Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: Split-plot Designs And Normal Probability Graphs For The Optimization Of Chemical Systems
Author: Bortoloti J.A.
Borges C.N.
Bruns R.E.
Abstract: An approximate procedure based on normal probability graphs for selecting significant parameters of models calculated from the results of split-plot designs is proposed. Its application can result in a substantial reduction in the number of experiments that need to be performed. The method is applied to three split-plot design results for real data reported in the literature: (1) three plasticizer mixture components with different extrusion rates and drying temperatures, (2) three fish pattie ingredients at different cooking and frying temperature and times and (3) Cr(VI) catalytic determinations employing three reagents of varying concentrations and three solvent components of varying proportions. Approximate models determined from the proposed procedure are compared with those determined using complete split-plot ANOVA analyses. The robustness of the procedure is tested for one of the split-plot design results using replication, main-plot error and sub-plot error variance estimates that change according to a 23 factorial design. © 2005 Elsevier B.V. All rights reserved.
Rights: fechado
Identifier DOI: 10.1016/j.aca.2005.01.021
Date Issue: 2005
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-20444436000.pdf191.35 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.