Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Complete Arcs Arising From A Generalization Of The Hermitian Curve
Author: Borges H.
Motta B.
Torres F.
Abstract: We investigate complete arcs of degree greater than two, in projective planes over finite fields, arising from the set of rational points of a generalization of the Hermitian curve. The degree of the arcs is closely related to the number of rational points of a class of Artin-Schreier curves, which is calculated by using exponential sums via Coulter's approach. We also single out some examples of maximal curves.
Editor: Instytut Matematyczny
Rights: fechado
Identifier DOI: 10.4064/aa164-2-1
Date Issue: 2014
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84907275495.pdf316.49 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.