Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Quasi-newton Methods For Solving Underdetermined Nonlinear Simultaneous Equations
Author: Martinez J.
Abstract: We analyze iterative processes of type xk+1 = xk - π(xk, Ek)F(xk) for solving F(x) = 0, F:Rn → Rm, m ≤ n. Parameters Ek are updated at each iteraction using least-change secant update procedures. We prove local, linear and superlinear convergence results. We introduce two new superlinearly convergent methods of this type, and one linearly convergent Quasi-Newton generalization of Cimmino's parallel algorithm for solving linear systems. Some numerical experiments are presented. © 1991.
Rights: fechado
Identifier DOI: 10.1016/0377-0427(91)90040-Q
Date Issue: 1991
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File SizeFormat 
2-s2.0-12544254655.pdf1.2 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.