Please use this identifier to cite or link to this item:
Type: Artigo de evento
Title: On The Number Of Realizations Of Certain Henneberg Graphs Arising In Protein Conformation
Author: Liberti L.
Masson B.
Lee J.
Lavor C.
Mucherino A.
Abstract: Several application fields require finding Euclidean coordinates consistent with a set of distances. More precisely, given a simple undirected edge-weighted graph, we wish to find a realization in a Euclidean space so that adjacent vertices are placed at a distance which is equal to the corresponding edge weight. Realizations of a graph can be either flexible or rigid. In certain cases, rigidity can be seen as a property of the graph rather than the realization. In the last decade, several advances have been made in graph rigidity, but most of these, for applicative reasons, focus on graphs having a unique realization. In this paper we consider a particular type of weighted Henneberg graphs that model protein backbones and show that almost all of them give rise to sets of incongruent realizations whose cardinality is a power of two. © 2013 Elsevier B.V. All rights reserved.
Rights: fechado
Identifier DOI: 10.1016/j.dam.2013.01.020
Date Issue: 2014
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.