Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/85972
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbnnullpt
dc.typeArtigo de periódicopt_BR
dc.titleOxidative Stress And Susceptibility To Mitochondrial Permeability Transition Precedes The Onset Of Diabetes In Autoimmune Non-obese Diabetic Micept_BR
dc.contributor.authorMalaguti C.pt_BR
dc.contributor.authorLa Guardia P.G.pt_BR
dc.contributor.authorLeite A.C.R.pt_BR
dc.contributor.authorOliveira D.N.pt_BR
dc.contributor.authorDe Lima Zollner R.L.pt_BR
dc.contributor.authorCatharino R.R.pt_BR
dc.contributor.authorVercesi A.E.pt_BR
dc.contributor.authorOliveira H.C.F.pt_BR
unicamp.authorMalaguti, C., Departamentos de Patologia Clínica, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorLa Guardia, P.G., Departamentos de Patologia Clínica, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorLeite, A.C.R., Departamentos de Patologia Clínica, Universidade Estadual de Campinas, SP, Brazil, Biologia Estrutural e Funcional, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorOliveira, D.N., Departamentos de Patologia Clínica, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorDe Lima Zollner, R.L., Clínica Médica, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorCatharino, R.R., Departamentos de Patologia Clínica, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorVercesi, A.E., Departamentos de Patologia Clínica, Universidade Estadual de Campinas, SP, Brazilpt_BR
unicamp.authorOliveira, H.C.F., Biologia Estrutural e Funcional, Universidade Estadual de Campinas, SP, Brazilpt_BR
dc.description.abstractBeta cell destruction in type 1 diabetes (TID) is associated with cellular oxidative stress and mitochondrial pathway of cell death. The aim of this study was to determine whether oxidative stress and mitochondrial dysfunction are present in T1D model (non-obese diabetic mouse, NOD) and if they are related to the stages of disease development. NOD mice were studied at three stages: non-diabetic, pre-diabetic, and diabetic and compared with age-matched Balb/c mice. Mitochondria respiration rates measured at phosphorylating and resting states in liver and soleus biopsies and in isolated liver mitochondria were similar in NOD and Balb/c mice at the three disease stages. However, NOD liver mitochondria were more susceptible to calcium-induced mitochondrial permeability transition as determined by cyclosporine-A-sensitive swelling and by decreased calcium retention capacity in all three stages of diabetes development. Mitochondria H2O2 production rate was higher in non-diabetic, but unaltered in pre-diabetic and diabetic NOD mice. The global cell reactive oxygen species (ROS), but not specific mitochondria ROS production, was significantly increased in NOD lymphomononuclear and stem cells in all disease stages. In addition, marked elevated rates of 2′,7′-dichlorodihydrofluorescein (H2DCF) oxidation were observed in pancreatic islets from non-diabetic NOD mice. Using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and lipidomic approach, we identified oxidized lipid markers in NOD liver mitochondria for each disease stage, most of them being derivatives of diacylglycerols and phospholipids. These results suggest that the cellular oxidative stress precedes the establishment of diabetes and may be the cause of mitochondrial dysfunction that is involved in beta cell death.en
dc.relation.ispartofFree Radical Researchpt_BR
dc.publisherInforma Healthcarept_BR
dc.date.issued2014pt_BR
dc.identifier.citationFree Radical Research. Informa Healthcare, v. 48, n. 12, p. 1494 - 1504, 2014.pt_BR
dc.language.isoenpt_BR
dc.description.volume48pt_BR
dc.description.issuenumber12pt_BR
dc.description.initialpage1494pt_BR
dc.description.lastpage1504pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn10715762pt_BR
dc.identifier.doi10.3109/10715762.2014.966706pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84908670728&partnerID=40&md5=65e50581ec4fe70704b78d21f77534a3pt_BR
dc.description.sponsorshipACRL; Association of College and Research Libraries; CAPES; Association of College and Research Librariespt_BR
dc.description.sponsorship1Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)pt_BR
dc.date.available2015-06-25T17:51:03Z
dc.date.available2015-11-26T15:39:56Z-
dc.date.accessioned2015-06-25T17:51:03Z
dc.date.accessioned2015-11-26T15:39:56Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:51:03Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:39:56Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/85972
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85972-
dc.identifier.idScopus2-s2.0-84908670728pt_BR
dc.description.referenceDelmastro, M.M., Piganelli, J.D., Oxidative stress and redox modulation potential in type 1 diabetes (2011) Clin Dev Immunol, 2011, p. 593863pt_BR
dc.description.referenceRabinovitch, A., Suarez-Pinzon, W.L., Strynadka, K., Lakey, J.R., Rajotte, R.V., Human pancreatic islet beta-cell destruction by cytokines involves oxygen free radicals and aldehyde production (1996) J Clin Endocrinol Metab, 81, pp. 3197-3202pt_BR
dc.description.referenceAugstein, P., Elefanty, A.G., Allison, J., Harrison, L.C., Apoptosis and beta-cell destruction in pancreatic islets of NOD mice with spontaneous and cyclophosphamide-accelerated diabetes (1998) Diabetologia, 41, pp. 1381-1388pt_BR
dc.description.referenceBarthson, J., Germano, C.M., Moore, F., Maida, A., Drucker, D.J., Marchetti, P., Cytokines tumor necrosis factor-alpha and interferon-gamma induce pancreatic beta-cell apoptosis through STAT1-mediated Bim protein activation (2011) J Biol Chem, 286, pp. 39632-39643pt_BR
dc.description.referenceGurzov, E.N., Eizirik, D.L., Bcl-2 proteins in diabetes: Mitochondrial pathways of beta-cell death and dysfunction (2011) Trends Cell Biol, 21, pp. 424-431pt_BR
dc.description.referenceThomas, H.E., McKenzie, M.D., Angstetra, E., Campbell, P.D., Kay, T.W., Apoptosis. Beta cell apoptosis in diabetes (2009) Apoptosis, 14, pp. 1389-1404pt_BR
dc.description.referenceKowaltowski, A.J., De Souza-Pinto, N.C., Castilho, R.F., Vercesi, A.E., Mitochondria and reactive oxygen species (2009) Free Radic Biol Med, 47, pp. 333-343pt_BR
dc.description.referenceVercesi, A.E., Castilho, R.F., Kowaltowski, A.J., Oliveira HC Mitochondrial energy metabolism and redox state in dyslipidemias (2007) IUBMB Life, 59, pp. 263-268pt_BR
dc.description.referenceKowaltowski, A.J., Vercesi, A.E., Mitochondrial damage induced by conditions of oxidative stress (1999) Free Radic Biol Med, 26, pp. 463-471pt_BR
dc.description.referenceKowaltowski, A.J., Castilho, R.F., Vercesi, A.E., Mitochondrial permeability transition and oxidative stress (2001) FEBS Lett, 495, pp. 12-15pt_BR
dc.description.referenceSkulachev, V.P., Cytochrome c in the apoptotic and antioxidant cascades (1998) FEBS Lett, 423, pp. 275-280pt_BR
dc.description.referenceLeite, A.C., Oliveira, H.C., Utino, F.L., Garcia, R., Alberici, L.C., Fernandes, M.P., Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols (2010) Biochim Biophys Acta, 1797, pp. 1210-1216pt_BR
dc.description.referenceBrookes, P.S., Salinas, E.P., Darley-Usmar, K., Eiserich, J.P., Freeman, B.A., Darley-Usmar, V.M., Anderson, P.G., Concentration-dependent eff ects of nitric oxide on mitochondrial permeability transition and cytochrome c release (2000) J Biol Chem, 275, pp. 20474-20479pt_BR
dc.description.referenceLemasters, J.J., Theruvath, T.P., Zhong, Z., Nieminen, A.L., Mitochondrial calcium and the permeability transition in cell death (2009) Biochim Biophys Acta, 1787, pp. 1395-1401pt_BR
dc.description.referenceOliveira, H.C., Cosso, R.G., Alberici, L.C., Maciel, E.N., Salerno, A.G., Dorighello, G.G., Oxidative stress in atherosclerosis-prone mouse is due to low antioxidant capacity of mitochondria (2005) FASEB J, 19, pp. 278-280pt_BR
dc.description.referenceAlberici, L.C., Oliveira, H.C., Bighetti, E.J., De Faria, E.C., Degaspari, G.R., Souza, C.T., Vercesi, A.E., Hypertriglyceridemia increases mitochondrial resting respiration and susceptibility to permeability transition (2003) J Bioenerg Biomembr, 35, pp. 451-457pt_BR
dc.description.referenceAlberici, L.C., Oliveira, H.C., Paim, B.A., Mantello, C.C., Augusto, A.C., Zecchin, K.G., Mitochondrial ATP-sensitive K (+) channels as redox signals to liver mitochondria in response to hypertriglyceridemia (2009) Free Radic Biol Med, 47, pp. 1432-1439pt_BR
dc.description.referencePaim, B.A., Velho, J.A., Castilho, R.F., Oliveira, H.C., Vercesi, A.E., Oxidative stress in hypercholesterolemic LDL (low-density lipoprotein) receptor knockout mice is associated with low content of mitochondrial NADP-linked substrates and is partially reversed by citrate replacement (2008) Free Radic Biol Med, 44, pp. 444-451pt_BR
dc.description.referenceFigueira, T.R., Castilho, R.F., Saito, A., Oliveira, H.C., Vercesi, A.E., The higher susceptibility of congenital analbuminemic rats to Ca2+-induced mitochondrial permeability transition is associated with the increased expression of cyclophilin D and nitrosothiol depletion (2011) Mol Genet Metab, 104, pp. 521-528pt_BR
dc.description.referenceMartinez-Abundis, E., Rajapurohitam, V., Haist, J.V., Gan, X.T., Karmazyn, M., The obesity-related peptide leptin sensitizes cardiac mitochondria to calcium-induced permeability transition pore opening and apoptosis (2012) PLoS One, 7, p. e41612pt_BR
dc.description.referenceHuhn, R., Heinen, A., Hollmann, M.W., Schlack, W., Preckel, B., Weber, N.C., Cyclosporine A administered during reperfusion fails to restore cardioprotection in prediabetic Zucker obese rats in vivo (2009) Nutr Metab Cardiovasc Dis, 20, pp. 706-712pt_BR
dc.description.referenceMakino, S., Kunimoto, K., Muraoka, Y., Mizushima, Y., Katagiri, K., Tochino, Y., Breeding of a non-obese, diabetic strain of mice (1980) Jikken Dobutsu, 29, pp. 1-13pt_BR
dc.description.referenceAnderson, M.S., Bluestone, J.A., The NOD mouse: A model of immune dysregulation (2005) Annu Rev Immunol, 23, pp. 447-485pt_BR
dc.description.referenceBabad, J., Geliebter, A., DiLorenzo, T.P., T-cell autoantigens in the non-obese diabetic mouse model of autoimmune diabetes (2010) Immunology, 131, pp. 459-465pt_BR
dc.description.referenceLiang, K., Du, W., Zhu, W., Liu, S., Cui, Y., Sun, H., Contribution of different mechanisms to pancreatic beta-cell hypersecretion in non-obese diabetic (NOD) mice during pre-diabetes (2011) J Biol Chem, 286, pp. 39537-39545pt_BR
dc.description.referenceKikutani, H., Makino, S., The murine autoimmune diabetes model: NOD and related strains (1992) Adv Immunol, 51, pp. 285-322pt_BR
dc.description.referenceVentura-Oliveira, D., Vilella, C.A., Zanin, M.E., Castro, G.M., Moreira Filho, D.C., Zollner, R.L., Kinetics of TNF-alpha and IFN-gamma mRNA expression in islets and spleen of NOD mice (2002) Braz J Med Biol Res, 35, pp. 1347-1355pt_BR
dc.description.referenceKaplan, R.S., Pedersen, P.L., Characterization of phosphate efflux pathways in rat liver mitochondria (1983) Biochem J, 212, pp. 279-288pt_BR
dc.description.referenceMurphy, A.N., Bredesen, D.E., Cortopassi, G., Wang, E., Fiskum, G., Bcl-2 potentiates the maximal calcium uptake capacity of neural cell mitochondria (1996) P Natl Acad Sci USA, 93, pp. 9893-9898pt_BR
dc.description.referenceDegasperi, G.R., Velho, J.A., Zecchin, K.G., Souza, C.T., Velloso, L.A., Borecky, J., Role of mitochondria in the immune response to cancer: A central role for Ca2+ (2006) J Bioenerg Biomembr, 38, pp. 1-10pt_BR
dc.description.referencePayne, C.M., Weber, C., Crowley-Skillicorn, C., Dvorak, K., Bernstein, H., Bernstein, C., Deoxycholate induces mitochondrial oxidative stress and activates NF-kappaB through multiple mechanisms in HCT-116 colon epithelial cells (2007) Carcinogenesis, 28, pp. 215-222pt_BR
dc.description.referenceShepherd, D., Garland, P.B., The kinetic properties of citrate synthase from rat liver mitochondria (1969) Biochem J, 114, pp. 597-610pt_BR
dc.description.referenceValle, V.G., Fagian, M.M., Parentoni, L.S., Meinicke, A.R., Vercesi, A.E., The participation of reactive oxygen species and protein thiols in the mechanism of mitochondrial inner membrane permeabilization by calcium plus prooxidants (1993) Arch Biochem Biophys, 307, pp. 1-7pt_BR
dc.description.referenceFigueira, T.R., Barros, M.H., Camargo, A.A., Castilho, R.F., Ferreira, J.C., Kowaltowski, A.J., Mitochondria as a source of reactive oxygen and nitrogen species: From molecular mechanisms to human health (2012) Antioxid Redox Signal, 18, pp. 2029-2074pt_BR
dc.description.referenceKumar, S., Patel, S., Jyoti, A., Keshari, R.S., Verma, A., Barthwal, M.K., Dikshit, M., Nitric oxide-mediated augmentation of neutrophil reactive oxygen and nitrogen species formation: Critical use of probes (2010) Cytometry A, 77, pp. 1038-1048pt_BR
dc.description.referenceKarlsson, M., Kurz, T., Brunk, U.T., Nilsson, S.E., Frennesson, C.I., What does the commonly used DCF test for oxidative stress really show? (2010) Biochem J, 428, pp. 183-190pt_BR
dc.description.referenceDegasperi, G.R., Denis, R.G., Morari, J., Solon, C., Geloneze, B., Stabe, C., Reactive oxygen species production is increased in the peripheral blood monocytes of obese patients (2009) Metabolism, 58, pp. 1087-1095pt_BR
dc.description.referenceHerzog, E.L., Chai, L., Krause, D.S., Plasticity of marrow-derived stem cells (2003) Blood, 102, pp. 3483-3493pt_BR
dc.description.referenceFiorina, P., Voltarelli, J., Zavazava, N., Immunological applications of stem cells in type 1 diabetes (2011) Endocr Rev, 32, pp. 725-754pt_BR
dc.description.referenceRobinson, K.M., Janes, M.S., Beckman, J.S., The selective detection of mitochondrial superoxide by live cell imaging (2008) Nat Protoc, 3, pp. 941-947pt_BR
dc.description.referenceZielonka, J., Vasquez-Vivar, J., Kalyanaraman, B., Detection of 2-hydroxyethidium in cellular systems: A unique marker product of superoxide and hydroethidine (2008) Nat Protoc, 3, pp. 8-21pt_BR
dc.description.referenceHerlein, J.A., Fink, B.D., O'Malley, Y., Sivitz, W.I., Superoxide and respiratory coupling in mitochondria of insulin-deficient diabetic rats (2009) Endocrinology, 150, pp. 46-55pt_BR
dc.description.referenceBonnard, C., Durand, A., Peyrol, S., Chanseaume, E., Chauvin, M.A., Morio, B., Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulinresistant mice (2008) J Clin Invest, 118, pp. 789-800pt_BR
dc.description.referenceRizzuto, R., Marchi, S., Bonora, M., Aguiari, P., Bononi, A., De Stefani, D., Ca (2 +) transfer from the ER to mitochondria: When, how and why (2009) Biochim Biophys Acta, 1787, pp. 1342-1351pt_BR
dc.description.referenceRizzuto, R., De Stefani, D., Raffaello, A., Mammucari, C., Mitochondria as sensors and regulators of calcium signalling (2012) Nat Rev Mol Cell Biol, 13, pp. 566-578pt_BR
dc.description.referencePatergnani, S., Suski, J.M., Agnoletto, C., Bononi, A., Bonora, M., De Marchi, E., Calcium signaling around mitochondria associated membranes (MAMs) (2011) Cell Commun Signal, 9, p. 19pt_BR
dc.description.referenceImai, Y., Dobrian, A.D., Morris, M.A., Nadler, J.L., Islet inflammation: A unifying target for diabetes treatment? (2013) Trends Endocrinol Metab, 24, pp. 351-360pt_BR
dc.description.referenceMa, Z.A., Zhao, Z., Turk, J., Mitochondrial dysfunction and beta-cell failure in type 2 diabetes mellitus (2012) Exp Diabetes Res, p. 703538pt_BR
dc.description.referenceHan, X., Yang, J., Yang, K., Zhao, Z., Abendschein, D.R., Gross, R.W., Alterations in myocardial cardiolipin content and composition occur at the very earliest stages of diabetes: A shotgun lipidomics study (2007) Biochemistry, 46, pp. 6417-6428pt_BR
dc.description.referenceChicco, A.J., Sparagna, G.C., Role of cardiolipin alterations in mitochondrial dysfunction and disease (2007) Am J Physiol Cell Physiol, 292, pp. C33-C44pt_BR
dc.description.referenceBao, S., Song, H., Tan, M., Wohltmann, M., Ladenson, J.H., Turk, J., Group VIB Phospholipase A (2) promotes proliferation of INS-1 insulinoma cells and attenuates lipid peroxidation and apoptosis induced by inflammatory cytokines and oxidant agents (2012) Oxid Med Cell Longev, p. 989372pt_BR
dc.description.referenceKim, C.H., Vaziri, N.D., Rodriguez-Iturbe, B., Integrin expression and H2O2 production in circulating and splenic leukocytes of obese rats (2007) Obesity (Silver Spring), 15, pp. 2209-2216pt_BR
dc.description.referenceBarcellos-de-Souza, P., Moraes, J.A., De-Freitas-Junior, J.C., Morgado-Diaz, J.A., Barja-Fidalgo, C., Arruda, M.A., Heme modulates intestinal epithelial cell activation: Involvement of NADPHox-derived ROS signaling (2012) Am J Physiol Cell Physiol, 304, pp. C170-C179pt_BR
dc.description.referenceGauss, K.A., Nelson-Overton, L.K., Siemsen, D.W., Gao, Y., DeLeo, F.R., Quinn, M.T., Role of NF-kappaB in transcriptional regulation of the phagocyte NADPH oxidase by tumor necrosis factor-alpha (2007) J Leukoc Biol, 82, pp. 729-741pt_BR
dc.description.referenceHidalgo, C., Donoso, P., Crosstalk between calcium and redox signaling: From molecular mechanisms to health implications (2008) Antioxid Redox Signal, 10, pp. 1275-1312pt_BR
dc.description.referenceHidalgo, C., Donoso, P., Carrasco, M.A., The ryanodine receptors Ca2+ release channels: Cellular redox sensors? (2005) IUBMB Life, 57, pp. 315-322pt_BR
dc.description.referenceZong, H., Ward, M., Stitt, A.W., AGEs, RAGE, and diabetic retinopathy (2011) Curr Diab Rep, 11, pp. 244-252pt_BR
dc.description.referenceGiacco, F., Brownlee, M., Oxidative stress and diabetic complications (2010) Circ Res, 107, pp. 1058-1070pt_BR
dc.description.referenceBarlovic, D.P., Soro-Paavonen, A., Jandeleit-Dahm, K.A., RAGE biology, atherosclerosis and diabetes (2011) Clin Sci (Lond), 121, pp. 43-55pt_BR
dc.description.referenceHe, C.J., Koschinsky, T., Buenting, C., Vlassara, H., Presence of diabetic complications in type 1 diabetic patients correlates with low expression of mononuclear cell AGE-receptor-1 and elevated serum AGE (2001) Mol Med, 7, pp. 159-168pt_BR
dc.description.referencePeter-Katalinic, J., Fischer, W., Alpha-d-glucopyranosyl-, d-alanyl- and l-lysylcardiolipin from gram-positive bacteria: Analysis by fast atom bombardment mass spectrometry (1998) J Lipid Res, 39, pp. 2286-2292pt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.