Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/93052
Type: Artigo de periódico
Title: Poincaré-hopf Inequalities
Author: Bertolim M.A.
Mello M.P.
De Rezende K.A.
Abstract: In this article the main theorem establishes the necessity and sufficiency of the Poincaré-Hopf inequalities in order for the Morse inequalities to hold. The convex hull of the collection of all Betti number vectors which satisfy the Morse inequalities for a pre-assigned index data determines a Morse polytope defined on the nonnegative orthant. Using results from network flow theory, a scheme is provided for constructing all possible Betti number vectors which satisfy the Morse inequalities for a pre-assigned index data. Geometrical properties of this polytope are described. ©2004 American Mathematical Society.
Editor: 
Rights: fechado
Identifier DOI: 10.1090/S0002-9947-04-03641-4
Address: http://www.scopus.com/inward/record.url?eid=2-s2.0-26444450678&partnerID=40&md5=be4046a78f939bdd74c652402f95babc
Date Issue: 2005
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-26444450678.pdf473.67 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.