Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/86837
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt
dc.identifier.isbnpt
dc.typeArtigo de eventopt
dc.titleCatalytic Conversion Of Glucose Using Tio2 Catalystspt
dc.contributor.authorLanziano C.S.pt
dc.contributor.authorRodriguez F.pt
dc.contributor.authorRabelo S.C.pt
dc.contributor.authorGuirardello R.pt
dc.contributor.authorDa Silva V.T.pt
dc.contributor.authorRodell C.B.pt
unicamp.authorGuirardello, R., Universidade Estadual de Campinas (UNICAMP), Av. Albert Einstein, 500, Campinas, Brazilpt
unicamp.author.externalLanziano, C.S., Laboratório Nacional de Luz Síncrotron (LNLS), Rua Giuseppe Máximo Scolfaro, 10.000 Campinas, Brazilpt
unicamp.author.externalRodriguez, F., Universidade Federal de Viçosa (UFV), Avenida Peter Henry Rolfs, Campus Universitário, Viçosa, Brazilpt
unicamp.author.externalRabelo, S.C., Laboratório Nacional de Ciência e Tecnologia do Bioetanol (CTBE), Rua Giuseppe Máximo Scolfaro, 10.000, Campinas, Brazilpt
unicamp.author.externalDa Silva, V.T., NUCAT, COPPE, Universidade Federal do Rio de Janeiro, P.O. Box 68502, 21945970, Rio de Janeiro, RJ, Brazilpt
unicamp.author.externalRodell, C.B., Laboratório Nacional de Luz Síncrotron (LNLS), Rua Giuseppe Máximo Scolfaro, 10.000 Campinas, Brazilpt
dc.description.abstractGlucose is the most available hexose as it can be obtained from the most abundant and renewable biomass on Earth, cellulose. In addition, glucose can be catalytically transformed into furan derivates such as hydroxymethyl furfural (HMF) and furan dicarboxylic acid (FDCA) which are potential compounds to prepare polymeric materials and biofuels. The catalytic conversion of glucose can proceed via three chemical routes. Firstly, glucose isomerization can produce fructose. Secondly, the dehydration process of glucose to obtain 1,6-anhydroglucose and finally, the dehydration of fructose and small fragments such as glycolaldehyde and dihydroxyacetone through a retro-aldol condensation to obtain HMF [1,2]. It has been shown that basic catalysts are more efficient to convert glucose into fructose. However, acidic properties are also needed to facilitate the dehydration process in order to obtain furan derivates. Titanium oxide catalysts appear to be an appropriate catalyst for an industrial process whereby glucose is converted due to both its acidic and basic properties and its low synthesis cost. Based on this, glucose conversion was studied with a TiO2 catalyst obtained by a sol-gel method. The reactions were performed as a function of reaction time (2, 4, 6, and 8 h) and temperature (393, 403, 413 and 423 K). N2 physisorption analysis revealed a mesoporous structure for the titania with a pore diameter range from 10 to 110 Å, superficial area of 128 m2/g and total pore volume of the 1.7x10-7 m3/g. The structural characterization by XRD showed that the titania was present in the anatase polymorph. The catalytic results showed that the lower temperature and reaction time increases the fructose yield. However, significant amounts of HMF were detected at higher temperatures and reaction time. Copyright © 2014,AIDIC Servizi S.r.l.en
dc.relation.ispartofChemical Engineering Transactionspt_BR
dc.publisherItalian Association of Chemical Engineering - AIDICpt
dc.date.issued2014pt
dc.identifier.citationChemical Engineering Transactions. Italian Association Of Chemical Engineering - Aidic, v. 37, n. , p. 589 - 594, 2014.pt
dc.language.isoenpt
dc.description.volume37pt
dc.description.issuenumberpt
dc.description.initialpage589pt
dc.description.lastpage594pt
dc.rightsfechadopt
dc.sourceScopuspt
dc.identifier.issn19749791pt
dc.identifier.doi10.3303/CET1437099pt
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84899425756&partnerID=40&md5=42cce4b43b2fbf372342b03acf378fecen
dc.date.available2015-06-25T17:55:27Z
dc.date.available2015-11-26T14:38:29Z-
dc.date.accessioned2015-06-25T17:55:27Z
dc.date.accessioned2015-11-26T14:38:29Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:55:27Z (GMT). No. of bitstreams: 1 2-s2.0-84899425756.pdf: 750800 bytes, checksum: 95346b9294f5cd5d1d4715b492e399d9 (MD5) Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:38:29Z (GMT). No. of bitstreams: 2 2-s2.0-84899425756.pdf: 750800 bytes, checksum: 95346b9294f5cd5d1d4715b492e399d9 (MD5) 2-s2.0-84899425756.pdf.txt: 18215 bytes, checksum: 81e5a23706e27b7a5c80cf1f68d1718e (MD5) Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/86837
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86837-
dc.identifier.idScopus2-s2.0-84899425756pt
dc.description.referenceBarrett, E.P., Joyner, L.G., Halenda, P.P., The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms (1951) Journal of the American Chemical Society, 73, pp. 373-380. , DOI:10.1021/ja01145a126pt
dc.description.referenceBaur, W.H., Khan, A.A., Rutile-type compounds. Iv. Sio2, geo2 and a comparison with other rutile-type structures (1971) Acta Crystallographica, B27, pp. 2133-2139. , DOI:10.1107/S0567740871005466pt
dc.description.referenceBrunauer, S., Emmett, P.H., Teller, E., Adsorption of gases in multimolecular layers (1938) Journal of the American Chemical Society, 60, pp. 309-319. , DOI: 10.1021/ja01269a023pt
dc.description.referenceHorn, M., Schwerdtfeger, C.F., Meagher, E.P., Refinement of the structure of anatase at several temperatures (1972) Zeitschrift für Kristallographie, 136, pp. 273-281. , DOI:10.1524/zkri.1972.136.3-4.273pt
dc.description.referenceHu, L., Zhao, G., Hao, W., Tang, X., Sun, Y., Lin, L., Liu, S., Catalytic conversion of biomass-derived carbohydrates into fuels and chemicals via furanic aldehydes (2012) The Royal Society of Chemistry, 2, pp. 11184-11206. , DOI:10.1039/C2RA21811Apt
dc.description.referenceLecomte, J., Finiels, A., Moreau, C., Kinetic study of the isomerization of glucose into fructose in the presence of anion-modified hydrotalcites (2002) Starch-Stärke, 54, pp. 75-79. , DOI:10.1002/1521-379X(200202) 54:275::AID-STAR753.0.CO;2-Fpt
dc.description.referenceLewkowski, J., Synthesis, chemistry and applications of 5-hydroxymethyl-furfural and its derivatives (2001) Arkivoc, 34, pp. 17-54. , DOI:10.1002/chin.200302269pt
dc.description.referenceLima, S., Dias, A.S., Lin, Z., Brandão, P., Ferreira, P., Pillinger, M., Rocha, J., Valente, A.A., Isomerization of d-glucose to d-fructose over metallosilicate solid bases (2008) Applied Catalysis A: General, 339, pp. 21-27. , DOI:10.1016/j.apcata.2007.12.030pt
dc.description.referenceLourvanij, K., Rorrer, G.L., Reaction rates for the partial dehydration of glucose to organic acids in solid-acid, molecular-sieving catalyst powders (1997) Journal of Chemical Technology & Biotechnology, 69, pp. 35-44. , DOI:10.1002/(SICI)1097-4660(199705) 69:135::AID-JCTB6853.0.CO;2-9pt
dc.description.referenceLobry De Bruyn, C.A., Alberda Van Ekenstein, W., Action des alcalis sur les sucres recueil des travaux chimiques des pays-bas (1895) Journal of the Royal Netherlands Chemical Society, 14, pp. 203-216. , DOI:10.1002/recl.18950140703pt
dc.description.referenceMoliner, M., Roman-Leshkov, Y., Davis, M., Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water (2010) Proceedings of the National Academy of Sciences of the United States of America, 107, pp. 6164-6168. , DOI:10.1073/pnas.1002358107pt
dc.description.referenceMoreau, C., Durand, R., Roux, A., Tichit, D., Isomerization of glucose into fructose in the presence of cation-exchanged zeolites and hydrotalcites (2000) Applied Catalysis A: General, 193, pp. 257-264. , DOI:10.1016/S0926-860X(99)00435-4pt
dc.description.referenceRoman-Leshkov, Y., Barrett, C., Liu, Z., Dumesic, J., Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates (2007) Nature, 447, pp. 982-985. , DOI: 10.1038/nature05923pt
dc.description.referenceRomán-Leshkov, Y., Moliner, M., Labinger, J., Davis, M., Mechanism of glucose isomerization using a solid lewis acid catalyst in water (2010) Angewandte Chemie-International Edition, 49, pp. 8954-8957. , DOI:http://dx.doi.org/10.1002/anie.201004689pt
dc.description.referenceWatanabe, M., Aizawa, Y., Iida, T., Nishimura, R., Inomata, H., Catalytic glucose and fructose conversions with tio2 and zro2 in water at 473 k: Relationship between reactivity and acid-base property determined by tpd measurement (2005) Applied Catalysis A: General, 295, pp. 150-156. , DOI:10.1016/j.apcata.2005.08.007pt
dc.description.referenceWatanabe, M., Aizawa, Y., Iida, T., Aida, T.M., Levy, C., Sue, K., Inomata, H., Glucose reactions with acid and base catalysts in hot compressed water at 473 k (2005) Carbohydrate Research, 340, pp. 1925-1930. , DOI:10.1016/j.carres.2005.06.017pt
dc.description.referenceZakrzewska, M.E., Bogel-Lukasik, E., Bogel-Lukasik, R., Physics and chemistry of alkali metal adsorption (2011) Chemical Reviews, 111, pp. 397-417. , DOI: 10.1021/cr100171apt
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84899425756.pdf733.2 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.