Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleAntitumoral Activity Of L-ascorbic Acid-poly-d, L-(lactide-co-glycolide) Nanoparticles Containing Violaceinpt_BR
dc.contributor.authorMartins D.pt_BR
dc.contributor.authorFrungillo L.pt_BR
dc.contributor.authorAnazzetti M.C.pt_BR
dc.contributor.authorMelo P.S.pt_BR
dc.contributor.authorDuran N.pt_BR
unicamp.authorMartins, D., Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas-UNICAMP, C.P. 6154, CEP 13083-970, Campinas, SP, Brazilpt_BR
unicamp.authorFrungillo, L., Institute of Biology, Cell Cultures and Biopharmaceutical Laboratory, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazilpt_BR
unicamp.authorAnazzetti, M.C., Institute of Biology, Cell Cultures and Biopharmaceutical Laboratory, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazilpt_BR
unicamp.authorDurán, N., Institute of Chemistry, Biological Chemistry Laboratory, Universidade Estadual de Campinas-UNICAMP, C.P. 6154, CEP 13083-970, Campinas, SP, Brazilpt_BR, P.S., Campinas Integrated Metropolitan Faculties-METROCAMP, Campinas, SP, Brazilpt
dc.description.abstractIt has been demonstrated that tumoral cells have a higher uptake of ascorbic acid compared to normal cells. This differential characteristic can be used as a way to improve the specificity of antitumoral compounds if combined with polymeric drug delivery systems. The aim of this study was to prepare, characterize and evaluate the antitumoral activity of poly-D,L-(lactide-co-glycolide) 50:50 loading the antitumoral compound violacein and capped with L-ascorbic acid. Nanoparticles were prepared using the nanoprecipitation method and morphologically characterized by scanning electron microscopy (SEM). The average diameter and Zeta potential were determined by photon correlation spectroscopy method (PCS), and assays were carried out to determine the content of ascorbic acid and in vitro drug release kinetics. The antitumoral activity of this system was also evaluated against HL-60 cells by tetrazolium reduction assay. Nanoparticles with size distribution between 300-400 nm and strong negative outer surface (-40 mV) were obtained by this method. Analysis of ascorbic acid content showed that this compound was mainly localized on the external surface of nanoparticles. Violacein loading efficiency was determined as 32% ± 1% and this drug was gradually released from nanoparticles at different rates depending on the composition of the release media. In addition, this system was observed to be 2 × more efficient as an antitumoral compared with free violacein. © 2010 Martins et al.en
dc.relation.ispartofInternational Journal of Nanomedicinept_BR
dc.identifier.citationInternational Journal Of Nanomedicine. , v. 5, n. 1, p. 77 - 85, 2010.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-26T12:37:04Z (GMT). No. of bitstreams: 1 2-s2.0-77951167935.pdf: 653643 bytes, checksum: 62228e4544cd6634394101b269ab65d6 (MD5) Previous issue date: 2010en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:27:05Z (GMT). No. of bitstreams: 2 2-s2.0-77951167935.pdf: 653643 bytes, checksum: 62228e4544cd6634394101b269ab65d6 (MD5) 2-s2.0-77951167935.pdf.txt: 39725 bytes, checksum: 52329c503d9263c070c791e6788d15cd (MD5) Previous issue date: 2010en
dc.description.referenceSofou, S., Surface-active liposomes for targeted cancer therapy (2007) Nanomedicine, 2, pp. 711-724pt_BR
dc.description.referenceSavona, M., Talpaz, M., Getting to the stem chronic myeloid leukaemia (2008) Nature Rev Cancer, 8, pp. 341-350pt_BR
dc.description.referenceNarayana, A., Kelly, P., Golfinos, J., Antiangiogenic therapy using bevacizumab in recurrent high-grade glioma: Impact on local control and patient survival (2009) J Neurosurg, 110, pp. 173-180pt_BR
dc.description.referencePaternot, S., Roger, P.P., Combined inhibition of MEK and mammalian target of rapamycin abolishes phosphorylation of cyclin-dependent kinase 4 in glioblastoma cell lines and prevents their proliferation (2009) Cancer Res, 69, pp. 4577-4581pt_BR
dc.description.referenceEgilmez, N.K., Kilinc, M.O., Gu, T., Controlled-release particulate cytokine adjuvants for cancer therapy (2007) Endocr Metab Immune Disord Drug Targets, 7, pp. 266-270pt_BR
dc.description.referenceNemunaitis, J.J., Gene immunotherapy for non-small cell lung cancer (2009) Methods Mol Biol, 542, pp. 499-514pt_BR
dc.description.referenceDouziech-Eyrolles, L., Marchais, H., Hervé, K., Nanovectors for anticancer agents based on superparamagnetic iron oxide nanoparticles (2007) Int J Nanomedicine, 2, pp. 541-550pt_BR
dc.description.referenceCiampi, R., Vivaldi, A., Romei, C., Expression analysis of facilitative glucose transporters (GLUTs) in human thyroid carcinoma cell lines and primary tumors (2008) Mol Cell Endocrinol, 291, pp. 57-62pt_BR
dc.description.referenceAgus, D.B., Vera, J.C., Golde, D.W., Stromal cell oxidation: A mechanism by which tumors obtain vitamin C (1999) Cancer Res, 18, pp. 4555-4558pt_BR
dc.description.referenceTorchilin, V.P., Micellar nanocarriers: Pharmaceutical perspectives (2007) Pharm Res, 24, pp. 1-16pt_BR
dc.description.referenceMarcato, P.D., Durán, N., New aspects of nanopharmaceutical delivery systems (2008) J Nanosci Nanotechnol, 8, pp. 2216-2229pt_BR
dc.description.referenceHar-El, Y.E., Kato, Y., Intracellular delivery of nanocarriers for cancer therapy (2007) Curr Nanosci, 3, pp. 329-338pt_BR
dc.description.referenceArruebo, M., Fernández-Pacheco, R., Ibarra, M.R., Santamaría, J., Magnetic nanoparticles for drug delivery (2007) Nanotoday, 2, pp. 22-32pt_BR
dc.description.referenceBharali, D.J., Khalil, M., Gurbuz, M., Simone, T.M., Mousa, S.A., Nanoparticles and cancer therapy: A concise review with emphasis on dendrimers (2009) Int J Nanomedicine, 4, pp. 1-7pt_BR
dc.description.referenceTekade, R.K., Kumar, P.V., Jain, N.K., Dendrimers in oncology: An expanding horizon (2009) Chem Rev, 109, pp. 49-87pt_BR
dc.description.referenceNair, L.S., Laurencin, C.T., Biodegradable polymers as biomaterials (2006) Progr Polym Sci, 32, pp. 762-798pt_BR
dc.description.referenceJain, K.K., Recent advances in nanoocology (2008) Technol Cancer Res Treat, 7, pp. 1-13pt_BR
dc.description.referenceMundargi, R.C., Babu, V.R., Rangaswamy, V., Patel, P., Aminabhavi, T.M., Nano/micro technologies for delivering macromolecular therapeutics using poly(D,L-lactide-co-glycolide) and its derivatives (2008) J Control Release, 125, pp. 193-209pt_BR
dc.description.referenceDurán, N., Menck, C.F., Chromobacterium violaceum: A review of pharmacological and industrial perspectives (2001) Crit Rev Microbiol, 27, pp. 201-222pt_BR
dc.description.referenceDurán, N., Justo, G.Z., Ferreira, C.V., Melo, P.S., Cordi, L., Martins, D., Violacein: Properties and biological activities (2007) Biotechnol Appl Biochem, 48, pp. 127-133pt_BR
dc.description.referenceFerreira, C.V., Bos, C.L., Versteeg, H.H., Justo, G.Z., Durán, N., Peppelenbosch, M.P., Molecular mechanism of violacein-mediated human leukemia cell death (2004) Blood, 104, pp. 1459-1464pt_BR
dc.description.referencede Carvalho, D.D., Costa, F.T.M., Durán, N., Haun, M., Cytotoxic activity of violacein in human colon cancer cells (2006) Toxicol In Vitro, 20, pp. 1514-1521pt_BR
dc.description.referenceBromberg, N., Justo, G.Z., Haun, M., Durán, N., Ferreira, C.V., Violacein cytotoxicity on human blood lymphocytes and effect on phosphatases (2005) J Enzyme Inhib Med Chem, 20, pp. 449-454pt_BR
dc.description.referenceRettori, D., Durán, N., Production, extraction and purification of violacein: An antibiotic pigment produced by Chromobacterium violaceum (1998) World J Microb Biotechnol, 14, pp. 685-688pt_BR
dc.description.referenceItalia, J.L., Yahya, M.M., Singh, D., Ravi Kumar, M.N., Biodegradable nanoparticles improve oral bioavailability of amphotericin B and show reduced nephrotoxicity compared to intravenous Fungizone (2009) Pharm Res, 26, pp. 1324-1331pt_BR
dc.description.referenceMelo, P.S., de Azevedo, M.M., Frugillo, L., Anazetti, M.C., Marcato, P.D., Durán, N., Nanocytotoxicity: Violacein and violacein-loaded poly(D,L-lactide-co-glycolide) nanoparticles acting on human leukemic cells (2009) J Biomed Nanotechnol, 5, pp. 192-201pt_BR
dc.description.referenceMartins, D., Costa, F.T.M., Brocchi, M., Evaluation of the antibacterial activity of poly-(D,L-lactide-co-glycolide) nanoparticles containing violacein (2009) J Nanoparticle Res, , Submission number: NANO2280pt_BR
dc.description.referenceSuntornsuk, L., Gritsanapun, W., Nilkamhank, S., Paochom, A., Quantitation of vitamin C content in herbal juice using direct titration (2002) J Pharm Biomed Anal, 28, pp. 849-855pt_BR
dc.description.referenceFrungillo, L., Martins, D., Teixeira, S., Anazetti, M.C., Melo Pda, S., Durán, N., Targeted antitumoral dehydrocrotonin nanoparticls with L-ascorbic acid 6-stearate (2009) J Pharm Sci, 98, pp. 4796-4807pt_BR
dc.description.referenceArranz, N., Haza, A.I., García, A., Delgado, M.E., Rafter, J., Morales, P., Inhibition by vitamin C of apoptosis induced by N-nitrosamines in HepG2 and HL-60 cells (2008) J Appl Toxicol, 28, pp. 788-796pt_BR
dc.description.referenceLopes, S.C., Blanco, Y.C., Justo, G.Z., Violacein extracted from Chromobacterium violaceum inhibits Plasmodium growth in vitro and in vivo (2009) Antimicrob Agents Chemother, 53, pp. 2149-2152pt_BR
dc.description.referenceCabane, B., Blanchon, S., Neves, C., Recombination of nanometric vesicles during freeze-drying (2006) Langmuir, 22, pp. 1982-1990pt_BR
dc.description.referenceLee, J., Cheng, Y., Critical freezing rate in freeze drying nanocrystal dispersions (2006) J Control Release, 111, pp. 185-192pt_BR
dc.description.referenceHolzer, M., Vogel, V., Mäntele, W., Schwartz, D., Haase, W., Langer, K., Physico-chemical characterisation of PLGA nanoparticles after freeze-drying and storage (2009) Eur J Pharm Biopharm, 72, pp. 428-437pt_BR
dc.description.referenceChen, Q., Espey, M.G., Sun, A.Y., Ascorbate in pharmacologic concentrations selectively generates ascorbate radical and hydrogen peroxide in extracellular fluid in vivo (2007) Proc Natl Acad Sci USA, 104, pp. 8749-8754pt_BR
dc.description.referenceYu, B., Zhao, X., Lee, L.J., Lee, R.J., Targeted delivery systems for oligo-nucleotide therapeutics (2009) AAPS J, 11, pp. 95-203pt_BR
dc.description.referenceChen, H., Ahn, R., van den Bossche, J., Thompson, D.H., O'Halloran, T.V., Folate-mediated intracellular drug delivery increases the anticancer efficacy of nanoparticulate formulation of arsenic trioxide (2009) Mol Cancer Ther, 8, pp. 1955-1963pt_BR
dc.description.referenceMacheda, M.L., Rogers, S., Best, J.D., Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer (2005) J Cell Physiol, 202, pp. 654-662pt_BR
dc.description.referenceAirley, R.E., Mobasheri, A., Hypoxic regulation of glucose transport, anaerobic metabolism and angiogenesis in cancer: Novel pathways and targets for anticancer therapeutics (2007) Chemotherapy, 53, pp. 233-256pt_BR
dc.description.referenceFonteyne, P., Casneuf, V., Pauwels, P., Expression of hexokinases and glucose transporters in treated and untreated oesophageal adenocarcinoma (2009) Histol Histopathol, 24, pp. 971-977pt_BR
dc.description.referenceDaskalow, K., Pfander, D., Weichert, W., Distinct temporospatial expression patterns of glycolysis-related proteins in human hepatocellular carcinoma (2009) Histochem Cell Biol, 132, pp. 21-31pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-77951167935.pdf638.32 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.