Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/86506
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbnpt_BR
dc.contributor.authorunicampMiyazawa, Flávio Keidipt_BR
dc.typeArtigopt_BR
dc.titleOn the L-approach for generating unconstrained two-dimensional non-guillotine cutting patternspt_BR
dc.title.alternativept_BR
dc.contributor.authorQueiroz, Thiago Alves dept_BR
dc.contributor.authorMiyazawa, Flávio Keidipt_BR
dc.contributor.authorWakabayashi, Yoshikopt_BR
unicamp.authorMiyazawa, F.K., Institute of Computing, University of Campinas, IC/UNICAMPCampinas, SP, Brazilpt_BR
unicamp.author.externalDe Queiroz, T.A., Department of Mathematics, Federal University of Goiás, UFG/RCCatalão, GO, Brazilpt
unicamp.author.externalWakabayashi, Y., Institute of Mathematics and Statistics, University of São Paulo, IME-USPSão Paulo, SP, Brazilpt
dc.subjectProblema da mochila (Matemática)pt_BR
dc.subjectAlgoritmospt_BR
dc.subjectOtimização combinatóriapt_BR
dc.subject.otherlanguageKnapsack problem (Mathematics)pt_BR
dc.subject.otherlanguageAlgorithmspt_BR
dc.subject.otherlanguageCombinatorial optimizationpt_BR
dc.description.abstractMany cutting problems on two- or three-dimensional objects require that the cuts be orthogonal and of guillotine type. However, there are applications in which the cuts must be orthogonal but need not be of guillotine type. In this paper we focus on the latter type of cuts on rectangular bins. We investigate the so-called (Formula presented.)-approach, introduced by Lins et al. (J Oper Res Soc 54:777–789, 2003), which has been used to tackle, among others, the pallet loading problem and the two-dimensional unconstrained knapsack problem. This approach concerns a method to generate two (Formula presented.)-shaped pieces from an (Formula presented.)-shaped piece. More recently, Birgin et al. (J Oper Res Soc 63(2):183–200, 2012), raised two questions concerning this approach. The first question is whether one may restrict only to cuts on raster points (rather than on all discretization points), without loss in the quality of the solution. We prove that the answer to this question is positive. The second question is whether the (Formula presented.)-approach is an optimal method to solve the unconstrained knapsack problem. We show an instance of the problem for which this approach fails to find an optimum solution.en
dc.description.abstractMany cutting problems on two- or three-dimensional objects require that the cuts be orthogonal and of guillotine type. However, there are applications in which the cuts must be orthogonal but need not be of guillotine type. In this paper we focus on the lpt_BR
dc.relation.ispartof4 ORpt_BR
dc.publisher.cityHeidelbergpt_BR
dc.publisher.countryAlemanhapt_BR
dc.publisherSpringerpt_BR
dc.date.issued2015pt_BR
dc.date.monthofcirculationJunept_BR
dc.identifier.citation4or. Springer Verlag, v. , n. , p. - , 2014.pt_BR
dc.language.isoengpt_BR
dc.description.volume13pt_BR
dc.description.issuenumber2pt_BR
dc.description.issuesupplementpt_BR
dc.description.issuepartpt_BR
dc.description.issuespecialpt_BR
dc.description.firstpage199pt_BR
dc.description.lastpage219pt_BR
dc.rightsfechadopt_BR
dc.rightsfechadopt_br
dc.sourceSCOPUSpt_BR
dc.identifier.issn1619-4500pt_BR
dc.identifier.eissn1614-2411pt_BR
dc.identifier.doi10.1007/s10288-014-0274-3pt_BR
dc.identifier.urlhttps://link.springer.com/article/10.1007%2Fs10288-014-0274-3pt_BR
dc.description.sponsorshipCAPES - COORDENAÇÃO DE APERFEIÇOAMENTO DE PESSOAL DE NÍVEL SUPERIORpt_BR
dc.description.sponsorshipCNPQ - CONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICOpt_BR
dc.description.sponsorshipFAPEG - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE GOIÁSpt_BR
dc.description.sponsorshipFAPESP - FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DEpt_BR
dc.description.sponsordocumentnumber471351/2012-1; 477203/2012-4; 477692/2012-5; 306860/2010-4; 303987/2010-3pt_BR
dc.description.sponsordocumentnumber2013/03447-6; 2013/08278-8pt_BR
dc.description.sponsordocumentnumbersem informaçãopt_BR
dc.description.sponsordocumentnumbersem informaçãopt_BR
dc.description.sponsordocumentnumbersem informaçãopt_BR
dc.date.available2015-06-25T17:53:40Z
dc.date.available2015-11-26T14:25:45Z-
dc.date.accessioned2015-06-25T17:53:40Z
dc.date.accessioned2015-11-26T14:25:45Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:53:40Z (GMT). No. of bitstreams: 1 2-s2.0-84908301429.pdf: 996463 bytes, checksum: ed0f704057f0a758856967da8fae4ce2 (MD5) Previous issue date: 2014 Bitstreams deleted on 2021-01-04T14:25:59Z: 2-s2.0-84908301429.pdf,. Added 1 bitstream(s) on 2021-01-04T14:26:57Z : No. of bitstreams: 2 2-s2.0-84908301429.pdf: 1059029 bytes, checksum: 9b655c20e957d14cd29a9f9f25622bf5 (MD5) 2-s2.0-84908301429.pdf.txt: 56234 bytes, checksum: 59f15b1d8f5ff47c2e67d41362cbd71c (MD5)en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:25:45Z (GMT). No. of bitstreams: 2 2-s2.0-84908301429.pdf: 996463 bytes, checksum: ed0f704057f0a758856967da8fae4ce2 (MD5) 2-s2.0-84908301429.pdf.txt: 56234 bytes, checksum: 59f15b1d8f5ff47c2e67d41362cbd71c (MD5) Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/86506
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86506-
dc.identifier.idScopus2-s2.0-84908301429pt_BR
dc.description.conferencenomept_BR
dc.contributor.departmentDepartamento de Teoria da Computaçãopt_BR
dc.contributor.unidadeInstituto de Computaçãopt_BR
dc.subject.keywordCombinatorial problemspt_BR
dc.subject.keywordCuttingpt_BR
dc.subject.keywordTwo-dimensional unconstrained knapsack problempt_BR
dc.subject.keywordNon-guillotine cutpt_BR
dc.subject.keywordL-patternpt_BR
dc.subject.keywordRaster pointpt_BR
dc.identifier.source2-s2.0-84908301429pt_BR
dc.creator.orcid0000-0002-1067-6421pt_BR
dc.type.formArtigopt_BR
Appears in Collections:IC - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84908301429.pdf1.03 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.