Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: A Robust Multivariate Measurement Error Model With Skew-normal/independent Distributions And Bayesian Mcmc Implementation
Author: Lachos V.H.
Garibay V.
Labra F.V.
Aoki R.
Abstract: Skew-normal/independent distributions are a class of asymmetric thick-tailed distributions that include the skew-normal distribution as a special case. In this paper, we explore the use of Markov Chain Monte Carlo (MCMC) methods to develop a Bayesian analysis in multivariate measurement errors models. We propose the use of skew-normal/independent distributions to model the unobserved value of the covariates (latent variable) and symmetric normal/independent distributions for the random errors term, providing an appealing robust alternative to the usual symmetric process in multivariate measurement errors models. Among the distributions that belong to this class of distributions, we examine univariate and multivariate versions of the skew-normal, skew-t, skew-slash and skew-contaminated normal distributions. The results and methods are applied to a real data set. © 2009 Elsevier B.V.
Rights: fechado
Identifier DOI: 10.1016/j.stamet.2009.06.002
Date Issue: 2009
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-69649084716.pdf1.34 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.