Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/93526
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.typeArtigo de periódicopt_BR
dc.titlePhylogenetic Relationships Of The New World Troidini Swallowtails (lepidoptera: Papilionidae) Based On Coi, Coii, And Ef-1α Genespt_BR
dc.contributor.authorSilva-Brandao K.L.pt_BR
dc.contributor.authorLucci Freitas A.V.pt_BR
dc.contributor.authorBrower A.V.Z.pt_BR
dc.contributor.authorSolferini V.N.pt_BR
unicamp.authorSilva-Brandão, K.L., Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas, SP, Brazilpt_BR
unicamp.authorLucci Freitas, A.V., Museu de História Natural, Departamento de Zoologia, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas, SP, Brazilpt_BR
unicamp.authorSolferini, V.N., Departamento de Genética e Evolução, Instituto de Biologia, Universidade Estadual de Campinas, CP 6109, CEP 13083-970, Campinas, SP, Brazilpt_BR
unicamp.author.externalBrower, A.V.Z., Department of Zoology, Oregon State University, Corvallis, OR 97331, United Statespt
dc.description.abstractA phylogeny of the Neotropical members of the Tribe Troidini (Lepidoptera: Papilionidae) was obtained with sequences of three protein-coding genes: two mitochondrial (COI and COII), and one nuclear (EF-1α). Parsimony and Bayesian analyses of 33 taxa resulted in very similar trees regardless of method used with the 27 troidines always forming a monophyletic clade. Within Troidini, the genus Battus is sister group to the remaining troidines, followed by a clade formed by the Paleotropical taxa (here represented by three exemplars). The genus Euryades is the next branch, and sister group of Parides. The genus Parides is monophyletic, and is divided into four main groups by Maximum Parsimony analysis, with the most basal group composed of tailed species restricted to SE Brazil. Character optimization of ecological and morphological traits over the phylogeny proposed for troidines indicated that the use of several species of Aristolochia is ancestral over the use of few or a single host-plant. For the other three characters, the ancestral states were the absence of long tails, forest as the primary habitat and oviposition solitary or in loose group of several eggs. © 2005 Elsevier Inc. All rights reserved.en
dc.relation.ispartofMolecular Phylogenetics and Evolutionpt_BR
dc.date.issued2005pt_BR
dc.identifier.citationMolecular Phylogenetics And Evolution. , v. 36, n. 3, p. 468 - 483, 2005.pt_BR
dc.language.isoenpt_BR
dc.description.volume36pt_BR
dc.description.issuenumber3pt_BR
dc.description.firstpage468pt_BR
dc.description.lastpage483pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn10557903pt_BR
dc.identifier.doi10.1016/j.ympev.2005.04.007pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-23444449631&partnerID=40&md5=1de7f2c931c5a000dc7d3fdc099c6e0dpt_BR
dc.date.available2015-06-26T14:08:14Z
dc.date.available2015-11-26T14:07:57Z-
dc.date.accessioned2015-06-26T14:08:14Z
dc.date.accessioned2015-11-26T14:07:57Z-
dc.description.provenanceMade available in DSpace on 2015-06-26T14:08:14Z (GMT). No. of bitstreams: 1 2-s2.0-23444449631.pdf: 1237292 bytes, checksum: 93983c81e0d5d7214f211ded2ad990ec (MD5) Previous issue date: 2005en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:07:57Z (GMT). No. of bitstreams: 2 2-s2.0-23444449631.pdf: 1237292 bytes, checksum: 93983c81e0d5d7214f211ded2ad990ec (MD5) 2-s2.0-23444449631.pdf.txt: 73552 bytes, checksum: 19bd9fd7a8b6f35b306c4001a097168d (MD5) Previous issue date: 2005en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/93526
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/93526-
dc.identifier.idScopus2-s2.0-23444449631pt_BR
dc.description.referenceArmbruster, W.S., Baldwin, B.G., Switch from specialized to generalized pollination (1998) Nature, 394, p. 623pt_BR
dc.description.referenceAubert, J., Legal, L., Descimon, H., Michel, F., Molecular phylogeny of swallowtail butterflies of the tribe Papilionini (Papilionidae, Lepidoptera) (1999) Mol. Phylogenet. Evol., 12, pp. 156-167pt_BR
dc.description.referenceBaker, R.H., Desalle, R., Multiple sources of character information and the phylogeny of Hawaiian Drosophilids (1997) Syst. Biol., 46, pp. 654-673pt_BR
dc.description.referenceBaker, R.H., Yu, X.B., Desalle, R., Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees (1998) Mol. Phylogenet. Evol., 9, pp. 427-436pt_BR
dc.description.referenceBernays, E.A., Selective attention and host-plant specialization (1996) Entomol. Exp. Appl., 80, pp. 125-131pt_BR
dc.description.referenceBernays, E.A., Evolution of feeding behavior in insect herbivores-success seen as different ways to eat without being eaten (1998) Bioscience, 48, pp. 35-44pt_BR
dc.description.referenceBoggs Watt, W.B.C.L., Ehrlich, P.R., (2003) Butterflies: Ecology and Evolution Taking Flight, , University of Chicago Press Chicagopt_BR
dc.description.referenceBremer, K., The limits of amino-acid sequence data in angiosperm phylogenetic reconstruction (1988) Evolution, 42, pp. 795-803pt_BR
dc.description.referenceBremer, K., Branch support and tree stability (1994) Cladistics, 10, pp. 295-304pt_BR
dc.description.referenceBrower, A.V.Z., Phylogeny of Heliconius butterflies inferred from mitochondrial DNA sequences (Lepidoptera: Nymphalidae) (1994) Mol. Phylogenet. Evol., 3, pp. 159-174pt_BR
dc.description.referenceBrower, A.V.Z., Desalle, R., Vogler, A.P., Gene trees, species trees and systematics: A cladistic perspective (1996) Annu. Rev. Ecol. Syst., 27, pp. 423-450pt_BR
dc.description.referenceBrower, L.P., Brower, J.V.Z., Birds, butterflies, and plant poisons: A study in ecological chemistry (1964) Zoologica, 49, pp. 137-159pt_BR
dc.description.referenceBrown, K.S., Damman, A.J., Feeny, P., Troidine swallowtails (Lepidoptera: Papilionidae) in southeastern Brazil: Natural history and foodplant relationships (1981) J. Res. Lepid., 19, pp. 199-226pt_BR
dc.description.referenceBrown, K.S., Klitzke, C.F., Berlingeri, C., Santos, P.E.R., Neotropical swallowtails: Chemistry of food plant relationships, population ecology, and biosystematics (1995) Swallowtail Butterflies: Their Ecology and Evolutionary Biology, pp. 405-444. , J.M. Scriber Y. Tsubaki R.C. Lederhouse Scientific Publishers Gainesville, FLpt_BR
dc.description.referenceBull, J.J., Huelsenbeck, J.P., Cunningham, C.W., Swofford, D.L., Waddell, P.J., Partitioning and combining data in phylogenetic analysis (1993) Syst. Biol., 42, pp. 384-397pt_BR
dc.description.referenceCaterino, M.S., Cho, S., Sperling, F.A.H., The current state of insect molecular systematics: A thriving Tower of Babel (2000) Annu. Rev. Entomol., 45, pp. 1-54pt_BR
dc.description.referenceCaterino, M.S., Reed, R.D., Kuo, M.M., Sperling, F.A.H., A partitioned likelihood analysis of swallowtail butterfly phylogeny (Lepidoptera:Papilionidae) (2001) Syst. Biol., 50, pp. 106-127pt_BR
dc.description.referenceCaterino, M.S., Sperling, F.A.H., Papilio phylogeny based on mitochondrial cytochrome oxidase I and II genes (1999) Mol. Phylogenet. Evol., 11, pp. 122-137pt_BR
dc.description.referenceCho, S.W., Mitchell, A., Regier, J.C., Mitter, C., Poole, R.W., Friedlander, T.P., Zhao, S.W., A highly conserved nuclear gene for low-level phylogenetics-elongation factor-1-alpha recovers morphology-based tree for Heliothine moths (1995) Mol. Biol. Evol., 12, pp. 650-656pt_BR
dc.description.referenceClary, D.O., Wolstenholme, D.R., The mitochondrial-DNA molecule of Drosophila yakuba-nucleotide-sequence, gene organization, and genetic-code (1985) J. Mol. Evol., 22, pp. 252-271pt_BR
dc.description.referenceColwell, R.K., Futuyma, D.J., On the measurement of niche breadth and overlap (1971) Ecology, 52, pp. 567-576pt_BR
dc.description.referenceDesalle, R., Brower, A.V.Z., Process partitions, congruence and the independence of characters: Inferring relationships among closely-related Hawaiian Drosophila from multiple gene regions (1997) Syst. Biol., 46, pp. 751-764pt_BR
dc.description.referenceDevries, P.J., (1987) The Butterflies of Costa Rica and Their Natural History, , Princeton University Press New Jerseypt_BR
dc.description.referenceDobler, S., Mardulyn, P., Pasteels, J.M., Rowell-Rahier, M., Host-plant switches and the evolution of chemical defense and life history in the leaf beetle genus Oreina (1996) Evolution, 50, pp. 2373-2386pt_BR
dc.description.referenceEhrlich, P.R., Raven, P.H., Butterflies and plants: A study in coevolution (1964) Evolution, 18, pp. 586-608pt_BR
dc.description.referenceFaith, D.P., Cranston, P.S., Could a cladogram this short have arisen by chance alone-on permutation tests for cladistic structure (1991) Cladistics, 7, pp. 1-28pt_BR
dc.description.referenceFarris, J.S., Kallersjo, M., Kluge, A.G., Bult, C., Testing significance of incongruence (1994) Cladistics, 10, pp. 315-319pt_BR
dc.description.referenceFelsenstein, J., Confidence-limits on phylogenies-an approach using the bootstrap (1985) Evolution, 39, pp. 783-791pt_BR
dc.description.referenceFordyce, J.A., Agrawal, A.A., The role of plant trichomes and caterpillar group size on growth and defence of the pipevine swallowtail Battus philenor (2001) J. Anim. Ecol., 70, pp. 997-1005pt_BR
dc.description.referenceFordyce, J.A., Nicce, C.C., Geographic variation in clutch size and a realized benefit of aggregative feeding (2004) Evolution, 58, pp. 447-450pt_BR
dc.description.referenceFox, L.R., Morrow, P.A., Specialization-species property or local phenomenon (1981) Science, 211, pp. 887-893pt_BR
dc.description.referenceFreitas, A.V.L., Brown, K.S., Phylogeny of the Nymphalidae (Lepidoptera) (2004) Syst. Biol., 53, pp. 363-383pt_BR
dc.description.referenceFreitas, A.V.L., Ramos, R.R., Population biology of Parides anchises nephalion (Papilionidae) in a costal site in southeast Brazil (2001) Braz. J. Biol., 61, pp. 623-630pt_BR
dc.description.referenceFutuyma, D.J., Keese, M.C., Scheffer, S.J., Genetic constraints and the phylogeny of insect-plant associations - Responses of Ophraella communa (Coleoptera, Chrysomelidae) to host plants of its congeners (1993) Evolution, 47, pp. 888-905pt_BR
dc.description.referenceFutuyma, D.J., Moreno, G., The evolution of ecological specialization (1988) Annu. Rev. Ecol. Syst., 19, pp. 207-233pt_BR
dc.description.referenceGomez-Zurita, J., Juan, C., Petitpierre, E., The evolutionary history of the genus Timarcha (Coleoptera, Chrysomelidae) inferred from mitochondrial COII gene and partial 16S rDNA sequences (2000) Mol. Phylogenet. Evol., 14, pp. 304-317pt_BR
dc.description.referenceHaase, E., (1892) Untersuchungenüber die Mimikry auf Grundlage Eines Natürlichen Systems der Papilioniden. 2. Untersuchungenüber die Mimikry, , Nägele, Stuttgartpt_BR
dc.description.referenceHancock, D.L., Classification of the Papilionidae: A phylogenetic approach (1983) Smithersia, 2, pp. 1-48pt_BR
dc.description.referenceHarrison, R.G., Animal mitochondrial DNA as a genetic marker in population and evolutionary biology (1989) Trends Ecol. Evol., 4, pp. 6-11pt_BR
dc.description.referenceHaüser, C.L., Jong, R.D., Lamas, G., Robbins, R.K., Smith, C., Vane-Wright, R.I., (2002) Papilionidae - Revised GloBIS/GART Species Checklist (2nd Draft), , http://www.insects-online.de/frames/papilio.htmpt_BR
dc.description.referenceHonda, K., Hayashi, N., Chemical nature of larval osmeterial secretions of papilionid butterflies in the genera Parnassius, Sericinus and Pachliopta (1995) J. Chem. Ecol., 21, pp. 859-867pt_BR
dc.description.referenceHuelsenbeck, J.P., Larget, B., Miller, R.E., Ronquist, F., Potential applications and pitfalls of Bayesian inference of phylogeny (2002) Syst. Biol., 51, pp. 673-688pt_BR
dc.description.referenceHuelsenbeck, J.P., Ronquist, F., MRBAYES: Bayesian inference of phylogenetic trees (2001) Bioinformatics, 17, pp. 754-755pt_BR
dc.description.referenceHuelsenbeck, J.P., Ronquist, F., Nielsen, R., Bollback, J.P., Bayesian inference of phylogeny and its impact on evolutionary biology (2001) Science, 294, pp. 2310-2314pt_BR
dc.description.referenceJaenike, J., Host specialization in phytophagous insects (1990) Annu. Rev. Ecol. Syst., 21, pp. 243-273pt_BR
dc.description.referenceJanz, N., Nyblom, K., Nylin, S., Evolutionary dynamics of host-plant specialization: A case study of the tribe Nymphalini (2001) Evolution, 55, pp. 783-796pt_BR
dc.description.referenceKato, Y., Yagi, T., Biogeography of the subspecies of Parides (Byasa) alcinous (Lepidoptera: Papilionidae) based on a phylogenetic analysis of mitochondrial ND5 sequences (2004) Syst. Entomol., 29, pp. 1-9pt_BR
dc.description.referenceKelley, S.T., Farrell, B.D., Is specialization a dead end? the phylogeny of host use in Dendroctonus bark beetles (Scolytidae) (1998) Evolution, 52, pp. 1731-1743pt_BR
dc.description.referenceKlitzke, C.F., Brown, K.S., The occurrence of aristolochic acids in neotropical troidine swallowtails (Lepidoptera: Papilionidae) (2000) Chemoecology, 10, pp. 99-102pt_BR
dc.description.referenceKondo, K., Shinkawa, T., Molecular systematics of birdwing butterflies (Papilionidae) inferred from mitochondrial ND5 gene (2003) J. Lepid. Soc., 57, pp. 17-24pt_BR
dc.description.referenceKumar, S., Tamura, K., Jakobsen, I.B., Nei, M., MEGA2: Molecular evolutionary genetics analysis software (2001) Bioinformatics, 17, pp. 1244-1245pt_BR
dc.description.referenceLin, C.P., Danforth, B.N., How do insect nuclear and mitochondrial gene substitution patterns differ. Insights from Bayesian analyses of combined datasets (2004) Mol. Phylogenet. Evol., 30, pp. 686-702pt_BR
dc.description.referenceMaddison, W.P., Maddison, D.R., (1999) MacClade: Analysis of Phylogeny and Character Evolution. Version 3.08, , Sinauer Associates, Sunderland, Massachusetspt_BR
dc.description.referenceMiller, J.S., Phylogenetic studies in the Papilioninae (Lepidoptera, Papilionidae) (1987) B. Am. Mus. Nat. Hist., 186, pp. 365-512pt_BR
dc.description.reference(2003) Anexo à Instrução Normativa n 3, de 27 de Maio de 2003, do Ministério do Meio Ambiente. Lista das Espécies da Fauna Brasileira Ameaçadas de Extinção, , http://www.ibama.gov.br/fauna/downloads/lista%20spp.pdfpt_BR
dc.description.referenceMorais, A.B.B., Brown, K.S., Larval foodplant and other effects on Troidine guild composition (Papilionidae) in Southeastern Brazil (1991) J. Res. Lepid., 30, pp. 19-37pt_BR
dc.description.referenceMoran, N.A., The evolution of host-plant alternation in aphids: Evidence for specialization as a dead end (1988) Am. Nat., 132, pp. 681-706pt_BR
dc.description.referenceMorinaka, S., Maeyma, T., Maekawa, K., Erniwati, Prijono, S.N., Ginarsa, I.K., Nakazawa, T., Hidaka, T., Molecular phylogeny of birdwing butterflies based on the representatives in most genera of the tribe Troidini (Lepidoptera: Papilionidae) (1999) Entomol. Sci., 2, pp. 347-358pt_BR
dc.description.referenceMorinaka, S., Minaka, N., Sekiguchi, M., Erniwati, Prijono, S.N., Ginarsa, I.K., Myiata, T., Hidaka, T., Molecular phylogeny of birdwing butterflies of the tribe Troidini (Lepidoptera: Papilionidae)-using all species of the genus Ornithoptera (2000) Biogeography, 2, pp. 103-111pt_BR
dc.description.referenceMoss, A.M., The Papilios of para (1920) Novit. Zool., 26, pp. 295-319pt_BR
dc.description.referenceMunroe, E., The classification of the Papilionidae (1961) Can. Entomol., 17, pp. 1-51pt_BR
dc.description.referenceMunroe, E., Ehrlich, P.R., Harmonization of concepts of higher classification of the Papilionidae (1960) J. Lepid. Soc., 14, pp. 169-175pt_BR
dc.description.referenceNishida, R., Fukami, H., Ecological adaptation of an Aristolochiaceae-feeding swallowtail butterfly, Atrophaneura alcinous, to aristolochic acids (1989) J. Chem. Ecol., 15, pp. 2549-2563pt_BR
dc.description.referenceNishida, R., Weintraub, J.D., Feeny, P., Fukami, H., Aristolochic acids from Thottea spp (Aristolochiaceae) and the osmeterial secretions of Thottea-feeding troidine swallowtail larvae (Papilionidae) (1993) J. Chem. Ecol., 19, pp. 1587-1594pt_BR
dc.description.referenceNosil, P., Transition rates between specialization and generalization in phytophagous insects (2002) Evolution, 56, pp. 1701-1706pt_BR
dc.description.referenceNylander, J.A.A., Ronquist, F., Huelsenbeck, J.P., Nieves-Aldrey, J.L., Bayesian phylogenetic analysis of combined data (2004) Syst. Biol., 53, pp. 47-67pt_BR
dc.description.referenceOtero, L.S., Brown, K.S., Biology and ecology of Parides ascanius (Cramer, 1775) (Lep., Papilionidae), a primitive butterfly threatened with extinction (1986) Atala, 10 (12), pp. 2-16pt_BR
dc.description.referencePapaj, D.R., Interpopulation differences in host preference and the evolution of learning in the butterfly, Battus philenor (1986) Evolution, 40, pp. 518-530pt_BR
dc.description.referencePasteels, J.M., Rowell-Rahier, M., Proximate and ultimate causes for host plant influence on chemical defense of leaf beetles (Coleoptera, Chrysomelidae) (1991) Entomol. Gen., 15, pp. 227-235pt_BR
dc.description.referencePosada, D., Crandall, K.A., MODELTEST: Testing the model of DNA substitution (1998) Bioinformatics, 14, pp. 817-818pt_BR
dc.description.referenceRacheli, T., Oliverio, M., Biogeographical patterns of the neotropical genus Battus Scopoli 1777 (Lepidoptera, Papilionidae) (1993) Trop. Zool., 6, pp. 55-65pt_BR
dc.description.referenceRambaut, A., (1996) Se-Al: Sequence Alignment Editor, , http://evolve.zoo.ox.ac.ukpt_BR
dc.description.referenceRausher, M.D., Search image for leaf shape in a butterfly (1978) Science, 200, pp. 1071-1073pt_BR
dc.description.referenceRausher, M.D., Host abundance, juvenile survival, and oviposition preference in Battus philenor (1980) Evolution, 34, pp. 342-355pt_BR
dc.description.referenceRausher, M.D., Odendaal, F.J., Switching and the pattern of host use by Battus philenor butterflies (1987) Ecology, 68, pp. 869-877pt_BR
dc.description.referenceReed, R.D., Sperling, F.A.H., Interaction of process partitions in phylogenetic analysis: An example from the swallowtail butterfly genus Papilio (1999) Mol. Biol. Evol., 16, pp. 286-297pt_BR
dc.description.referenceRodrígues, F., Oliver, J.L., Marín, A., Medina, J.R., The general stochastic model of nucleotide substitution (1990) J. Theor. Biol., 142, pp. 485-501pt_BR
dc.description.referenceRonquist, F., Nylin, S., Process and pattern in the evolution of species associations (1990) Syst. Zool., 39, pp. 323-344pt_BR
dc.description.referenceRothschild, W., Jordan, K., A revision of the American Papilios (1906) Novit. Zool., 13, pp. 411-752pt_BR
dc.description.referenceRothschild, M., Reichstein, T., Von Euw, J., Aplin, R., Harman, R.R.M., Toxic Lepidoptera (1970) Toxicon, 8, pp. 293-299pt_BR
dc.description.referenceScheffer, S.J., Wiegmann, B.M., Molecular phylogenetics of the holly leaf miners (Diptera: Agromyzidae: Phytomyza): Species limits, speciation, and dietary specialization (2000) Mol. Phylogenet. Evol., 17, pp. 244-255pt_BR
dc.description.referenceScriber, J.M., Overview of swallowtail butterflies: Taxonomic and distributional latitude (1995) Swallowtail Butterflies: Their Ecology and Evolutionary Biology, pp. 3-20. , J.M. Scriber Y. Tsubaki R.C. Lederhouse Scientific Publishers Gainesville, FLpt_BR
dc.description.referenceSillen-Tullberg, B., Evolution of gregariousness in aposematic butterfly larvae: A phylogenetic analysis (1988) Evolution, 42, pp. 293-305pt_BR
dc.description.referenceSime, K., Chemical defence of Battus philenor larvae against attack by the parasitoid Trogus pennator (2002) Ecol. Entomol., 27, pp. 337-345pt_BR
dc.description.referenceSime, K.R., Feeny, P.F., Haribal, M.M., Sequestration of aristolochic acids by pipevine swallowtail, Battus philenor (L.): Evidence and ecological implications (2000) Chemoecology, 10, pp. 169-178pt_BR
dc.description.referenceSorensen, M.D., (1999) TreeRot, Version 2, , Boston University, Boston, MApt_BR
dc.description.referenceSpade, P., Tyler, H., Brown, J.W., The biology of seven Troidine swallowtail butterflies (Papilionidae) in Colima, Mexico (1988) J. Res. Lepid., 26, pp. 13-26pt_BR
dc.description.referenceSperling, F.A.H., Butterfly molecular systematics: From species definitions to higher-level phylogenies (2003) Butterflies: Ecology and Evolution Taking Flight, pp. 431-458. , C.L. Boggs W.B. Watt P.R. Erlich The University of Chicago Press Chicago and Londonpt_BR
dc.description.referenceStamp, N.E., Physical constraints of defense in response to invertebrate predators by pipevine caterpillars (Battus philenor: Papilionidae) (1986) J. Lepid. Soc., 40, pp. 191-205pt_BR
dc.description.referenceSwofford, D.L., (2002) PAUP*: Phylogenetic Analysis Using Parsimony (* and Other Methods), , Sinauer Associates, Sunderland, MApt_BR
dc.description.referenceTyler, H., Brown, K.S., Wilson, K., (1994) Swallowtail Butterflies of the Americas-A Study in Biological Dynamics, Ecological Diversity, Biosystematics, and Conservation, , Scientific Publishers Gainesville, FLpt_BR
dc.description.referenceUrzúa, A., Priestap, H., Aristolochic acids from Battus polydamas (1985) Biochem. Syst. Ecol., 13, pp. 169-170pt_BR
dc.description.referenceVane-Wright, R.I., Evidence and identity in butterfly systematics (2003) Butterflies: Ecology and Evolution Taking Flight, pp. 477-513. , C.L. Boggs W.B. Watt P.R. Erlich The University of Chicago Press Chicago and Londonpt_BR
dc.description.referenceWahlberg, N., The phylogenetics and biochemistry of host-plant specialization in Melitaeine butterflies (Lepidoptera: Nymphalidae) (2001) Evolution, 55, pp. 522-537pt_BR
dc.description.referenceWahlberg, N., Nylin, S., Morphology versus molecules: Resolution of the positions of Nymphalis, Polygonia, and related genera (Lepidoptera: Nymphalidae) (2003) Cladistics, 19, pp. 213-223pt_BR
dc.description.referenceWahlberg, N., Weingartner, E., Nylin, S., Towards a better understanding of the higher systematics of Nymphalidae (Lepidoptera: Papilionoidea) (2003) Mol. Phylogenet. Evol., 28, pp. 473-484pt_BR
dc.description.referenceWeintraub, J.D., Host plant association patterns and phylogeny in the tribe Troidini (Lepidoptera: Papilionidae) (1995) Swallowtail Butterflies: Their Ecology and Evolutionary Biology, pp. 307-316. , J.M. Scriber Y. Tsubaki R.C. Lederhouse Scientific Publishers Gainesville, FLpt_BR
dc.description.referenceWootton, R.J., Functional morphology of insect wings (1992) Annu. Rev. Entomol., 37, pp. 113-140pt_BR
dc.description.referenceYoder, A.D., Irwin, J.A., Payseur, B.A., Failure of the ILD to determine data combinability for slow loris phylogeny (2001) Syst. Biol., 50, pp. 408-424pt_BR
dc.description.referenceZakharov, E.V., Caterino, M.S., Sperling, F.A.H., Molecular phylogeny, historical biogeography, and divergence time estimates for swallowtail butterflies of the genus Papilio (Lepidoptera: Papilionidae) (2004) Syst. Biol., 53, pp. 193-215pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-23444449631.pdf1.21 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.