Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Scars Of Periodic Orbits In The Stadium Action Billiard
Author: Ortiz J.S.E.
De Aguiar M.A.M.
Ozorio De Almeida A.M.
Abstract: Compact billiards in phase space, or action billiards, are constructed by truncating the classical Hamiltonian in the action variables. The corresponding quantum mechanical system has a finite Hamiltonian matrix. In previous papers we defined the compact analog of common billiards, i.e., straight motion in phase space followed by specular reflections at the boundaries. Computation of their quantum energy spectra establishes that their properties are exactly those of common billiards: the short-range statistics follow the known universality classes depending on the regular or chaotic nature of the motion, while the long-range fluctuations are determined by the periodic orbits. In this work we show that the eigenfunctions also follow qualitatively the general characteristics of common billiards. In particular, we show that the low-lying levels can be classified according to their nodal lines as usual and that the high excited states present scars of several short periodic orbits. Moreover, since all the eigenstates of action billiards can be computed with great accuracy, Bogomolny's semi-classical formula for the scars can also be tested successfully.
Rights: fechado
Identifier DOI: 
Date Issue: 1996
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-0039333715.pdf1.22 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.