Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Laurent Expansions For Certain Functions Defined By Dirichlet Series
Author: Holvorcem P.R.
Abstract: The Poisson summation formula is employed to find the Laurent expansions of the Dirichlet series F(s, c) = Σn = 0∞ exp[-(n + c)1/2s] and G(s, c) = Σn = 0∞(-1)n exp[-(n + c)1/2s] (0≤c<1) about s = 0. The Laurent expansions of F(s, c) and G(s, c) are convergent respectively for 0 < |s| < ∞ and |s| < ∞, and define the analytic continuation of the Dirichlet series to the half-plane Re s < 0. © 1993 Birkhäuser Verlag.
Editor: Birkhäuser-Verlag
Rights: fechado
Identifier DOI: 10.1007/BF01844425
Date Issue: 1993
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-34250081655.pdf338.28 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.