Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt
dc.titleAn Alternative Approach For Quasi-truthpt
unicamp.authorConiglio, M.E., Centre for Logic, Epistemology and the History of Science (CLE), Department of Philosophy, State University of Campinas (UNICAMP), Rua Sérgio Buarque de Holanda 251, CEP 13083-859, Campinas, SP, Brazilpt, L.H.C., Department of Mathematics, São Paulo State University (UNESP), Bauru Campus, Av. Eng. Luiz Edmundo Carrijo Coube 14-01, CEP 17033-360, Bauru, SP, Brazilpt
dc.description.abstractIn 1986, Mikenberg et al. introduced the semantic notion of quasi-truth defined by means of partial structures. In such structures, the predicates are seen as triples of pairwise disjoint sets: the set of tuples which satisfies, does not satisfy and can satisfy or not the predicate, respectively. The syntactical counterpart of the logic of partial truth is a rather complicated first-order modal logic. In the present article, the notion of predicates as triples is recursively extended, in a natural way, to any complex formula of the first-order object language. From this, a new definition of quasi-truth is obtained. The proof-theoretic counterpart of the new semantics is a first-order paraconsistent logic whose propositional base is a 3-valued logic belonging to hierarchy of paraconsistent logics known as Logics of Formal Inconsistency, which was proposed by Carnielli and Marcos in 2002. © The Author 2013. Published by Oxford University Press.All rights reserved.en
dc.relation.ispartofLogic Journal of the IGPLpt_BR
dc.publisherOxford University Presspt
dc.identifier.citationLogic Journal Of The Igpl. Oxford University Press, v. 22, n. 2, p. 387 - 410,
dc.description.provenanceMade available in DSpace on 2015-06-25T17:51:32Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:07:33Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.description.referenceAsenjo, F.G., A calculus of antinomies (1966) Notre Dame Journal of Formal Logic, 7, pp. 103-105pt
dc.description.referenceBueno, O., De Souza, E.G., The concept of quasi-truth (1996) Logique and Analyse, pp. 153-154. , 183-199pt
dc.description.referenceCarnielli, W.A., Coniglio, M.E., Marcos, J., Logics of formal inconsistency (2007) In Handbook of Philosophical Logic, 14, pp. 1-93. , D. Gabbay and F. Guenthner, eds 2nd. edn.Springerpt
dc.description.referenceCarnielli, W.A., Marcos, J., A taxonomy of C-systems (2002) of Lecture Notes in Pure and Applied Mathematics, 228, pp. 1-94. , In Paraconsistency - the Logical Way to the Inconsistent (New York), W. A. Carnielli, M. E. Coniglio, and I. M. L. D'Ottaviano, edspt
dc.description.referenceCarnielli, W.A., Marcos, J., De Amo, S., (2000) Formal inconsistency and evolutionary databases, 8, pp. 115-152. , Logic and Logical Philosophypt
dc.description.referenceCrabbé, M., (2011) Reassurance for the logic of paradox, 4, pp. 479-485. , The Review of Symbolic Logicpt
dc.description.referenceDa Costa, N.C.A., (1999) The Scientific Knowledge (O conhecimento científico, in Portuguese), , 2nd edn. Discurso Editorialpt
dc.description.referenceDa Costa, N.C.A., Bueno, O., Quasi-truth (1999) History and Philosophy of Logic, 20, pp. 215-226. , supervaluations and free logicpt
dc.description.referenceDa Costa, N.C.A., French, S., (2003) Science and Partial Truth: A Unitary Approach to Models and Scientific Reasoning, , Oxfordpt
dc.description.referenceD'ottaviano, I.M.L., Da Costa, N.C.A., Sur un probléme de Jaśkowski (1970) Comptes Rendus de l'Académie de Sciences de Paris, 270, pp. 1349-1353pt
dc.description.referenceD'ottaviano, I.M.L., Hifume, C., Peircean pragmatic truth and da Costa's quasi-truth (2007) Studies in Computational Intelligence (SCI), 64, pp. 383-398pt
dc.description.referenceMarcos, J., 8K Solutions and Semi-Solutions to a Problem of da Costa (2000) Draftpt
dc.description.referenceMikenberg, I., Da Costa, N.C.A., Chuaqui, R., Pragmatic truth and approximation to truth (1986) The Journal of Symbolic Logic, 51, pp. 201-221pt
dc.description.referencePriest, G., The logic of paradox (1979), 8, pp. 219-241. , Journal of Philosophical LogicPriest, G., (2006) In Contradiction: A Study of the Transconsistent, , 2nd edn. Oxford University Presspt
dc.description.referenceRodrigues, T., (2010) On the Foundations of Paraconsistent Logic Programming (Sobre os Fundamentos da Programaĉão Lógica Paraconsistente, in Portuguese), , Masters Thesis, IFCH-State University of Campinas, Brazilpt
dc.description.referenceSchütte, K., (1960) Beweistheorie, , Springerpt
dc.description.referenceSilvestrini, L.H.C., (2011) A New Approach to the Concept of Quasi-Truth (Uma Nova Abordagem Para a Noĉão de Quase-Verdade, in Portuguese), , PhD Thesis, IFCH-State University of Campinas, Brazilpt
dc.description.referenceWójcicki, R., (1984) Lectures on Propositional Calculi, ,, Ossolineum, Wroclaw Available atpt
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.