Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: Improving A Multi-objective Multipopulation Artificial Immune Network For Biclustering
Author: Coelho G.P.
De Franca F.O.
Von Zuben F.J.
Abstract: The biclustering technique was developed to avoid some of the drawbacks presented by standard clustering techniques. Given that biclustering requires the optimization of at least two conflicting objectives and that multiple independent solutions are desirable as the outcome, a few multi-objective evolutionary algorithms for biclustering were proposed in the literature. However, apart from the individual characteristics of the biclusters that should be optimized during their construction, several other global aspects should also be considered, such as the coverage of the dataset and the overlap among biclusters. These requirements will be addressed in this work with the MOM-aiNet+ algorithm, which is an improvement of the original multi-objective multipopulation artificial immune network denoted MOM-aiNet. Here, the MOM-aiNet+ algorithm will be described in detail, its main differences from the original MOM-aiNet will be highlighted, and both algorithms will be compared, together with three other proposals from the literature. © 2009 IEEE.
Rights: fechado
Identifier DOI: 10.1109/CEC.2009.4983287
Date Issue: 2009
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-70449976548.pdf205.42 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.