Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.typeArtigo de periódicopt_BR
dc.titleThermal History In Uns S32205 Duplex Stainless Steel Friction Stir Weldspt_BR
dc.contributor.authorSantos T.F.A.pt_BR
dc.contributor.authorIdagawa H.S.pt_BR
dc.contributor.authorRamirez A.J.pt_BR
unicamp.authorSantos, T.F.A., Brazilian Nanotechnology National Laboratory (LNNano), Campinas, SP, Brazil, School of Mechanical Engineering, University of Campinas (Unicamp), Campinas, SP, Brazil, CPqD, Campinas, SP, Brazilpt_BR
unicamp.authorRamirez, A.J., Brazilian Nanotechnology National Laboratory (LNNano), Campinas, SP, Brazil, School of Mechanical Engineering, University of Campinas (Unicamp), Campinas, SP, Brazilpt_BR, H.S., Brazilian Nanotechnology National Laboratory (LNNano), Campinas, SP, Brazilpt
dc.description.abstractConsolidated UNS S32205 duplex stainless steel joints welds were performed using a friction stir welding (FSW) process. An experimental set-up was used to record the thermal history of duplex stainless steel FSW joint. For points at equal distance from the weld centreline, temperature measured near the beginning of the weld was lower than that measured in the middle of the welded joint. This was attributed to a non-stationary transfer condition. FSW thermal cycle showed shorter time spent at elevated temperature compared that presented by fusion welding, indicating less propensity to detrimental second phase precipitation. To support temperature measurements with thermocouples, a three-dimensional finite element thermal model of FSW was implemented, which provided a good agreement with experimental data. © 2014 Institute of Materials, Minerals and Mining.en
dc.relation.ispartofScience and Technology of Welding and Joiningpt_BR
dc.identifier.citationScience And Technology Of Welding And Joining. , v. 19, n. 2, p. 150 - 156, 2014.pt_BR
dc.description.provenanceMade available in DSpace on 2015-06-25T17:51:29Z (GMT). No. of bitstreams: 1 2-s2.0-84892754522.pdf: 394678 bytes, checksum: a5b9dd998d22a6b301737f8e84135b53 (MD5) Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T14:56:07Z (GMT). No. of bitstreams: 2 2-s2.0-84892754522.pdf: 394678 bytes, checksum: a5b9dd998d22a6b301737f8e84135b53 (MD5) 2-s2.0-84892754522.pdf.txt: 34094 bytes, checksum: 417ef140c90e7af289912b61b152648f (MD5) Previous issue date: 2014en
dc.description.referenceSato, Y.S., Kokawa, H., Preferential precipitation site of sigma phase in duplex stainless steel weld metal (1999) Scr. Mater., 40, pp. 659-663pt_BR
dc.description.referenceReis, G.S., Jorge, A.M., Balancin, O.J., Influence of the microstructure of duplex stainless steels on their failure characteristics during hot deformation (2000) Mater. Res., 3, pp. 31-35pt_BR
dc.description.referenceVoronenko, B.I., Austenitic-ferritic stainless steels: A state-of-theart review (1997) Met. Sci. Heat Treat., 39, pp. 428-437pt_BR
dc.description.referenceLopez, N., Cid, M., Puiggali, M., Influence of s-phase on mechanical properties and corrosion resistance of duplex stainless steels (1999) Corros. Sci., 41, pp. 1615-1631pt_BR
dc.description.referenceGarzon, C.M., Ramirez, A.J., Growth kinetics of secondary austenite in the welding microstructure of a UNS S32304 duplex stainless steel (2006) Acta Mater., 54, pp. 3321-3331pt_BR
dc.description.referenceSato, Y.S., Nelson, T.W., Sterling, C.J., Steel, R.J., Pettersoon, C.-O., Microstructure and mechanical properties of friction stir welded SAF 2507 super duplex stainless steel (2005) Mater. Sci. Eng. A, A397, pp. 376-384pt_BR
dc.description.referenceBhadeshia, H.K.D.H., DebRoy, T., Critical assessment: Friction stir welding of steels (2009) Sci. Technol. Weld. Join., 14, pp. 193-196pt_BR
dc.description.referenceSteel, R.J., Sterling, C.J., Friction stir welding of 2205 duplex stainless and 3Cr12 steels (2004) Proc. 14th Int. Conf. on 'Offshore and polar engineering', pp. 67-73. , Toulon, France, May International Society of Offshore and Polar Engineerspt_BR
dc.description.referenceSaeid, T., Abdollah-Zadeh, A., Assadi, H., Malek Ghaini, F., Effect of friction stir welding speed on the microstructure and mechanical properties of a duplex stainless steel (2008) Mater. Sci. Eng. A, A496, pp. 262-268pt_BR
dc.description.referencePayares-Asprino, M.C., Evans, R.W., Liu, S., Prediction of percentage of ferrite as a function of heat input in gas metal arc welding of duplex stainless steel SAF 2205 weldments (2008) Soldag. Insp., 13, pp. 150-159pt_BR
dc.description.referenceEscriba, D.M., Materna-Morris, E., Plaut, R.L., Padilha, A.F., Chi-phase precipitation in a duplex stainless steel (2009) Mater. Charact., 60, pp. 1214-1219pt_BR
dc.description.referenceThomas, W.M., Nicholas, E.D., Needham, J.C., Murch, M.G., Templesmith, P., Daves, C.J., (1991) Friction stir butt welding, , International Patent Application PCT/GB92/02203pt_BR
dc.description.referenceMishra, R.S., Mahoney, M.W., (2007) Friction stir welding and processing, , (eds.), Materials Park, OH, ASM Internationalpt_BR
dc.description.referenceSantos, T.F.A., Hermenegildo, T.C.F., Afonso, C.R.M., Marinho, R.R., Paes, M.T.P., Ramirez, A.J., Fracture toughness of ISO 3183 X80M (API 5L X80) steel friction stir welds (2010) Eng. Fract. Mech., 77, pp. 2937-2945pt_BR
dc.description.referenceMishra, R.S., Ma, Z.Y., Friction stir welding and processing (2005) Mater. Sci. Eng. R, R50, pp. 1-78pt_BR
dc.description.referenceLambrakos, S.G., Fonda, R.W., Milewski, J.O., Mitchell, J.E., Analysis of friction stir welds using thermocouple measurements (2003) Sci. Technol. Weld. Join., 8, pp. 385-390pt_BR
dc.description.referenceEdwards, P., Ramulu, M., Peak temperatures during friction stir welding of Ti-6Al-4V (2010) Sci. Technol. Weld. Join., 15, pp. 468-504pt_BR
dc.description.referenceSteel, R.J., Pettersson, C.-O., Packer, S.M., Sorensen, C.D., Sato, Y.S., Nelson, T.W., Sterling, C.J., Friction stir welding of SAF 2507 (UNS S32750) super duplex stainless steel (2004) Stainless Steel World, 16, pp. 27-31pt_BR
dc.description.referenceSantos, T.F.A., Marinho, R.R., Paes, M.T.P., Ramirez, A.J., Microstructure evaluation of UNS S32205 duplex stainless steel friction stir welds (2013) Rev. Esc. Minas, 66, pp. 187-191pt_BR
dc.description.referenceSorensen, C.D., Nelson, T.W., Friction stir welding of ferrous and nickel alloys (2007) Friction stir welding and processing, , (ed. R. S. Mishra and M. W. Mahoney)pt_BR
dc.description.referenceMaterials Park, OH, ASM Internationalpt_BR
dc.description.referenceZhang, Y.N., Cao, X., Larose, S., Wanjara, P., Review of tools for friction stir welding and processing (2012) Sci. Technol. Weld. Join., 51, pp. 250-261pt_BR
dc.description.referenceManvatkar, V.D., Aurora, A., De, A., DebRoy, T., Neural network models of peak temperature, torque, traverse force, bending stress and maximum shear stress during friction stir welding (2012) Sci. Technol. Weld. Join., 17, pp. 460-466pt_BR
dc.description.reference(2013) Pencial probe eroding thermocouple, ,, Nanmac Corporation, (accessed 23 June)pt_BR
dc.description.referenceWei, L.Y., Nelson, T.W., Correlation of microstructures and process variables in FSW HSLA-65 steel (2011) Weld. J., 90, pp. 95s-101spt_BR
dc.description.referenceMatweb, (2013) Material property data, ,, (accessed 22 June)pt_BR
dc.description.referenceNandan, R., DebRoy, T., Bhadeshia, H.K.D.H., Recent advances in friction-stir welding-process, weldment structure and properties (2008) Prog. Mater. Sci., 53, pp. 980-1023pt_BR
dc.description.referenceZhao, Y., Wu, A.P., Ren, J.L., Sato, Y.S., Kokawa, H., Miyake, M., Yan, D.Y., Temperature and force response characteristics of friction stir welding on Invar 36 alloy (2013) Sci. Technol. Weld. Join., 18, pp. 232-238pt_BR
dc.description.referenceKhandkar, M.Z.H., Khan, J.A., Reynolds, A.P., Prediction of temperature distribution and thermal history during friction stir welding: Input torque based model (2003) Sci. Technol. Weld. Join., 8, pp. 165-174pt_BR
dc.description.referenceSchmidt, H., Hattel, J., Modelling heat flow around tool probe in friction stir welding (2005) Sci. Technol. Weld. Join., 10, pp. 176-186pt_BR
dc.description.referenceColegrove, P., Painter, M., Graham, D., Miller, T., 3 dimensional flow and thermal modeling of the friction stir welding process (2000) Proc. 2nd Int. Symp. on 'Friction stir welding, pp. 1-11. , Gothenburg, Sweden, June The Welding Institute, Paper 2pt_BR
dc.description.referenceSchmidt, H.B., Hattel, J., Thermal modelling of friction stir welding (2008) Scr. Mater., 58, pp. 332-337pt_BR
dc.description.referenceNandan, R., Roy, G.G., Lienert, T.J., Debroy, T., Threedimensional heat and material flow during friction stir welding of mild steel (2007) Acta Mater., 55, pp. 883-895pt_BR
dc.description.referenceArora, A., DebRoy, T., Bhadeshia, H.K.D.H., Back-of-theenvelope calculations in friction stir welding-velocities, peak temperature, torque, and hardness (2011) Acta Mater., 59, pp. 2020-2028pt_BR
dc.description.referenceRamirez, A.J., Brandi, S.D., Application of discrete distribution point heat source model to simulate multipass weld thermal cycles in medium thick plates (2004) Sci. Technol. Weld. Join., 9, pp. 72-82pt_BR
dc.description.referenceWang, H., Colegrove, P.A., dos Santos, J., Hybrid modelling of 7449-T7 aluminum alloy friction stir welded joints (2013) Sci. Technol. Weld. Join., 18, pp. 147-153pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84892754522.pdf385.43 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.