Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: A Conjugate For The Bargmann Representation
Author: Ribeiro A.D.
Parisio F.
De Aguiar M.A.M.
Abstract: In the Bargmann representation of quantum mechanics, physical states are mapped into entire functions of a complex variable z*, whereas the creation and annihilation operators and play the role of multiplication and differentiation with respect to z*, respectively. In this paper we propose an alternative representation of quantum states, conjugate to the Bargmann representation, where the roles of and are reversed, much like the roles of the position and momentum operators in their respective representations. We derive expressions for the inner product that maintain the usual notion of distance between states in the Hilbert space. Applications to simple systems and to the calculation of semiclassical propagators are presented. © 2009 IOP Publishing Ltd.
Rights: fechado
Identifier DOI: 10.1088/1751-8113/42/10/105301
Date Issue: 2009
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.