Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/86000
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbnnullpt
dc.typeArtigo de periódicopt_BR
dc.titleExperimental And Theoretical Studies Of Intramolecular Hydrogen Bonding In 3-hydroxytetrahydropyran: Beyond Aim Analysispt_BR
dc.contributor.authorSolha D.C.pt_BR
dc.contributor.authorBarbosa T.M.pt_BR
dc.contributor.authorViesser R.V.pt_BR
dc.contributor.authorRittner R.pt_BR
dc.contributor.authorTormena C.F.pt_BR
unicamp.authorSolha, D.C., Chemistry Institute, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazilpt_BR
unicamp.authorBarbosa, T.M., Chemistry Institute, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazilpt_BR
unicamp.authorViesser, R.V., Chemistry Institute, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazilpt_BR
unicamp.authorRittner, R., Chemistry Institute, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazilpt_BR
unicamp.authorTormena, C.F., Chemistry Institute, University of Campinas-UNICAMP, P.O. Box 6154, 13083-970 Campinas, SP, Brazilpt_BR
dc.description.abstractThe conformational preferences of 3-hydroxytetrahydropyran (1) were evaluated using infrared and nuclear magnetic resonance spectroscopic data in solvents of different polarities. Theoretical calculations in the isolated phase and including the solvent effect were performed, showing that the most stable conformations for compound 1 are those containing the substituent in the axial and equatorial orientations. The axial conformation is more stable in the isolated phase and in a nonpolar solvent, while the equatorial conformation is more stable than the axial in polar media. The occurrence of intramolecular hydrogen-bonded O-H⋯O in the axial conformer was detected from infrared spectra in a nonpolar solvent at different concentrations. Our attempt to evaluate this interaction using population natural bond orbital and topological quantum theory of atoms in molecules analyses failed, but topological noncovalent interaction analysis was capable of characterizing it. © 2014 American Chemical Society.en
dc.relation.ispartofJournal of Physical Chemistry Apt_BR
dc.publisherAmerican Chemical Societypt_BR
dc.date.issued2014pt_BR
dc.identifier.citationJournal Of Physical Chemistry A. American Chemical Society, v. 118, n. 15, p. 2794 - 2800, 2014.pt_BR
dc.language.isoenpt_BR
dc.description.volume118pt_BR
dc.description.issuenumber15pt_BR
dc.description.initialpage2794pt_BR
dc.description.lastpage2800pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn10895639pt_BR
dc.identifier.doi10.1021/jp500211ypt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84898988872&partnerID=40&md5=6a3d539aa9ab28d00f229223e7e2d442pt_BR
dc.date.available2015-06-25T17:51:10Z
dc.date.available2015-11-26T15:40:41Z-
dc.date.accessioned2015-06-25T17:51:10Z
dc.date.accessioned2015-11-26T15:40:41Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:51:10Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:40:41Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/86000
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/86000-
dc.identifier.idScopus2-s2.0-84898988872pt_BR
dc.description.referenceEliel, E.L., Samuel, H.W., Doyle, M.P., (2001) Basic Organic Stereochemistry, , Wiley-Interscience: New Yorkpt_BR
dc.description.referenceCortéz-Guzman, F., Hernández-Trujillo, J., Cuevas, G., The Nonexistence of Repulsive 1,3-diaxial Interactions in Monosubstituted Cyclohexanes (2003) J. Phys. Chem. A, 107, pp. 9253-9256pt_BR
dc.description.referenceRibeiro, D.S., Rittner, R., The Role of Hyperconjugation in the Conformational Analysis of Methylcyclohexane and Methylheterocyclohexanes (2003) J. Org. Chem., 68, pp. 6780-6787pt_BR
dc.description.referenceTaddei, F., Kleinpeter, E., The Anomeric Effect in Substituted Cyclohexanes. I. The Role of Hyperconjugative Interactions and Steric Effect in Monosubstituted Cyclohexanes (2004) J. Mol. Struct.: THEOCHEM, 683, pp. 29-41pt_BR
dc.description.referenceFreitas, M.P., Tormena, C.F., Rittner, R., Interaction in trans-2-Halocyclohexanols-an Infraredand Theoretical Study (2001) J. Mol. Struct., 570, pp. 175-180pt_BR
dc.description.referenceFreitas, M.P., Tormena, C.F., Oliveira, P.R., Rittner, R., Halogenated Six-Membered Rings: A Theoretical Approach for Substituent Effects in Conformational Analysis (2002) J. Mol. Struct.: THEOCHEM, 589-590, pp. 147-151pt_BR
dc.description.referenceFreitas, M.P., Tormena, C.F., Luizar, C., Ferreira, M.M.C., Rittner, R., Substituent Interactions in trans -2-Substituted Methoxycyclohexanes: An Explanation to the Conformational Behaviour in a Chemometric and Theoretical View (2002) J. Mol. Struct. THEOCHEM, 618, pp. 219-224pt_BR
dc.description.referenceFreitas, M.P., Tormena, C.F., Rittner, R., Abraham, R.J., Conformational Analysis of trans -2-Halocyclohexanols and their Methyl Ethers: A 1H NMR, Theoretical and Solvation Approach (2003) J. Phys. Org. Chem., 16, pp. 27-33pt_BR
dc.description.referenceFreitas, M.P., Tormena, C.F., Rittner, R., Abraham, R.J., Conformational Properties of trans -2-Halo-acetoxycyclohexanes: 1H NMR, Solvation and Theoretical Investigation (2005) J. Mol. Struct., 734, pp. 211-217pt_BR
dc.description.referenceFreitas, M.P., Rittner, R., Tormena, C.F., Abraham, R.J., Conformational Analysis and Stereoelectronic Effects in trans -1,2-Dihalocyclohexanes: 1H NMR and Theoretical Investigation (2005) Spectrochim. Acta, Part A, 61, pp. 1771-1776pt_BR
dc.description.referenceBocca, C.C., Basso, E.A., Fiorin, B.C., Tormena, C.F., Dos Santos, F.P., Conformational Behavior of cis -2-Methoxy, cis -2-Methylthio, and cis -2-Methylselenocyclohexanol: A Theoretical and Experimental Investigation (2006) J. Phys. Chem. A, 110, pp. 9438-9442pt_BR
dc.description.referenceCedran, J.C., Dos Santos, F.P., Basso, E.A., Tormena, C.F., Conformational Preferences of 2-Methoxy, 2-Methylthio, and 2-Methylselenocyclohexyl- N, N -dimethylcarbamate: A Theoretical and Experimental Investigation (2007) J. Phys. Chem. A, 111, pp. 11701-11705pt_BR
dc.description.referenceBasso, E.A., Abiko, L.A., Gauze, G.F., Pontes, R.M., Conformational Analysis of cis -2-Halocyclohexanolspt_BR
dc.description.referenceSolvent Effects by NMR and Theoretical Calculations (2011) J. Org. Chem., 76, pp. 145-153pt_BR
dc.description.referenceSilla, J.M., Cormanich, R.A., Duarte, C.J., Freitas, M.P., Ramalho, T.C., Barbosa, T.M., Santos, F.P., Rittner, R., Alkyl Group Effect on the Conformational Isomerism of trans -2-Bromoalkoxycyclohexanes Analyzed by NMR Spectroscopy and Theoretical Calculation (2011) J. Phys. Chem. A, 115, pp. 10122-10127pt_BR
dc.description.referenceBasso, E.A., Kaiser, C., Rittner, R., Lambert, J.B., Axial Equatorial Proportions for 2-Substituted Cyclohexanones (1993) J. Org. Chem., 58, pp. 7865-7869pt_BR
dc.description.referenceFreitas, M.P., Rittner, R., Tormena, C.F., Abraham, R.J., Conformational Analysis of 2-Bromocyclohexanone. A Combined NMR, IR, Solvation and Theoretical Approach (2001) J. Phys. Org. Chem., 14, pp. 317-322pt_BR
dc.description.referenceYoshinaga, F., Tormena, C.F., Freitas, M.P., Rittner, R., Abraham, R.J., Conformational Analysis of 2-Halocyclohexanones: An NMR, Theoretical and Solvation Study (2002) J. Chem. Soc., Perkin Trans.2, pp. 1494-1498pt_BR
dc.description.referenceFreitas, M.P., Tormena, C.F., Garcia, J.C., Rittner, R., Abraham, R.J., Basso, E.A., Santos, F.P., Cedran, J.C., NMR, Solvation and Theoretical Investigations of Conformational Isomerism in 2-X-cyclohexanones (X=NMe2, OMe, SMe and SeMe) (2003) J. Phys. Org. Chem., 16, pp. 833-838pt_BR
dc.description.referenceCoelho, J.V., Freitas, M.P., Tormena, C.F., Rittner, R., On the4 JHH Long-range Coupling in 2-Bromocyclohexanone: Conformational Insights (2009) Magn. Reson. Chem., 47, pp. 348-351pt_BR
dc.description.referenceCoelho, J.V., Freitas, M.P., Ramalho, T.C., Martins, C.R., Bitencourt, M., Carmanich, R.A., Tormena, C.F., Rittner, R., The Case of Infrared Carbonyl Stretching Intensities of 2-Bromocyclohexanone: Conformational and Intermolecular Interaction Insights (2010) Chem. Phys. Lett., 494, pp. 26-30pt_BR
dc.description.referenceAnizelli, P.R., Vilcachagua, J.D., Cunha Neto, A., Tormena, C.F., Stereoelectronic Interaction and Their Effects on Conformational Preference for 2-Substituted Methylenecyclohexane: An Experimental and Theoretical Investigation (2008) J. Phys. Chem. A, 112, pp. 8785-8789pt_BR
dc.description.referenceAlabugin, I.V., Gilmore, K.M., Peterson, P.W., Hyperconjugation (2011) Wiley Interdiscip. Rev.: Comput. Mol. Sci., 1, pp. 109-141pt_BR
dc.description.referenceHa, S., Gao, J., Tidor, B., Brady, J.W., Karplus, M., Solvent Effect on the Anomeric Equilibrium in D-glucose: A Free Energy Simulation Analysis (1991) J. Am. Chem. Soc., 113, pp. 1553-1557pt_BR
dc.description.referenceCramer, C.J., Anomeric and Reverse Anomeric Effects in the Gas Phase and Aqueous Solution (1992) J. Org. Chem., 57, pp. 7034-7043pt_BR
dc.description.referenceMo, Y., Computational Evidence that Hyperconjugative Interactions are not Responsible for the Anomeric Effect (2010) Nat. Chem., 2, pp. 666-671pt_BR
dc.description.referenceHuang, Y., Zhong, A.-G., Yang, Q., Liu, S., Origin of Anomeric Effect: A Density Functional of Steric Analysis (2011) J. Chem. Phys., 134, pp. 84103-84109pt_BR
dc.description.referenceBauerfeldt, G.F., Cardozo, T.M., Pereira, M.S., Da Silva, C.O., The Anomeric Effect: The Dominance of Exchange Effects in Closed-Shell Systems (2013) Org. Biomol. Chem., 11, pp. 299-308pt_BR
dc.description.referenceCocinero, E.J., Çarçabal, P., Vaden, T.D., Simons, J.P., Davis, B.G., Sensing the Anomeric Effect in a Solvent-Free Environment (2011) Nature, 469, pp. 76-80pt_BR
dc.description.referenceFreitas, M.P., Simultaneous Gauche and Anomeric Effects in α-Substituted Sulfoxides (2012) J. Org. Chem., 77, pp. 7607-7611pt_BR
dc.description.referenceFreitas, M.P., The Anomeric Effect on the Basis of Natural Bond Orbital Analysis (2013) Org. Biomol. Chem., 11, pp. 2885-2890pt_BR
dc.description.referenceSugai, T., Lkeda, H., Ohta, H., Biocatalytic Approaches to Both Enantiomers of (2R*,3S*)-2- Allyloxy-3,4,5,6-tetrahydro-2H-pyran-3-ol (1996) Tetrahedron, 52, pp. 8123-8134pt_BR
dc.description.referenceKosjek, B., Nti-Gyabaah, J., Telari, K., Dunne, L., Moore, J.C., Preparative Asymmetric Synthesis of 4,4-Dimethoxytetrahydro-2 H -pyran-3-ol with a Ketone Reductase and in Situ Cofactor Recycling using Glucose Dehydrogenase (2008) Org. Process Res. Dev., 12, pp. 584-588pt_BR
dc.description.referenceSugawara, K., Imanishi, Y., Hashiyama, T., Efficient and Practical Synthesis of both Enantiomers of 6-Silyloxy-3-pyranone Derivatives (2000) Tetrahedron: Asymmetry, 11, pp. 4529-4535pt_BR
dc.description.referenceChan, W.N., Evans, J.M., Hadley, M.S., Morgan, H.K.A., Stean, T.O., Thompson, M., Upton, N., Vong, A.K., Synthesis of Novel trans -4-(Substitutedbenzamido)-3,4-dihydro-2 H -benzo[ b ]-pyran-3-ol Derivatives as Potential Anticonvulsant Agents with a Distinctive Binding Profile (1996) J. Med. Chem., 39, pp. 4537-4539pt_BR
dc.description.referenceSasaerila, Y., Gries, R., Gries, G., Khaskin, G., King, S., Takács, S., Hardi, Sex Pheromone Components of Male Tirathabamundella (Lepidoptera: Pyralidae) (2003) Chemoecology, 13, pp. 89-93pt_BR
dc.description.referenceBarker, S.A., Brimacombe, J.S., Foster, A.B., Whiffen, D.H., Zweifel, G., Intramolecular Hydrogen Bonding in some Monohydroxy Derivatives of Tetrahydrofuran, Tetrahydropyran and 1,3-dioxan (1959) Tetrahedron, 7, pp. 10-18pt_BR
dc.description.referenceMøller, C., Plesset, M.S., Note on an approximation treatment for many-electron systems (1934) Phys. Rev., 46, pp. 618-622pt_BR
dc.description.referenceHead-Gordon, M., Pople, J.A., Frisch, M.J., MP2 energy evaluation by direct methods (1988) Chem. Phys. Lett., 153, pp. 503-506pt_BR
dc.description.referencePurvis III, G.D., Bartlett, R.J., A full coupled-cluster singles and doubles model: The inclusion of disconnected triples (1982) J. Chem. Phys., 76, pp. 1910-1918pt_BR
dc.description.referenceWeinhold, F., Natural Bond Orbital Analysis: A Critical Overview of Relationships to Alternative Bonding Perspectives (2012) J. Comput. Chem., 33, pp. 2363-2379pt_BR
dc.description.referenceBader, R.F.W., (1990) Atoms in Molecules: A Quantum Theory, , Clarendon: Oxford, U.Kpt_BR
dc.description.referenceJohnson, E.R., Keinan, S., Mori-Sánchez, P., Contreras-García, J., Cohen, A.J., Yang, W., Revealing Noncovalent Interactions (2010) J. Am. Chem. Soc., 132, pp. 6498-6506pt_BR
dc.description.referenceFrisch, M.J., (2009) Gaussian 09, , revision D.01pt_BR
dc.description.referenceGaussian, Inc. Wallingford, CTpt_BR
dc.description.referenceGeertsen, J., Oddershede, J., 2nd-Order Polarization Propagator Calculations of Indirect Nuclear Spin-Spin Coupling Tensors in the Water Molecule (1984) Chem. Phys., 90, pp. 301-311pt_BR
dc.description.referenceEnevoldsen, T., Oddershede, J., Sauer, S.P.A., Correlated Calculations of Indirect Nuclear Spin-Spin Coupling Constants using Second-Order Polarization Propagator Approximations: SOPPA and SOPPA(CCSD) (1998) Theor. Chem. Acc., 100, pp. 275-284pt_BR
dc.description.referenceSauer, S.P.A., Second-Order Polarization Propagator Approximation with Coupled-Cluster Singles and Doubles Amplitudes-SOPPA(CCSD): The Polarizability and Pyperpolarizability of Li- (1997) J. Phys. B: At., Mol. Opt. Phys., 30, pp. 3773-3780pt_BR
dc.description.reference(2011), http://daltonprogram.org, Dalton2011, A Molecular Electronic Structure ProgramBarone, V., (1996) Recent Advances in Density Functional Methods, Part i, , Chong, D. P. World Scientific Publ. Co. Singaporept_BR
dc.description.referenceGlendening, E.D., Badenhoop, J.K., Reed, A.E., Carpenter, J.E., Bohmann, J.A., Morales, C.M., Landis, C.R., Weinhold, F., (2013) NBO 6.0, , Theoretical Chemistry Institute, University of Wisconsin, Madison: Madison, WI, Program implemented in the Gaussian 09 packagept_BR
dc.description.referenceKeith, T.A., (2011) AIMALL, , aim.tkgristmill.comh, version 11.10.16pt_BR
dc.description.referenceTK Gristmill Software: Overland Park, KSpt_BR
dc.description.referenceContreras-García, J., Johnson, E.R., Keinan, S., Chaudret, R., Piquemal, J.-P., Beratan, D.N., Yang, W., NCIPLOT: A Program for Plotting Noncovalent Interaction Regions (2011) J. Chem. Theory Comput., 7, pp. 625-632pt_BR
dc.description.referenceZweifel, G., Plamondon, J., Hydroboration of Dihydropyrans and Dihydrofurans (1970) J. Org. Chem., 35, pp. 898-902pt_BR
dc.description.referenceMarenich, A.V., Cramer, C.J., Truhlar, D.G., Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions (2009) J. Phys. Chem. B, 113, pp. 6378-6396pt_BR
dc.description.referenceAbraham, R.J., Jones, A.D., Warne, M.A., Rittner, R., Tormena, C.F., Conformational Analysis. Part 27. NMR, Solvation and Theoretical Investigation of Conformational Isomerism in Fluoro- and l,l-difluoro-acetone (1996) J. Chem. Soc., Perkin Trans 2, pp. 533-539pt_BR
dc.description.referenceHelgaker, T., Jaszuński, M., Pecul, M., The Quantum-Chemical Calculation of NMR Indirect Spin-Spin Coupling Constants (2008) Prog. Nucl. Magn. Reson. Spectrosc., 53, pp. 249-268pt_BR
dc.description.referenceConley, R.T., (1972) Infrared Spectroscopy, pp. 129-131. , 2 nd ed. Allyn and Bacon: Bostonpt_BR
dc.description.referenceLane, J.R., Contreras-García, J., Piquemal, J.-P., Miller, B.J., Kjaergaard, H.G., Are Bond Critical Points Really Critical for Hydrogen Bonding? (2013) J. Chem. Theory Comput., 9, pp. 3263-3266pt_BR
dc.description.referenceGrabowski, S.J., What Is the Covalency of Hydrogen Bonding? (2011) Chem. Rev., 111, pp. 2597-2625pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.