 
Molar mass 
TG 

1. Lignin from pretreatment 
2. Lignin from enzymatic hydrolysis, early 

pretreated 
3. Lignin from fermentation step, early 

submitted to a pretreatment and enzymatic 
hydrolysis steps 
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product designs. Besides the chemical characterization and elemental analysis, these raw 

materials  were characterized by the following methods/analyses: proton nuclear magnetic 

resonance spectroscopy (1H-NMR), 2D NMR Heteronuclear Single-Quantum Correlation 

Spectroscopy (HSQC), Pyrolysis-gas chromatography-mass (Py-GC/Ms) spectrometry  and 

Fourier Transform InfraRed (FTIR) spectroscopy to determine their functional and structural 

groups; Higher Heating Value (HHV) determination, and thermogravimetric (TG) analysis for 

thermal analysis and stability; particle size distributions by sieving and by laser scattering and 

Scanning Electron Microscope (SEM) for their morphological analysis. Some of these 

techniques are approached in the following. 

 

2.6.1 Chemical compositional analyses  

 

It is essential to determine the chemical compositional before or during their 

use/application because of several factors that can be affect the chemical compositional of 

lignocellulosic biomasses. Methods for determination of chemical composition of 

lignocellulosic materials aims to quantify accurately all components present in biomass, such 

as extractives amounts, cellulose and hemicelluloses (carbohydrates), lignin and ashes 

contents (Sluiter et al., 2010).  

Extractives can be easily extracted using water or organic solvents that consist in all 

plant parts that are extracellular or non-structural material from biomass (Hames, 2009). It is 

necessary to remove the extractives from biomass prior to analysis to prevent interference in 

later analytical steps (Sluiter et al., 2008). Woody feedstocks tend to contain less non-

structural materials than Herbaceous biomasses (Sluiter et al., 2010). 

Cellulose comprises 40-50%, hemicelluloses 15-30% and lignin 15-30% of 

lignocellulosic biomass (Alonso et al., 2012). Table 2.2 shows chemical compositional of 

different type and species of lignocellulosic biomass.  

Ashes (inorganic material) in lignocellulosic biomass can be divided according to its 

origin and its plant part: (1) inherent vascular ash within the cells, (2) structural ash contained 

in cell walls, and (3) ashes from soil and sand contamination during all processing of biomass 

(Kenney et al., 2014; Thyrel, 2014). The ashes content in biomass, either structural or 

extractable, should be measured as part of the total composition. Structural ash is bound in the 

physical structure of the biomass, while extractable ash can be removed by washing or 

extracting the biomass (Sluiter et al., 2008). The ashes in woody biomass are main composed 
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by Ca, Mg and Mn, whereas in herbaceous biomass by K, P, S and Cl (Thyrel, 2014; Vassilev 

et al., 2010). The major elements in descending order contained in charcoal from sugarcane 

bagasse are K, Ca, Mg, P, Fe, Na, Al and Ti (Garcìa-Pèrez et al., 2002). The ash content in 

sugarcane bagasse is about 3% (Rocha et al., 2015), whereas in different Eucalyptus wood 

species (Neiva et al., 2015), such as E. globulus and E. grandis, is about < 1.0%. Some factors 

influence this ash content, such as the crop and the harvest period. 

 

All values were normalized to sum 100%. Moisture, ash and extractive free basis. 

 

Chemical characterization methods are applied to compare different lignocellulosic 

feedstocks; to monitor the compositions of biomass (component balances) at different stages 

of global process in biorefineries; to determine process yields; analyzing the economic 

viability, for example, of biomass-to-biofuel processes (Templeton et al., 2016); to estimate 

the nutritional value of animal feed; to analyze the dietary fiber content of human food 

(Sluiter et al., 2010); and, to others purposes. In context of this study, it is essential to perform 

a suitable characterization before applying the lignocellulosic biomass as the feedstock in 

phenolic resin formulations.  

Table 2.2 - Chemical compositions of different lignocellulosic biomasses. 

Lignocellulosic biomass Lignin  Cellulose Hemicelluloses References 

Gramineous 10-30 25 – 40 25 – 50 Betts et al. (1991) 

Sugarcane bagasse 24 46 30 Rocha et al. (2015) 

Sweet Sorghum 22 49 28 Kim and Day (2011) 

Corn Stover 23 46 31 Zhu et al. (2005) 

Hardwoods 18 - 25 45 – 55 24 – 40 Betts et al. (1991) 

Eucalyptus globulus  19 - 30 47 – 50 12 – 22 Carvalho (1999) 

E. grandis bark 27 49 23 Lima et al. (2014) 

E. grandis x urophylla bark 28 52 20 Lima et al. (2014) 

Beech 22 43 34 Demirbaş (2005) 

Softwoods 25 - 35 45 – 50 25 – 35 Betts et al. (1991) 

Spruce  29 48 23 Demirbaş (2005) 

Pine (sapwood) 29 51 20 Waliszewska et al. (2015) 

Cedar 35 41 24 Rabemanolontsoa  (2015) 
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A portfolio of analytical methods (gravimetric or instrumental) is required to account 

for all the different components present in different lignocellulosic biomasses. The main 

challenge with these characterization methods is, to separately, isolate and quantify each 

component individually without any double counting, resulting in a summative mass close to 

100% (Hames, 2009; Templeton et al., 2016). Among the analytical methods of chemical 

characterization, the sulfuric acid hydrolysis of lignocellulosic biomass has been used to 

measure all its components for more than 100 years (Sluiter et al., 2010).  

 

2.6.2 Nuclear Magnetic Resonance (NMR) spectroscopy 

 
NMR technique, a powerful tool, has been widely employed in elucidating of lignin by 

means of its detailed structural characterization (Chen and Robert, 1988; Pu et al., 2011; 

Ralph and Landucci, 2010; Ralph et al., 2004). Important functional groups of lignins can be 

determined such as methoxyl (Gonçalves et al., 2000) and phenolic hydroxyl (Pu et al., 2011).  

Currently, different types of NMR spectroscopy are applied to assess the chemical 

structural of lignins, among them are 1H-NMR (more traditional and older) (Chen and Robert, 

1988; Gonçalves et al., 2000; Ibrahim et al., 2011; Tejado et al., 2007), 13C-NMR (Balakshin 

and Capanema, 2015; del Río et al., 2007; Nadji et al., 2009; Samuel et al, 2010; Santos et al., 

2011; Yang et al., 2014), 2D 1H-13C HSQC NMR (del Río et al., 2012, 2015; Menezes et al., 

2017; Menezes et al., 2016(b); Rencoret et al., 2009; Samuel et al., 2011; S. Yang et al., 2014) 

and 31P-NMR (Balakshin and Capanema, 2015; Granata and Argyropoulos, 1995; Jiang and 

Argyropoulos, 1998; Pu et al., 2011). In this study, 1H-NMR and 2D HSQC NMR techniques 

were used to chemical assessment of the lignocellulosic biomasses. In the following, the both 

NMR techniques will be addressed.  

 

 
1
H-NMR spectroscopy  

 
1H-NMR spectroscopy has been used as an alternative and non-degradative technique 

for the characterization of lignocellulosic materials. As shown in the literature (Chen and 

Robert, 1988; Gonçalves et al., 2000), hydrogen signals can be assigned in a 1H-NMR 

spectrum of acetylated lignin (Table 2.3). From integral of the area of main groups from 

lignin, relative amounts of important groups such as methoxyl and aromatic and aliphatic 

hydroxyls can be estimated.    
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Table 2.3 - Chemical shifts of 1H and attribution in acetylated lignins (adapted from Chen and 

Robert, 1988). 

Region chemical shift δ (ppm) Attribution 

9.00 - 12.00 Carboxylic acids and aldehydes 

6.25 - 7.90 Aromatic region 

5.75 - 6.25 Noncyclic benzylic region 

5.20 - 5.75 Cyclic benzylic region 

3.95 - 5.20 and 2.50 - 3.55 Aliphatic region 

3.55 - 3.95 Methoxyl 

2.20 - 2.50 aAromatic acetyl region 

1.60 - 2.20 aAliphatic acetyl region 

< 1.60 Nonoxygenated aliphatic region 

             aFor acetylated lignins.   

 

Heteronuclear Single Quantum Coherence (HSQC) spectroscopy  

 

HSQC NMR spectroscopy, a powerful analytical technique, shows the correlation 

between 1H and 13C atoms directly bonded to each other and is now widely employed for the 

assessment of lignin structure (del Río et al., 2015; Menezes et al., 2017; Ralph and Landucci, 

2010; Ralph et al., 2004; Rencoret et al., 2009; Rinaldi et al., 2016). The spectrum from 2D 

HSQC NMR of lignin can be divided up into three regions (Campos, 2014; Ibarra et al., 2007; 

Yang et al., 2014): (1) the aliphatic region (δC/δH 5-50/0.5-3.0), the oxygenated aliphatic 

region C-O (δC/δH 50-95/2.75-6.0), and (3) the aromatic region (δC/δH 95-145/6-8.5). Figure 

2.8 illustrates a full 2D HSQC contour map of a lignin. The main signals in aliphatic region 

are of acetyl correlation, in both alcoholic and phenolic acetates. Additionally, it can observed 

signals corresponds to lipids and lignin degradation products (Ibarra et al., 2007).  
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2.6.3 Py-GC/MS technique  

 
Py-GC/MS has proven to be a useful tool for lignin structure elucidation (Bezerra and 

Ragauskas, 2016; del Río et al., 2015; Rencoret et al., 2011; Tana et al., 2016). The Py-

GC/MS allows an estimative of the S-, G- and H-lignin units. Table 2.4 contains the main 

components released from these lignin aromatic units (S-, G- and H-units).  

                     

Table 2.4 - Main compounds released from S-, G- and H-units of sugarcane bagasse lignins 

from Py-GC/MS (based on Tana et al., 2016).  

From S-unit                                From G-unit           From H-unit 
Syringyl Guaiacyl Phenol 
4-methylsyringol  4-ethylguaiacol 3-methylphenol 
4-ethylysyringol  Eugenol 4-methylphenol 
4-allylsyringol  4-propyguaiacol 4-ethyl phenol 
4-propysyringol  cis-isoeugenol 4-allyphenol  
cis-propenylsyringol trans-isoeugenol cis-4-propenylphenol 
trans-propenylsyringol Vanillin trans-4-propenylphenol 
Syringaldehyde Homovanillin 4-hydroxybenzaldehyde 
Homosyringaldehyde Vanillic acid methyl ester  
syringic acid methyl ester Acetovanillone  
Acetosyrigone Guaiacylacetone  
Syringylacetone dihydroconiferyl alcohol  
Propiosyringone trans-coniferyl alcohol  
syringyl vinyl ketone Coniferaldehyde  
syringic acid    
dihydrosinapyl alcohol   
trans-sinapyl alcohol   
trans-sinapaldehyde   

 

2.6.4 Fourier Transform InfraRed (FTIR) spectroscopy   

 
Spectroscopy methods are based on the measurement of radiation emitted from a media 

or the interaction of electromagnetic radiation with a media. Electromagnetic radiation can be 

described a wave, for example, by its wavelength (μm), or its wavenumber (cm-1) - the 

number of waves per unit of distance. Infrared radiation covers the wavenumbers of 13,300 - 

3.3 cm-1. The infrared radiation can be divided into three regions: near-infrared (13,300 - 

4,000 cm-1), middle-infrared (4,000 - 200 cm-1) and far-infrared (200 - 3.3 cm-1) (Bykov, 

2008).   
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Infrared spectroscopy measures transitions between molecular vibrational energy levels 

as a result of the absorption of mid-infrared radiation (Larkin, 2011). Since the vibrational 

energy levels are unique to each molecule, infrared spectrum provide a “fingerprint” of a 

particular molecule (Larkin, 2011). The vibrational spectrum may be divided into typical 

regions shown in Figure 2.11. Infrared spectrometer can be divided into two groups: 

dispersive and Fourier Transform (Bykov, 2008). However, currently the FTIR spectrometers 

are the most used because they are more modern and have several performance advantages in 

relation to dispersive infrared (Thermo Nicolet, 2002).  

 

 

 

 

 

 

 

 

 

 

 

FTIR spectroscopy is a rapid, a time-efficient, a nondestructive technique that requires 

only small quantities of sample material (Traoré et al., 2016; Tucker et al., 2001). FTIR 

spectroscopy, an useful analytical method, is widely used in qualitative and also quantitative 

analysis of components in solids in the middle-infrared region (Tucker et al., 2001) because of 

its ability to provide information about functional groups abundance and other specific 

structural features (Traoré et al., 2016). The Figure 2.12 depicts the characteristics spectra of 

the main biomass components (cellulose, hemicelluloses and lignin).  

  

Figure 2.11 - Regions of the fundamental vibrational spectrum (adapted from Larkin, 2011). 
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2.6.6 Thermogravimetric analysis (TG) 

 

The fundamental of thermal analysis can be summarized ‘as the measurement of a 

change in a sample property, which is the result of an imposed temperature alteration’ 

(Hemminger and Sarge, 1998; White et al., 2011). Table 2.5 shows a listing of 

thermoanalytical techniques classified according to their measured physical properties. 

Among thermos analytical techniques, TG analysis was applied to assess the lignocellulosic 

materials (EHR and LBL). TG analysis and Differential Scanning Calorimetry (DSC) 

techniques were used in lignin-phenolic resins produced in this study. 

TG analysis is the most commonly applied thermoanalytical technique in solid-phase 

thermal degradation studies. Yang et al. (2007) performed TG analysis separately for the three 

major components of biomass (cellulose, hemicelluloses and lignin) (Figure 2.13).  

It may be observed that the decomposition of hemicelluloses started easier in relation to 

others biomass components. This fact can be related with random and amorphous structure of 

hemicelluloses rich in branches which are easier to remove from the main stem. The weight 

loss of cellulose mainly happens at a higher temperature range (315 - 400 °C) (Yang et al., 

2007). Among these three components, lignin is the most difficult one to decompose (Yang et 

al., 2007). 

 

Table 2.5 - Thermoanalytical techniques classification according to properties (White et al., 

2011). 

Thermoanalytical techniques Property 

Thermogravimetric analysis (TG) Mass 

First derivative thermogravimetry (DTG) Mass 

Differential thermal analysis (DTA) Temperature 

Differential scanning calorimetry (DSC) Heat 

Thermomanometry Pressure 

Thermodilatometry Dimensions 

Thermomechanical analysis (TMA) Mechanical properties 

Thermoelectrical analysis (TEA) Electrical properties 

Thermomagnetic analysis Magnetic properties 

Thermoacoustic analysis (TAA) Acoustic properties 

Thermoptical analysis (TOA) Optical properties 
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not suitable. An alternative to physically analyze lignin would be the small-angle X-ray 

scattering technique (SAXS). Brenelli et al. (2016) applied the small-angle X-ray scattering 

technique to provide biophysical parameters from lignin of soluble fractions. SAXS studies 

(Brenelli et al., 2016; Harton et al., 2012) have been performed to characterize lignin 

molecular architecture, shape, dimensions and intermolecular interactions.  

 

2.7 Lignin and lignin-based products market  

 

Lignin is the major by-product of chemical pulping and one the major in emerging 

biorefineries. About 55x106 tonnes year-1 of Kraft lignin are produced by chemical pulping 

(Liitiä and Tamminen, 2016). Lignin is mainly burnt in a chemical recovery process where it 

is an integral part of the pulp industries. As a result, less than 2% of the available lignin is 

isolated and sold, primarily in the formulation of dispersants, adhesives and surfactants. 

However, lignin-based product development is essential to extend the biorefinery concept. 

Pulp mills need to diversify their products portfolio to maintain their existence; and emerging 

biofuel/bioenergy technologies need to develop value-added from lignin in order to achieve 

economic and environmental sustainability (Mordor Intelligence, 2017). 

The lignin market can be segment based on product type, on its source and on its 

application. Based on product type, the lignin market can be divided as lignosulphonates, 

Kraft lignin, high-purity lignin (LignoBoost) and others. For example, the market for high 

purity lignin was expected to be valued at USD 8.82 million in 2015. Based on source of 

lignin, it is classified as Kraft pulping, sulphite pulping, and cellulosic ethanol. For example, 

the sulphite pulping source type in the global lignin products market was estimated at USD 

616 million in 2015. The production of sulphite pulps is much smaller than the production of 

Kraft pulps. Based on applications of lignin, the market is segment as concrete additives, 

animal feed, vanillin, dispersants, resins, and others. The vanillin segment in the global lignin 

products market was estimated at USD 54 million in 2015 (Mordor Intelligence, 2017). Table 

2.6 gathers some lignin-based products and their requirements. Among the lignin-based 

products, phenolic resins provide high-volume markets for lignin. Global demand of phenolic 

resins was 6 x 106 tonnes in 2013. In Figure 2.14, it can be observed the global phenolic resin 

demand by end use (Liitiä and Tamminen, 2016).  

The major companies that use lignin as raw material include Borregaard LignoTech, 

Tembec Inc., Domtar Corporation, WestRock Company, Asian Lignin Manufacturing Pvt. 
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Ltd. and among others (Mordor Intelligence, 2017). In Brazil, the Suzano (a Pulp and Paper 

Industry) is installing the first industrial plant of lignin and derivatives of Latin America 

(Limeira Unit - State of São Paulo) (Suzano, 2018). 

 

The objective of this research is to produce a phenol-formaldehyde resin, as this type of 

thermosetting polymer is quite common and has several applications (Chung and Washburn, 

2012). A brief outline of phenolic resins; their synthesis process, characteristics and 

applications, cure kinetics of phenolic resins and lignin as feedstock in phenolic resins will be 

presented next. 

 

Table 2.6 - Main product requirements and lignin applicability based on inherent structural 

features (based on Liitiä and Tamminen, 2016). 

 

 

Lignin-based products Main product requirements  
Phenol-formaldehyde resins  Reactivity: high phenol and low methoxyl content 

 Alkali solubility  
Polyurethanes  Reactivity: aliphatic hydroxyl functionalities 

 Dispersion stability  

 Low molar mass 
Thermoplastic composites  Thermally mouldable 

 Strength 

 Thermal stability 
Surface active agents  Water solubility  

 Hydrophilic/hydrophobic balance  
 Molar mass 

Carbonised materials  Less sensitive for purity or chemical structure 

 High quality demands for carbon fibers 
Fuels and chemicals  Native structure (high β-O-4 linkages) 

 Sulphur free  
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The main types of the phenolic resins, novolac and resole, can be used in different ways 

and applications. Concerning phenolic novolac resins, they are applied in wood coatings. 

They are used to formulate high-performance varnishes and oil-based vehicles and as curing 

agents for epoxy resins in applications such as moulding materials, laminates, coatings and 

adhesives. Moreover, novolac resins are used as coatings in the oil and gas industries and for 

saturating substrates in applications such as oil and air filters and cooling water media 

(Georgia-Pacific Chemicals, 2017).The resole-type phenolic resins are used in the automotive 

and aerospace industries, fiber-reinforced polymers, public transport and car rails. They are 

also used in the manufacture of wood and plywood products, oriented strand boards, 

laminated veneer lumber and composite panels (Chemicals, 2017; Ibeh, 1998; Showa Denko 

Group, 2017). Resole-type phenol-formaldehyde resin is the most common type of adhesive 

among the various adhesives that are required in many wood processing industries 

(particleboard, wood panels, fiber boards and plywood) (Chemicals, 2017).  

 

2.8.1 Synthesis of phenolic resins 

 

Phenolic resins are commonly produced by reacting phenol (C6H5OH) with 

formaldehyde (HCOH). Phenol is reactive towards formaldehyde at the ortho and para sites 

(sites 2, 4 and 6) allowing up to three units of formaldehyde to attach to the ring. Under acidic 

catalysis and an excess of phenol, novolac-type phenolic resins are formed; whereas resole-

type phenolic resins are formed under basic catalysts and an excess of formaldehyde, after 

heat and/or pressure application.  

Various parameters, such as formaldehyde/phenol (F/P) molar ratio, catalyst 

concentration, pH, reaction temperature and reaction time, could affect the characteristics of 

these resins (Pasch and Schrod, 2004). Depending on the formaldehyde to phenol molar ratio 

and the catalysts that are used, two different classes of resins can be formed: novolacs or 

resoles. Novolacs are thermoplastic polymers that require an ‘additive’ to enable further 

curing and the formation of insoluble and infusible products. On the other hand, resoles are 

capable of forming a network structure when submitted to heat and pressure during the 

moulding process (Ibeh, 1998). 

The cure of a thermosetting reactive prepolymer usually involves transformation of low-

molecular weight monomers from the liquid to the solid state as a result of the formation of a 
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polymer network by the chemical reaction of the reactive groups of the system. The formation 

of a thermosetting crosslinked network is depicted schematically in Figure 2.16.   

 
 

 

 

  

 

 

 

Two stages, which are divided by the gel point (tgel), are usually distinguished in this 

process (Laza et al., 2002):  

(1) Growth and branching of the polymer chains that occur in the liquid state, where the 

reactive system is soluble and fusible (thermoplastic resin). 

(2)  An infinite network of polymer chains that appears and develops only after the gel 

time (tgel). Then, the reactive system loses its solubility and fusibility, which leads to the final 

reactions, which take place in the solid state (thermosetting resin).  

Since lignin is rich in phenolic groups and is from a renewable source - and is more 

readily available, less toxic and less expensive than phenol - it can be a good option to 

produce these resins (Mansouri and Salvadó, 2006).  

 

2.8.2 Cure Kinetics of phenolic resins  

 

The cure step is the most critical element in thermoset processing (TA Instruments, 

2004). Understanding of the formation of a thermoset crosslinked network process (Figure 

2.16) has been advanced substantially (TA Instruments, 2004). From curing kinetics study, 

important kinetics parameters can be reached, as gel point, curing time, activation of energy 

and conversion values (TA Instruments, 2003). Kinetics study of curing process for phenolic 

resins can be performed by means of main three techniques: DSC, TG and rheology. These 

techniques can provide valuable information about the kinetics of curing reaction.  

The curing condensation reaction of the phenolic resin occurs, generally, up to 100 °C. 

In DSC curve, the endothermic evaporation of the water byproduct distorts the curing 

exotherm which must be analyzed in its entirety to obtain a valid kinetic model.  As indicated 

Figure 2.16 - Schematic representation during a thermosetting curing (adapted from TA
Instruments, 2004). 
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in literature (Alonso et al., 2006, 2004; Hitachi, 1981), this type of system must be run in a 

pressure DSC which can suppress the volatilization of the water. Thus, in this research it was 

chosen to perform the kinetic study by means of rheology, in particular, and 

thermogravimetry. Rheology technique allows measurement of the curing and rheological 

characteristics of phenolic resins and gives information about the changes in rheological 

properties (viscoelastic behavior) with time (isothermal) or temperature (dynamic)(Laza et al., 

2002).  

 

2.8.3 Lignin as feedstock in phenolic resins 

 

No further depolymerisation is required and processing is thus simpler to use lignin 

from industrial processes as feedstock in phenol-formaldehyde resins. Up to 50% of the 

phenol content in this material can be replaced, for example, by lignosulfonate, Kraft, or 

Organosolv lignin without significantly compromising properties of the resin (Rinaldi et al., 

2016). 

Numerous reports have been published on the preparation of resole-type phenolic resins 

from woody or agricultural lignin. Table 2.7 depicts some researches that used various type 

of lignin to partially replacing the petroleum-based phenol in synthesis of phenol-

formaldehyde resin.  

 

Table 2.7 - Some papers about lignin use in resole-type phenolic resins. 

 

Lignin type % phenol by lignin Authors (year) 
Enzymatic hydrolysis lignin from bioethanol 
production using cornstalk  

10 - 70% Qiao et al. (2015) 

Lignocellulosic ethanol residue from corn and 
wheat straws  

10 - 70% Zhang et al. (2013) 

Enzymatic hydrolysis lignin from cornstalk 
residues obtained in bioethanol production  

5 - 25% Jin et al. (2010) 

Organosolv lignin from white pine sawdust  25 - 75% Wang et al. (2009) 
Methylolated softwood ammonium lignosulfonate 35% Alonso et al. (2004) 
Alkaline lignin from sugarcane bagasse 10 - 60% Khan et al. (2004) 
Acetosolv lignin from sugarcane bagasse  40% Piccolo et al. (1997) 

Organosolv lignin 5 - 40% 
Çetin and Özmen 

(2002) 
Lignin obtained by acetosolv delignification 
of Eucalyptus globulus wood. 

20 - 40% Vázquez et al. (1995) 
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Çetin and Özmen (2002) studied the potential for partially replacing phenol (5-40%) 

with organosolv lignin (Commercial AlcellTM lignin) in resole-type phenolic resin used as an 

adhesive in particleboard production. The physicochemical characteristics analysed were free 

phenol and formaldehyde contents, hardening time and specific gravity. The greater the lignin 

amount in resins, higher values of free phenol and formaldehyde content. When compared 

with a commercial resole resin, it is noted that the hardening times were similar in resins with 

until 20% of lignin indicated that these resins had good curing properties. With respect to the 

specific gravity values, they were practically the same in all obtained resins. 

Alonso et al. (2004) assessed the potential of the partial phenol replacement (35%) by a 

methylolated softwood ammonium lignosulfonate in resole phenolic resins. The kinetic 

parameters of these resins were determined and the effect of lignosulfonate lignin on the 

curing process was analyzed by DSC technique. The authors observed that the cure process 

was slower in lignosulfonate resins than in commercial phenolic resins. However, the 

obtained values for the activation energy and the reaction order in the curing process were 

similar in both resins. 

Khan et al. (2004) partially replaced the oil-based phenol (10-60%) by alkaline lignin 

from sugarcane bagasse in synthesis of resole-type lignin-phenol resins. Thermal stability of 

these resins was found to be lower as compared to phenolic resin without lignin. By DSC 

studies, they observed a lower curing temperature for lignin-phenolic adhesive in comparison 

to phenolic adhesive.  

Zhang et al. (2013) used the lignocellulosic ethanol residue from corn and wheat straw 

in synthesis of resole-type phenolic adhesives. The better conditions for preparation of these 

adhesives were substitution rate at 50%. Higher levels of phenol replacement were limited by 

the decrease of the bonding strength. Phenolic resins without lignin had better heat resistance. 

Jin et al. (2010) assessed the potential for 5 - 25 wt% phenol replacement for enzymatic 

hydrolysis lignin in phenolic adhesives to use in high performance plywood production. This 

lignin was extracted with sodium hydroxide solution from cornstalk residues in bioethanol 

production. When the replacement percentage of phenol by lignin was in the range of 5-20 

wt%, the properties of glued plywoods with the adhesive are almost same of standard resin for 

first grade plywood. The wet bond strength was much higher than the standard resin when the 

maximum lignin replacement content was of 20 wt%. 

Qiao et al. (2015) used the enzymatic hydrolysis lignin to partially replace phenol for 

preparing phenolic resin. The main results found by them were: the limit of replacement 
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phenol without decreasing the adhesive strength was until 50 wt%. Wang et al. (2009) used 

the organosolv lignin as replacement of petroleum-based phenol at various ratios of 

substitution (25 - 75 wt%) in the synthesis of phenolic resole resins. This organosolv lignin 

was extracted from white pine sawdust with hot-compressed ethanol-water co-solvents. The 

curing process was retarded for phenol replacement higher than 50 wt%. It was noted that the 

introduction of lignin in the resin formula decreased the thermal stability of the resin, leading 

to a lowered decomposition temperature and a reduced amount of carbon residue at elevated 

temperatures. They concluded that in practical applications the replacement ratio of phenol 

with lignin be less than 50 wt%. 

Piccolo et al. (1997) used organosolv lignin for replacement 40 wt% of phenol in 

phenolic resin to use in thermosetting composite. This lignin was extracted from sugarcane 

bagasse by organosolv process (acetic acid/HCl/water). The use of lignin as a partial 

substitute of phenol in phenolic resins for applications different from those traditionally 

considered (as for instance adhesives) is viable as demonstrated by the results obtained for 

lignophenolic matrix composites, including those obtained by TG and DSC, which showed a 

similar thermal stability for phenolic.  

Vázquez et al. (1995) assessed the potential of lignin obtained by acetosolv 

delignification of Eucalyptus globulus wood in resole adhesives for plywood production. The 

reactivity of lignin-phenol-formaldehyde resins prepared with the eucalyptus lignin, as 

measured by their gel time, increased with formaldehyde/phenol (1.5 - 2.5) and soda/phenol 

(0.4-0.6) and decreased with increasing percentage of substitution of phenol by lignin. 

 

2.9 Composites using fibers as reinforcement  

 

Composite term is applied to heterogeneous or multiphase materials in which one of the 

components is discontinuous (reinforcement), and the other is a continuous component 

(matrix). The reinforcement is the main responsible for the material resistance, while the 

matrix is responsible to transfer and distribute the load to the reinforcement (Oliveira, 2008). 

Different types of composites present different characteristics, and their uses in different 

applications depend on factors such as structural performance, price and availability of raw 

materials, among other parameters (Pardini and Levy Neto, 2006). 

The use of  lignocellulosic materials (renewable) has been growing in recent years with 

the growing need to protect the environment and minimize dependence on non-renewable 
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Natural fibers, when used as reinforcement, provide good results compared to the 

technical fibers, such as glass fiber. Several natural fiber composites achieve the mechanical 

properties of composites with glass fibers and they are already applied, for example, in 

automobile and furniture industries. Some important natural fibers are jute, flax, bagasse and 

coir. Bagasse fiber composites appears to be promisor because they are cheaper, lighter and 

environmentally less aggressive to, in general, composites with glass fiber or other synthetic 

fiber (Verma et al., 2012). 

As earlier mentioned, this research aimed to insert the EHR (Enzymatic Hydrolysis 

Residue) in resins synthesis without any previous purification. Taking into account the 

concept of composite presented in this section, it was preferred to call the phenolic system 

with EHR (mainly lignin and cellulose fibers) as a resin. However, the idea of this research 

was to evaluate if these cellulose fibers present in the EHR acts as reinforcement in the 

phenolic resin. 
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Chapter 3 OBJECTIVES 

 

 

3.1 General Purpose 

 

This research aimed to explore the potential of two lignocellulosic materials 

(sugarcane bagasse and Kraft lignin) that are abundant in Brazil to produce phenolic resins 

formulations. The Enzymatic Hydrolysis Residue (EHR) from sugarcane bagasse and the 

LignoBoost Kraft lignin (LBL) from Eucalyptus were applied on the phenolic resins 

production.  

 

3.2 Specific Purposes 

 

 To perform a full characterization of the EHR and the LBL;  

 To synthesize phenolic resins by partially replacing petroleum-based phenol with 

LignoBoost lignin (LBL) in fractions of 5, 15, 30, 45 and 60 wt%; 

 To synthesize phenolic resins by partially replacing petroleum-based phenol with the 

EHR lignin in fractions of 5, 15, 30 and 45 wt%;  

 To determine the curing parameters of the phenolic resins with the EHR and LBL; 

 To perform a physicochemical and thermomechanical characterization of the phenolic 

resins with the EHR and LBL.  
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Figure 4.2 - Obtainment of the EHR at pilot scale (adapted from Menezes et al., 2016b). 

  

It was obtained from a process where sugarcane bagasse was pretreated in a 350 L steel 

reactor (Hastelloy C276) built by Pope Scientific. The hydrothermal pretreatment occurred at 

190 °C for 15 min with constant temperature and a solid/liquid ratio of 1:10. The purpose of 

this process was to hydrolyze the hemicelluloses, decreasing the recalcitrance of the biomass. 

Then, the enzymatic hydrolysis process was undertaken at 50 °C using the 15 FPU/g of dry 

biomass of cellulolytic complex (CelluclastTM 1.5 L) and 10 IU/g dry lignocellulose of β-

glucosidase (NovozymeTM 188).  

The enzymatic hydrolysis process was carried out in the same reactor used to the 

pretreatment process, a 350 L Hastelloy C276 (Pope ScientificTM) steel reactor. After the 

filtration step in a Nutshe filter (100 L capacity, Hastelloy C-276, Pope Scientific), a liquid 

stream enriched in glucose and a solid stream enriched in lignin were obtained. The former 

was conducted to the fermentation step and the latter was washed with water and dried at 

room temperature, obtaining the EHR. Mass yield values of each step were estimated for each 

step. Mass yield was determined divided the total final mass by total initial mass on each 

process and multiplied by 100 (%).  

In order to better characterize the EHR, it was submitted to two different extraction 

processes: the alkaline and the acidic-dioxane. These extracted lignins were used only for 

analytical and comparative purposes. The alkaline EHR and the acidic-dioxane EHR were 

analyzed by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) in order to 

determine the H, G and S-units amounts present in these lignins. The alkaline EHR and 

acidic-dioxane EHR were not used to phenolic resins production. The EHR was inserted in 

Enzymatic 
Hydrolysis 

Residue (EHR) 
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resins synthesis without any previous purification in order to assess how its fibers influence 

on the properties of their resins.  

The alkaline process for extraction of the EHR was performed as follow. Alkaline 

delignification process of the EHR using a NaOH solution (1.5%) was performed in a Parr 

Stirred Vertical Reactor (2 L). The solid/liquid ratio was 1:10. The reaction conditions were 

the following: 100 °C for 1 hour with stirring at 300 rpm. Next, the material was filtrated to 

precipitate the lignin; sulfuric acid (98%) was added slowly to the liquid part until pH 2 was 

reached. After storing it overnight in a refrigerator, the vacuum filtration was conducted. The 

extracted lignin from the EHR (alkaline EHR) was washed until pH 5 was reached. Lastly, it 

was dried overnight using a Thermo ScientificTM SpeedVac centrifuge.  

The acidic-dioxane method can be suitable for extracting lignin from EHR, because it 

uses mild conditions as organic solvents, minimizing the reactions of degradation and/or 

condensation (Fukushima and Hatfield, 2001). The acidic-dioxane extraction process based 

on Pepper et al. (1959) was performed in a system with a flask connected to a reflux 

condenser in a heating mantle. EHR and dioxane/HCl 2N (9:1) at ratio of 1:10 w/v were 

added to the flask. The extraction process occurred at 90 °C for 4 h. Then, it was submitted to 

filtration and wash processes. The liquid part was concentrated in a rotaevaporator to a small 

volume. Water was added to this concentrated and then, it was subjected to centrifugation 

process. The solids decanted consisted the extracted lignin, called here as acidic-dioxane EHR 

(Fukushima and Hatfield, 2001; Mobley, 1994; Pepper et al., 1959). 
Another material used in this research was a Eucalyptus Kraft Lignin from LignoBost 

process (LBL). This was provided by the Fibria Industry (a Brazilian pulp and paper 

company) for this research. It was obtained in a pilot plant of the LignoBoost process in the 

Fibria Industry. The LBL was originated from a Kraft pulping of Eucalyptus and obtained 

through the LignoBoost process (Hu et al., 2018; Tomani, 2010) (Figure 4.3). 
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Figure 4.3 - LignoBoost lignin process (Based on Tomani, 2010). 

 

The following analyses were carried out in order to obtain a detailed characterization of 

the EHR and the LBL: 

 Chemical composition: lignin, cellulose, hemicelluloses and ashes contents; 

 Elemental analysis: C, H, N, S, O%; 

 Fourier-transform Infrared (FTIR) spectroscopy: main functional groups; 

 1H-Nuclear Magnetic Resonance (NMR) spectroscopy: methoxyl and hydroxyl 

groups;  

 2D Nuclear Magnetic Resonance (NMR) spectroscopy (Heteronuclear Single 

Quantum Coherence - HSQC): H-, G-, S-lignin unit amounts;   

 Pyrolysis - gas chromatograph/mass spectrometry technique: H-, G-, S-lignin unit 

amounts; 

 Molar mass determination (only for LBL); 

 Calorific power: Higher Heat Value (HHV); 

 Thermogravimetric analysis (TG);  

 Particle size distribution by sieving and by laser diffraction; 

 Scanning Electron Microscopy (SEM).  

 

All characterization analyses of the LBL and EHR were carried out in facilities from the 

Brazilian Center for Research in Energy and Materials (CNPEM), with exception the molar 

mass determination that was performed in the Universidad Simón Bolívar (Venezuela).  
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4.1.1 Chemical composition   

 
The EHR and the LBL were chemically characterized according to the methodology 

developed by Rocha et al. (1997) and validated by Gouveia et al. (2009). The lignocellulosic 

materials were analyzed in order to determinate carbohydrates, acid-insoluble and soluble 

lignin and ash contents. The first step consists in acid hydrolysis of the samples. Two grams 

of dried and milled sample (≤ 20 mesh) were weighed into a 100-mL beaker. They were 

placed in a thermostated bath at 45 °C for 10 min. Then, H2SO4 72% solution (15 mL) was 

mixed vigorously with them for 7 min. They were removed from the bath and distilled water 

(50 mL) was added. Then, the solution was transferred to a flask (500 mL) and it was added 

distilled water (225 mL). The flask was capped and autoclaved at 121 °C for 30 min. Lastly, 

the hydrolysed solution was filtered and washed until complete 500 mL in a volumetric flask. 

 

Determination of acid-insoluble lignin content  

The filtrated was washed with 1.5 L of distilled water and placed in a weighing crucible. 

Later, it was put in drying oven at 105 °C until constant weight. After cooling the material, 

the mass was recorded. It was placed in a muffle furnace, adjusted to the following 

conditions: (1) 200 °C for 1 h, (2) 400 °C for 1 h, and (3) 800 °C for 2 h. After cooling, the 

mass was recorded again. By difference of the masses, the acid-insoluble lignin content was 

determined.  

 

Determination of acid-soluble lignin content 

The filtered solution was diluted (1:10) and the pH was adjusted to 12-12.5. The 

absorbance was measured at 280 nm in the Evolution 300 UV-Vis Thermo ScientificTM 

spectrophotometer. The content of soluble lignin was estimated applied the Equation (1). 

 Clignin = (4.187 ∗ 10−2( AT − Apd) − 3.279 ∗ 10−4) 

 

 
Clig: Concentration of acid-soluble lignin (g/L);  
AT: Absorbance of the lignin and degradation products solution (280 nm);  
Apd: Absorbance at 280 nm of the decomposition products from sugars (c1 ε1 + c2 ε2) where 
the c1 and c2 concentrations were previously determined by High Performance Liquid 
Chromatography and ε1 and ε2 are the absorptivity values that correspond, respectively, 
146.85 e 114.00 L g-1 cm-1. 

(1) 
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(3) 

(4) 

Equation (2) (Ehrman, 1996) would be more adequate to estimate the amount of acid-

soluble lignin in the LBL since the absorptivity of 110 L g-1 cm-1 is the usual value for wood. 

However, once the LBL has a relatively low content of acid-soluble lignin, it was preferred to 

use Equation (1) in order to better compare with the EHR. 

 Clignin = 𝐴𝑏 𝑥 𝑎 x df 
 

Clig: Concentration of acid-soluble lignin (g/L);  
A: Absorbance of the wood lignin at 205 nm;  
df: dilution factor; 
b: cell path length (1 cm) 
a: absorptivity.  

 

The total lignin content was resulting of the sum of the acid-insoluble lignin and acid-

soluble lignin.  

 

Determination of carbohydrates contents 

Sugars, organic acids, furfural and hydroxymethylfurfural (HMF) contents of the 

hydrolysed solution were quantified using High Performance Liquid Chromatography 

technique. Glucose, cellobiose, formic acid and HMF concentration values were inserted in 

Equation (3) to determine the cellulose content and xylose, arabinose, methyl glucuronic acid 

(MGA), acetic acid (AA) and furfural concentration values were inserted in Equation (4) to 

determine the hemicelluloses content.  

 

 Cellulose = 0.90 Glucose + 0.95 Cellobiose + 1.29 HMF + 3.5 Formic acid Dry lignocellulosic material (g)  x100 

 Hemi = 0.88 Xylose + 0.88 Arabinose + 0.72 AA + 1.0 MGA + 1.37 FurfuralDry lignocellulosic material (g)  x100 

 

  

(2) 
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Determination of ash content  

Samples of 2.0 g were placed in a crucible (previously dried and weighed) and placed 

into a muffle furnace adjusted as the following conditions: 200 °C (1 h); 400 °C (1 h); 800 °C 

(2 h). After cooling, the crucible with ash was weighed. The total ash content is determined by 

discounting the weight of the dried crucible.  

 

4.1.2 NMR Spectroscopy  

 

The EHR and the LBL were submitted to acetylation reaction with anhydrous pyridine 

(10:1 V/w of sample) and acetic anhydride (10:1 v/w of sample) for 12 h with stirring at room 

temperature (Lu and Ralph, 1997). Acetylated and dried samples were submitted to analysis 

of solution 1H-NMR and 2D HSQC NMR. Samples with concentration of 25 mg/mL of 

deuterated chloroform (Aldrich, 99.8 atom% D, containing 0.03% v/v TMS) were placed in a 

5 mm NMR tube into the NMR equipment (AgilentTM DD2 500 MHz with inverse z-gradient 

triple resonance probe). NMR analyses were carried out in a facility from Brazilian 

Biosciences National Laboratory (LNBio - CNPEM). 

 
1
H-NMR spectroscopy  

1H-NMR spectra of acetylated lignins were obtained with following conditions: 

acquisition time of 2.0 s, relaxation delay of 1.0 s, spectral width of 8000 Hz and 256 scans 

(Chen and Robert, 1988). The software Mnova NMR was used for visualization, processing 

and reporting of the 1D NMR spectra.  

 

2D HSQC NMR spectroscopy  

Pulse programme HSQC adiabatic (gHSQCad) was selected with spectral widths of 

8000 Hz (0 - 16 ppm) and 25000 Hz (0 - 200 ppm) for 1H- and 13C- dimensions, respectively. 

The main acquisition parameters of HSQC contour maps are displayed in Table 4.1. The free 

NMRPipe software was used for processing, analysing and exploiting the 2D HSQC data. 

Prior to Fourier transformation, two-dimensional data were zero-filled to obtain a matrix size 

of 4K x 1K points. Additionally, a Gaussian and a shifted sine-bell window were applied in f2 

(1H) and f1 (13C), respectively. Finally, a polynomial baseline correction was performed. 

HSQC cross-signals were assigned by comparison with literature data (Ralph et al., 2004; del 

Río et al., 2015).  
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Table 4.1 - Main acquisition parameters of 2D NMR spectra. 

 

 

 

 

 

 

 

 

4.1.3 Pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) 

 

Pyrolysis of the LBL, EHR, alkaline EHR and acidic-dioxane EHR (approximately 

100 μg) was performed with an EGA/PY-3030S micro-furnace pyrolyzer (Frontier 

Laboratories Ltd.) connected to a Shimadzu CG2010Plus gas chromatograph using an Ultra 

alloy fused-silica capillary column (30 m x 0.25 mm i.d., 0.25 μm film thickness) and a 

Shimadzu QP-2010 Ultra mass selective detector. The pyrolysis was performed at 500 ºC. 

The oven temperature was programmed from 45 ºC (4 min) to 300 ºC (20 min) at 2 ºC min-1. 

Helium was the carrier gas (1 mL min-1). The compounds were identified by comparing their 

mass spectra with those of the Wiley and NIST libraries and those reported in the literature 

(Ralph and Hatfield, 1991; Tana et al., 2016). Peak molar areas were calculated for the lignin-

degradation products, the summed areas were normalized, and expressed as percentages. Two 

analyses were performed for each sample. 

 

4.1.4 Fourier Transform - InfraRed spectroscopy (FTIR) 

 

Dried previously samples of the EHR and LBL were used in the preparation of KBr 

pellets (1 mg of sample to 100 mg of KBr at 10 - 12 kgf cm-2). FTIR spectra were obtained in 

the range of wavenumber from 4000 to 650 cm-1 using a Perkin ElmerTM 400 

spectrophotometer. The FTIR bands of lignocellulosic samples spectra were assigned by 

comparison with literature data assignment (Singh et al., 2005).  

 

Parameters   

Pulse sequence gHSQCad 

Number of Scans 32 

Recycle delay (s) 1.0 

Nucleus 1H 13C 

Spectrometer frequency (MHz) 500 125 

Spectral Width (Hz) 8,000 25,000 

Spectral Size 2,048 2,048 
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(5) 

(6) 

4.1.5 Elemental Analysis and C9-formulae  

 

Carbon, hydrogen, nitrogen and sulfur contents from the EHR and LBL were 

determined by using in the PerkinElmerTM
 2400 Series II CHNS/O Elemental Analyzer. The 

oxygen content was calculated by difference. The Double Bonds Equivalent (DBE) was 

calculated based on the elemental compositional (CaHbOcSd) (Equation 5) and the protein 

content was calculated according to Equation (6) (Hussein et al., 2011).  

 DBE = (2𝑎 + 2) − 𝑏2  

 𝐏𝐫𝐨𝐭𝐞𝐢𝐧 𝐜𝐨𝐧𝐭𝐞𝐧𝐭 (%) = 𝟔. 𝟐𝟓 ∗ 𝐍(%) 

 

The C9-formulae of the EHR and the LBL were estimated (Gonçalves et al., 2000). C9-

formula is an empirical formula of the lignin macromolecule based on its phenylpropane unit. 

It is composed by six carbon atoms at the benzene ring plus three carbon atoms of the propane 

side-chain (Gonçalves et al., 2000). The C9-formula of LBL was based on the data from the 

elemental analysis and 1H-NMR. The C9-formula of the EHR was also estimated. However, it 

is known that the high cellulose content in the EHR contributes to its C9-formula. 

 

4.1.6 Molar mass determination by viscosimetry  

 

The EHR and the LBL were sent to Universidad Simón Bolívar (Venezuela) in order to 

determine their molar mass by viscosimetry technique performed by group of the Professor 

Dr. Marcos A. Sabino.     

The solubility of the samples is a predominant factor in order to perform the 

measurement of the molar mass by viscosimetric methods. Thence, a previous test of 

solubility was carried out. Methanol, ethanol, tetrahydrofuran and a 0.5 M NaOH solution 

were used as solvent for this solubility study.  

100 mg of each sample was dissolved in 10 mL of the solvent. It was left during 

overnight at room temperature. Subsequently, it was filtered under vacuum, using a porosity 

paper. After filtration, it was dried in the oven at 60 °C. This procedure was repeated for each 

solvent. Through this solubilization study, it was found that the highest solubility reported for 
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the LBL was in a NaOH solution (0.5 M). The EHR was discarded from the viscosimetry 

analysis because it presented many problems to achieve its solubility. The gel formed was 

very difficult to handle, and it was not possible to dissolve or under conditions of temperature, 

ultrasound, etc.  

The molar mass determination of the LBL was performed as described in the following. 

A stock solution of approximately 1% w/v in 0.5 M NaOH was prepared and placed in the 

ultrasound for two hours to obtain the highest possible solubility. After 24 h, it was filtered. 

Five diluted solutions (0.8, 0.6, 0.5, 0.4, 0.2% w/v) were prepared from the stock solution at 

1% w/v. The decay time through the capillary tube (Ubbelohde viscometer) of the pure 

solvent and of the each solution were annotated at 30 °C. Ten measures were taken for each 

solution, and the average value was determined. Then, the viscosities were calculated 

according to the Mark-Houwink-Sakarada theory.   

Capillary viscometry is an easy-to-run experimental method that provides information 

on the size and conformation of macromolecules in infinitely dilute solutions (Delpech et al., 

2007; Mello et al., 2006). This information is provided by the interactions between the 

polymer and the solvent (Costa et al., 2015). A parameter obtained by this method is the 

intrinsic viscosity [ɳ] (Mello et al., 2006),which it is considered a measure of the volume of a 

single molecule of polymer in ideal condition (Costa et al., 2015). The way to obtain this 

parameter is by the graphic extrapolation and the application of mathematical equations, such 

as those proposed by Huggins (H) Kraemer (k) and Schulz-Blaschke (SB) (Costa et al., 2015; 

Huggins, 1942; Kraemer, 1938). The relationship between the intrinsic viscosity (ɳ) and the 

average viscometric molar mass (Mv) is that described by the Mark-Houwink-Sakurada 

(MHS) Equation (7). 

 [ɳ] = 𝑘(𝑀𝑣)𝑎                                                                 (7) 

 

In this equation, k and a are viscosimetric constants that vary according to the type of 

solvent, temperature and chemical structure of the polymer (Costa et al., 2015; Kasaai, 2007; 

Shen et al., 2004). In the determination of the molar mass using the capillary viscometry 

method, it is required to know the two constants of Equation (7). These values are reported in 

the literature for a temperature of 30 °C in a 0.5 M NaOH solution. The values of the 

constants are k = 0.4165 and a = 0.23 (Dong and Fricke, 1995). 
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4.1.7 Determination of Higher Heating Value  

 

Experimental HHVs of the EHR and LBL were measured using a calorimeter system 

(IKATM C-200). In addition, theoretical HHVs were estimated as a function of the contents of 

C, H, O, and N according to Equation (8) proposed by Demirbas et al. (1997) for 

lignocellulosic materials (on dry and ash-free basis). Rocha et al. (2015) estimated the HHVs 

from elemental composition of 60 sugarcane bagasse samples also using the Equation (8). 

Theoretical HHV to the EHR and LBL were obtained using Equation (8):  

 

 HHV =  (33.5 [%C] + 142.3 [%H] − 15.4 [%O] − 14.5 [%N]) 

 

4.1.8 Thermogravimetry analyses  

 

The TG analyses were performed to study the thermal degradation behavior of the EHR 

and LBL. The equipment was a simultaneous TG/DSC analyzer (TATM Instruments SDT-

Q600) with burning method. The samples (6.0 - 6.5 mg) were put in platinum pans and heated 

from 25 to 700 °C at 10 °C min-1 under nitrogen atmosphere (100 mL min-1). 

 

4.1.9 Physical characterization 

 

The particle size distribution of the EHR was determined by sieving and by Laser 

Scattering. The particle size distribution of the LBL was only determined by Laser Scattering 

due to its small particle size. The particle size distribution of the EHR by sieving was 

performed as following. Initially the EHR were well mixed and the agglomerates contained in 

it were manually undone. Sampling was performed by quartering to obtain samples with 

better representativeness. Four EHR samples (≈ 60 g) were forwarded to particle size 

distribution analysis. A vibratory sieve shaker (Analysette 3, FritschTM) with a sieve stack 

(sieve opening sizes from 4.75 mm to 0.15 mm) was used in this analysis. The sieving time 

was set to 15 min and the selected amplitude of the sieve stack vibration was 3.0 mm.  

Particle size distributions were evaluated by Laser Scattering to: the LBL, the EHR 

from bottom of sieve set (< 0.15 mm), and the milled EHR. The milling process of EHR was 

done in a variable-speed-rotor-mill at 11000 rpm using a 0.08 mm sieve (Pulverisette 14, 

FritschTM). In the Laser Scattering analysis, the samples were previously suspended in water. 

–

–

–

–

(8) 
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Then, the laser diffraction particle size analyser used was the Beckman Coulter LS 13 320 

instrument with the Liquid Universal module. The instrument was operated with 780 nm light 

source, 8% obscuration, and a Fraunhofer light-scattering model. The applied mathematical 

treatment considers that the particles are spherical (Driemeier et al., 2011). 

 

4.1.10 Scanning Electron Microscope (SEM) analysis 

 

SEM images of the EHR from bottom of sieve set (< 0.15 mm) and the milled EHR 

were taken. SEM images were acquired with a Scanning Electron Microscope (FEITM Quanta 

650 FEG) with secondary electron detector - Everhart Thornley Detector (high vacuum). The 

beam conditions were 5.0 - 15.0 kV with a spot size of 3.0 and a working distance of 8.0-10.0 

mm. The samples were mounted on stubs and sputter coated with gold using a BAL-TEC 

SCD 050 sputter coater (40 μA, 60 s). SEM analyses were carried out at Brazilian 

Nanotechnology Laboratory (LNNano - CNPEM). 

 

4.2 Synthesis of phenolic resins with the EHR and LBL 

 

The milling process of EHR was done before the synthesis reactions using a Pulverisette 

at 11000 rpm with a 0.08 mm. Solubility tests of the EHR and LBL samples were performed 

prior to start the synthesis of lignin-phenol-formaldehyde resins in order to define which 

initial conditions provide a more homogeneous reaction medium. The amounts of solubilized 

EHR and LBL (%) were determined by gravimetric analyses as described in the following. 1 

g (dry basis) of lignin from the EHR or the LBL samples was added in a 100 mL flask 

containing KOH solution (pH 12, solid:liquid 1:10). In a glycerine bath, the system under 

stirring was warmed until experimental temperature for 1 h. In assays with catalyst addition, 

about 1 g of 85% KOH pellets (PA ACS. 85% - Dinâmica) was added at the beginning. The 

material was then filtered through a porous crucible by vacuum filtration. By mass difference, 

the solubilized lignocellulosic material was quantified. For the tests using EHR, it was 

considered that there was no loss of cellulose and hemicelluloses under these conditions. A 

factorial design 22 was performed (Table 4.2) in order to evaluate the effect of temperature 

and catalyst (KOH) on lignin solubilization.  

 

  



62 
 

 
 

Table 4.2 - Factorial design 22 of solubility tests and their response (solubilized lignin). 

 

 

 

 

 

 

           

 

 

In parentheses, standard deviation values are shown. 
 

Using the Statistic software, the principal effects and interaction effect, the p values and 

the confidence interval were obtained (Table 4.3).  

 

Table 4.3 - Factorial design 22 of solubility tests. 

 

 

 

 

 

 

 

 

The effects values that are underlined were significant at the 95% confidence level. The 

others were neglected because include the zero value in the confidence intervals. Another way 

to evaluate the effect significance is by the p value test. If p-value > 0.05 (95% confidence 

level), the effect is not significant. It is noted in Table 4.3 that only the principal effect of 

catalyst has a positive and significate influence on the lignin solubility from the LBL. With 

respect to the EHR, both the temperature and the catalyst presence have positive and 

significant influence on its lignin solubility, but the catalyst factor shows a higher positive 

influence. From this solubility study, it was chosen to add the catalyst in the first reaction step 

and to carry out the synthesis reaction of resole-type lignin-phenol resins at 70 °C. 

Samples T (°C) Catalyst Solubilized lignin (%) 

LBL 

70 
Without 

9.0 (0.06) 

90 9.3 (0.87) 

70 
With 

98.6 (0.54) 

90 99.5 (0.06) 

EHR 

70 
Without 

12.5 (0.95) 

90 15.0 (1.10) 

70 
With 

59.5 (0.74) 

90 65.9 (1.52) 

 Factor Effects p-value 95% confidence interval 

LBL Temperature 0.7 0.28 -0.4 - 1.0 

Catalyst 89.9 0.00 44.2 - 45.6 

Temp. x Catalyst 0.3 0.55 -0.5 - 0.8 

EHR Temperature 4.7 0.01 1.8 - 7.7 

Catalyst 49.2 0.00 46.3 - 52.2 

Temp. x Catalyst 1.6 0.20 -1.3 - 4.6 
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The following phenolic resins with LBL and EHR were assessed in this research: LBL 

5%, LBL 15%, LBL 30%, LBL 45%, LBL 60%, EHR 5%, EHR 15%, EHR 30% and EHR 

45%. If not specified, all the percentages are expressed by weight. In order to compare, a 

standard resin (phenol-formaldehyde resin without lignin) also was produced.  

This research aimed also to insert the EHR in resins synthesis without any previous 

purification and to assess how these fibers influence the properties of their resins. The 

synthesis reactions were based on Paiva and Frollini (2001). The mass ratio of formaldehyde, 

phenol and KOH was 1.41:1.00:0.06. This corresponds to a molar ratio of 

phenol:formaldehyde of 1.0:1.5. The reactions occurred in alkaline medium with excess 

formaldehyde in order to favour resole-type phenolic resins. The reaction system is shown in 

Figure 4.4. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.4 - Synthesis system of resole-type phenolic resins. 
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The reactions were performed in the following steps (method adapted from Paiva and 
Frollini, 2001): 

 Lignin Solubilization/Formation of the phenolate anion and stabilization of the formed 

negative charge. 

 In a 3-necked flask (500 mL), KOH solution pH 12 (1:10 w/v lignin:alkaline solution) 

and 50% from total mass of 85% KOH tablets (PA ACS. 85% - Dinâmica) were added. Under 

mechanical stirring at 200 rpm and heating until 70 °C. Upon reaching this temperature, the 

LBL or EHR was added to system in order to solubilise it. This solubilization process was at 

constant temperature for 1 h.  

 

 

 

 

 

 

 

 Hydroxymethylation reaction of the lignin (formaldehyde addition)    

After the solubilization of the EHR or the LBL in alkaline solution, formaldehyde solution 

(Synth, 37 wt.% in H2O) was added to the system in order to the lignin was 

hydroxymethylated, since the hydroxymethylated lignin is more reactive than the phenol 

reactant. This step was performed in 30 min.  

 

 

 

 

 

 

Dihydroxymethylation for H-unit 
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 Self-condensation reaction (remaining phenol and KOH (+3%) addition)  

 After the hydroxymethylation reaction of lignin, crystal phenol reactant (P.A ACS 

Dinâmica) and the remaining 50% from total mass of KOH tablets were added to the system. 

This reaction occurred for 2 h at 70 °C. However, there were variations in temperature 

because it is an exothermic reaction. At the end of the reaction, the flask was ice-cooled and 

the reaction medium was neutralized with HCl solution to pH 7.0-7.7.  

 

 

 

 

 

 

Self-condensation reaction between (hydroxymethyl).  

 

 

 

 

              Phenolic prepolymer. 

 Solvent removal  

 The solvent was removed using a rotoevaporator under reduced pressure (30 to 150 

mbar), 60 rpm, 55 - 60 °C for about 2 h, resulting in a viscous and brown resin. Aliquots were 

removed at the end of the reaction for FTIR analysis. 

 

 

 

 

 

 

 

 

 

 

                                                                                                                    Phenolic resin  
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The obtained resole-type phenolic resins were removed from the rotary flask still heated 

so that the resin did not harden within the flask. The well-sealed jars with the resins were put 

into the freezer at 10 °C for further analysis.  

 

During the synthesis reactions, pH values were measured (Table 4.4), since having 

basic pH is a determinant factor so that the product generated is resole-type phenolic resin.  

 

Table 4.4 - pH of the synthesis reactions of the resole-type phenolic resins. 

 

 

The curing process of resole-type phenolic resins to obtain thermosetting resins (Figure 

4.5) was performed in a hydraulic press (Labtech). The curing parameters (temperature and 

time) were based on the rheological study. The curing cycle used had the following 

conditions: (i) 70 °C, 30 min; (ii) 90 °C, 30 min and, (iii) 105 °C, 2 h. The pressure applied in 

entire cycle curing was of 50 Bar. After the curing cycle was completed, thermosetting resins 

obtained were demoulded from the moulds. The thermosetting phenolic resins for the 

mechanical tests were prepared in this hydraulic press machine.  

  

Phenolic resins pHi pHf 

Standard 7.6 7.6 

LBL 5% 8.7 8.6 

LBL 15% 9.2 8.9 

LBL 30% 9.3 8.9 

LBL 45% 9.2 8.8 

LBL 60% 8.9 8.4 

EHR 5% 9.3 9.1 

EHR 15% 9.1 8.8 

EHR 30% 9.2 8.8 

EHR 45% 9.1 8.5 
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component) and loss modulus – G” (viscous component) (Bröckel et al., 2013). Gel time (tgel) 

values for each resin were estimated by the crossover point (G’=G’’) criteria (Laza et al., 

2002). These analyses were performed in the "Laboratório de Desenvolvimento de Processos 

de Separação (LDPS)" - FEQ - UNICAMP. 

 

4.3.2 TG Kinetics Analysis  

 

The curing parameters of the LBL 5% and EHR 5% resins were also assessed by TG 

kinetics analysis. The TA Instruments TG Kinetics Analysis program was used to analyze 

data from the Thermogravimetric Analyzer instrument. This program utilizes data gathered by 

running a sample at various heating rates (at least three TG data files). This software operates 

in accordance with the ASTM Standard E1641 “Decomposition Kinetics by TG” (TA 

Instruments, 2003). TG curves were obtained from 30 to 700 °C at different heating rates (5, 

10 and 20 °C min-1) under a N2 flow of 100 mL min-1 in a SDT Q600 thermogravimetric 

analyzer (TA instruments).  

 

4.4 Characterization of the phenolic resins with the EHR and LBL  

 

The obtained phenolic resins with LBL and with EHR were submitted to 

physicochemical and thermomechanical characterization. The following techniques were 

applied to perform this characterization: 

 Solid content determination;  

 Zero shear-rate viscosity (ƞ0) determination;   

 Thermogravimetric analyses (TG); 

 FTIR spectroscopy;  

 2D HSQC NMR spectroscopy; 

 Differential Scanning Calorimetry (DSC); 

 Dynamic Mechanical Thermal Analysis (DMTA).  

 

4.4.1 Solid content and viscosity determination 

 

The solid content of the obtained phenolic resins was determined by gravimetric 

analysis (Dias, 2014). Samples of 1.0 g were placed in a crucible (previously dried and 
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weighed) and placed in a heating oven (Thermo ScientificTM Vacutherm) at 105 °C (3 h). 

Then, the crucibles systems were placed in a desiccator for 15 min.  After cooling, the 

crucible systems were weighed. The solid content was determined by discounting the crucible 

weight (Dias, 2014).  

The viscosity profiles of the resole-type resins were determined in the same rheometer 

used to perform the curing kinetic study. The zero-shear rate viscosity (η0) of the resole-type 

resins at 25 °C were determined from the viscosity profiles as a function of shear rate. The 

shear rate ranged of 0 - 2 s-1 in 50 steps. The η0 values were determined by linear regression 

through the Carreau-Yasuda model (Zuniga Linan et al., 2015). 

 

4.4.2 TG Analyses 

 

TG analyses of the obtained phenolic resins were performed in order to evaluate their 

curing step and thermal resistance. The equipment used was a Shimadzu (50 M) 

thermogravimetric analyzer. About 10 mg of each resin was put in a pan and heated from 25 

°C to 500 °C at     10 °C min-1 under nitrogen atmosphere (100 mL min-1). These analyses 

were performed on the “Laboratório de Caracterização de Biomassa - LRAC”, 

FEQ/UNICAMP.   

 

4.4.3 FTIR spectroscopy  

 

Samples of the obtained resins before (adhesives) and after (thermosetting) the curing 

process performed on the hydraulic press were submitted to FTIR technique. These analyses 

were performed in order to confirm if reaction product was really phenolic resins (Poljanšek 

and Krajnc, 2005). FTIR spectra were obtained in the range of wavenumber from 1,750 to 

750 cm-1 with spectral resolution of 4 cm-1, 32 scans using a Perkin ElmerTM 400 

spectrophotometer. These analyses were performed in a facility from CTBE - CNPEM.   

 

4.4.4 HSQC Spectroscopy 

 

These analyses were performed using a similar method described in 4.1.2 section, with 

some differences. Samples of the Standard and LBL 30% resins were previously dried in a 

high vacuum system for three days at room temperature. The resins were solubilized in a 
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deuterated dimethyl sulfoxide (DMSO-d6) (Aldrich containing 0.03% v/v TMS) with 

concentration of 50 mg mL-1. Lignin structure leads much more time to define its signals in 

the HSQC spectrum than the standard phenolic resin. For this reason, the chosen analysis time 

was of 3 h for the standard phenolic resin, whereas it was 6 h for the LBL 30% resin. These 

analyses were carried out in a facility from Brazilian Biosciences National Laboratory 

(LNBio) - CNPEM. The phenolic resin with EHR was not submitted to this technique, 

because it was not possible solubilize this sample on DMSO-d6.  

 

4.4.5 DSC 

 

The samples (±5 mg) were put in a standard Aluminum crucible (Mettler Toledo, 40 μL, 

with pin and lid) and heated from 0 to 500 °C at 20 °C min-1 under nitrogen atmosphere (20 

mL min-1). These analyses were carried out in Differential Scanning Calorimeter (Mettler 

Toledo) located on the "Laboratório de Desenvolvimento de Processos de Separação 

(LDPS)" – FEQ - UNICAMP. 

 

4.4.6 DMTA technique   

 

Samples of the thermosetting phenolic resins of 24x12x1 mm were obtained to DMTA 

from the curing process in hydraulic press with the following conditions: (i) 70 °C, 30 min; 

(ii) 90 °C, 30 min and, and (iii) 105 °C, 2 h. The pressure applied in entire cycle curing was of 

50 Bar.  

DMTA was performed in a dynamic mechanical analyzer (model 2980, TA 

Instruments) operating in the single cantilever mode. The experimental conditions were 

frequency of 1 Hz, amplitude of 17.5 µm, torque of 15 cN, temperature range of 35 - 300 °C, 

and heating rate of 5 °C min-1. In the beginning of each analysis, an isotherm at 35 °C for 5 

min was applied.  

The measurement properties in DMTA were G', G’’ and tan δ (G’’/G'). The same 

properties that were assessed in rheological study, but in DMTA, the samples analyzed were 

the thermosetting phenolic resins, i.e., the resins obtained after the curing process in the 

hydraulic press. For each type-resin, at least two analyses were performed. These analyses 

were carried out in "Laboratório de Caracterização de Materiais (LACAM)" – FEQ – 

UNICAMP. 
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Chapter 5 RESULTS AND DISCUSSION   

 

 

5.1 Characterization of the EHR and the LBL 

 

5.1.1 Chemical composition and mass balance 

 

Table 5.1 shows the results of moisture, total lignin, cellulose, hemicelluloses, and ash 

content in the EHR and LBL. 

 

Table 5.1 - Determination of components (% w/w on dry matter) of the EHR and the LBL 
(Menezes et al., 2016b). 

 
 
 
 
 
 
 
 

 
 
In parentheses, the standard deviation of the samples is shown.  
aThe small amounts of glucose and xylose are probably in lignin-carbohydrate complex, thus, 
the cellulose and hemicelluloses equivalent values are not shown in this table.  

 

The EHR still remains with about 40% of cellulose content and the LBL has a total 

lignin content (99%) much higher than in the EHR (47%). This is expected, since the 

LignoBoost process aims to obtain a high-purity lignin. The EHR also has hemicelluloses 

(4.5%), but it is still a low amount compared to the cellulose content therein. Its total ash 

content (8.4%) is even greater than its hemicelluloses content. Further studies should be 

conducted to evaluate the effect of the ashes contained in the EHR on the mechanical 

properties of the resins. It must be emphasized that the EHR process provides potentially a 

high amount of cellulose fibers that could be applied as reinforcement in phenolic resins. 

In order to perform the mass balance of the EHR, chemical compositions of the raw 

sugarcane bagasse and the pretreated sugarcane were also determined. The mass yields of the 

 EHR LBL 
COMPONENTS   

Moisture 6.8 5.9 
Acid Soluble Lignin 10.4 (0.15) 11.8 (0.13) 
Acid Insoluble Lignin 36.9 (0.07) 87.2 (0.53) 
Total Lignin 47.3 (0.08) 99.0 (0.39) 
Cellulose 39.8 (1.34) a -- 
Hemicelluloses 4.5 (0.13) a -- 
Total Ash 8.4 (0.06) 0.7 (0.04) 

–

–
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hydrothermal pretreatment and enzymatic hydrolysis steps were 63.5% and 53.5%, 

respectively.  

Figure 5.1 represents the mass balance to hydrothermal pretreatment and the hydrolysis 

enzymatic process. About 92% of the hemicelluloses content from raw sugarcane bagasse was 

solubilized after the hydrothermal pretreatment step. The cellulose conversion by enzymatic 

hydrolysis was about 65% using a commercial enzyme cocktails from 

Novozyme: Celluclast 1.5 L (15 FPU/g) and Novozyme 188 (β-glucosidase -10 IU/g). From 

20 kg of the raw sugarcane bagasse was produced 6.8 kg of the EHR. It represents about 34 

wt% of the raw sugarcane bagasse. About 70% of the lignin content and 30% of the cellulose 

content from the raw sugarcane bagasse remained in the EHR after the enzymatic hydrolysis 

steps.  

 

In order to know better the lignin present in the EHR, two different processes of lignin 

extraction were performed: the alkaline and the acidic-dioxane lignin, as described in the 4.1 

section. Figure 5.2 represents the mass balance to the alkaline (a) and the acid-dioxane 

processes (b). Chemical composition values of these lignin-rich streams are reported on the 

Figure 5.3.   

Total lignin amount was higher in the acid-dioxane EHR than in the alkaline EHR. 

Carbohydrates were more preserved in lignin-rich stream produced by alkaline process (8.3%) 

than in that generated by acidic-dioxane process (6.0%). According to Fukushima and 

Hatfield (2001), acidic-dioxane extraction process obtains lignin with low carbohydrates 

contents. 

Both lignin-rich streams (alkaline EHR and acidic-dioxane EHR) were obtained in order 

to better characterize the lignin contained in the EHR. The alkaline EHR and acidic-dioxane 

EHR were submitted to Py-GC/MS analyses in order to assess their amounts of H-, G-, and S-

units (5.1.4 section). 
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ACID-DIOXANE 
PROCESS 

EHR (28.0 g) 
- Lignin (13.2 g)  
- Cellulose (11.1 g) 
- Hemicelluloses (1.3 g) 
- Ashes (2.3 g) 

EHR (7.0 g) 
- Lignin (5.8 g)  
- Cellulose (0.3 g) 
- Hemicelluloses (0.1 g) 
- Ashes (0.8 g) 

Liquid stream 

ALKALINE 
PROCESS 

EHR (43.0 g) 
- Lignin (20.3 g)  
- Cellulose (17.1 g) 
- Hemicelluloses (1.9 g) 
- Ashes (3.9 g) 

Alkaline EHR (12.3 g) 
- Lignin (9.3 g)  
- Cellulose (0.8 g) 
- Hemicelluloses (0.2 g) 
- Ashes (1.1 g) 

Liquid stream 

Figure 5.3 - Chemical composition (on dry weight) of EHR from alkaline and acidic-dioxane 
processes. 

Figure 5.2 – Mass balance (on dry weight) to the acid-dioxane (a) and the alkaline processes 
(b). 

AISL: acid insoluble lignin 
ASL: acid soluble lignin 
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5.1.2 FTIR spectroscopy  

 

Figure 5.4 shows FTIR spectra of the EHR and LBL. The Savitzky-Golay method 

(second-order polynomial with fifteen points of window) was applied in the FTIR spectra in 

order to enhance the apparent resolution and amplify small differences. Table 5.2 depicts the 

main FTIR bands assignment observed in the LBL and EHR spectra. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.4 - FTIR spectra of the EHR and LBL. 

 

By comparing the spectra of the EHR, strong signal can be observed in the bands 1030 

cm-1 (C-O stretching in cellulose) and 1160 cm-1 (C-O-C asymmetric stretching in cellulose). 

In the LBL spectra the highest band is observed in 1110 cm-1 that refers to aromatic C-H in 

plane deformation (typical for S-unit), confirming the prevalence of S-unit in it (Popescu et 

al., 2007). 
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Table 5.2 - The main FTIR bands assignment (based on Singh et al., 2005). 

 

 

 

  

Band (cm-1) Vibration Assignment 

1710-1690 C=O stretching Unconjugated C=O 

1600 C=C stretching (S) Aromatic skeleton 

1520 C=C stretching (G) Aromatic skeleton 

1460 C-H asymmetric deformation CH3 + CH2 

1420 C–H asymmetric deformation Methoxyl group 

1370 (EHR) CH bending Cellulose 

1320 C-O stretching S-unit 

1270 C-O stretching G-unit 

1210 (LBL) st C–O(H) + C–O(Ar) Phenolic OH + ether 

1205 (EHR) OH in-plane bending Cellulose 

1160 C–O–C asymmetric stretching Cellulose 

1110 C–H in-plane deformation and C=O stretch S-unit 

1030 st C–O(H) + C–O(C) Aliphatic OH and ether 

830 Out-plane deformation vibration Ar C–H S-unit 
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5.1.3 Py-GC/MS technique  

 

For LBL and EHR 

 

Py-GC/MS gave information about the composition of the LBL (Figure 5.5) and EHR 

(Figure 5.6). Pyrolysis released compounds derived from the H-, G- and S-lignin units. In the 

LBL pyrogram (Figure 5.5), the main compounds from H-lignin units: phenol (1), o-cresol 

(2), p-cresol (3), 2,4-dimethylphenol (5), 4-vinylphenol (7) and isopropyl-phenol (8). From G-

lignin units: guaiacyl (4), 4-methylguaiacol (6), 4-ethyl-guaiacol (11), 4-vinylguaiacol (12), 4-

propyl-guaiacol (15 and 21), vanillin (17), cis-isoeugenol (18), trans-isoeugenol (19), 

guaiacylacetone (22), trans-methyl isoeugenol (23) and acetovanillone (25). From S-lignin 

units: syringyl (13 and 14), 4-methylsyringol (20), 2,6-dimethoxy-4-(2-propenyl)-phenol (26 

and 27), syringaldehyde (28), 4-allylsyringol (29) and acetosyringone (30). The peaks 9, 10, 

16 and 24 are polyphenolic structure (non-specific lignin).  

  

 

 

 

 

 

 

 

 

 

  

Figure 5.5 - LBL pyrogram. 
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In Figure 5.6 (EHR pyrogram), the compounds corresponding to the peaks 1, 3, 9-11 

and 23 were released from carbohydrates. The main compounds accounted on H-lignin units 

estimative were phenol (2), o-cresol (4), p-cresol (5), 4-ethyl-phenol (7), isopropyl-phenol 

(13) and 4-allylphenol (17). Guaiacyl (6), 4-methylguaiacol (8), 4-ethyl-guaiacol (15), 

vanillin (20) and trans-isoeugenol (21) were accounted on G-lignin units. The main 

compounds derived from S-lignin units were syringyl (18), 4-methylsyringol (22), 2,6-

dimethoxy-4-(2-propenyl)-phenol (25 and 26), syringaldehyde (27), 4-allylsyringol (28) and 

acetosyringone (29). The peaks 14 (methoxy-cathecol), 19 (biphenyl), and 24 (dimethoxy 

acetophenone) are polyphenolic structure (non-specific lignin).   

The highest peaks of the EHR pyrogram (Figure 5.6) are peak 12 and peak 16. The 

high amounts of 4-vinylphenol (12) and 4-vinylguaiacol (16) released from the EHR upon 

pyrolysis is mostly due to the occurrence of p-coumarates (PCA) and ferulates (FA) from 

sugarcane (a Gramineous plant), respectively (Menezes et al., 2017; del Río et al., 2015). 

Therefore, 4-vinylphenol (12) and 4-vinylguaiacol (16) were not inserted on estimative of H- 

and G-lignin units of the EHR, respectively.  

Figure 5.6 - EHR pyrogram. 
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The main lignin structural characteristics obtained from the Py-GC/MS data (H-, G-, 

and S-lignin units) of the LBL and EHR are shown in the Table 5.3.  

 

Table 5.3 - Aromatic units of the LBL and EHR by Py-GC/MS technique. 

Lignin aromatic units 

(%) 

LBL EHR 

H  3 22 

G  30 22 

S  67 56 

                                        (H+G+S=100) 

 

The data from Table 5.3 indicates that despite the EHR and LBL presented similar 

amounts of S-lignin units, the EHR has much more amount of H-lignin unit than in the LBL. 

Therefore, the EHR appears to be more promising for phenolic resins production than the 

LBL, since it has larger H-lignin units, i.e, the EHR has more free ortho-positions to 

formaldehyde incorporation.  

 

 

For alkaline EHR and acidic-dioxane EHR 

 

Apparently, the carbohydrates contained in the EHR could be interfering in the 

resolution of the peaks from lignin pyrolysis in the EHR pyrogram (Figure 5.6). The EHR 

was submitted to the alkaline and the acidic-dioxane processes in order to better characterize 

the lignin contained on EHR. The alkaline EHR and acidic-dioxane EHR were analyzed by 

Py-GC-MS in order to determine the H, G and S-lignin amounts. Pyrograms of the alkaline 

EHR and acidic-dioxane EHR are shown in the Figure 5.7. As can be seen in Figure 5.7, the 

alkaline EHR and acidic-dioxane EHR pyrograms presented a better resolution than the EHR 

pyrogram (Figure 5.6). 
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In Figure 5.7a (alkaline EHR pyrogram), the main compounds accounted on H-lignin 

units estimative were phenol (1), o-cresol (2), p-cresol (3), 2,4-dimethyl-phenol (5), 4-ethyl-

phenol (6), isopropyl-phenol (10) and 4-allylphenol (14). Guaiacyl (4), 6-methylguaiacol (7), 

4-methylguaiacol (8), 4-ethyl-guaiacol (12), cis-isoeugenol (18), trans-isoeugenol (19), 

acetoguaiacone (22), guaicyl acetone (23) and methyl ester vanillin acid (28) were accounted 

on G-lignin units. The main compounds derived from S-lignin units were syringyl (15), 2,6-

dimethoxy (16), 4-methylsyringol (20), 2,6-dimethoxy-4-(2-propenyl)-phenol (25 and 26), 

syringaldehyde (27), 4-allylsyringol (29) and acetosyringone (30). The peaks 9 and 13 are 4-

vinylphenol and 4-vinylguaiacol, respectively. The compound corresponding to the peak 21 

was released from carbohydrates. 

In Figure 5.7b (Acidic-dioxane EHR pyrogram), the main compounds accounted on 

H-lignin units estimative were phenol (1), o-cresol (2), p-cresol (3), 2,4-dimethyl phenol (5), 

4-ethyl-phenol (6), isopropyl-phenol (9) and 4-allylphenol (13). Guaiacyl (4), 4-

methylguaiacol (7), 4-ethyl-guaiacol (10), 4-hydroxy-3-methoxy-benzaldehyde (15), trans-

isoeugenol (16), guaiacylacetone (18) and methyl ester vanillin acid (24) were accounted on 

G-lignin units. The main compounds derived from S-lignin units were syringyl (14), 4-

methylsyringol (17), 2,6-dimethoxy-4-(2-propenyl)-phenol (21 and 22), syringaldehyde (23), 

4-allylsyringol (19 and 28) and acetosyringone (26). The peaks not specified or not numbered 

can be polyphenolic structures (non-specific lignin) and aliphatics.  It was not possible to 

observe peaks derived from carbohydrates. This fact corroborates with the chemical 

composition results (section 5.1.1), where acidic-dioxane process generated a lignin-rich 

stream with lower carbohydrates amount than the alkaline process.  
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(a) 

 

 

 

 

 

 

 

 

 

 

 

(b)  

Figure 5.7 - (a) Alkaline EHR and (b) acidic-dioxane EHR pyrogram. 
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The main lignin structural characteristics obtained from the Py-GC/MS data (H-, G-, 

and S-lignin units) of the alkaline EHR and acidic-dioxane EHR are shown in the Table 5.4.  

 

Table 5.4 - Aromatic units of the alkaline EHR and acidic-dioxane EHR by Py-GC/MS 

technique. 

Lignin aromatic units (%) Alkaline EHR Acidic-dioxane EHR aL1 aL3 

H  28 38 13 30 

G  24 25 36 33 

S  48 37 51 37 

 
aResults for sugarcane bagasse lignins from alkaline pretreatment at 130 °C (L1) or 170 °C 

(L3) obtained by Nakanishi (2016). These results were also reported by Menezes et al. (2017).  

 

The EHR lignins submitted to the extraction processes (alkaline e acidic-dioxane) 

showed higher amounts of H-lignin units and lower amounts of S-lignin units, according to 

Table 5.4, when compared to with the EHR (Table 5.3). The G-lignin units remained almost 

intact. Furthermore, when acidic-dioxane process was applied, there was an enrichment of H 

units and a depletion of S-lignin units in relation to the alkaline EHR.  

Nakanishi (2016) obtained lignins from sugarcane bagasse submitted to an alkaline 

pretreatment (1.5% w/v NaOH, 1:15 solid/liquid for 30 min) at 130 °C (L1) or 170 °C (L3). 

Menezes et al. (2017) reported the H, G and S lignin units for these lignins (L1 and L3) by 

Py-GC/MS. They noted that the lignins are comparatively depleted in S-lignin units (51%  

37%) and enriched in H-lignin units (13%  30%) with increasing the severity of the 

pretreatment (130 °C  170 °C), as a consequence of the preferential removal of S-lignin 

during alkaline delignification (Menezes et al., 2017).  

del Río et al. (2015) and Murciano Martínez et al. (2016) have reported that sugarcane 

bagasse contains considerable amount of PCA and FA. The use of tetramethylammonium 

hydroxide (TMAH) additive in Py-GC/MS allows the discrimination between 4-vinyl 

phenol/4-vinylguaiacol present as such from being Py-GC/MS products of decarboxylated 

PCA and FA, respectively (del Río et al., 2007). As these compounds have ortho positions 

free in their phenolic rings, they could participate in the formaldehyde reaction. Therefore, it 

is suggested the addition of TMAH in the EHR in order to estimate the PCA and FA amounts. 
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5.1.4 NMR Spectroscopy 

 
 1

H-NMR Spectroscopy  

The major functional groups of lignin affecting its reactivity for the synthesis of 

phenolic resins are phenolic hydroxyl and methoxyl. The acetylated EHR and LBL were 

analyzed by 1H-NMR specifically to determine these important functional groups. The results 

of the semi-quantitative analysis of the 1H-NMR spectra from these samples are depicted in 

Table 5.5. It contains the chemical shift ranges of hydrogen and their corresponding regions 

(Chen and Robert, 1988).  

Table 5.5 - 1H-NMR results. 

 

 

 

 

 

 

 

 

 
aIt was divided by three because the acyl group has three atoms of hydrogen. 

 

The aliphatic hydroxyl content in the EHR is more than double in comparison to that in 

the LBL. The OHphenolic/OHaliphatic rations of the EHR and the LBL are 0.4 and 1.3, 

respectively. It can be also observed in the Table 5.5 that the methoxyl group content is lower 

in EHR than in the LBL. This lower methoxyl content can indicates that the EHR probably 

has more ortho positions of their phenyl rings unblocked by methoxyl groups and therefore 

this is an advantage for manufacturing lignin phenol-formaldehyde resins. An intense peak 

(δH = 1.25 ppm) appeared in the non-oxygenated aliphatic region of the EHR spectrum. This 

indicates the presence of substructures containing non-oxygenated and saturated aliphatic 

carbons (CH2 and CH3 - hydrocarbons) in the side chains of the EHR.  

 

  

δ (ppm) Group EHR (%) LBL (%) 

0.7 - 1.6 Nonoxygenated aliphatic region 30.7 10.3 

1.6 - 2.2 
a
Aliphatic hydroxyl region 9.0 4.0 

2.2 - 2.5 
a
Phenolic hydroxyl region 3.9 5.3 

2.5 - 3.5 Major aliphatic region 4.8 10.5 

3.5 - 4.0 Methoxyl 18.8 27.3 

4.0 - 5.2 Major aliphatic region 13.3 11.7 

5.2 - 5.7 Cyclic benzylic region 2.5 3.6 

5.7 - 6.2 Noncyclic benzylic region 1.8 4.3 

6.2 - 8.0 Aromatic region 15.2 21.1 

8.0 - 10.0 Aldehydes groups 0.1 1.9 

–

–
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2D HSQC NMR Spectroscopy  

The main regions that could be observed in the 2D HSQC contour maps are the 

aliphatic, oxygenated aliphatic, and aromatic regions (Figure 5.8) (del Río et al., 2015).  

 

(a) 

 

 

  

 

  

  

 

 

 

 

 

 

 

 

(b) 

 

 

 

 

 

 

 

 

 

 

 

 

 

–

–

Figure 5.8 - Entire 2D HSQC NMR contour maps of the EHR (a) and the LBL (b). 
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The main signals in the aliphatic region from the 2D HSQC contour maps are of acetyl 

correlations, in both alcoholic and phenolic acetates (Ibarra et al., 2007). The oxygenated 

aliphatic region is important from the viewpoint of the structural study of lignin (β–O–4 

structures, phenylcoumaran, resinol, tetrahydrofuran, dibenzodioxocin, α,β-diaryl ether, and 

spirodienone structures). 

The aromatic region of the 2D HSQC contour map is the most relevant to evaluate the 

potential of the EHR and the LBL for phenolic resin synthesis, since the signals 

corresponding to the aromatic rings of the S-, G-, and H-unit can be observed. The 2D HSQC 

NMR contour map of the aromatic region (δC: 100-150 ppm/δH: 6.0-9.0 ppm) of the EHR and 

the LBL are expanded (Figure 5.9).  

As displayed in Figure 5.9, p-coumarates (PCA) and ferulates (FA) are present in the 

EHR. PCA and FA are widely found in the Gramineae family, especially in sugarcane (del 

Río et al., 2015; Menezes et al., 2017). PCA is predominantly attached to the lignin, and FA 

can be attached to both a carbohydrate-carbohydrate and lignin-carbohydrate complex (del 

Río et al., 2015). 

A semi-quantitative analysis of the volume integrals of the signals corresponding to S-, 

G-, and H-unit was performed (Table 5.6). 2D HSQC NMR cross-signals were assigned by 

comparison with literature data from Ibarra et al. (2007) and del Río et al. (2015).  
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Figure 5.9. Aromatic regions from HSQC spectra of the EHR (a) and LBL (b) (Menezes et 
al., 2016b). S: syringyl unit; G: guaiacyl unit; H: p-hydroxyphenyl unit; Fa: ferulic acid unit; 
PCA: p-coumarate unit.  

(a) 

(b) 
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Table 5.6 - Aromatic lignin units by 2D HSQC NMR technique (Menezes et al., 2016b). 

Lignin aromatic units  EHR LBL 

H (%) 11 6 

G (%) 31 16 

S (%) 58 78 

S/G ratio 1.8 4.8 

 

The S/G ratio for the EHR (1.8) are similar to the S/G ratio determined for sugarcane 

bagasse (1.6) by del Río et al. (2015). The LBL showed the highest S/G (4.8). These results 

corroborate with the high amount of the methoxyl group in the LBL (27.3%) determined by 

the 1H-NMR analysis. However, it is likely that the S-unit (δH: 6.62 ppm/δc: 104.3 ppm) in the 

LBL is overestimated because there are overlapping peaks.  

Comparing the S-, G- and H-lignin units results from the HSQC and Py-GC/MS 

analyses, it can be observed that a higher S-lignin amount and a lower H-lignin amount when 

estimated by HSQC technique. Menezes et al. (2017) observed the same trend for alkaline 

lignins from sugarcane bagasse (L1 and L3). For example, S-lignin amount of L3 estimated 

from the HSQC technique was 44%, while by means of the Py-GC/MS technique, S-lignin 

was 37%. 

However, by both the HSQC and the Py-GC/MS techniques, the EHR appears to be 

more promising for phenolic resin production when compared to the LBL, since the EHR has 

a lower S-lignin amount among the lignin aromatic units and a higher number of H-lignin 

units. 
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5.1.5 Elemental Analysis and HHV determination  

 

Table 5.7 depicts the elemental analysis results, Double Bonds Equivalent (DBE) 

values, protein (%) amounts, and experimental and theoretical HHVs of the EHR and LBL.   

 

Table 5.7 - Elemental composition, DBE, protein content and HHVs (Menezes et al., 2016b). 

 

 

 

 

 

 

 

 

 
Standard deviation values of the samples are shown in parentheses. 

 

The EHR has about 23% less of carbon content and 50% more of oxygen content in 

relation to these elements in the LBL. The sulfur content of the LBL (2.55%) can be from the 

Kraft process, a precedent step of the whole process. The protein amount in the EHR (3.6%) 

was much higher than in the technical lignin LBL (0.4%). The EHR protein value may be 

arising from the enzymatic complex used in the enzymatic hydrolysis step in cellulosic 

ethanol production.  

 

The C9-formula for the EHR (Equation 9) and the LBL (Equation 10) are extended 

below:  

 

 𝑪𝟗.𝟎𝑯𝟏𝟎.𝟐𝑶𝟑.𝟒𝑺𝟎.𝟎𝟖𝑵𝟎.𝟏𝟕(𝑶𝑪𝑯𝟑)𝟎.𝟗(𝑶𝑯𝒑𝒉𝒆𝒏𝒐𝒍𝒊𝒄)𝟎.𝟔(𝑶𝑯𝒂𝒍𝒊𝒑𝒉𝒂𝒕𝒊𝒄)𝟏.𝟑                    

                       𝑪𝟗.𝟎𝑯𝟕.𝟗𝑶𝟏.𝟒𝑺𝟎.𝟏𝟔𝑵𝟎.𝟎𝟏(𝑶𝑪𝑯𝟑)𝟏.𝟏(𝑶𝑯𝒑𝒉𝒆𝒏𝒐𝒍𝒊𝒄)𝟎.𝟕(𝑶𝑯𝒂𝒍𝒊𝒑𝒉𝒂𝒕𝒊𝒄)𝟎.𝟓                    

 

As expected, it turns out that the C9-formula of the EHR showed the highest OHaliphatic 

value. With regard to the methoxyl coefficient in the C9-formula of these lignins, the EHR 

 LBL EHR 

%C 61.24 (0.08) 47.46 (0.09) 
%H 6.33 (0.13) 6.28 (0.01) 
%N 0.07 (0.03) 0.57 (0.04) 
%S 2.55 (0.06) 0.59 (0.01) 
%O 29.82 (0.13) 45.11 (0.13) 
DBE 4.5 1.7 
Protein (%) 0.4 3.6 
HHVtheoretical (kJ kg-1) 24913 17806 
HHVexperimental (kJ kg-1) 25560  19347 

–

–

 (9) 

(10) 
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has a lower methoxyl value in each C9 than in the LBL. This is consistent with the results 

presented in the discussion of 2D HSQC NMR technique where the syringyl unit amount was 

larger in the LBL.  

The DBE number of lignin is directly correlated to both its aromaticity and its degree of 

condensation (Kim et al., 2014). The DBE value of the LBL was the largest (4.5). It is worth 

remembering that the LBL was earlier submitted to high temperature on the Kraft process. 

Kim et al. (2014) noted that heat application on lignin could lead it to become more 

condensed in relation to the native lignin structure, leading to an increase in its DBE value. It 

also is noted that the EHR showed the smallest DBE value (1.7). This is due to the high 

amount of cellulose fibers fully dispersed in the EHR. The lower DBE value may be related to 

a higher amount of free phenolic hydroxyl groups, which is an advantage for the synthesis of 

lignin-phenol resins (Mansouri and Salvadó, 2006).  

The experimental and estimated HHVs can be considered close. The highest HHV value 

was found in the LBL. This fact can be explained because higher carbon and lower oxygen 

contents lead to a higher HHV value (Demirbas, 2004).  

 

5.1.6 Thermogravimetric analysis  

 

The thermogravimetric (TG) curve shows the weight loss (%) with the temperature 

increase, while the first derivative of TG curve (DTG) shows a corresponding rate of weight 

loss (% min-1) of the lignocellulosic materials. Figure 5.10 depicts the TG and DTG curves of 

the EHR and LBL. As for the EHR, two high peaks of the degradation rate appear in the DTG 

curve. The first is comprised in the range of temperatures between 250 and 350 °C. This is the 

highest peak due to the high carbohydrate content present in the EHR. The second appears in 

a temperature range of 350 to 500 °C, referring to the remaining lignin degradation. To the 

LBL sample, the highest rate of degradation (16 wt.% min-1 at 490 °C) occurs between 410 

and 510 °C. This happens because lignin in the LBL is the major component. It is interesting 

to note that the peak of remaining lignin degradation in the EHR has appeared at a lower 

temperature compared to this peak on the LBL spectrum, indicating that the presence of 

carbohydrates directly influences on weight loss of the EHR. 

The weight loss in both samples is practically constant above 500 °C. The residue 

observed up to 500 °C was around 0.7% and 6.9% for LBL and EHR, respectively. These 

residues correspond to the ashes present in the samples, since the ash contents are 

–

–
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approximate (0.7% and 8.4% in LBL and EHR, respectively). The thermal characteristics of 

the EHR and LBL influence directly on the thermal resistance of the phenolic resins.  

The TG analysis revealed the thermal limitations of the EHR and LBL before their 

application in phenolic formulations. The temperature ranges usually applied in the synthesis 

and the cure processes of the phenolic resins are below 200 °C. Thus, the EHR and LBL are 

thermally suitable to be processed in lignin-phenol resins. 

    (a)  

 

 

 

 

 

 

 

  

 

 

(b) 

 

 

 

                   

  

 

 

 

 

 

 

 

Figure 5.10 - TG (a) and DTG (b) curves of the EHR and LBL (Menezes et al., 2016b). 
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5.1.7 Physical characterization  

 

A set of ten sieves with opening size ranging from 4.75 to 0.15 mm was used in the 

particle size distribution by sieving (Menezes et al., 2016a). Table 5.8 depicts the opening 

diameter of each sieve, the average diameter and the retained mass fraction in each sieve. 

Figure 5.11 shows the pictures of the EHR retained in each sieve with its corresponding 

average diameter.  

 

Table 5.8 - Particle size distribution by sieving of the EHR (Menezes et al., 2016a). 

Opening diameter (mm)  Average diameter (mm) Retained mass fraction (%) 

Bottom < 0.15 4.0 (0.8) 

0.15 0.20 5.7 (0.5) 

0.25 0.34 11.6 (0.3) 

0.43 0.52 7.4 (0.3) 

0.60 0.73 8.1 (0.4) 

0.85 1.02 9.6 (0.5) 

1.18 1.44 10.8 (0.6) 

1.70 2.03 10.8 (0.4) 

2.36 2.86 14.4 (0.6) 

3.35 4.05 11.8 (1.0) 

4.75 > 4.75 5.7 (0.6) 

The standard deviation is shown in parentheses. 

 

 

 

 

 

 

 

 

Figure 5.11 - Photographs of the EHR particles from each sieve. 

 

–

–
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The particle size distribution of the EHR presented profile of polydispersity material 

since it had two regions with a higher retained mass fraction. About 46% of the EHR was 

comprised in the set of sieves with average diameter of ≤ 1.0 mm. Size and morphology of 

fibers influence directly in determining the mechanical properties of resins. It was seen 

mainly fiber clusters in the sieves with opening diameter of 4.57 and 4.05 mm. In other 

sieves, it was visibly observed that the fibers of the EHR were released.  

Figure 5.12 depicts the particle sizing distributions by laser scattering of the EHR from 

bottom of sieve set (<0.15 mm), the milled EHR and the LBL.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.12 - The particle size distributions by laser scattering of the LBL, EHR and milled 

EHR (Menezes et al., 2016b). 

 

As it can be observed in the Figure 5.12, the EHR from the bottom ranged from 0.4 to 

820 µm. About 5% of this sample is between 0.4 - 50 µm and 50% is ≤ 170 µm. Only 44% of 

the EHR from the bottom is ≤ 0.15 mm. This can be explained by the fact that the diameter of 

each fiber is much smaller than its length, so it is possible that longer fibers can pass through 

sieves with smaller diameter openings. The milled EHR ranged between approximately 0.4-

990 μm. About 5% of the milled EHR is 6.5 - 0.4 μm and 50% it is ≤ 70 μm. The LBL 

particles ranged from 0.4-1090 µm and 64% of the LBL particles are between 0.4-50 µm, 

while only 5% of the EHR particles are in this range. More than 75% of the LBL particles are 

≤ 100 µm.  
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5.1.8 Scanning Electron Microscopy (SEM) 

   

The Figure 5.13 depicts the SEM images of the EHR from the bottom of the sieve set 

and of the milled EHR.  

 

          

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.13 - SEM images of (a) the EHR from bottom of sieve set and (b) milled EHR. 

 

 

(a) 

(b) 
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SEM images of the EHR from the bottom of the sieve set and of the milled EHR show 

that the cellulose fibers are well distributed. In addition, some lignin particles appear to be 

deposited on the cellulose fibers in the EHR. If it really is lignin, it probably will provide an 

easier reaction between lignin and formaldehyde since it is more susceptible to interact with 

formaldehyde. Morphological studies of the fibers of both samples (the EHR from bottom and 

the milled EHR) showed different sizes and arrangement from them, since fibers are not 

spherical and dispersively arranged.  

Regarding the LBL micrographs, it was not possible to visualize anything relevant 

because the LBL was degraded due to the high intensity of the electron beam equipment. It is 

suggested to perform some tests with a lower intensity of electron beam or with LBL not 

coated with gold in order to not burn it. 

 

Small Angle X-ray Scattering (SAXS) technique is suggested to analyze shape, 

dimension and size distribution of the LBL. SAXS is an experimental technique widely used 

for structural characterization of macromolecules in dilute solutions. SAXS studies have been 

applied to lignin to characterize lignin molecular architecture, shape, dimensions and 

intermolecular interactions (Brenelli et al., 2016; Harton et al., 2012).   

 

5.1.9 Molar mass determination  

 

The intrinsic viscosity was graphically obtained by means of the viscosities 

representation as a function of the LBL concentration. A linear regression corresponding to 

the obtained points was drawn. Thus, the intrinsic viscosity is the average value of the 

ordinates. Figure 5.14 shows the relationship between the intrinsic viscosity and the LBL 

concentration, observing a linear relationship which indicates that was obtained in a Newton 

regime and therefore the viscosimetry is valid (Mello et al., 2006; Silva et al., 2013). Table 

5.9 shows the molar mass by viscosimetry of the LBL. 
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Table 5.9 - Intrinsic viscosity and molar mass of the LBL. 

 

 

 

 

Molar mass values of lignins can depend on lignin source, extraction process, different 

analysis conditions, such as, system columns, solvents, acetylation, standard type, and others 

(Constant et al., 2016). Nakanishi (2016) obtained lignins from sugarcane bagasse (SB) 

submitted to an alkaline pretreatment (1.5% w/v NaOH, S/L 1:15 for 30 min) at 130 °C or 

170 °C. Molar mass determination for these lignins was performed using the same 

methodology that was used for molar mass determination of the LBL. SB lignin from alkaline 

pretreatment at 130 °C showed a molar mass of 381,130 g mol-1, while for SB lignin from 

alkaline pretreatment at 130 °C was 280,108 g mol-1. The both lignins from sugarcane bagasse 

showed higher molar mass than the LBL that it is from Eucalyptus.  

Molar mass distribution of lignin is one of the main properties to evaluate reactivity 

and physicochemical characteristics for potential applications (Menezes et al., 2017). Lignin 

with lower molar mass would be less condensed (Rinaldi et al., 2016), thus it probably has 

more active-sites for the reaction towards formaldehyde (Ragauskas et al., 2014). 

  

Sample 

[ɳ]  

(mL g-1) 

      Molar mass  

(g mol-1) 

LBL 5.29 106,219 

Figure 5.14 – Intrinsic viscosity as a function of the LBL concentration in NaOH 0.5 M solution.  
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As mentioned in method section, it was not possible to determine the molar mass of 

the EHR because it was not totally soluble in those solvents. Thus, it is suggested that the 

alkaline EHR and the acidic-dioxane EHR be submitted to technique of molar mass 

determination.  

 

5.2 Determination of curing parameters of the phenolic resins with the EHR and LBL  

 

5.2.1 Rheological study 

 

The change in dynamic–mechanical properties of a curing system is directly 

proportional to the extent of the reaction. The curing processes were carried out for the 

obtained phenolic resins under isothermal conditions at five different temperatures: 90, 97.5, 

105, 112.5 and 120 °C. Gel point values were determined on the crossover between the G’ 

and G” curves. Figure 5.15 illustrates an example of how was defined the tgel value. The 

region of the crossover between G’ and G’’ was amplified for better visualization of the tgel 

value.  

As pointed out by Knop and Pilato (1985), the temperature acts as catalyst agent in 

curing process of resole-type phenolic resins, thus, the higher temperature applied in curing 

system, the lower tgel values. However, isotherms higher than 120 °C were not analyzed on 

curing process, once deformation of the samples occurred at this condition due to rapid 

evaporation of the water present in them.  
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Figure 5.16 depicts tgel values that were determined for all resins at five different 

isotherms. In general, the LBL and EHR insertion on phenolic resins led to decrease on tgel 

values, with exception the LBL 60% resin. This resin, as observed on Table 5.12, has the 

highest viscosity value among the phenolic resins with LBL. Thus, it is suggested that this 

resin be directly used as an adhesive. As it can be observed on Figure 5.16, tgel values were 

lower than 120 min (2 h) at 105 °C for all obtained resins, expect for the LBL 60%. For this 

reason, the chosen conditions of curing process were 105 °C for 2h to obtain the 

thermosetting resins (test specimen) for DMTA and DSC analyses. For the LBL 60% resin, 

the test specimen was not obtained due to the need for a high curing time (almost 6 h). The 

catalyst addition for curing is suggested. 

 

  

Figure 5.15 - Viscoelastic properties curves of the LBL 60% resin at 105 °C. Crossover 
region zoom (tgel). 
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Figure 5.16 - tgel values for all phenolic resins at 90 - 120 °C. 
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It can be visualized that the higher LBL amount on phenolic resins, the higher tgel 

values. In general, tgel values diminished as the EHR amount increased (from 15% until 45%).  

By means of an Arrhenius relationship (Equation 11), apparent Activation Energy (Ea) 

values were determined (Figure 5.17) (Laza et al., 2002).  ln 𝑡𝑔𝑒𝑙 =  𝐶 + 𝐸𝑎𝑅  1𝑇 

 

 
  

  

Figure 5.17 - Arrhenius relationship for each phenolic resin. 

(11) 
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Ea values for curing reactions were obtained from the slope of equation of ‘ln (tgel)’ and 

the ‘inverse of temperature’ graphs times the universal gas constant (R). The apparent 

Activation Energy (Ea) values for each phenolic resin are showed in the Figure 5.18. 
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Figure 5.17 (Continuation) - Arrhenius relationship for each phenolic resin. 

Figure 5.18 - Eα values for each phenolic resin. 
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The profiles from the EHR and the LBL presented the same downward trend, i.e., the 

higher biomass amount, the lower Ea values, except the LBL 60% resin. The Eα values for 

phenolic resins with EHR were lower than using LBL. The results from rheological study 

indicate that the curing reactions of the phenolic resins with EHR showed lower tgel values, 

and moreover a lower energy amount (activation energy) (Eα) in comparison to the phenolic 

resins with LBL. 

 

5.2.2 TG analyses  

 

The curing parameters were also assessed for LBL 5% and EHR 5% by TG analyses. 

TG curves at 5, 10 and 20 °C min-1 of the LBL 5% and EHR 5% resins are depicted in Figure 

5.19. The selected region of the loss curves for the curing kinetic analysis was from 50 to 200 

°C that correspond to start limit and to stop limit of the loss weight, respectively. The kinetic 

analysis was carried out using TA Specialty Library package provided by TA instruments.  

The TG Kinetics program allows to analyze results from TG data files to calculate the 

heating rate at each conversion percentage, and then generate plots and tables of kinetic 

analysis results (TA Instruments, 2003). Figure 5.20 depicts the conversion percent curves 

(until 98% of conversion) at different isotherms (90 - 120 °C) for the LBL 5% and EHR 5%. 

The chosen isotherms were the same applied on rheological study. Table 5.10 shows the 

curing time corresponding at 100% of conversion for different isotherms and the Ea values.   
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Figure 5.19 - TG and DTG curves at different heating rates of (a) the LBL 5% and (b) EHR

5% resins. 
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Figure 5.20 - Conversion percent curves for (a) LBL 5% and (b) EHR 5% resins at isotherms 

from 90 to 120 °C.  

98% 

98% 
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Table 5.10 - Curing time for LBL 5% and EHR 5% resins and their Eα values. 
 

 

 

 

 

 

 

 

 

 

 

 

The curves simulated at different temperatures depicted on Figure 5.20 are interesting 

to monitor the curing reaction. For example, about 90% of the EHR 5% resin will be cured at 

90 °C in 1 h, while the LBL 5% resin (at the same conditions), only about 80% of it will be 

cured. The curing time values from TG kinetic study (Table 5.10) presented the same 

tendency to the tgel values from rheological study of the EHR 5% and the LBL 5% resins. The 

curing time values exponentially diminished with temperature increase. In general, EHR 5% 

resin showed curing time values lower or similar than for LBL 5% resin. EHR 5% resins 

provided a lower Eα than LBL 5% resin. 

 

Rheological and TG techniques appeared be suitable ways to determine the kinetic 

parameters of the resins with EHR and LBL. DSC analysis could also be used to assess the 

curing kinetic of the phenolic resins, however special experimental conditions as high 

pressure are necessary to suppress the volatilization of the water. The endothermic 

evaporation of the water by product distorts the exothermic curing, which must be analyzed in 

its entirety to obtain a valid kinetic model.   

 

  

 LBL 5% EHR 5% 

Isotherms (°C) 

Curing time (min) for 

100% conversion 

90 348 261 

97.5 196 176 

105 113 104 

112.5 67 67 

120 40 45 

 Eα (KJ/mol) 

 85.9 70.3 
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5.3 Characterization of the obtained phenolic resins  

 

5.3.1 Solid content, viscosity determination and TG analyses   

 

It was visually observed that the EHR 5% and EHR 15% resins had similar appearances 

to resins with LBL, appearance of adhesive (before curing), whereas the EHR 30% and EHR 

45% had more pasty characteristics, most probably because of the higher amount of cellulose 

fibers contents. Table 5.11 gathers solid content and viscosity values for all resins.  

 

Table 5.11 - Solid content, viscosity values (ƞ0) and TG results. 

aStandard deviation in parenthesis; bR value in parenthesis.  

 

The solid contents are inversely proportional to the water and solvent amount leaved 

after the evaporation process in the rotary evaporator and to the water formation during the 

curing process inside the over. The solid contents for the phenolic resins with LBL and EHR 

are showed on Table 5.11.  The solids content for the phenolic resins with LBL ranged from 

83% to 91% that are close with the solid content of phenolic standard (86%), while the 

phenolic resins with EHR presented a large decrease from 89% to 49% as higher the EHR 

amount in phenolic resins. This can be related to the hydrophilic characteristics of cellulose 

fibers that hindering the solvent/water evaporation in the rotary evaporator. The EHR resins 

Samples aSolid 

content - % 

bƞ0  - Pa s-1 TG (weight loss - %)   

At 25 °C Until 

100 °C 100-200 °C 200-300 °C 300-500 °C 

Standard 86 (1) 1.5 x10 (0.97) 4 19 7 8 

LBL 5% 90 (1) 8.3 x10 (0.90) 2 17 7 10 

LBL 15% 91 (0) 2.6 x102 (0.88) 2 17 7 26 

LBL 30% 89 (0) 8.8 x10 (0.99) 3 17 7 16 

LBL 45% 83 (2) 4.1 x103 (0.97) 5 18 8 19 

LBL 60% 90 (0) 1.6 x104 (0.99) 2 22 6 24 

EHR 5% 89 (0) 1.1 x102 (0.99) 3 16 7 15 

EHR 15% 74 (2) 3.5 x103 (0.99) 13 20 7 18 

EHR 30% 58 (3) 1.7 x105 (0.99) 25 27 8 26 

EHR 45% 49 (1) 6.5 x106 (0.99) 39 12 8 29 
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showed tgel values lower than to the LBL resins. In this way, the EHR seems to benefit the 

curing process, although the hydrophilic characteristics of cellulose fibers contained it. 

Zero-shear rate viscosity of the resins (η0) at 25 °C increased exponentially as the 

amount of lignocellulosic material in the resins was increased. The EHR resins had higher 

viscosity values than those with LBL. This probably indicates that the presence of cellulose 

fibers influenced on the resins viscosity.  All curves of viscosity at low shear rate (0-2 s-1) 

plotted (ƞ0 values determination) are showed in Supplementary Material C.  

The weight loss percent values (Table 5.11) were divided on ranges temperature 

according to main events of the phenolic resins (Lee, 2007; Qiao et al., 2015). Until 100 °C, 

the weight loss refers, mainly, to the residual water and solvent evaporation. Weight loss 

values for EHR resins until 100 °C were higher (from 3% to 39%) as the EHR amount was 

increased on the phenolic resins. TG technique corroborates with the hypothesis of the 

cellulose fibers from EHR keep within them amounts of water/solvent. The range of 100 - 200 

°C refers to evaporation of water formed by resins curing (self-condensation reactions). The 

range of 200 - 300 °C could be related to a post curing reaction and/or a start of degradation 

reaction. After 300 °C, weight loss refers to degradation of the phenolic resins and the LBL 

and EHR, as can be seen in Menezes et al. (2016b). The TG and DTG curves of the phenolic 

resins with LBL and EHR before a previous curing process in the hydraulic press are gathered 

in Supplementary Material D.    

The flow curves (Figure 5.21) of shear stress (τ) and viscosity (ƞ) as a function of shear 

rate (𝛾̇) helps to classify a substance according to one of the possible characteristics. Figure 

5.21 presents the viscosity profiles of the phenolic resins at 25 °C. Most of the polymers 

present behaviour of pseudoplastic, especially for the phenolic resins. Pseudoplastic 

characteristics in Figure 5.21 can be observed from the decrease of viscosity (η) with 

increasing shear rate (𝛾̇). 
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(a) 

(b) 

(c) 

Figure 5.21 - Flow curves of shear stress (τ) and viscosity (ƞ) as a function of shear rate 
(𝛾̇). (a) LBL 5% resin, (b) EHR 5% resin and (c) standard resin. 
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5.3.2 FTIR spectroscopy  

 

Figure 5.22 depicts the spectra of phenol and formaldehyde reactants that were used in 

the phenolic resins synthesis, and the spectrum of resole-type phenol-formaldehyde resin 

obtained as standard.  The wavenumber range of interested to synthesis of phenolic resin is 

between 1750 cm-1 and 650 cm-1.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The characteristic peaks of phenol correspond at wavenumbers of 1596, 1474, 1234, 

1168, 1070, 810, 751, 690 cm-1 (Poljanšek and Krajnc, 2005). Peaks at 1596 and 1474 cm-1 

refers to the C=C aromatic ring vibrations. The peaks at 1234 and 1168 cm-1 are related to the 

C-C-O asymmetric stretch and C-H in plane deformations, respectively. The 1070 cm-1 

correspond to single bond C-O stretching vibrations of -C-OH group. The 810 cm-1 peak 

corresponds to asymmetric stretch of phenolic C-C-OH, and 751 cm-1 peak belonged to the C-

Figure 5.22 - FTIR spectra of the phenol, formaldehyde and Standard phenolic resin. 
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H out of plane vibrations. 690 cm-1 peak correspond at ring bend (Poljanšek and Krajnc, 

2005). 

The main characteristic peaks of formaldehyde aqueous solution (methylene glycol) 

correspond at wavenumbers of 1645, 1445, 1107, 1021 and 994 cm-1. The peak at 1645 cm-1 

correspond to C=O stretch (overlapped with OH scissors of water). The peak at 1445 cm-1 

corresponds to C-H band. Peaks at 1107 and 1021 cm-1 correspond to C-OH (Poljanšek and 

Krajnc, 2005). 

The observed wavenumbers in phenol-formaldehyde resin spectrum were 1595 and 

1512 cm-1 correspond to C=C aromatic ring; 1475 cm-1 related with C-H aliphatic and =CH2- 

deformation; 1456 cm-1 corresponding to C=C benzene ring obscured by -CH2 (methylene 

bridge); 1373 cm-1 correspond to OH in plane; 1232 cm- correspond to asymmetric stretch of 

phenolic C-C-OH; 1154 cm-1 correspond to C-O stretch; 1112 cm-1 correspond to aliphatic 

hydroxyl; 1020 cm-1 correspond to  aliphatic hydroxyl; 995 cm-1 correspond to C-H from 

formaldehyde reactant; 888, 826 and 754 cm-1 correspond to CH out-of-plane; 692 cm-1 

correspond to adjacent 5H. 

The resole-type phenolic resins were submitted to FTIR analyses to confirm their 

reactions. Figure 5.23 (a) shows the spectra of the resins before their curing process 

(adhesives) and Figure 5.23 (b) shows the spectra of the resins after their curing process 

(thermosetting) at the hydraulic press. Comparing the spectrum of the standard resin with the 

other resins spectra (Figure 5.23), it is observed that they are very similar, being a good 

indication that the reactions of the phenolic resins have occurred. 

 The main differences between the spectra from Figure 5.23 (a) correspond to the 

following wavenumbers: 1640, 1595, 1458, 1214, 1111, 1028 and 812 cm-1. The peaks at 

1640 and at 1028 cm-1 are more intense in the spectra of the resins with EHR. The assignment 

at 1640 cm-1 can be related to C=O stretch of formaldehyde and OH scissors of water, while 

the peak at 1028 cm-1 can be refers to -C-OH of formaldehyde. This fact could indicate that 

cellulose fibers from EHR keep within higher amounts of water or formaldehyde.  The peak at 

1595 cm-1 is more intense in standard spectrum than in spectrum of the LBL 60% resin. This 

peak can be related to C=C aromatic ring of phenol reactant. The intensity of peak at 1458 

cm-1 is higher for LBL resins than standard resin and is related with C–H deformation. At 

1214 cm-1, a peak appears on, mainly, spectra of the LBL 45% and 60% resins. These peaks 

are related with the S ring + G ring condensed. A peak at 1111 cm-1 increased as LBL amount 

in the phenolic resins was increased. This peak refers to aromatic C–H inplane deformation 
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(typical for S units).  The peak at 812 cm-1, mainly observed on standard resin spectrum, 

refers to asymmetric stretch of phenolic C-C-OH. 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

  

Figure 5.23 - FTIR spectra of (a) phenolic resins before curing reaction; and of (b) phenolic
resins after curing reaction. 

(a) 

(b) 
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Figure 5.23 (b) depicts spectra of the thermosetting resins with LBL and EHR.  The 

main differences noted in these spectra are in regions at 1032, 1212 and 1110 cm-1. Peak at 

1032 cm-1 is more intense in EHR 45% spectrum that refers at aromatic C–H inplane 

deformation (G>S) and C–O deformation in primary alcohols.  

 

 

5.3.3 2D NMR spectroscopy (HSQC) 

 

HSQC contour maps of the standard and the LBL 30% resins are displayed in Figure 

5.24, where their main regions (aliphatic, sidechain and aromatic) are expanded. In the 

aliphatic region (Figure 5.24 a and b), the signals from 3.5 to 3.9 ppm (1H) and from 29 to 41 

ppm (13C) is related to methylene bridges formed between the aromatic units in the 

condensation reaction with formaldehyde. Figure 5.25 shows the structures of the 

diarylmethanes where it is possible observe the ortho-ortho, ortho-para and para-para 

methylene bridges. In the HSQC spectrum of the LBL 30% resin, it is observed the presence 

of the three-different methylene bridge, while in the standard resin spectrum, it is observed 

only the ortho-para and para-para methylene bridges. Yelle and Ralph (2016) also noted the 

presence of ortho-ortho methylene bridge in phenolic resin with wood lignin, while in resin 

without lignin, it was not observed. The presence of ortho-ortho methylene bridge in LBL 

30% resin could indicate that lignin free positions (ortho) were substituted.  

Figure 5.24 (c) and (d) show the sidechain (oxygenated aliphatic) region of the HSQC 

spectra. The signal at 3.7/57 ppm (1H/13C) can be observed in the LBL 30% resin. This signal 

is typical of methoxyl group and an indication of the presence of lignin. In the both HSQC 

spectra, p-methylol and o-methylol were found at 4.4-4.6 ppm (1H) and 55-60 ppm (13C) 

region. Methylols are short fractions formed at the reaction beginning, not yet crosslinked as 

in the thermosetting resin. 

In the aromatic region, it is possible visualize the main 1H-13C present in the phenol ring 

inside the phenolic resin structure. In Figure 5.24 (e), the main linkages were attributed. In 

the LBL 30% resin, it was also present the syringyl unit once this unit does not participate in 

the phenolic resin obtainment.  

In general, both the standard and the LBL 30% showed HSQC spectrum very similar. 

Their main differences were the presence in the LBL 30% resin of o-o methylene bridge 

(aliphatic region), of methoxyl group (sidechain region) and of syringyl unit (aromatic 
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region).   It is suggested that both the standard and the LBL 30% resins were again submitted 

to HSQC NMR analyses after their curing step in order to visualize the substitution in lignin 

C5 positions, free ortho positions, at 6.6/121 ppm (Yelle and Ralph, 2016), indicating that if 

lignin participate in the phenolic resin reaction. However, a previous milling process would 

require, as performed by Yelle and Ralph (2016) to analyze thermosetting resins.    

It has been experimentally noted that the lignin structure is much more difficult to 

define its signals in the HSQC spectrum than the standard phenolic resin.  A way to mitigate 

this problem, for example, it would be to couple a triple resonance NMR 'inverse' probe (TCI) 

that is equipped with cold preamplifiers for 1H and 13C. TCI design guarantees the highest 

sensitivity for the lock channel, resulting in excellent stability of the spectrometer (Bruker, 

2018). TCI probe is widely applied to NMR structure determination of biological 

macromolecules and lignin (del Río et al., 2015, 2012; Rencoret et al., 2011; Yelle and Ralph, 

2016).  
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Aliphatic region (a) for standard resin and (b) for LBL 30% resin; Oxygenated aliphatic 
region for (c) for standard resin and (d) for LBL 30% resin; Aromatic region (e) for standard 
resin and (f) for LBL 30% resin. 

Syringyl2,6 

o-o 
o-ρ 

ρ-ρ 

o-ρ 

ρ-ρ 

Methoxyl  Methylol  Methylol  

Figure 5.24 - 2D HSQC NMR spectra of the standard and the LBL 30% resins. 

(a) (b) 

(c) (d) 

(e) (f) 
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            *WL: total weight loss (until 300 °C).  

 

In DSC heat flow curve of the EHR 45%, the mainly peak (endothermic) is close to 100 

°C, indicating that the evaporation should be of the residual water contained in the cellulose 

fibers. As previously mentioned, EHR 45% resin presented the lowest solids content and a 

considerable amount of water, probably, from the cellulose fibers. In relation to the LBL 60% 

resin, it was possible to observe that the curing process of this resin was the most time 

consuming among all (see rheological study). Therefore, it was more difficult to observe in 

DSC heat flow of the LBL 60% resin, the exothermic peak referring to curing of this resin. 

  

WL: 29% 

WL: 22% 

WL: 22% 

WL: 32% 

WL: 43% 

Figure 5.26 - DSC of the phenolic resins without any previous curing process. 
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DSC heat flow curves of the phenolic resins after the curing process in the hydraulic 

press are depicted in Figure 5.27. The initial objective to perform DSC analysis of the 

thermosetting phenolic resins was to determine their glass transition temperature (Tg). 

However, it was difficult to determine Tg values for all thermosetting resins. Thus, in Figure 

5.27, what worth highlighting is that almost all resins presented exothermic peaks (water 

formation), it may indicate cure reactions even for the thermosetting resins. These events are 

called as post-cure reaction (Qiao et al., 2015). 

  

Figure 5.27 - DSC of the thermosetting phenolic resins. (a) Thermosetting resins with LBL;          
(b) Thermosetting resins with EHR. WL: Total weight loss (until 300 °C). 

WL: 32% 

WL: 26% 

WL: 17% 

WL: 16% 

WL: 30% 

WL: 20% 

WL: 20% 

WL: 16% 

WL: 16% 

WL: 21% 

WL: 16% 

(a) (b) 
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5.3.5 Dynamic Mechanical Thermal Analysis (DMTA)  

 

 Table 5.12 shows the G’ modulus at 35 °C and at 300 °C and the maximum 

G’’modulus. G’ and G’’ modulus curves of the resins with LBL and EHR are depicted in 

Figure 5.28.  

     

Table 5.12 - DMTA data for the phenolic resins. 

 
G'35 °C (MPa) G'300 °C (MPa) G''max (MPa) 

Standard 77 (13) 47 (14) 11 (1) 

LBL 5% 159 (24) 96 (4) 13 (2) 

LBL 15% 113 (0) 43 (9) 10 (0) 

LBL 30% 107 (3) 39 (9) 9 (2) 

LBL 45% 140 (1) 79 (24) 13 (1) 

EHR 5% 192 (2) 63 (6) 8 (0) 

EHR 15% 108 (12) 16 (4) 7 (1) 

EHR 30% 125 (9) 21 (2) 12 (1) 

EHR 45% 84 (8) 1 (0) 7 (1) 

                 Standard deviation (in parentheses) 

 

For thermosetting resins, G' modulus values can be directly related with their curing 

degree (Paiva and Frollini, 2001). Phenolic resins with LBL showed G' modulus between 

(107-159 MPa), while for resins with EHR ranged from 84 to 192 MPa. All phenolic resins 

exhibited higher G' modulus than the standard resin (77 MPa), indicating that an improvement 

on curing degree when lignin (LBL or EHR) was inserted on phenolic resins. The EHR 5% 

resin showed higher G’ modulus (about 20% higher) than the LBL 5% resin. This fact 

indicates that the cellulosic fibers even at lower amount enhance this mechanical property.  

A decrease in G’ modulus occurred as the temperature increased. Temperature has 

larger influence on G’ modulus for EHR resins than for LBL resins, since the cellulose fibers 

may begin to degrade from 200 °C (Menezes et al., 2016b; Yang et al., 2007). 
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G” modules of the phenolic resins with LBL/EHR ranged of 7 - 13 MPa, while of the 

Standard resin was 11 MPa. G” modulus is related to the mobility of the polymer chains in the 

resin. The higher is the curing degree, the lower is G” modulus.  

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

G' modulus curves of the phenolic resins with (a) LBL and (c) EHR. G'' modulus curves of 
the phenolic resins with (b) LBL and (d) EHR. 
  

(a) (b) 

(c) (d) 

Figure 5.28 - G’ and G” curves of the phenolic resins. 
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 Tan delta curves of the resins with LBL and EHR are depicted in Figure 5.29. The 

DMTA curves for the standard resin are depicted in Supplementary Material E.   

 

  

Figure 5.29 - Tan delta curves of the phenolic resins with (a) LBL and (b) EHR. 

(a) 

(b) 
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It was not possible to obtain appropriate samples of thermosetting LBL 60% resin for 

DMTA analysis. The samples of LBL 60% broke when they were adjusted in the DMTA 

equipment. A certain fragility in the thermosetting LBL 60% resin was observed. In addition, 

the LBL 60% needs a much longer curing time than the other resins. Addition of a catalyst as 

curing agent and/or a reinforcement additive to obtain phenolic thermosetting with more 45% 

of LBL is suggested. 
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Chapter 6 CONCLUSIONS AND FUTURE WORK 

 

 

Enzymatic Hydrolysis Residue (EHR) of the sugarcane bagasse and a LignoBoost Kraft 

Lignin (LBL) from Eucalyptus were used for the synthesis of the phenolic resins. The EHR 

and LBL and their phenolic resins were submitted to a full physicochemical and 

thermomechanical characterization.  

The EHR generated in the pilot scale plant is a material mainly composed of lignin 

(47% w/w) and well dispersed cellulose fibers (40% w/w). The EHR has proven to be more 

promising for producing phenolic resins than the LBL, since it has a smaller content of the 

methoxyl group (19%) and showed higher amounts of H-lignin units (22%) than in the LBL 

(3%). Thermal analysis permitted to observe that the EHR and the LBL are both thermally 

suitable to be applied in phenolic resin formulations. In this investigation, important 

characteristics of the EHR and LBL were observed, so that, in the future these ‘raw materials’ 

can be applied as feedstock for value-added products. 

Phenolic resins using LBL (5 - 60% w/w) and using EHR (5 - 45% w/w) were obtained 

and compared with the standard resin (without lignin). It was visually observed that the EHR 

5% and EHR 15% resins had similar appearances to resins with LBL, appearance of adhesive 

(before curing), whereas the EHR 30% and EHR 45% had more pasty characteristics, most 

probably because of the higher amount of cellulose fibers contained in them. 

The produced resins were submitted to a complete kinetic study to obtain the curing 

parameters and to physicochemical and thermomechanical characterization. In general, the 

EHR or LBL insertion on phenolic resins led to decrease on gel time values, with exception 

the LBL 60% resin. Phenolic resins with EHR require lower gel time (tgel) and activation 

energy (Ea) values than phenolic resins with LBL. The curing time values of the EHR 5% and 

LBL 5% resins from thermal kinetic TG analysis presented the same tendency of rheological 

study. Rheological study and thermal kinetic TG analysis appeared be suitable to determine 

the kinetic paraments of the phenolic resins with EHR and LBL.  

The solids content and the weight loss values (until before 100 °C) showed that the 

phenolic resins with EHR exhibited more amounts of water and formaldehyde than usual, 

which can be due to hydrophilicity of cellulose fibers. Conversely, the rheological study 

indicated that EHR reduces the gel time of the resins. All phenolic resins with EHR or LBL 

exhibited higher storage modulus (G') than the standard phenolic resin (77 MPa), indicating 
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an improvement on curing degree. Phenolic resins with LBL showed G' modulus between 

(107-159 MPa), while for resins with EHR ranged from 84 to 192 MPa. The EHR 5% resin 

showed higher G’ modulus (about 20% greater) than the LBL 5% resin. This fact indicates 

that the cellulosic fibers even at lower amount enhance this mechanical property. 

Based on this research, it is suggested that thermosetting phenolic resins be formulated 

with less than 30% of EHR, since above this amount, the high fiber content no longer acts as 

reinforcement to the phenolic resin matrix. It is also suggested that phenolic resins with more 

than 45% of LBL be directed to use them as adhesives (before the curing process) and not, as 

thermosetting, because a certain fragility in the thermosetting LBL 60% resin was observed, 

beyond its long curing time. Bearing this in mind, the EHR and the LBL can be used to 

partially replace based-petroleum phenol in phenolic resins production, in general, with 

appropriate characteristics than the standard resin.  

Some suggestions for future work are in following. With respect to characterization of 

the LBL/EHR, it is suggested to perform Py-GC/MS analysis of the EHR with 

tetramethylammonium hydroxide (TMAH) addition in order to determine the PCA and FA 

amounts, once these units can react with formaldehyde; and, to perform SAXS analysis of the 

LBL to analyze its shape, dimension and size distribution. With respect to determination of 

curing parameters of phenolic resins, it is suggested to apply the TG kinetics analysis for the 

remained resins. With regarding to characterization of the phenolic resins, to perform impact 

tests in order to assess impact resistance of the phenolic resins; and, to submit the phenolic 

resins (before curing step) to adhesion tests. This test would confirm the potential of the LBL 

60% resins on use as adhesive. It is suggested to synthesize and characterize phenolic resins 

by partially replacing petroleum-based phenol with a mix of the EHR and alkaline EHR. For 

example, EHR (5-15%) and more alkaline EHR (30%), totaling a substitution of 45% w/w. 
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LBL 60% - 105 °C 
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EHR 5% - 112.5 °C  EHR 15% - 112.5 °C  

EHR 30% - 112.5 °C  EHR 45% - 112.5 °C  

Standard – 112.5 °C  

–
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LBL 5% - 112.5 °C  LBL 15% - 112.5 °C 

LBL 30% - 112.5 °C LBL 45% - 112.5 °C 

LBL 60% - 112.5 °C 
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EHR 5% - 120 °C EHR 15% - 120 °C 

EHR 30% - 120 °C EHR 45% - 120 °C 

Standard – 120 °C  
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LBL 5% - 120 °C  LBL 15% - 120 °C 

LBL 30% - 120 °C LBL 45% - 120 °C 

LBL 60% - 120 °C 

Figure S1 - Curves of viscoelastic properties as a function of time. Blue curve: G’; Red curve: G”.  
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Supplementary Material C: Zero shear rate viscosity (ƞ0) determination 
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Figure S2- Viscosity curves for determination of zero shear rate viscosity (ƞ0). 
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Supplementary Material D: TG and DTG curves of the phenolic resins 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure S3 - TG and DTG curves for EHR resins.  
(a) EHR 5%, (b) EHR 15%, (c) EHR 30% and (d) EHR 45% resins. 

 

  

(a) (b) 

(c) (d) 
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(a) LBL 5%, (b) LBL 15%, (c) LBL 30%, (d) LBL 45% and (e) LBL 60% resins. 

  

Figure S4 - TG and DTG curves for LBL resins.  

(a) (b) 

(c) (d) 

(e) 
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Supplementary Material E: DMTA curves of the Standard phenolic resin 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure S5 - DMTA curves of the standard phenolic resin.  

(a) G’ and G” curves; (b) Tan δ curve.  

(a) 

(b) 


