Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleEvaluation Of The Coefficient Of Thermal Expansion Of Human And Bovine Dentin By Thermomechanical Analysispt_BR
dc.contributor.authorLopes M.B.pt_BR
dc.contributor.authorYan Z.pt_BR
dc.contributor.authorConsani S.pt_BR
dc.contributor.authorGonini Jr. A.pt_BR
dc.contributor.authorAleixo A.pt_BR
dc.contributor.authorMcCabe J.F.pt_BR
unicamp.authorConsani, S., Department of Restorative Dentistry, Piracicaba Dental School, UNICAMP - University of Campinas, Piracicaba, SP, Brazilpt_BR, M.B., Department of Dentistry, UNOPAR - University North of Paraná, Londrina, PR, Brazilpt, Z., Dental Biomaterials, School of Dental Sciences, University of Newcastle, Newcastle upon Tyne, United Kingdompt Jr., A., Department of Dentistry, UNOPAR - University North of Paraná, Londrina, PR, Brazilpt, A., Department of Dentistry, UNOPAR - University North of Paraná, Londrina, PR, Brazilpt, J.F., Dental Biomaterials, School of Dental Sciences, University of Newcastle, Newcastle upon Tyne, United Kingdompt
dc.description.abstractThe mismatch of thermal expansion and contraction between restorative materials and tooth may cause stresses at their interface, which may lead to microleakage. The present work compared the coefficient of thermal expansion (CTE) with the thermomechanical behavior of human and bovine teeth and determined if the CTE is a suitable parameter to describe tooth behavior. Fifteen human third molar and 15 bovine incisor tooth slices (6×5×2 mm) were allocated to 3 groups according to the test environment: G1 - room condition, G2 - 100% humidity, G3 - desiccated and tested in dry condition. Each specimen was weighed, heated from 20 to 70°C at 10°C min -1 and reweighed. The CTE was measured between 20 and 50°C. Fresh dentin (human -0.49% ± 0.27, bovine -0.22% ± 0.16) contracted on heating under dry condition. Under wet conditions, only human teeth (-0.05% ± 0.04) showed contraction (bovine 0.00% ± 0.03) accompanied by a significantly lower (p<0.05) weight loss than in dry specimens (human 0.35% ± 0.15, bovine 0.45% ± 0.20). The desiccated dentin expanded on heating without obvious weight changes (0.00% ± 0.00). The CTE found was, respectively, in dry, wet and dissected conditions in oC -1: human (-66.03×10 -6, -6.82×10 -6, 5.52×10 -6) and bovine (-33.71×10 -6, 5.47×10 -6, 4.31×10 -6). According to its wet condition, the dentin showed different CTEs. The thermal expansion behavior of human and bovine dentin was similar. A simple evaluation of the thermal expansion behavior of tooth structure by its CTE value may not be appropriate as a meaningful consideration of the effects on the tooth-material interface.en
dc.relation.ispartofBrazilian Dental Journalpt_BR
dc.identifier.citationBrazilian Dental Journal. , v. 23, n. 1, p. 3 - 7, 2012.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-26T20:29:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2012en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:25:35Z (GMT). No. of bitstreams: 0 Previous issue date: 2012en
dc.description.referenceVerma, P., Love, R.M., A Micro CT study of the mesiobuccal root canal morphology of the maxillary first molar tooth (2011) Int Endod J, 44, pp. 210-217pt_BR
dc.description.referenceYan, Z., Sidhu, S.K., Carrick, T.E., McCabe, J.F., Response to thermal stimuli of glass ionomer cements (2007) Dent Mater, 23, pp. 597-600pt_BR
dc.description.referencede Bruyne, M.A., de Bruyne, R.J., de Moor, R.J., Long-term assessment of the seal provided by root-end filling materials in large cavities through capillary flow porometry (2006) Int Endod J, 39, pp. 493-501pt_BR
dc.description.referencede Bruyne, M.A., de Bruyne, R.J., de Moor, R.J., Capillary flow porometry to assess the seal provided by root-end filling materials in a standardized and reproducible way (2006) J Endod, 32, pp. 206-209pt_BR
dc.description.referenceCamargo, C.H., Siviero, M., Camargo, S.E., de Oliveira, S.H., Carvalho, C.A., Valera, M.C., Topographical, diametral, and quantitative analysis of dentin tubules in the root canals of human and bovine teeth (2007) J Endod, 33, p. 4226pt_BR
dc.description.referenceMcCabe, J.F., Wassell, R.W., Thermal expansion of composites (1995) J Mater Sci: Mater Med, 6, pp. 624-629pt_BR
dc.description.referenceYamaguchi, R., Powers, J.M., Dennison, J.B., Thermal expansion of visible-light-cured composite resins (1989) Oper Dent, 14, pp. 64-67pt_BR
dc.description.referenceCraig, R.G., Powers, J.M., (2002) Restorative dental materials, , 11th ed. St. Louis: Mosbypt_BR
dc.description.referenceSouder, W.H., Peters, G.C., An investigation of the physical properties of dental materials (1920) Dent Cosmos, 62, pp. 305-335pt_BR
dc.description.referenceSouder, W.H., Peters, G.C., (1942) Circular of the National Bureau of Standards C433: Physical properties of dental materials, , Washington: U.S. Department of Commerce, National Bureau of Standardspt_BR
dc.description.referenceSidhu, S.K., Carrick, T.E., McCabe, J.F., Temperature mediated coefficient of dimensional change of dental tooth-colored restorative materials (2004) Dent Mater, 20, pp. 435-440pt_BR
dc.description.referenceXu, H.C., Liu, W.Y., Wang, T., Measurement of thermal expansion coefficient of human teeth (1989) Aust Dent J, 34, pp. 530-535pt_BR
dc.description.referenceAlmeida, K.G., Scheibe, K.G., Oliveira, A.E., Alves, C.M., Costa, J.F., Influence of human and bovine substrate on the microleakage of two adhesive systems (2009) J Appl Oral Sci, 17, pp. 92-96pt_BR
dc.description.referenceBajaj, D., Sundaram, N., Nazari, A., Arola, D., Age, dehydration and fatigue crack growth in dentin (2006) Biomaterials, 27, pp. 2507-2517pt_BR
dc.description.referenceBurrow, M.F., Sano, H., Nakajima, M., Harada, N., Tagami, J., Bond strength to crown and root dentin (1996) Am J Dent, 9, pp. 223-229pt_BR
dc.description.referenceReeves, G.W., Fitchie, J.G., Hembree Jr., J.H., Puckett, A.D., Microleakage of new dentin bonding systems using human and bovine teeth (1995) Oper Dent, 20, pp. 230-235pt_BR
dc.description.referenceNakamichi, I., Iwaku, M., Fusayama, T., Bovine teeth as possible substitutes in the adhesion test (1983) J Dent Res, 62, pp. 1076-1081pt_BR
dc.description.referenceKishen, A., Asundi, A., Investigations of thermal property gradients in the human dentine (2001) J Biomed Mater Res, 55, pp. 121-130pt_BR
dc.description.referenceBrown, W.S., Dewey, W.A., Jacobs, H.R., Thermal properties of teeth (1970) J Dent Res, 49, pp. 752-755pt_BR
dc.description.referenceVersluis, A., Douglas, W.H., Sakaguchi, R.L., Thermal expansion coefficient of dental composites measured with strain gauges (1996) Dent Mater, 12, pp. 290-294pt_BR
dc.description.referenceBauer, J.R.O., Reis, A., Loguercio, A.D., Barroso, L.P., Grande, R.H.M., Effects of aging methods on microleakage of an adhesive system used as a sealant on contaminated surfaces (2005) J Appl Oral Sci, 13, pp. 377-381pt_BR
dc.description.referenceHashinger, D.T., Fairhurst, C.W., Thermal expansion and filler content of composite resins (1984) J Prosthet Dent, 52, pp. 506-510pt_BR
dc.description.referenceLopes, M.B., Sinhoreti, M.A., Correr Sobrinho, L., Consani, S., Comparative study of the dental substrate used in shear bond strength tests (2003) Braz Oral Res, 17, pp. 171-175pt_BR
dc.description.referenceEdmunds, D.H., Whittaker, D.K., Green, R.M., Suitability of human, bovine, equine, and ovine tooth enamel for studies of artificial bacterial carious lesions (1988) Caries Res, 22, pp. 327-336pt_BR
dc.description.referenceTurssi, C.P., Messias, D.F., Corona, S.M., Serra, M.C., Viability of using enamel and dentin from bovine origin as a substitute for human counterparts in an intraoral erosion model (2010) Braz Dent J, 21, pp. 332-336pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.