Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/87309
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt
dc.identifier.isbn9781479937431pt
dc.typeArtigo de eventopt
dc.titleA Comparative Study Of Non-mse Criteria In Nonlinear Equalizationpt
dc.contributor.authorBoccato L.pt
dc.contributor.authorSilva D.G.pt
dc.contributor.authorFantinato D.pt
dc.contributor.authorFerrari R.pt
dc.contributor.authorAttux R.pt
unicamp.authorBoccato, L., School of Electrical and Computer Engineering (FEEC), University of Campinas (UNICAMP)Campinas Saõ Paulo, Brazilpt
unicamp.authorSilva, D.G., School of Electrical and Computer Engineering (FEEC), University of Campinas (UNICAMP)Campinas Saõ Paulo, Brazilpt
unicamp.authorFantinato, D., School of Electrical and Computer Engineering (FEEC), University of Campinas (UNICAMP)Campinas Saõ Paulo, Brazilpt
unicamp.authorFerrari, R., School of Electrical and Computer Engineering (FEEC), University of Campinas (UNICAMP)Campinas Saõ Paulo, Brazilpt
unicamp.authorAttux, R., School of Electrical and Computer Engineering (FEEC), University of Campinas (UNICAMP)Campinas Saõ Paulo, Brazilpt
dc.description.abstractThis work studies the application of non-MSE criteria to adapt the linear readout of Extreme Learning Machines (ELMs) in the context of communication channel equalization. A qualitative and experimental analysis is performed, in terms of bit error rate, optimization surface and decision boundary. The results reached by the ELM-based equalizer, considering three different noise models, did not reveal clear advantages of using criteria based on the concepts of error entropy, correntropy, and the L1-norm of the error. Notwithstanding, the observed results motivate a theoretical investigation on the conditions under which the potential discrepancies between the optimal solutions of these criteria may be stressed.en
dc.relation.ispartof2014 International Telecommunications Symposium, ITS 2014 - Proceedingspt_BR
dc.publisherInstitute of Electrical and Electronics Engineers Inc.pt
dc.date.issued2014pt
dc.identifier.citation2014 International Telecommunications Symposium, Its 2014 - Proceedings. Institute Of Electrical And Electronics Engineers Inc., v. , n. , p. - , 2014.pt
dc.language.isoenpt
dc.description.volumept
dc.description.issuenumberpt
dc.description.initialpagept
dc.description.lastpagept
dc.rightsfechadopt
dc.sourceScopuspt
dc.identifier.issnpt
dc.identifier.doi10.1109/ITS.2014.6947953pt
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84914680293&partnerID=40&md5=c9be3c509b569389da5e054dce1e302aen
dc.description.sponsorship2013/06322-0; FAPESP; São Paulo Research Foundation; FAPESP; São Paulo Research Foundation; 2013/11769-3; FAPESP; São Paulo Research Foundation; 2013/14185-2; FAPESP; São Paulo Research Foundationpt
dc.description.sponsorship1Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)pt
dc.date.available2015-06-25T17:58:30Z
dc.date.available2015-11-26T14:54:45Z-
dc.date.accessioned2015-06-25T17:58:30Z
dc.date.accessioned2015-11-26T14:54:45Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:58:30Z (GMT). No. of bitstreams: 1 2-s2.0-84914680293.pdf: 297846 bytes, checksum: 3c03a733b2e979547b0340d8ea83e00e (MD5) Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:54:45Z (GMT). No. of bitstreams: 2 2-s2.0-84914680293.pdf: 297846 bytes, checksum: 3c03a733b2e979547b0340d8ea83e00e (MD5) 2-s2.0-84914680293.pdf.txt: 27660 bytes, checksum: 0266abc8313747a518502b3af473c5a9 (MD5) Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/87309
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/87309-
dc.identifier.idScopus2-s2.0-84914680293pt
dc.description.referencePrincipe, J.C., (2010) INformation Theoretic Learning: Renyi's Entropy and Kernel Perspectives, , Springerpt
dc.description.referenceNose-Filho, K., Fantinato, D.G., Attux, R., Neves, A., Romano, J.M.T., A novel entropy-based equalization performance measure and relations to lp-norm deconvolution (2013) SBrT, 2013 (1), pp. 1-5. , Sociedade Brasileira de Telecomunicaç õespt
dc.description.referenceHuang, G.-B., Zhu, Q.-Y., Siew, C.-K., Extreme learning machine: Theory and applications (2006) Neurocomputing, 70, pp. 489-501pt
dc.description.referenceHuang, G.-B., Wang, D.H., Lan, Y., Extreme learning machines: A survey (2011) International Journal of Machine Learning and Cybernetics, 2 (2), pp. 107-122pt
dc.description.referenceHaykin, S., (2013) Adaptive Filter Theory, 5th Ed., , Prentice Hallpt
dc.description.referenceChen, S., Mulgrew, B., Grant, P., A clustering technique for digital communications channel equalization using radial basis function networks (1993) IEEE Transactions on Neural Networks, 4 (4), pp. 570-579pt
dc.description.referenceHaykin, S., (2008) Neural Networks and Learning Machines, 3rd Ed., , Prentice Hallpt
dc.description.referenceHuang, G.-B., Chen, L., Siew, C.-K., Universal approximation using incremental con-structive feedforward networks with random hidden nodes (2006) IEEE Transactions on Neural Networks, 17 (4), pp. 879-892pt
dc.description.referenceLi, M.-B., Huang, G.-B., Saratchandran, P., Sundararajan, N., Channel equalization using complex extreme learning machine with rbf kernels (2006) Lecture Notes in Computer Science, 3973, pp. 114-119pt
dc.description.referenceRice, J.R., White, J.S., Norms for smoothing and estimation (1964) SIAM Review, 6 (3), pp. 243-256pt
dc.description.referencePrice, K., Storn, R.M., Lampinen, J.A., (2005) Differential Evolution: A Practical Approach to Global Optimization, , Springerpt
dc.description.referenceChen, S., Mulgrew, B., McLaughlin, S., Adaptive Bayesian equalizer with decision feedback (1993) IEEE Transactions on Signal Processing, 41, pp. 2918-2927pt
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84914680293.pdf290.87 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.