Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Inexact Newton Methods For Solving Nonsmooth Equations
Author: Martinez J.
Qi L.
Abstract: This paper investigates inexact Newton methods for solving systems of nonsmooth equations. We define two inexact Newton methods for locally Lipschitz functions and we prove local (linear and superlinear) convergence results under the assumptions of semismoothness and BD-regularity at the solution. We introduce a globally convergent inexact iteration function based method. We discuss implementations and we give some numerical examples. © 1995.
Rights: fechado
Identifier DOI: 10.1016/0377-0427(94)00088-I
Date Issue: 1995
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-0001763831.pdf1.03 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.