Please use this identifier to cite or link to this item: http://repositorio.unicamp.br/jspui/handle/REPOSIP/85728
Full metadata record
DC FieldValueLanguage
dc.contributor.CRUESPUNIVERSIDADE DE ESTADUAL DE CAMPINASpt_BR
dc.identifier.isbnnullpt
dc.typeArtigo de periódicopt_BR
dc.titleCharacterisation Of A Nafion Film By Optical Fibre Fabry-perot Interferometry For Humidity Sensingpt_BR
dc.contributor.authorSantos J.S.pt_BR
dc.contributor.authorRaimundo I.M.pt_BR
dc.contributor.authorCordeiro C.M.B.pt_BR
dc.contributor.authorBiazoli C.R.pt_BR
dc.contributor.authorGouveia C.A.J.pt_BR
dc.contributor.authorJorge P.A.S.pt_BR
unicamp.authorSantos, J.S., Institute of Chemistry, University of Campinas, Unicamp, P.O. Box 6154, 13083-970 Campinas, Brazilpt_BR
unicamp.authorRaimundo, I.M., Institute of Chemistry, University of Campinas, Unicamp, P.O. Box 6154, 13083-970 Campinas, Brazilpt_BR
unicamp.authorCordeiro, C.M.B., Institute of Physics Gleb Wataghin, University of Campinas, Cidade Universitária Zeferino Vaz, Rua Sérgio Buarque de Holanda, 777, 13083-859 Campinas, Brazilpt_BR
unicamp.authorBiazoli, C.R., Institute of Physics Gleb Wataghin, University of Campinas, Cidade Universitária Zeferino Vaz, Rua Sérgio Buarque de Holanda, 777, 13083-859 Campinas, Brazilpt_BR
unicamp.author.externalGouveia, C.A.J., INESC Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugalpt
unicamp.author.externalJorge, P.A.S., INESC Porto, Rua do Campo Alegre 687, Porto 4169-007, Portugalpt
dc.description.abstractNafion has been evaluated as a sensing phase of an optical fibre humidity sensor based on a low-finesse Fabry-Perot interferometer. The sensor was constructed by manual deposition of a drop of a Nafion solution on the tip of a single mode optical fibre, forming a Fabry-Perot resonant cavity. The absorption of water by the Nafion film makes it swells, changing its refractive index and the length of the cavity, which produces a phase shift in the interference signal. The sensitivity, stability and response time of the sensor were evaluated in the RH range from 22 to 80% by analysing the correspondent reflection spectra of the interference fringes. As a result, it was obtained that Nafion can be used as sensing phase of an optical fibre humidity sensor based on optical fibre Fabry-Perot interferometry, presenting a response time of 242 ms (3% RH variation) and a sensitivity of 3.5 nm/%RH. © 2014 Elsevier B.V.en
dc.relation.ispartofSensors and Actuators, B: Chemicalpt_BR
dc.publishernullpt_BR
dc.date.issued2014pt_BR
dc.identifier.citationSensors And Actuators, B: Chemical. , v. 196, n. , p. 99 - 105, 2014.pt_BR
dc.language.isoenpt_BR
dc.description.volume196pt_BR
dc.description.issuenumberpt_BR
dc.description.initialpage99pt_BR
dc.description.lastpage105pt_BR
dc.rightsfechadopt_BR
dc.sourceScopuspt_BR
dc.identifier.issn9254005pt_BR
dc.identifier.doi10.1016/j.snb.2014.01.101pt_BR
dc.identifier.urlhttp://www.scopus.com/inward/record.url?eid=2-s2.0-84894718441&partnerID=40&md5=6ac6ad997e9c0e9ff0fe184c51c00708pt_BR
dc.date.available2015-06-25T17:49:52Z
dc.date.available2015-11-26T15:26:41Z-
dc.date.accessioned2015-06-25T17:49:52Z
dc.date.accessioned2015-11-26T15:26:41Z-
dc.description.provenanceMade available in DSpace on 2015-06-25T17:49:52Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.description.provenanceMade available in DSpace on 2015-11-26T15:26:41Z (GMT). No. of bitstreams: 0 Previous issue date: 2014en
dc.identifier.urihttp://www.repositorio.unicamp.br/handle/REPOSIP/85728
dc.identifier.urihttp://repositorio.unicamp.br/jspui/handle/REPOSIP/85728-
dc.identifier.idScopus2-s2.0-84894718441pt_BR
dc.description.referenceDemir, R., Electrical characterization of CdS nanoparticles for humidity sensing applications (2012) Ind. Eng. Chem. Res., 51, pp. 3309-3313pt_BR
dc.description.referenceNahar, R.K., On the origin of the humidity sensitive electrical properties of porous aluminium oxide (1984) J. Phys. D: Appl. Phys., 17, pp. 2087-2095pt_BR
dc.description.referenceEmmer, I., Pritchard, R.G., The influence of some gases on the behaviour of impedance and piezoelectric humidity sensors (1994) Int. J. Electron., 76, pp. 829-835pt_BR
dc.description.referenceHudoklin, D., Barukcic, E., Drnovsek, J., Engaging frost formation in a chilled-mirror hygrometer (2008) Int. J. Thermophys., 29, pp. 1598-1605pt_BR
dc.description.referenceKalogiros, J.A., Helmis, C.G., Fast response humidity measurements with the psychrometric method (1993) J. Appl. Meteorol., 32, pp. 1499-1507pt_BR
dc.description.referenceLackner, M., Tunable diode laser absorption spectroscopy (TDLAS) in the process industries - A review (2007) Rev. Chem. Eng., 23, pp. 65-147pt_BR
dc.description.referenceArregui, F.J., Liu, Y., Matias, I.R., Claus, R.O., Optical fibre humidity sensor using a nano Fabry-Perot cavity formed by the ionic self-assembly method (2000) IEICE Trans. Electron., 83 E-C, pp. 360-365pt_BR
dc.description.referenceMitschke, F., Fibre optic sensor for humidity (1989) Opt. Lett., 14, pp. 967-969pt_BR
dc.description.referenceWang, P., Gu, F., Zhang, L., Tong, L., Polymer microfibre rings for high-sensitivity optical humidity sensing (2011) Appl. Opt., 50, pp. 7-G10pt_BR
dc.description.referenceWu, Y., Zhang, T., Rao, Y., Gong, Y., Miniature interferometric humidity sensors based on silica/polymer microfibre knot resonators (2011) Sens. Actuators B: Chem., 155, pp. 258-263pt_BR
dc.description.referenceRivero, P.J., Urrutia, A., Goicoechea, J., Arregui, F.J., Optical fibre humidity sensors based on localized surface plasmon resonance (LSPR) and lossy-mode resonance (LMR) in overlays loaded with silver nanoparticles (2012) Sens. Actuators B: Chem., 173, pp. 244-249pt_BR
dc.description.referenceGaston, A., Lozano, I., Perez, F., Auza, F., Sevilla, J., Evanescent wave optical fibre sensing (temperature, relative humidity, and pH sensors) (2003) IEEE Sens. J., 3, pp. 806-811pt_BR
dc.description.referenceKhijwania, S.K., Srinivasan, K.L., Singh, J.P., An evanescent-wave optical fibre relative humidity sensor with enhanced sensitivity (2005) Sens. Actuators B: Chem., 104, pp. 217-222pt_BR
dc.description.referenceBrook, T.E., Taib, M.N., Narayanaswamy, R., Extending the range of a fibre optic relative humidity sensor (1997) Sens. Actuators B: Chem., 38-39, pp. 272-276pt_BR
dc.description.referenceJerônimo, P.C.A., Araújo, A.N., Conceição, M., Montenegro, B.S.M., Optical sensors and biosensors based on sol-gel films (2007) Talanta, 72, pp. 13-27pt_BR
dc.description.referenceLee, B.H., Kim, Y.H., Park, K.S., Eom, J.B., Kim, M.J., Rho, B.S., Choi, H.Y., Interferometric fibre optic sensors (2012) Sensors, 12, pp. 2467-2486pt_BR
dc.description.referenceChen, L.H., Chan, C.C., Li, T., Shaillender, M., Neu, B., Balamurali, P., Menon, R., Leong, K.C., Chitosan coated polarization maintaining fibre based Sagnac interferometer for relative humidity measurement (2012) IEEE J. Sel. Top. Quantum Electron., 18, pp. 1597-1604pt_BR
dc.description.referenceShao, M., Qiao, X., Fu, H., Zhao, N., Liu, Q., Gao, H., An in fibre Mach-Zehnder interferometer based on arc-induced tapers for high sensitivity humidity sensing (2013) IEEE Sens. J., 13, pp. 2026-2031pt_BR
dc.description.referenceYu, X., Childs, P., Zhang, M., Liao, Y., Ju, J., Jin, W., Relative humidity sensor based on cascaded long-period gratings with hydrogel coatings and Fourier demodulation (2009) IEEE Photonics Technol. Lett., 21, pp. 1828-1830pt_BR
dc.description.referenceYao, J., Zhu, T., Duan, D., Deng, M., Nanocomposite polyacrylamide based open cavity fibre Fabry-Perot humidity sensor (2012) Appl. Opt., 51, pp. 7643-7647pt_BR
dc.description.referenceChen, L.H., Li, T., Chan, C.C., Menon, R., Balamurali, P., Shaillender, M., Neu, B., Leong, K.C., Chitosan based fibre optic Fabry-Perot humidity sensor (2012) Sens. Actuators B: Chem., 169, pp. 167-172pt_BR
dc.description.referenceLi, T., Dong, X., Chan, C.C., Ni, K., Zhang, S., Shum, P.P., Humidity sensor with a PVA coated photonic crystal fiber interferometer (2013) IEEE Sens. J., 13, pp. 2214-2216pt_BR
dc.description.referenceMathew, J., Semenova, Y., Farrell, G., Relative humidity sensor based on an agarose infiltrated photonic crystal fiber interferometer (2012) IEEE J. Sel. Top. Quantum Electron., 18, pp. 1553-1559pt_BR
dc.description.referenceAcikgoz, S., Bilen, B., Demir, M.M., Menceloglu, Y.Z., Skarlatos, Y., Aktas, G., Inci, M.N., Use of polyethylene glycol coatings for optical fibre humidity sensing (2008) Opt. Rev., 15, pp. 84-90pt_BR
dc.description.referenceSasikumar, G., Ihm, J.W., Ryu, H., Optimum Nafion content in PEM fuel cell electrodes (2004) Electrochim. Acta, 50, pp. 601-605pt_BR
dc.description.referenceOmosebi, A., Besser, R.S., Electron beam assisted patterning and dry etching of Nafion membranes (2011) J. Electrochem. Soc., 158, pp. 603-D610pt_BR
dc.description.referenceRaimundo Jr., I.M., Narayanaswamy, R., Evaluation of Nafion-crystal violet films for the construction of an optical relative humidity sensor (1999) Analyst, 124, pp. 1623-1627pt_BR
dc.description.referenceDacres, H., Narayanaswamy, R., Highly sensitive optical humidity probe (2006) Talanta, 69, pp. 631-636pt_BR
dc.description.referenceJin, X.L., Li, W., Sun, D., Zhuang, Z., Wang, X., Fabrication of relative humidity optical fibre sensor based on Nafion-crystal violet sensing film (2005) Spectrosc. Spect. Anal., 25, pp. 1328-1331pt_BR
dc.description.referenceRaimundo Jr., I.M., Narayanaswamy, R., Simultaneous determination of relative humidity and ammonia in air employing an optical fibre sensor and artificial neural network (2001) Sens. Actuators B: Chem., 74, pp. 60-68pt_BR
dc.description.referenceSadaoka, Y., Matsuguchi, M., Sakai, Y., Optical fibre humidity sensor using nafion R-tri-phenylcarbinol composite (1991) J. Electrochem. Soc., 138, pp. 614-615pt_BR
dc.description.referenceGlenn, S.J., Cullum, B.M., Nair, R.B., Nivens, D.A., Murphy, C.J., Angel, S.M., Lifetime-based fiber-optic water sensor using a luminescent complex in a lithium-treated Nafion™ membrane by (2001) Anal. Chim. Acta, 488, pp. 1-8pt_BR
dc.description.referenceSantos, J.L., Leite, A.P., Jackson, D.A., Optical fibre sensing with a low-finesse Fabry-Perot cavity (1992) Appl. Opt., 31, pp. 7361-7366pt_BR
dc.description.referenceRao, Y., Jackson, D., Recent progress in fibre optic low-coherence interferometry (1996) Meas. Sci. Technol., 7, pp. 981-999pt_BR
dc.description.referenceGierke, T.D., Hsu, W.Y., The cluster-network model of ion clustering in perfluorosulfonated membranes (1982) Perfluorinated Ionomer Membranes, ACS Symposium Series, pp. 283-307. , Chapter 13, vol. 180pt_BR
dc.description.referenceSmitha, B., Sridhar, S., Khan, A.A., Solid polymer electrolyte membranes for fuel cell applications - A review (2005) J. Membr. Sci., 259, pp. 10-26pt_BR
dc.description.referenceGouveia, C., Zibaii, M., Latifi, H., Marques, M.J., Baptista, J.M., Jorge, P.A.S., Temperature independent refractive index measurement using white light interferometry (2012) Proc. SPIE 8421, OFS2012 22nd International Conference on Optical Fibre Sensors, , 84216Opt_BR
Appears in Collections:Unicamp - Artigos e Outros Documentos

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.