Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Three-dimensional Complex Padé Fd Migration: Splitting And Corrections
Author: Mondini D.
Costa J.C.
Schleicher J.
Novais A.
Abstract: Three-dimensional wave-equation migration techniques are still quite expensive because of the huge matrices that need to be inverted. Several techniques have been proposed to reduce this cost by splitting the full 3D problem into a sequence of 2D problems. To reduce errors, the Li correction is applied at regular multiples of depth extrapolation increment. We compare the performance of splitting techniques in wave propagation for 3D finite-difference (FD) migration in terms of image quality and computational cost. We study the behaviour of the complex Padé approximation in combination with two- and alternating four-way splitting, that is, splitting into the coordinate directions at one depth and the diagonal directions at the next depth level. We also extend the Li correction for use with the complex Padé expansion and diagonal directions. From numerical examples in inhomogeneous media, we conclude that alternate four-way splitting is the most cost-effective strategy to reduce numerical anisotropy in complex Padé 3D FD migration. © 2012 D. Mondini et al.
Rights: aberto
Identifier DOI: 10.1155/2012/479492
Date Issue: 2012
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84866233041.pdf17.88 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.