Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/88212
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbnnullpt
dc.typeArtigo de periódicopt_BR
dc.titleEffect Of Mwcnt Functionalization On Thermal And Electrical Properties Of Phbv/mwcnt Nanocompositespt_BR
dc.contributor.authorDo Amaral Montanheiroa T.L.pt_BR
dc.contributor.authorCristovan F.H.pt_BR
dc.contributor.authorMachado J.P.B.pt_BR
dc.contributor.authorTada D.B.pt_BR
dc.contributor.authorDuran N.pt_BR
dc.contributor.authorLemes A.P.pt_BR
unicamp.authorDurán, N., Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José Dos CamposSão Paulo, Brazil, Universidade Estadual de Campinas (UNICAMP), Laboratory on Nanostructures Synthesis and Biological Interactions (NanoBioss)Campinas, São Paulo, Brazilpt_BR
unicamp.authorLemes, A.P., Universidade Estadual de Campinas (UNICAMP), Instituto de QuómicaCampinas, São Paulo, Brazilpt_BR
unicamp.author.externalDo Amaral Montanheiroa, T.L., Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José Dos CamposSão Paulo, Brazilpt
unicamp.author.externalCristóvan, F.H., Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José Dos CamposSão Paulo, Brazilpt
unicamp.author.externalMachado, J.P.B., Instituto Nacional de Pesquisas Espaciais (INPE), Laboratório Associado de Sensores e Materiais (LAS), São José Dos CamposSão Paulo, Brazilpt
unicamp.author.externalTada, D.B., Universidade Federal de São Paulo (UNIFESP), Instituto de Ciência e Tecnologia, São José Dos CamposSão Paulo, Brazilpt
dc.description.abstractPristine multiwalled carbon nanotubes (P-MWCNTs) were functionalized with carboxylic groups (MWCNT-COOH) through oxidation reactions and then reduced to produce hydroxyl groups (MWCNT-OH). Pristine and functionalized MWCNTs were used to produce poly(hydroxybutyrate-co-hydroxyvalerate) (PHBV) nanocomposites with 0.5 wt% of MWCNTs. MWCNT functionalization was verified by visual stability in water, infrared and Raman spectroscopy, and zeta potential measurements. Pristine and functionalized MWCNTs acted as the nucleating agent in a PHBV matrix, as verified by differential scanning calorimetry (DSC). However, the dispersion of filler into the matrix, thermal stability, and direct current (DC) conductivity were affected by MWCNT functionalization. Scanning electron microscopy (SEM) showed that filler dispersion into the PHBV matrix was improved with MWCNT functionalization. The surface roughness was reduced with the addition and functionalization of MWCNT. The thermal stability of PHBV/MWCNT-COOH, PHBV/P-MWCNT, and PHBV/MWCNT-OH nanocomposites were 20, 30, and 30 °C higher than neat PHBV, respectively, as verified by thermogravimetry analysis (TGA). Addition of pristine and functionalized MWCNTs provided electrical conductivity in nanocomposite, which was higher for PHBV/P-MWCNTs (1.2 × 10-5 S cm-1).en
dc.relation.ispartofJournal of Materials Researchpt_BR
dc.publisherCambridge University Presspt_BR
dc.date.issued2014pt_BR
dc.identifier.citationJournal Of Materials Research. Cambridge University Press, v. 760, n. , p. - , 2014.pt_BR
dc.language.isoenpt_BR
dc.description.volume760pt_BR
dc.description.issuenumberpt_BR
dc.description.lastpagept_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn8842914pt_BR
dc.identifier.doi10.1557/jmr.2014.303pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84911438921&partnerID=40&md5=178c7dece802ebaed61ae9184f8a5552pt_BR
dc.date.available2015-06-25T18:06:10Z
dc.date.available2015-11-26T15:06:59Z-
dc.date.accessioned2015-06-25T18:06:10Z
dc.date.accessioned2015-11-26T15:06:59Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T18:06:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:06:59Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/88212
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/88212-
dc.identifier.idScopus2-s2.0-84911438921pt_BR
dc.description.referenceXu, C., Qiu, Z., Nonisothermal melt crystallization and subsequent melting behavior of biodegradable poly (hydroxybutyrate)/multiwalled carbon nanotubes nanocomposites (2009) J. Polym. Sci., Part B: Polym. Phys, 47, p. 2238pt_BR
dc.description.referenceReddy, M.M., Vivekanandhan, S., Misra, M., Bhatia, S.K., Mohanty, A.K., Biobased plastics and bionanocomposites: Current status and future opportunities (2013) Prog. Polym. Sci, 38, p. 1653pt_BR
dc.description.referenceReddy, C.S., Ghai, R., Kalia, V., Polyhydroxyalkanoates: An overview (2003) Bioresour. Technol, 87, p. 137pt_BR
dc.description.referenceShang, L., Fei, Q., Zhang, Y.H., Wang, X.Z., Fan, D.-D., Chang, H.N., Thermal properties and biodegradability studies of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (2011) J. Polym. Environ, 20, p. 23pt_BR
dc.description.referenceZribi-Maaloul, E., Trabelsi, I., Elleuch, L., Chouayekh, H., Salah, R.B., Purification and characterization of two polyhydroxyalcanoates from bacillus cereus (2013) Int. J. Biol. Macromol, 61, p. 82pt_BR
dc.description.referenceFradinho, J.C., Domingos, J.M.B., Carvalho, G., Oehmen, A., Reis, M.A.M., Polyhydroxyalkanoates production by a mixed photosynthetic consortium of bacteria and algae (2013) Bioresour. Technol, 132, p. 146pt_BR
dc.description.referenceEggers, J., Steinbüchel, A., Poly(3-hydroxybutyrate) degradation in ralstonia eutropha h16 is mediated stereoselectively to (s)-3-hydroxybutyryl coenzyme a (coa) via crotonyl-coa (2013) J. Bacteriol, 195, p. 3213pt_BR
dc.description.referenceBoyandin, A.N., Rudnev, V.P., Ivonin, V.N., Prudnikova, S.V., Korobikhina, K.I., Filipenko, M.L., Volova, T.G., Sinskey, A.J., Biodegradation of polyhydroxyalkanoate films in natural environments (2012) Macromol. Symp, 320, p. 38pt_BR
dc.description.referenceSrubar, W.V., Pilla, S., Wright, Z.C., Ryan, C.A., Greene, J.P., Frank, C.W., Billington, S.L., Mechanisms and impact of fiber- matrix compatibilization techniques on the material characterization of phbv/oak wood flour engineered biobased composites (2012) Compos. Sci. Technol, 72, p. 708pt_BR
dc.description.referenceLiu, W.J., Yang, H.L., Wang, Z., Dong, L.S., Liu, J.J., Effect of nucleating agents on the crystallization of poly(3-hydroxybutyrateco- 3-hydroxyvalerate) (2002) J. Appl. Polym. Sci, 86, p. 2145pt_BR
dc.description.referenceAvella, M., Bogoeva-Gaceva, G., Buz, A., Errico, M.E., Gentile, G., Grozdanov, A., Biocomposites reinforced with kenaf fibers (2007) J. Appl. Polym. Sci, 104, p. 3192pt_BR
dc.description.referenceEl-Hadi, A., Schnabel, R., Straube, E., Müller, G., Henning, S., Correlation between degree of crystallinity, morphology, glass temperature, mechanical properties and biodegradation of poly (3-hydroxyalkanoate) phas and their blends (2002) Polym. Test, 21, p. 665pt_BR
dc.description.referenceAjayan, P.M., Nanotubes from carbon (1999) Chem. Rev, 99, p. 1787pt_BR
dc.description.referenceAtieh, M.A., Bakather, O.Y., Al-Tawbini, B., Bukhari, A.A., Abuilaiwi, F.A., Fettouhi, M.B., Effect of carboxylic functional group functionalized on carbon nanotubes surface on the removal of lead from water (2010) Bioinorg. Chem. Appl, 2010, p. 1pt_BR
dc.description.referenceSahoo, N.G., Rana, S., Cho, J.W., Li, L., Chan, S.H., Polymer nanocomposites based on functionalized carbon nanotubes (2010) Prog. Polym. Sci, 35, p. 837pt_BR
dc.description.referenceMoniruzzaman, M., Winey, K.I., Polymer nanocomposites containing carbon nanotubes (2006) Macromolecules, 39, p. 5194pt_BR
dc.description.referenceHu, H., Yu, A., Kim, E., Zhao, B., Itkis, M.E., Bekyarova, E., Haddon, R.C., Influence of the zeta potential on the dispersability and purification of single-walled carbon nanotubes (2005) J. Phys. Chem. B, 109pt_BR
dc.description.referenceVidhate, S., Innocentini-Mei, L., Souza, N.A.D., Mechanical and electrical multifunctional poly (3-hydroxybutyrate- co -3-hydroxyvalerate )- multiwall carbon nanotube nanocomposites (2012) Polym. Eng. Sci, 52, p. 1367pt_BR
dc.description.referenceLiu, C.-X., Choi, J.-W., Improved dispersion of carbon nanotubes in polymers at high concentrations (2012) Nanomaterials, 2, p. 329pt_BR
dc.description.referenceMa, P.C., Kim, J.-K., Tang, B.Z., Functionalization of carbon nanotubes using a silane coupling agent (2006) Carbon, 44, p. 3232pt_BR
dc.description.referenceChen, S., Shen, W., Wu, G., Chen, D., Jiang, M., A new approach to the functionalization of single-walled carbon nanotubes with both alkyl and carboxyl groups (2005) Chem. Phys. Lett, 402, p. 312pt_BR
dc.description.referenceStobinski, L., Lesiak, B., Kövér, L., Tóth, J., Biniak, S., Trykowski, G., Judek, J., Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the ftir and electron spectroscopy methods (2010) J. Alloys Compd, 501, p. 77pt_BR
dc.description.referenceScheibe, B., Borowiak-Palen, E., Kalenczuk, R.J., Oxidation and reduction of multiwalled carbon nanotubes - Preparation and characterization (2010) Mater. Charact, 61, p. 185pt_BR
dc.description.referenceLiu, L., Qin, Y., Guo, Z., Zhu, D., Reduction of solubilized multi-walled carbon nanotubes (2003) Carbon, 41, p. 331pt_BR
dc.description.referenceDamian, C., Andreea, M., Iovu, H., Ethylenediamine functionalization effect on the thermo-mechanical properties of epoxy nanocomposites reinforced with multiwall carbon nanotubes (2010) U.P. B. Sci. Bull, 72, p. 163pt_BR
dc.description.referenceAntunes, E.F., Lobo, A.O., Corat, E.J., Trava-Airoldi, V.J., Martin, A.A., Veríssimo, C., Comparative study of first- and second-order raman spectra of mwcnt at visible and infrared laser excitation (2006) Carbon, 44, p. 2202pt_BR
dc.description.referenceOsswald, S., Havel, M., Gogotsi, Y., Monitoring oxidation of multiwalled carbon nanotubes by raman spectroscopy (2007) J. Raman Spectrosc, 38, p. 728pt_BR
dc.description.referenceByrne, M.T., McNamee, W.P., Gun'Ko, Y.K., Chemical functionalization of carbon nanotubes for the mechanical reinforcement of polystyrene composites (2008) Nanotechnology, 19, p. 1pt_BR
dc.description.referenceGunaratne, L.M.W.K., Shanks, R.A., Amarasinghe, G., Thermal history effects on crystallisation and melting of poly(3-hydroxybutyrate) (2004) Thermochim. Acta, 423, p. 127pt_BR
dc.description.referenceOwen, A.J., Heinzel, J., Škrbić, Z., Divjaković, V., Crystallization and melting behaviour of phb and phb/hv copolymer (1992) Polymer, 33, p. 1563pt_BR
dc.description.referenceLai, M., Li, J., Yang, J., Liu, J., Tong, X., Cheng, H., The morphology and thermal properties of multi-walled carbon nanotube and poly(hydroxybutyrate-co-hydroxyvalerate) composite (2004) Polym. Int, 53, p. 1479pt_BR
dc.description.referenceYu, H.-Y., Yao, J.-M., Qin, Z.-Y., Liu, L., Yang, X.-G., Comparison of covalent and noncovalent interactions of carbon nanotubes on the crystallization behavior and thermal properties of poly(3-hydroxybutyrate- co -3-hydroxyvalerate) (2013) J. Appl. Polym. Sci, 130, p. 4299pt_BR
dc.description.referenceShaffer, M.S.P., Windle, A.H., Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites (1999) Adv. Mater, 11, p. 937pt_BR
dc.description.referenceLi, Q., Temperature dependence of the electrical properties of the carbon nanotube/polymer composites (2009) EXPRESS Polym. Lett, 3, p. 769pt_BR
dc.description.referenceAguilar, J.O., Bautista-Quijano, J.R., Avilés, F., Influence of carbon nanotube clustering on the electrical conductivity of polymer composite films (2010) EXPRESS Polym. Lett, 4, p. 292pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.