Please use this identifier to cite or link to this item:
Type: Artigo de periódico
Title: Plaquette Valence-bond Solid In The Square-lattice J 1 - J 2 Antiferromagnet Heisenberg Model: A Bond Operator Approach
Author: Doretto R.L.
Abstract: We study the plaquette valence-bond solid phase of the spin-1/2J1-J2 antiferromagnet Heisenberg model on the square lattice within the bond-operator theory. We start by considering four S=1/2 spins on a single plaquette and determine the bond operator representation for the spin operators in terms of singlet, triplet, and quintet boson operators. The formalism is then applied to the J1-J2 model and an effective interacting boson model in terms of singlets and triplets is derived. The effective model is analyzed within the harmonic approximation and the previous results of Zhitomirsky and Ueda [Phys. Rev. B 54, 9007 (1996)PRBMDO0163-182910.1103/PhysRevB.54.9007] are recovered. By perturbatively including cubic (triplet-triplet-triplet and singlet-triplet- triplet) and quartic interactions, we find that the plaquette valence-bond solid phase is stable within the parameter region 0.34<J2/J1<0.59, which is narrower than the harmonic one. Differently from the harmonic approximation, the excitation gap vanishes at both critical couplings J2=0.34J1 and J2=0.59J1. Interestingly, for J2<0.48J1, the excitation gap corresponds to a singlet-triplet excitation at the Γ point while, for J2>0.48J1, it is related to a singlet-singlet excitation at the X=(π/2,0) point of the tetramerized Brillouin zone. © 2014 American Physical Society.
Editor: American Physical Society
Rights: aberto
Identifier DOI: 10.1103/PhysRevB.89.104415
Date Issue: 2014
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
File Description SizeFormat 
2-s2.0-84896974081.pdf646.16 kBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.