Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: On Methods For Maximum A Posteriori Image Reconstruction With A Normal Prior
Author: Herman G.T.
De Pierro A.R.
Gai N.
Abstract: In previous publications we proposed, in the area of Positron Emission Tomography (PET), the use of a Maximum A posteriori Probability (MAP) optimization criterion with a particular normal prior which enforces smoothness on the resulting reconstructions. Two iterative algorithms were previously proposed to optimize this functional: one was known to converge to the desired reconstruction but was slow, while for the other it was found experimentally that, although it always appeared to converge an order of magnitude faster than the first one on examples realistic for PET, it could be made to diverge on artificial examples. In this paper we present an algorithm which is as fast as the second of these previously proposed algorithms, but it shares with the first the desirable property that it is guaranteed to converge to the reconstruction which is optimal according to our MAP criterion. We demonstrate the behavior of the algorithm on a variety of examples. © 1992.
Rights: fechado
Identifier DOI: 10.1016/1047-3203(92)90035-R
Date Issue: 1992
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-38249009989.pdf1.22 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.