Please use this identifier to cite or link to this item:
http://repositorio.unicamp.br/jspui/handle/REPOSIP/87901
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.CRUESP | UNIVERSIDADE ESTADUAL DE CAMPINAS | pt_BR |
dc.identifier.isbn | pt_BR | |
dc.contributor.authorunicamp | Falcão, Alexandre Xavier | pt_BR |
dc.type | Artigo | pt_BR |
dc.title | Toward satellite-based land cover classification through optimum-path forest | pt_BR |
dc.title.alternative | pt_BR | |
dc.contributor.author | Pisani, Rodrigo José | pt_BR |
dc.contributor.author | Nakamura, Rodrigo Yuji Mizobe | pt_BR |
dc.contributor.author | Riedel, Paulina Setti | pt_BR |
dc.contributor.author | Zimback, Célia Regina Lopes | pt_BR |
dc.contributor.author | Falcão, Alexandre Xavier | pt_BR |
dc.contributor.author | Papa, João Paulo | pt_BR |
unicamp.author | Falcao, A.X., Institute of Computing, Unicamp-University of Campinas, 13083-859 Campinas, Brazil | pt_BR |
unicamp.author.external | Pisani, R.J., Institute of Geoscience and Exact Sciences, Unesp-Universidade Estadual Paulista, 13506-900 Rio-Claro, Brazil | pt |
unicamp.author.external | Nakamura, R.Y.M., Department of Computer Science, Unesp-Universidade Estadual Paulista, 17040 Bauru, Brazil | pt |
unicamp.author.external | Riedel, P.S., Institute of Geoscience and Exact Sciences, Unesp-Universidade Estadual Paulista, 13506-900 Rio-Claro, Brazil | pt |
unicamp.author.external | Zimback, C.R.L., School of Agronomic Sciences, Unesp-Universidade Estadual Paulista, 18618-970 Botucatu, Brazil | pt |
unicamp.author.external | Papa, J.P., Department of Computer Science, Unesp-Universidade Estadual Paulista, 17040 Bauru, Brazil | pt |
dc.subject | Reconhecimento de padrões | pt_BR |
dc.subject | Floresta de caminhos ótimos | pt_BR |
dc.subject | Sensoriamento remoto | pt_BR |
dc.subject | Imagens de sensoriamento remoto | pt_BR |
dc.subject.otherlanguage | Pattern recognition | pt_BR |
dc.subject.otherlanguage | Optimum-path forest | pt_BR |
dc.subject.otherlanguage | Remote sensing | pt_BR |
dc.subject.otherlanguage | Remote-sensing images | pt_BR |
dc.description.abstract | Land cover classification has been paramount in the last years. Since the amount of information acquired by satellite on-board imaging systems has increased, there is a need for automatic tools that can tackle such problem. Despite the fact that one can find several works in the literature, we propose a novel methodology for land cover classification by means of the optimum-path forest (OPF) framework, which has never been applied to this context up to date. Experiments were conducted in supervised and unsupervised situations against some state-of-the-art pattern recognition techniques, such as support vector machines, Bayesian classifier, k-means, and mean shift. We had shown that supervised OPF can outperform such approaches, being much faster than all. In regard to clustering techniques, all classifiers have achieved similar results. © 1980-2012 IEEE. | en |
dc.description.abstract | Land cover classification has been paramount in the last years. Since the amount of information acquired by satellite on-board imaging systems has increased, there is a need for automatic tools that can tackle such problem. Despite the fact that one can f | pt_BR |
dc.relation.ispartof | IEEE transactions on geoscience and remote sensing | pt_BR |
dc.relation.ispartofabbreviation | IEEE trans. geosci. remote sens. | pt_BR |
dc.publisher.city | Piscataway, NJ | pt_BR |
dc.publisher.country | Estados Unidos | pt_BR |
dc.publisher | Institute of Electrical and Electronics Engineers | pt_BR |
dc.date.issued | 2014 | pt_BR |
dc.date.monthofcirculation | Oct. | pt_BR |
dc.identifier.citation | Ieee Transactions On Geoscience And Remote Sensing. Institute Of Electrical And Electronics Engineers Inc., v. 52, n. 10, p. 6075 - 6085, 2014. | pt_BR |
dc.language.iso | eng | pt_BR |
dc.description.volume | 52 | pt_BR |
dc.description.issuenumber | 10 | pt_BR |
dc.description.issuesupplement | pt_BR | |
dc.description.issuepart | pt_BR | |
dc.description.issuespecial | pt_BR | |
dc.description.firstpage | 6075 | pt_BR |
dc.description.lastpage | 6085 | pt_BR |
dc.rights | fechado | pt_BR |
dc.rights | Fechado | pt_br |
dc.source | SCOPUS | pt_BR |
dc.identifier.issn | 0196-2892 | pt_BR |
dc.identifier.eissn | 1558-0644 | pt_BR |
dc.identifier.doi | 10.1109/TGRS.2013.2294762 | pt_BR |
dc.identifier.url | https://ieeexplore.ieee.org/document/6719506 | pt_BR |
dc.description.sponsorship | FAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO | pt_BR |
dc.description.sponsorship | CNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO | pt_BR |
dc.description.sponsorship | FUNDUNESP - FUNDAÇÃO PARA O DESENVOLVIMENTO DA UNIVERSIDADE ESTADUAL PAULISTA | pt_BR |
dc.description.sponsordocumentnumber | 2009/16206-1; 2010/11676-7 | pt_BR |
dc.description.sponsordocumentnumber | 303182/2011-3; 303673/2010-9 | pt_BR |
dc.description.sponsordocumentnumber | sem informação | pt_BR |
dc.date.available | 2015-06-25T18:02:46Z | |
dc.date.available | 2015-11-26T15:04:55Z | - |
dc.date.accessioned | 2015-06-25T18:02:46Z | |
dc.date.accessioned | 2015-11-26T15:04:55Z | - |
dc.description.provenance | Made available in DSpace on 2015-06-25T18:02:46Z (GMT). No. of bitstreams: 1 2-s2.0-84902077626.pdf: 3610408 bytes, checksum: 85f65e26c9aba0540a28f80acce668d1 (MD5) Previous issue date: 2014 Bitstreams deleted on 2021-01-04T14:26:02Z: 2-s2.0-84902077626.pdf,. Added 1 bitstream(s) on 2021-01-04T14:27:00Z : No. of bitstreams: 2 2-s2.0-84902077626.pdf: 3688371 bytes, checksum: 8ef2e3274cc65a66dafac711c841bef2 (MD5) 2-s2.0-84902077626.pdf.txt: 48326 bytes, checksum: 99d89c4fee89331c96a9c7924b82ef33 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2015-11-26T15:04:55Z (GMT). No. of bitstreams: 2 2-s2.0-84902077626.pdf: 3610408 bytes, checksum: 85f65e26c9aba0540a28f80acce668d1 (MD5) 2-s2.0-84902077626.pdf.txt: 48326 bytes, checksum: 99d89c4fee89331c96a9c7924b82ef33 (MD5) Previous issue date: 2014 | en |
dc.identifier.uri | http://www.repositorio.unicamp.br/handle/REPOSIP/87901 | |
dc.identifier.uri | http://repositorio.unicamp.br/jspui/handle/REPOSIP/87901 | - |
dc.identifier.idScopus | 2-s2.0-84902077626 | pt_BR |
dc.description.reference | Dainese, R.C., Remote sensing and geoprocessing applied to the temporary study of the landuse and in the comparison among unsupervised classification and visual analyses (2001) M.S. Thesis, State University of São Paulo School of Agronomic Sciences Botucatu, Brazil | pt_BR |
dc.description.reference | Heinzmann, U., Zollinger, G., Validation of representativeness with relief parameters based on the comparison of two landuse classifications (1995) CATENA, 24 (1), pp. 69-87. , Feb | pt_BR |
dc.description.reference | Heinl, M., Walde, J., Tappeiner, G., Tappeiner, U., Classifiers vs. Input variables The drivers in image classification for land cover mapping (2009) Int. J. Appl. Earth Observ. Geoinf, 11 (6), pp. 423-430. , Dec | pt_BR |
dc.description.reference | Haykin, S., (1994) Neural Networks: A Comprehensive Foundation, , Upper Saddle River, NJ, USA: Prentice-Hall | pt_BR |
dc.description.reference | Beekhuizen, J., Clarke, K.C., Toward accountable land use mapping: Using geocomputation to improve classification accuracy and reveal uncertainty (2010) Int. J. Appl. Earth Observ. Geoinf, 12 (3), pp. 127-137. , Jun | pt_BR |
dc.description.reference | Cohen, J., A coefficient of agreement for nominal scales (1960) Educ. Psychol. Meas, 20 (1), pp. 37-46. , Apr | pt_BR |
dc.description.reference | Perumal, K., Bhaskaran, R., SVM-Based effective land use classification system for multispectral remote sensing images (2009) Int. J. Comp. Sci. Inf. Security, 6 (2), pp. 97-105 | pt_BR |
dc.description.reference | Knorn, J., Rabe, A., Radeloff, V.V., Kuemmerle, T., Kozak, J., Hostert, P., Land cover mapping of large areas using chains classification of neighboring Landsat satellite images (2009) Remote Sens. Environ, 113 (5), pp. 957-964. , May | pt_BR |
dc.description.reference | Cortes, C., Vapnik, V., Support-vector networks (1995) Mach. Learn, 20 (3), pp. 273-297. , Sep | pt_BR |
dc.description.reference | Ming-Hseng, T., Sheng-Jhe, C., Gwo-Haur, H., Ming-Yu., S., A genetic algorithm rule-based approach for land-cover classification (2008) ISPRS J. Photogramm. Remote Sens, 63 (2), pp. 202-212. , Mar | pt_BR |
dc.description.reference | Keuchel, J., Naumann, S., Heiler, M., Siegmund, A., Automatic land cover analysis for Tenerife by supervised classification using remotely sensed data (2003) Remote Sensing of Environment, 86 (4), pp. 530-541. , DOI 10.1016/S0034-4257(03)00130-5 | pt_BR |
dc.description.reference | Zingaretti, P., Frontoni, E., Malinverni, E.S., Mancini, A., A hybrid approach to land cover classification from multi spectral images (2009) Proc. 15th Int. Conf. Image Anal. Process, Berlin, Germany, pp. 500-508 | pt_BR |
dc.description.reference | Ji., C.Y., Land-use classification of remotely sensed data using kohonen self-organizing feature map neural networks (2000) Photogramm. Eng. Remote Sens, 66 (12), pp. 1451-1460 | pt_BR |
dc.description.reference | Yuan, H., Wiele Der Van, C.F., Khorram, S., An automated artificial neural network system for land use/land cover classification from Landsat tm imagery (2009) Remote Sens, 1 (3), pp. 243-265 | pt_BR |
dc.description.reference | Goncalves, M.L., Netto, M.L.A., Costa, J.A.F., Zullo Junior, J., An unsupervised method of classifying remotely sensed images using Kohonen self-organizing maps and agglomerative hierarchical clustering methods (2008) International Journal of Remote Sensing, 29 (11), pp. 3171-3207. , DOI 10.1080/01431160701442146, PII 792018039 | pt_BR |
dc.description.reference | Bo, S., Ding, L., Li, H., Di, F., Zhu, C., Mean shift-based clustering analysis of multispectral remote sensing imagery (2009) Int. J. Remote Sens, 30 (4), pp. 817-827 | pt_BR |
dc.description.reference | Comaniciu, D., Meer, P., Mean shift: A robust approach toward feature space analysis (2002) IEEE Trans. Pattern Anal. Mach. Intell, 24 (5), pp. 603-619. , May | pt_BR |
dc.description.reference | Shah, C.A., Varshney, P.K., Arora, M.K., Ica mixture model algorithm for unsupervised classification of remote sensing imagery (2007) Int. J. Remote Sens, 28 (8), pp. 1711-1731. , Jan | pt_BR |
dc.description.reference | Ari, C., Aksoy, S., Unsupervised classification of remotely sensed images using Gaussian mixture models and particle swarm optimization (2010) Proc IEEE Int. Geosci. Remote Sens. Symp, pp. 1859-1862 | pt_BR |
dc.description.reference | Kennedy, J., Eberhart, R.C., (2001) Swarm Intelligence, , San Francisco, CA, USA: Morgan Kaufmann | pt_BR |
dc.description.reference | Hui, Y., Siamak, K., Dai X.Long, Applications of simulated annealing minimization technique to unsupervised classification of remotely sensed data (1999) International Geoscience and Remote Sensing Symposium (IGARSS), 1, pp. 134-136 | pt_BR |
dc.description.reference | Kirkpatrick, S., Gelatt, Jr.C.D., Vecchi, M.P., Optimization by simulated annealing (1983) Science, 220 (4598), pp. 671-680. , May | pt_BR |
dc.description.reference | Rocha, L.M., Cappabianco, F.A.M., Falcão, A.X., Data clustering as an optimum-path forest problem with applications in image analysis (2009) Int. J. Imag. Syst. Technol, 19 (2), pp. 50-68. , Jun | pt_BR |
dc.description.reference | Papa, J.P., Falcão, A.X., Suzuki, C.T.N., Supervised pattern classification based on optimum-path forest (2009) Int. J. Imag. Syst. Technol, 19 (2), pp. 120-131. , Jun | pt_BR |
dc.description.reference | Papa, J.P., Falão, A.X., A new variant of the optimum-path forest classifier (2008) Proc. 4th ISVC, pp. 935-944. , Berlin Germany | pt_BR |
dc.description.reference | Comaniciu, D., An algorithm for data-driven bandwidth selection (2003) IEEE Trans. Pattern Anal. Mach. Intell, 25 (2), pp. 281-288. , Feb | pt_BR |
dc.description.reference | Shi, J., Malik, J., Normalized cuts and image segmentation (2000) IEEE Trans. Pattern Anal. Mach. Intell, 22 (8), pp. 888-905. , Aug | pt_BR |
dc.description.reference | Cormen, T., Leiserson, C., Rivest, R., (1990) Introduction to Algorithms, , Cambridge, U.K.: MIT Press | pt_BR |
dc.description.reference | Allène, C., Audibert, J.Y., Couprie, M., Cousty, J., Keriven, R., Some links between min-cuts, optimal spanning forests and watersheds (2007) Proc. MCT/INPE, pp. 253-264 | pt_BR |
dc.description.reference | Feichtinger, H.G., Strohmer, T., (1997) Gabor Analysis and Algorithms: Theory and Applications, , 1st ed. Boston, MA, USA: Birkhauser | pt_BR |
dc.description.reference | Papa, J.P., Suzuki, C.T.N., Falcão, A.X., (2009) LibOPF: A Library for the Design of Optimum-path Forest Classifiers, , http://www.ic.unicamp.br/afalcao/LibOPF, Software Version 2.0 Available At Online]. Available: Available at | pt_BR |
dc.description.reference | Collobert, R., Bengio, S., SVMTorch: Support vector machines for large-scale regression problems (2001) J. Mach. Learn. Res, 1, pp. 143-160. , Se | pt_BR |
dc.description.reference | Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Duchesnay, E., Scikit-learn: Machine learning in python (2011) J. Mach. Learn. Res, 12, pp. 2825-2830 | pt_BR |
dc.description.reference | Kendall, M.G., A new measure of rank correlation (1938) Biometrika, 30 (1-2), pp. 81-93. , Jun | pt_BR |
dc.description.reference | Kuncheva, L.I., (2004) Combining Pattern Classifiers: Methods and Algorithms, , Hoboken, NJ, USA: Wiley | pt_BR |
dc.description.reference | Davies, D.L., Bouldin, D.W., A cluster separation measure (1979) IEEE Trans. Pattern Anal. Mach. Intell Vol. PAMI-1, (2), pp. 224-227. , Apr | pt_BR |
dc.description.reference | Papa, J.P., Cappabianco, F.A.M., Falcão, A.X., Optimizing optimum-path forest classification for huge datasets (2010) Proc. 20th Int. Conf. Pattern Recog, pp. 4162-4165 | pt_BR |
dc.description.conferencenome | pt_BR | |
dc.contributor.department | Departamento de Sistemas de Informação | pt_BR |
dc.contributor.unidade | Instituto de Computação | pt_BR |
dc.subject.keyword | Land cover classification | pt_BR |
dc.subject.keyword | Optimum-path forest | pt_BR |
dc.subject.keyword | (OPF) | pt_BR |
dc.subject.keyword | Remote sensing | pt_BR |
dc.identifier.source | 2-s2.0-84902077626 | pt_BR |
dc.creator.orcid | 0000-0002-2914-5380 | pt_BR |
dc.type.form | Artigo | pt_BR |
Appears in Collections: | IC - Artigos e Outros Documentos |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
2-s2.0-84902077626.pdf | 3.6 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.