Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: Sart: A New Association Rule Method For Mining Sequential Patterns In Time Series Of Climate Data
Author: Cano M.D.
Santos M.T.P.
De Avila A.M.H.
Romani L.A.S.
Traina A.J.M.
Ribeiro M.X.
Abstract: Technological advancement has enabled improvements in the technology of sensors and satellites used to gather climate data. The time series mining is an important tool to analyze the huge quantity of climate data. Here, we propose the Sequential Association Rules from Time series - SART method to mine association rules in time series that keeps the information of time between related events through an overlapped sliding-window approach. Also the proposed method mines association rules, while the previous ones produce frequent sequences, adding the semantic information of confidence, which was not previously defined by sequential patterns. Experiments were conducted with real data collected from climate sensors. The results showed that the proposed method increases the number of mined patterns when compared with the traditional sequential mining, revealing related events that occur over time. Also, the method adds the semantic information related to the confidence and time to the mined patterns. © 2012 Springer-Verlag.
Rights: fechado
Identifier DOI: 10.1007/978-3-642-31137-6_56
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.