Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/86423
Type: Artigo de periódico
Title: Effects Of Divergent Ghost Loops On The Green's Functions Of Qcd
Author: Aguilar A.C.
Binosi D.
Ibanez D.
Papavassiliou J.
Abstract: In the present work, we discuss certain characteristic features encoded in some of the fundamental QCD Green's functions, for which the origin can be traced back to the nonperturbative masslessness of the ghost field, in the Landau gauge. Specifically, the ghost loops that contribute to these Green's functions display infrared divergences, akin to those encountered in the perturbative treatment, in contradistinction to the gluonic loops, for which perturbative divergences are tamed by the dynamical generation of an effective gluon mass. In d=4, the aforementioned divergences are logarithmic, thus causing a relatively mild impact, whereas in d=3 they are linear, giving rise to enhanced effects. In the case of the gluon propagator, these effects do not interfere with its finiteness, but make its first derivative diverge at the origin, and introduce a maximum in the region of infrared momenta. The three-gluon vertex is also affected, and the induced divergent behavior is clearly exposed in certain special kinematic configurations, usually considered in lattice simulations; the sign of the corresponding divergence is unambiguously determined. The main underlying concepts are developed in the context of a simple toy model, which demonstrates clearly the interconnected nature of the various effects. The picture that emerges is subsequently corroborated by a detailed nonperturbative analysis, combining lattice results with the dynamical integral equations governing the relevant ingredients, such as the nonperturbative ghost loop and the momentum-dependent gluon mass. © 2014 American Physical Society.
Editor: American Physical Society
Rights: aberto
Identifier DOI: 10.1103/PhysRevD.89.085008
Address: http://www.scopus.com/inward/record.url?eid=2-s2.0-84898656975&partnerID=40&md5=04954ccf75e20e21bd8d8d206ac0908a
Date Issue: 2014
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84898656975.pdf1.15 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.